JPH0768594B2 - Copper alloys for electrical and electronic parts that are resistant to migration and have excellent hot workability - Google Patents

Copper alloys for electrical and electronic parts that are resistant to migration and have excellent hot workability

Info

Publication number
JPH0768594B2
JPH0768594B2 JP62083603A JP8360387A JPH0768594B2 JP H0768594 B2 JPH0768594 B2 JP H0768594B2 JP 62083603 A JP62083603 A JP 62083603A JP 8360387 A JP8360387 A JP 8360387A JP H0768594 B2 JPH0768594 B2 JP H0768594B2
Authority
JP
Japan
Prior art keywords
migration
electronic parts
hot workability
resistant
copper alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62083603A
Other languages
Japanese (ja)
Other versions
JPS63247328A (en
Inventor
元久 宮藤
功 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP62083603A priority Critical patent/JPH0768594B2/en
Publication of JPS63247328A publication Critical patent/JPS63247328A/en
Publication of JPH0768594B2 publication Critical patent/JPH0768594B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、熱間加工性に優れた耐マイグレーション性電
気・電子部品用銅合金(詳しくは、半導体素子・集積回
路および端子・コネクター用銅合金)に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of use] The present invention relates to a migration-resistant copper alloy for electric and electronic parts having excellent hot workability (specifically, copper for semiconductor elements / integrated circuits and terminals / connectors). Alloy).

[従来技術] 従来、特公昭43−38397号公報にて提案されているCu−
2.3%Fe−0.03%P−1.13%Znからなる鉄入り銅合金
は、導電性に優れ、耐熱性の良好な電気・電子部品用の
高力銅合金材料として知られている。
[Prior Art] Conventionally, Cu-
The iron-containing copper alloy composed of 2.3% Fe-0.03% P-1.13% Zn is known as a high-strength copper alloy material for electric / electronic parts, which has excellent conductivity and heat resistance.

上記の鉄入り銅合金は、常温において、Cu中へのFeの固
溶限以上のFeを含有する。したがって、連続鋳造あるい
は半連続鋳造にて作製した鉄入り銅合金鋳塊には、晶出
および析出した鉄が存在する。この鉄入り銅合金鋳塊を
熱間加工する際には、晶出および析出した鉄を固溶させ
るために熱間加工前の熱処理として930〜980℃の温度で
2〜3時間の平均化処理を必要とする。
The above-mentioned iron-containing copper alloy contains Fe at the normal temperature or above, which is the solid solubility limit of Fe in Cu or more. Therefore, crystallized and precipitated iron is present in the iron-containing copper alloy ingot produced by continuous casting or semi-continuous casting. When hot working this copper alloy ingot containing iron, averaging treatment for 2 to 3 hours at a temperature of 930 to 980 ° C. as a heat treatment before hot working in order to form a solid solution of crystallized and precipitated iron Need.

また、さらに上記鉄入り同合金鋳塊には500〜700℃に脆
性域があり、この温度域での高温伸びは6%以下であ
る。
Further, the iron-containing same alloy ingot has a brittle region at 500 to 700 ° C., and the high temperature elongation in this temperature region is 6% or less.

したがって、熱間加工する際に均質化処理を行なわない
場合は、10Kgf/mm2以上の残留応力の存在する鋳塊を脆
性域内で30分以上保持すると熱間割れを発生しやすいと
いう問題があった。
Therefore, if homogenization is not performed during hot working, there is a problem that hot cracking tends to occur if the ingot with residual stress of 10 Kgf / mm 2 or more is kept in the brittle zone for 30 minutes or more. It was

さらに、近年電気・電子部品は軽薄短小化のニーズに伴
ない、例えば集積回路抵抗器などは電極数の増加やプリ
ント基盤への高密度実装の必要から前記電極の電極間ピ
ッチは、1/10インチ(2.54mm)から1/20インチ(1.27m
m)、1/30インチ(0.847mm)へと小さくなってきてお
り、これに対応して端子・コネクターの極間ピッチも小
さくなっている。
Furthermore, with the need for lighter, thinner, shorter, and smaller electric and electronic parts in recent years, for example, the integrated circuit resistors have an increased number of electrodes and the need for high-density mounting on a printed circuit board. Inch (2.54mm) to 1/20 inch (1.27m
m) and 1/30 inch (0.847 mm), and the pitch between terminals and connectors is correspondingly reduced.

上記のように、電気・電子部品の電極間ピッチが小さく
なると、湿気の結露あるいは水分の侵入によって電極間
の水分の付着した部分に銅イオンが溶出し、当該銅イオ
ンが電極間電位で還元され、当該還元の繰り返しによ
り、Cuのマイグレーション現象が生じ、電極間を短絡す
るという不具合が生じ易い。
As described above, when the pitch between the electrodes of the electric / electronic component becomes small, the dew condensation of moisture or the intrusion of moisture causes copper ions to elute in the portion where the moisture between the electrodes adheres, and the copper ions are reduced at the potential between the electrodes. By the repetition of the reduction, a migration phenomenon of Cu occurs, and a short circuit between electrodes is likely to occur.

すなわち、従来の電気・電子部品用銅合金では、Cuのマ
イグレーション現象が生じ易く、電極間の短絡という問
題がある。
That is, in the conventional copper alloy for electric / electronic parts, the migration phenomenon of Cu easily occurs and there is a problem of short circuit between electrodes.

[発明が解決しようとする問題点] 以上説明したように、Cu−2.3%Fe−0.03P−0.13%Znか
らなる鉄入り銅合金は、鋳塊状態では、600℃付近の中
高温度域での高温伸びは6%以下と低いため、熱間加工
前の熱処理として930〜980℃の温度で数時間の均質化処
理が必要となる。
[Problems to be Solved by the Invention] As described above, the iron-containing copper alloy composed of Cu-2.3% Fe-0.03P-0.13% Zn is in the ingot state in the middle and high temperature range around 600 ° C. Since the high temperature elongation is as low as 6% or less, a homogenizing treatment at a temperature of 930 to 980 ° C. for several hours is required as a heat treatment before hot working.

本発明は、上記に説明したCu−2.3%Fe−0.03%P−0.1
3%Znからなる鉄入り銅合金が熱間加工における加熱
中、あるいは熱間加工中に粒界割れを生じ易いという問
題点を解決し、さらには、当該銅合金を材料とする電気
・電子部品の高密度化に伴なう銅のマイグレーション現
象により発生する短絡という問題点を解決すべくなされ
たものである。
The present invention provides the Cu-2.3% Fe-0.03% P-0.1 described above.
Solves the problem that a copper alloy containing iron consisting of 3% Zn tends to cause intergranular cracks during heating during hot working or during hot working, and further, electrical and electronic parts made from the copper alloy. It was made in order to solve the problem of short circuit caused by the migration phenomenon of copper that accompanies higher density.

[問題点を解決するための手段] 本発明は以上の事情に基づいてなされたものであり、熱
間加工性に優れた耐マイグレーション性電気・電子部品
用合金において、Fe:1.5〜3.0%,P:0.001〜0.1%,Zn:1.
0〜5.0%,Mg:0.001〜0.01%(0.01%は含まず)とCr,T
i,Zrのいずれか一種以上を0.001〜0.01%(0.1%は含ま
ず)含有し、残部がCuと不可避不純物からなることに要
旨が存在する。
[Means for Solving the Problems] The present invention has been made based on the above circumstances, and in an alloy for migration-resistant electric / electronic parts excellent in hot workability, Fe: 1.5 to 3.0%, P: 0.001-0.1%, Zn: 1.
0 to 5.0%, Mg: 0.001 to 0.01% (0.01% is not included) and Cr, T
The gist is that 0.001 to 0.01% (not including 0.1%) of at least one of i and Zr is contained, and the balance is Cu and inevitable impurities.

[作用] 以下に本発明の熱間加工性に優れた耐マイグレーション
性電気・電子部品用銅合金について詳細に説明する。
[Function] The migration-resistant copper alloy for electric / electronic parts having excellent hot workability according to the present invention will be described in detail below.

一般的に、銅合金などの連続鋳造あるいは半連続鋳造に
おいては、鋳塊の表層部数mmを除いた部分は徐冷されて
凝固している。
Generally, in continuous casting or semi-continuous casting of a copper alloy or the like, the portion of the ingot excluding the surface layer portion of several mm is gradually cooled and solidified.

また、Cu−Fe系合金の550℃以下の温度でのCu中へのFe
の固溶限は0.15%以下である。
In addition, Fe in Cu-Fe alloys at a temperature of 550 ° C or less
The solid solubility limit of is less than 0.15%.

したがって、Cu−2.3%Fe−0.03%P−0.13%Znからな
る鉄入り合金では2.15%以上のFeが結晶粒界・粒内に析
出している。特に、結晶粒界にFeが多量に析出すると、
高温下における粒界のすべりが起り難くなり、粒界の高
温強度が著しく劣化し、熱間割れの原因となる。また60
0℃付近の中高温度域で高温伸びが6%以下となり、脆
性を示す。
Therefore, in the iron-containing alloy composed of Cu-2.3% Fe-0.03% P-0.13% Zn, 2.15% or more of Fe is precipitated in the grain boundaries / grains. In particular, when a large amount of Fe precipitates at the grain boundaries,
Slip of grain boundaries at high temperatures is less likely to occur, the high temperature strength of grain boundaries is significantly deteriorated, and this causes hot cracking. Again 60
In the middle and high temperature range around 0 ° C, the high temperature elongation is 6% or less, which indicates brittleness.

本発明は銅合金において合金元素の添加によりFeの結晶
粒界への析出を抑制し、粒界の中高温強度、中高温脆性
を改善し、また電気・電子部品のマイグレーションの形
成を抑えた、熱間加工性に優れた耐マイグレーション性
銅合金に関するものであり、以下に各添加元素の限定理
由および作用について説明する。
The present invention suppresses the precipitation of Fe in the crystal grain boundaries by the addition of alloying elements in the copper alloy, improves the medium temperature high temperature strength of the grain boundaries, improves the medium temperature high temperature brittleness, and suppresses the formation of migration of electric / electronic components, The present invention relates to a migration-resistant copper alloy having excellent hot workability, and the reasons for limiting each additive element and the action thereof will be described below.

(Mg) Mg:0.001〜0.1%(0.01%は含まず)とする。(Mg) Mg: 0.001 to 0.1% (0.01% is not included).

Mgは、原料、炉材あるいは雰囲気から混入するSを、安
定なMgとの化の形で母相中に固定し、熱間加工性を向上
させる必須元素であり、含有量が0.001%未満では上記
効果はなく、Sは粒界中を移動して粒界割れを助言する
こととなる。Mgの含有量が0.01%以上であると鋳塊内部
にCu+MgCu2という融点722℃の共晶を生じ、熱間加工温
度である850〜950℃に加熱することが不可能となり、さ
らには鋳塊の表面に酸化物の巻き込みが多くなり、健全
な鋳塊が得られなくなる。したがってMg含有量は0.001
〜0.01%(0.01%含まず)とする。
Mg is an essential element that fixes S mixed in from the raw material, furnace material or atmosphere in the matrix in the form of stable conversion to Mg and improves hot workability. If the content is less than 0.001% There is no above effect, and S moves in the grain boundary and advises the grain boundary cracking. If the Mg content is 0.01% or more, a eutectic with a melting point of 722 ° C called Cu + MgCu 2 is generated inside the ingot, making it impossible to heat to the hot working temperature of 850-950 ° C. Oxide is often entrained on the surface of the steel and a sound ingot cannot be obtained. Therefore, the Mg content is 0.001
~ 0.01% (not including 0.01%).

(Cr,Ti,Zr) Cr,Ti,Zr:いずれか1種以上を0.001〜0.
01%(0.01%は含まれず)含有する。
(Cr, Ti, Zr) Cr, Ti, Zr: Any one or more of 0.001 to 0.
Contains 01% (0.01% is not included).

Cr,Ti,Zrいずれか1種類以上の含有量が0.001%未満で
は熱間割れの抑制効果は得られず、また0.01%以上含有
すると溶湯が酸化し易くなり、良好な鋳塊が得られな
い。したがってCr,Ti,Zr:いずれか1種以上を0.001〜0.
01%(0.01%は含まれず)含有する必要がある。
If the content of any one of Cr, Ti, and Zr is less than 0.001%, the effect of suppressing hot cracking cannot be obtained, and if the content of 0.01% or more is contained, the molten metal is easily oxidized and a good ingot cannot be obtained. . Therefore, any one or more of Cr, Ti, and Zr: 0.001 to 0.
It is necessary to contain 01% (0.01% is not included).

(Zn) Zn:1.0〜5.0% Znは、電圧が印加された電気・電子部品の極間に水の侵
入や結露などが生じた場合のCuのマイグレーション形成
を抑え、漏洩電流を抑制するための必須元素である。
(Zn) Zn: 1.0 to 5.0% Zn is used to suppress the formation of Cu migration and prevent leakage current when water enters or dew between the electric and electronic parts to which voltage is applied. It is an essential element.

Zn含有量が1.0%未満ではマイグレーション抑制効果が
得られず、Zn含有量が5.0%を越えた場合は、導電率が
小さくなり、また応力腐触割れを起こしやすくなる。し
たがってZn含有量は1.0〜5.0とする。
If the Zn content is less than 1.0%, the effect of suppressing migration cannot be obtained, and if the Zn content exceeds 5.0%, the electrical conductivity decreases and stress corrosion cracking tends to occur. Therefore, the Zn content is 1.0 to 5.0.

(P) P:0.001〜0.1% Pは含有量が0.001%未満では、溶湯中の脱酸効果が得
られず、また0.1%を越えて含有すると熱間加工性の劣
化および導電率の低下をきたす。したがって、Pの含有
量は0.001から0.1%とする必要がある。
(P) P: 0.001 to 0.1% If the content of P is less than 0.001%, the deoxidizing effect in the molten metal cannot be obtained, and if it exceeds 0.1%, the hot workability is deteriorated and the conductivity is lowered. Come here. Therefore, the P content must be 0.001 to 0.1%.

(Fe) Fe:1.5〜3.0% Feは素材の強度向上に寄与するが、その含有量が1.5%
未満では目的とする高強度が得られず、また3.0%を越
えて含有すると導電率の低下および晶出するFeが巨大化
し、その結果、半田付け性の劣化およびAu,Agめっきの
ふくれ等の不具合を生じ易くなる。したがって、Feの含
有量は1.5〜3.0%とする必要がある。
(Fe) Fe: 1.5-3.0% Fe contributes to the strength improvement of the material, but its content is 1.5%.
If less than 3.0%, the desired high strength cannot be obtained, and if the content exceeds 3.0%, the conductivity decreases and the crystallized Fe becomes huge, resulting in deterioration of solderability and blistering of Au, Ag plating, etc. It is easy for problems to occur. Therefore, the Fe content needs to be 1.5 to 3.0%.

[実施例] 以下に本発明の熱間加工性に優れた電気・電子部品用銅
合金の実施例について説明する。
[Examples] Examples of the copper alloy for electric / electronic parts excellent in hot workability of the present invention will be described below.

第1表に示す組成の銅合金を電気炉により大気巾で木炭
被覆下で溶解し、厚さ50mm、幅80mm、長さ180mmの鋳塊
を溶製した。
A copper alloy having the composition shown in Table 1 was melted in an electric furnace under an atmosphere width under a charcoal coating, and an ingot having a thickness of 50 mm, a width of 80 mm and a length of 180 mm was melted.

以上により溶製した各鋳塊を切断し、厚さ6mmのASTME8
の高温引張試験片と厚さ40mm、幅80mm、厚さ180mmの熱
間圧延試験方と厚さ5mm、幅20mm、長さ150mmの中高温脆
性特性の評価試験片を作製した。
Each ingot produced by the above process was cut, and ASTM E8 with a thickness of 6 mm was cut.
A high temperature tensile test specimen of 40 mm thick, a width of 80 mm and a thickness of 180 mm and a test specimen for evaluation of medium-temperature brittleness characteristics of a thickness of 5 mm, a width of 20 mm and a length of 150 mm were prepared.

高温引張試験条件は、温度600℃、700℃,800℃および95
0℃とし、引張速度は2mm/minとした。
The high temperature tensile test conditions are 600 ℃, 700 ℃, 800 ℃ and 95 ℃.
The temperature was 0 ° C. and the tensile speed was 2 mm / min.

熱間圧延条件は、圧延開始温度950℃とし、1パス毎の
圧下率は大幅25%とし、3パスにて圧延し、圧延終了温
度650℃以上、厚さ15mmに仕上げた。
The hot rolling conditions were such that the rolling start temperature was 950 ° C., the rolling reduction in each pass was significantly 25%, and rolling was performed in three passes, and the rolling end temperature was 650 ° C. or higher and the thickness was 15 mm.

中高温脆性の評価試験は、3点支持曲げにて10Kgf/mm2
の応力を付加し、真空炉中で600℃にて1時間保持し、
冷却後常温にて内側面曲げ半径30mmで、90度曲げて割れ
の有無を確認した。
The medium-high temperature brittleness evaluation test is 10 Kgf / mm 2 with three-point support bending.
Stress, and hold for 1 hour at 600 ℃ in a vacuum furnace,
After cooling, the inner surface was bent at a bending radius of 30 mm and bent 90 degrees at room temperature to check for cracks.

また、耐マイグレーションの試験のために、前記鋳塊の
それぞれの一部を950℃で1時間加熱後熱間圧延を行な
い、厚さ15mmの板材とし水中急冷した。
Further, for the migration resistance test, a part of each of the ingots was heated at 950 ° C. for 1 hour and then hot-rolled to form a plate material having a thickness of 15 mm, which was rapidly cooled in water.

上記熱間圧延材の表面の酸化スケースは20vol%硫酸水
にて除去後、冷間圧延にて、途中、500℃×2hr、で焼鈍
し、厚さ0.32mmの圧延材を作製した。
The oxide case on the surface of the hot-rolled material was removed with 20 vol% sulfuric acid water, and then cold-rolled and annealed at 500 ° C. × 2 hr to produce a rolled material having a thickness of 0.32 mm.

上記の冷間圧延材から、厚さ0.32mm、幅3.0mm、長さ80m
mの試験片を作製した。
From the above cold rolled material, thickness 0.32mm, width 3.0mm, length 80m
A test piece of m was prepared.

第1図および第2図は、上記試験片を使用した漏洩電流
測定用の試験装置である。第1図および第2図におい
て、1a,1bは試験片、2は厚さ1mmのABS樹脂、3は前記A
BS樹脂2の押え板である。4は、前記押え板3を押圧固
定するため表面に絶縁塗料を塗布したクリップ、5はバ
ッテリー、6は電線である。試験片1a,1bは端部を電線
6に接続している。
1 and 2 show a test device for measuring leakage current using the test piece. 1 and 2, 1a and 1b are test pieces, 2 is ABS resin with a thickness of 1 mm, and 3 is the above A
It is a holding plate for BS resin 2. Reference numeral 4 is a clip whose surface is coated with an insulating paint for pressing and fixing the pressing plate 3, 5 is a battery, and 6 is an electric wire. The ends of the test pieces 1a and 1b are connected to the electric wire 6.

第1図および第2図に示す2枚の試験片1a,1bに、バッ
テリー5より直流電圧14Vを印加して、水道水中に5分
間浸漬、続いて10分間乾燥の乾湿試験を50回行ない、そ
の間の最大漏電流を高感度レコーダー(図示せず)で測
定した。
A DC voltage of 14 V was applied from the battery 5 to the two test pieces 1a and 1b shown in FIG. 1 and FIG. 2, soaked in tap water for 5 minutes, and then a dry-wet test of drying for 10 minutes was performed 50 times, The maximum leakage current during that time was measured with a high-sensitivity recorder (not shown).

以上説明した、試験結果を第2表および第3表に示す。
第3表の結果から明らかなように、本発明の実施例No.1
〜18においては、加熱中の昇温途中における一番脆化し
易い温度である600℃で、10Kgf/mm2の応力が付加された
状態で1時間保持しても、全く割れを生じない。
The test results described above are shown in Tables 2 and 3.
As is clear from the results of Table 3, Example No. 1 of the present invention
In Nos. 18 to 18, cracking does not occur at all even when held for 1 hour at 600 ° C., which is the most brittle temperature during heating during heating, with a stress of 10 Kgf / mm 2 applied.

また、第2表、第3表における中高温引張試験および第
3表における950℃からの熱間圧延試験においても、各
々異常な破断および割れを生じてない。
Also, in the medium-high temperature tensile test in Tables 2 and 3, and the hot rolling test from 950 ° C. in Table 3, no abnormal breakage or cracking occurred.

また、第2表に示すように、耐マイグレションの点にお
いても本発明の実施例No.1〜18は最大漏洩電流が0.48〜
0.56Aと小さく耐マイグレーション性に優れいる。
Further, as shown in Table 2, in terms of migration resistance, Examples Nos. 1 to 18 of the present invention have a maximum leakage current of 0.48 to
It is as small as 0.56A and has excellent migration resistance.

すなわち、本発明の実施例においては、Mgを0.001〜0.0
1%(0.01%含まず)含有させ、さらにCr,Ti,Zrのいず
れか1種以上を0.001〜0.01%(0.01%含まず)含有さ
せることによって、熱間加工性が良くなっている。ま
た、本発明の実施例においては、Znを1.0〜5.0%含有さ
せることにより、耐マイグレーションも良くなってい
る。
That is, in the embodiment of the present invention, Mg 0.001 ~ 0.0
By containing 1% (not including 0.01%) and further containing 0.001 to 0.01% (not including 0.01%) of any one of Cr, Ti and Zr, the hot workability is improved. In addition, in the examples of the present invention, by incorporating Zn in an amount of 1.0 to 5.0%, migration resistance is also improved.

以上説明した実施例に対して、第2表および第3表に示
す、比較例No.19〜29においては、第3表に示す600℃に
おける応力付加試験において、貫通割れを生じている。
In contrast to the examples described above, in Comparative Examples Nos. 19 to 29 shown in Tables 2 and 3, penetration cracking occurred in the stress application test at 600 ° C. shown in Table 3.

また第2表、第3表における中高温引張試験において
は、伸び率は低く、950℃における高温引張試験での切
断部以外の割れ状況は、激しく粒界割れを生じている。
In addition, in the medium and high temperature tensile tests in Tables 2 and 3, the elongation is low, and the cracking condition other than the cut portion in the high temperature tensile test at 950 ° C. causes severe intergranular cracking.

さらに、第3表において950℃での熱間圧延試験では1
パスで耳割れ、表面割れが発生し、2パスで崩壊した。
Furthermore, in Table 3, it was 1 in the hot rolling test at 950 ° C.
Ear cracks and surface cracks occurred on the pass, and it collapsed on the second pass.

さらにまた、比較例No.21,22,23,26および29において
は、第2表に示すように、最大漏洩電流がそれぞれ3.15
A〜4.35Aと高い値となっており。耐マイグレーション性
に劣っている。
Furthermore, in Comparative Examples Nos. 21, 22, 23, 26 and 29, as shown in Table 2, the maximum leakage current was 3.15 each.
It is as high as A ~ 4.35A. It has poor migration resistance.

すなわち、本発明の実施例に対する比較例No.20〜No.32
においては、本発明の必須要件を満足するMg:0.001〜0.
01%(0.01%含まず)が含有されておらず、また、同様
にCr,Ti,Zrのいずれか1種以上を0.001〜0.01%(0.01
%含まず)含有されていないため、熱間加工性が悪い。
That is, Comparative Examples No. 20 to No. 32 with respect to the examples of the present invention
In, Mg that satisfies the essential requirements of the present invention: 0.001 ~ 0.
01% (not including 0.01%) is not contained, and similarly, any one or more of Cr, Ti, and Zr is added to 0.001 to 0.01% (0.01
%) (Not included), so hot workability is poor.

また、比較例No.21,22,23および26においては、本発明
の必須要件を満足するZn:1.0〜5.0%を含有していない
ために耐マイグレーション性に劣っている。
Further, Comparative Examples Nos. 21, 22, 23 and 26 are inferior in migration resistance because they do not contain Zn: 1.0 to 5.0% which satisfies the essential requirements of the present invention.

尚、本発明の実施例において、漏洩電流の試験時におけ
る印加電圧は直流14Vとしたが直流印加電圧24Vあるい
は、100V交流印加電圧においても、良好の耐マイグレー
ション性を示す。
In the examples of the present invention, the applied voltage at the time of the leakage current test was set to 14 V DC, but good migration resistance is exhibited even at 24 V DC applied voltage or 100 V AC applied voltage.

[発明の効果] 以上説明したように、本発明によれば、鋳塊の均質化処
理を行なうことなく、中高温における脆性を改善し、熱
間加工が可能であり、さらには、Cuのマイグレーション
現象を制御することにより、電極間短絡のない、熱間加
工性に優れた耐マイグレーション性電気・電子部品用銅
合金を提供することができる。
[Effects of the Invention] As described above, according to the present invention, brittleness at medium and high temperatures can be improved and hot working can be performed without homogenizing the ingot. By controlling the phenomenon, it is possible to provide a migration-resistant copper alloy for electric / electronic parts which is free from short circuit between electrodes and has excellent hot workability.

【図面の簡単な説明】[Brief description of drawings]

第1図および第2図は、最大漏洩電流を測定のための実
験装置の平面図および測断面図である。 1a,1b……試験片、2……ABS樹脂、4……クリップ、5
……バッテリー、6……電線、3……押え板、2a……放
電穴
1 and 2 are a plan view and a sectional view of an experimental apparatus for measuring the maximum leakage current. 1a, 1b …… Test piece, 2 …… ABS resin, 4 …… Clip, 5
...... Battery, 6 ...... Wire, 3 ...... Presser plate, 2a ...... Discharge hole

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Fe:1.5〜3.0%(重量%以下同じ。)P:0.0
01〜0.1%,Zn:1.0〜5.0%,Mg:0.001〜0.01%(0.01%は
含まず)を含有し、Cr,Ti,Zrのいずれか一種以上を0.00
1〜0.01%(0.01%は含まず)含有し、残部がCuと不可
避不純物からなることを特徴とする、熱間加工性に優れ
た耐マイグレーション性電気・電子部品用銅合金。
1. Fe: 1.5 to 3.0% (same as below by weight%) P: 0.0
Contains 01 to 0.1%, Zn: 1.0 to 5.0%, Mg: 0.001 to 0.01% (not including 0.01%), and contains 0.001% of any one or more of Cr, Ti, and Zr.
1 to 0.01% (not including 0.01%), the balance consisting of Cu and unavoidable impurities, migration-resistant copper alloy for electric and electronic parts with excellent hot workability.
JP62083603A 1987-04-03 1987-04-03 Copper alloys for electrical and electronic parts that are resistant to migration and have excellent hot workability Expired - Lifetime JPH0768594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62083603A JPH0768594B2 (en) 1987-04-03 1987-04-03 Copper alloys for electrical and electronic parts that are resistant to migration and have excellent hot workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62083603A JPH0768594B2 (en) 1987-04-03 1987-04-03 Copper alloys for electrical and electronic parts that are resistant to migration and have excellent hot workability

Publications (2)

Publication Number Publication Date
JPS63247328A JPS63247328A (en) 1988-10-14
JPH0768594B2 true JPH0768594B2 (en) 1995-07-26

Family

ID=13807057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62083603A Expired - Lifetime JPH0768594B2 (en) 1987-04-03 1987-04-03 Copper alloys for electrical and electronic parts that are resistant to migration and have excellent hot workability

Country Status (1)

Country Link
JP (1) JPH0768594B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193233A (en) * 1983-04-15 1984-11-01 Toshiba Corp Copper alloy
JPS61127839A (en) * 1984-11-24 1986-06-16 Kobe Steel Ltd Phosphor bronze having superior hot workability

Also Published As

Publication number Publication date
JPS63247328A (en) 1988-10-14

Similar Documents

Publication Publication Date Title
JP4756197B2 (en) Cu-Mg-P-based copper alloy and method for producing the same
JPH09104956A (en) Production of high strength and high electric conductivity copper alloy
EP0189637A1 (en) Copper alloy and production of the same
JP2844120B2 (en) Manufacturing method of copper base alloy for connector
JP3904118B2 (en) Copper alloy for electric and electronic parts and manufacturing method thereof
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JPS63307232A (en) Copper alloy
JPS62182240A (en) Conductive high-tensile copper alloy
JP2950715B2 (en) Copper alloy for electric and electronic parts
JPS6215621B2 (en)
JPS59145745A (en) Copper alloy for lead material of semiconductor apparatus
JPH11323463A (en) Copper alloy for electrical and electronic parts
JPS6338547A (en) High strength conductive copper alloy
JPS62199741A (en) Copper alloy for terminal and connector having superior migration resistance
JPH0768594B2 (en) Copper alloys for electrical and electronic parts that are resistant to migration and have excellent hot workability
JP3941308B2 (en) Copper alloy with excellent hot workability
JP2585347B2 (en) Method for producing highly conductive copper alloy with excellent migration resistance
JP2000273561A (en) Copper base alloy for terminal and its production
JPH06220556A (en) Copper alloy for electrical and electronic parts excellent in hot workability and migration resistance
JPH0696757B2 (en) Method for producing high-strength, high-conductivity copper alloy with excellent heat resistance and bendability
JP3344687B2 (en) Copper alloy for lead frame
JPH01165733A (en) High strength and high electric conductive copper alloy
JP3049149B2 (en) High strength and high conductivity copper alloy with excellent migration resistance and method for producing the same
JPH0219432A (en) High-strength and high-conductivity copper alloy for semiconductor equipment lead material or conductive spring material
JP2000273562A (en) High strength and high electrical conductivity copper alloy excellent in stress relaxation resistance

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070726

Year of fee payment: 12