JP4756197B2 - Cu-Mg-P-based copper alloy and method for producing the same - Google Patents

Cu-Mg-P-based copper alloy and method for producing the same Download PDF

Info

Publication number
JP4756197B2
JP4756197B2 JP2005241382A JP2005241382A JP4756197B2 JP 4756197 B2 JP4756197 B2 JP 4756197B2 JP 2005241382 A JP2005241382 A JP 2005241382A JP 2005241382 A JP2005241382 A JP 2005241382A JP 4756197 B2 JP4756197 B2 JP 4756197B2
Authority
JP
Japan
Prior art keywords
copper alloy
less
annealing
migration resistance
iacs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005241382A
Other languages
Japanese (ja)
Other versions
JP2007056297A (en
Inventor
宏人 成枝
隆夫 冨谷
裕一 金光
康雄 猪鼻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2005241382A priority Critical patent/JP4756197B2/en
Publication of JP2007056297A publication Critical patent/JP2007056297A/en
Application granted granted Critical
Publication of JP4756197B2 publication Critical patent/JP4756197B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Conductive Materials (AREA)

Description

本発明は、自動車用コネクタ端子、バスバーや、電気・電子部品の端子等に用いられる通電用の銅または銅合金であって、特に高い電気伝導度(導電率)と優れた耐マイグレーション性が求められる銅合金に関するものである。   The present invention is a copper or copper alloy for energization used for automobile connector terminals, bus bars, terminals of electric / electronic components, etc., and particularly requires high electrical conductivity (conductivity) and excellent migration resistance. The present invention relates to a copper alloy.

従来、自動車用ジャンクションボックス(以下J/B)等、極間の狭いバスバーには、耐マイグレーション性が良好であることから、黄銅が使用されてきた。しかし、J/Bの小型化・高密度化に伴いバスバー通電部も細線化されるようになり、導電率が低い(導電率約28%IACS)ことによるジュール熱の発生等、諸問題が発生した。このため、導電率が45〜65%IACS程度と比較的良好であり、かつ耐マイグレーション性にも優れた銅合金として、例えば、Cu−1Ni−0.5Sn−0.05P、Cu−0.7Mg−0.005P、Cu−2.3Fe−2Zn−0.03P等が開発され、使用されている。ところが最近では、自動車の軽量化、電装品の回路数の増加といった傾向はますます強くなっており、75%IACS以上の高い導電率を有した上で優れた耐マイグレーション性を呈する材料が要望されている。この要望に対しては上記の銅合金でも導電率の面で対応できなくなってきている。さらに80%IACSを超えるような極めて高い導電率と、優れた耐マイグレーション性を具備した材料の出現も望まれている。また同時に耐応力緩和特性にも優れることが要求される。   Conventionally, brass has been used for a narrow bus bar between electrodes such as an automobile junction box (hereinafter referred to as J / B) because of its good migration resistance. However, along with the downsizing and high density of J / B, the bus bar current-carrying part is also thinned, causing various problems such as the generation of Joule heat due to low conductivity (conductivity of about 28% IACS). did. Therefore, as a copper alloy having a relatively good conductivity of about 45 to 65% IACS and excellent in migration resistance, for example, Cu-1Ni-0.5Sn-0.05P, Cu-0.7Mg -0.005P, Cu-2.3Fe-2Zn-0.03P, etc. have been developed and used. Recently, however, the trend of reducing the weight of automobiles and increasing the number of circuits of electrical components has become stronger, and there is a demand for materials that have high conductivity of 75% IACS or higher and exhibit excellent migration resistance. ing. To meet this demand, even the above-described copper alloy cannot respond to the demand in terms of conductivity. Furthermore, the emergence of materials having extremely high electrical conductivity exceeding 80% IACS and excellent migration resistance is also desired. At the same time, it is required to have excellent stress relaxation resistance.

特開平1−168830号公報JP-A-1-168830 特開平1−168831号公報Japanese Patent Laid-Open No. 1-168831 特開平1−212738号公報JP-A-1-212738 特開平1−222031号公報Japanese Patent Laid-Open No. 1-222031 特開平1−225735号公報JP-A-1-225735 特開平2−118038号公報JP-A-2-118038 特開平3−97816号公報Japanese Patent Laid-Open No. 3-97816 特開平5−195173号公報JP-A-5-195173 特開昭62−146231号公報JP 62-146231 A 特開昭64−52034号公報Japanese Patent Application Laid-Open No. 64-52034 特開平1−263238号公報JP-A-1-263238 特開平4−231433号公報JP-A-4-231433 特開平6−73474号公報JP-A-6-73474

特許文献1〜8には耐マイグレーション性を改善した各種銅合金が開示されているが、通電材料に課せられた今後の厳しいニーズに対応していくには、いずれも導電率の面で十分とはいえない。特許文献9〜13には一部の例として高い導電率を呈するものも示されているが、耐マイグレーション性が不十分であったり、あるいは多成分系の組成に頼っていたりと、性能やコストの面でさらなる改善が望まれるところである。   Although various copper alloys with improved migration resistance are disclosed in Patent Documents 1 to 8, all of them are sufficient in terms of conductivity in order to meet future severe demands imposed on current-carrying materials. I can't say that. Patent Documents 9 to 13 show some examples that exhibit high electrical conductivity, but the migration and resistance are insufficient, or depending on the composition of the multi-component system, performance and cost. Therefore, further improvements are desired.

本発明はこのような現状に鑑み、高い導電率(具体的には導電率75%IACS以上、好ましくは75%IACS超え、あるいはさらに80%IACS超え)と、優れた耐マイグレーション性、耐応力緩和特性を具備する銅合金を、コスト・製造性の観点から3元系あるいは4元系といった少ない元素系からなる組成において実現しようというものである。   In view of such a current situation, the present invention has a high conductivity (specifically, a conductivity of 75% IACS or more, preferably more than 75% IACS or even more than 80% IACS), excellent migration resistance, and stress relaxation resistance. A copper alloy having characteristics is to be realized in a composition composed of a small number of elements such as a ternary system or a quaternary system from the viewpoint of cost and manufacturability.

発明者らは種々検討の結果、所定量のPを、Mgと共に複合添加したとき、P添加による耐マイグレーション性の向上作用が現れることを見出した。従来、Mgは単独添加で耐マイグレーション性を改善するとされていたが、Pに耐マイグレーション性の向上作用があることは知られていなかった。ところが、Pは、Mgと共に積極添加した場合、耐マイグレーション性の顕著な改善をもたらすのである。本発明はこのような知見に基づいて完成された。   As a result of various studies, the inventors have found that when a predetermined amount of P is added together with Mg, an effect of improving migration resistance due to the addition of P appears. Conventionally, Mg was considered to improve migration resistance by adding alone, but it was not known that P has an effect of improving migration resistance. However, when P is positively added together with Mg, the migration resistance is remarkably improved. The present invention has been completed based on such findings.

すなわち、上記目的は、質量%で、Mg:0.1〜0.4%、P:0.08〜0.35%、あるいはさらにSn:0.4%以下、残部実質的にCu、かつ下記(1)式を満たす組成をもち、導電率が75%IACS以上の銅合金によって達成される。
−0.14≦Mg−1.2P≦0.18 ……(1)
ここで、(1)式の元素記号の箇所には質量%で表された当該元素の含有量の値が代入される。導電率が80%IACSを超えるものが好適な対象となる。
That is, the above-mentioned purpose is mass%, Mg: 0.1-0.4%, P: 0.08-0.35%, or even Sn: 0.4% or less, the balance being substantially Cu, and It is achieved by a copper alloy having a composition satisfying the formula (1) and having a conductivity of 75% IACS or higher.
−0.14 ≦ Mg−1.2P ≦ 0.18 (1)
Here, the value of the content of the element expressed in mass% is substituted for the element symbol in the formula (1). Those having an electrical conductivity exceeding 80% IACS are suitable targets.

本発明で提供する銅合金はCu、Mg、Pの3元系、またはこれらにSnを加えた4元系を基本組成とするが、これら以外の元素であっても本発明の効果を阻害しない限り含有が許容される。銅合金のスクラップから通常混入される元素を少量含有しても、本発明に従えば75%IACS以上、好ましくは80%IACSを超える導電率を維持することが可能であり、この場合でもMgとPの複合添加による耐マイグレーション性改善作用を享受することができる。なるべく下記(2)式を満たすように原料を管理することが好ましい。
Cu+Mg+P+Sn≧99.7 ……(2)
なお、「残部実質的にCu」には「残部Cuおよび不可避的不純物からなる」ものが含まれる。
The copper alloy provided in the present invention is based on a ternary system of Cu, Mg, P, or a quaternary system in which Sn is added to these, but even if it is an element other than these, the effect of the present invention is not hindered. As long as content is acceptable. Even if it contains a small amount of elements normally mixed from copper alloy scrap, it is possible to maintain a conductivity of 75% IACS or more, preferably more than 80% IACS according to the present invention. The effect of improving migration resistance due to the combined addition of P can be enjoyed. It is preferable to manage the raw materials so as to satisfy the following formula (2) as much as possible.
Cu + Mg + P + Sn ≧ 99.7 (2)
Note that “the balance being substantially Cu” includes “the balance Cu and inevitable impurities”.

また耐応力緩和特性に優れたものとして、上記合金において特に、長さ150mmの試験片に両端支持式で表面最大応力300N/mm2となるようにアーチ曲げによるたわみ変位を与えた状態で、大気中150℃で500時間保持したときの応力緩和率が20%以下である銅合金が提供される。この応力緩和率は日本電子材料工業会標準規格EMAS−1011(平成3年12月)に準拠した方法によって求めることができる。 In addition, as a material excellent in stress relaxation resistance, in the above-described alloy, in particular, a test piece having a length of 150 mm is supported at both ends and is subjected to a deflection displacement by arch bending so that the maximum surface stress is 300 N / mm 2. A copper alloy having a stress relaxation rate of 20% or less when held at medium temperature of 150 ° C. for 500 hours is provided. This stress relaxation rate can be calculated | required by the method based on the Japan Electronic Material Industry Association standard EMAS-1011 (December, 1991).

また本発明では、上記の銅合金の製造法として、鋳片を750〜930℃で保持したのち抽出して熱間圧延し、その後、冷間圧延と焼鈍を組み合わせた工程において、400〜600℃で保持する時効処理を少なくとも1回、中間焼鈍として行うことによりMg−P系化合物を析出させる製造法を提供する。
ここで、「中間焼鈍」は冷間圧延の途中で行われる焼鈍であり、最終冷間圧延後に行われる焼鈍とは区別される。最終冷間圧延後には275〜800℃で歪取り焼鈍を施すことが好ましい。
Moreover, in this invention, as a manufacturing method of said copper alloy, after hold | maintaining a slab at 750-930 degreeC, it extracts and hot-rolls, Then, in the process which combined cold rolling and annealing, 400-600 degreeC The manufacturing method which precipitates a Mg-P type compound by performing the aging process hold | maintained by at least once as intermediate annealing is provided.
Here, “intermediate annealing” is annealing performed in the middle of cold rolling, and is distinguished from annealing performed after the final cold rolling. It is preferable to perform strain relief annealing at 275 to 800 ° C. after the final cold rolling.

本発明によれば、Cu、Mg、Pの3元系、またはこれらにSnを加えた4元系を基本とするシンプルな合金系において、75%IACS以上、あるいはさらに80%IACSを超える高い導電率と、優れた耐マイグレーション性、あるいはさらに優れた耐応力緩和特性を同時に実現することが可能になった。強度レベルも高く維持される。したがって本発明は、J/Bに代表される自動車用バスバー材や、狭ピッチ化が進む端子等の通電部品に好適な低コストの銅合金材料を提供するものである。   According to the present invention, in a simple alloy system based on a ternary system of Cu, Mg, P, or a quaternary system in which Sn is added to these, high conductivity exceeding 75% IACS or more than 80% IACS. Ratio and excellent migration resistance, or even better stress relaxation characteristics can be realized at the same time. The strength level is also kept high. Therefore, the present invention provides a low-cost copper alloy material suitable for a bus bar material for automobiles typified by J / B and current-carrying parts such as terminals with a narrow pitch.

本発明では、Cu、Mg、Pの3元系、またはこれらにSnを加えた4元系を基本とする銅合金において、以下のように合金元素の含有量を規定する。   In the present invention, in a copper alloy based on a ternary system of Cu, Mg, P, or a quaternary system in which Sn is added to these, the content of the alloy element is defined as follows.

Mgは、銅合金の強度向上、耐マイグレーション性の向上および耐応力緩和特性の向上に寄与することが知られており、これらの作用を十分に発揮させるには一般に0.4質量%を超える含有量が必要であるとされる。しかしながら、Mg量が0.4質量%を超えると導電率の大幅な低下が避けられない。また鋳造時に特別な雰囲気制御が必要となるなど製造コストの面でも不利となる。この点、本発明では後述のようにPをMgと複合添加したときに生じる顕著な耐マイグレーション性向上作用を利用する。したがってMg含有量を0.4質量%以下に抑えながら従来と同等以上の耐マイグレーション性が実現される。Pによる強度向上作用も発揮されるため強度レベルも高く維持される。そして、Mg含有量を抑制することにより導電率が向上するとともに、製造コストの上昇も抑えられるのである。このような効果を十分に引き出すには、0.1質量%以上のMg含有量を確保する必要がある。このため本発明ではMg含有量を0.1〜0.4質量%に規定する。0.15〜0.4質量%とすることが一層好ましい。   Mg is known to contribute to improving the strength, migration resistance and stress relaxation resistance of copper alloys, and is generally contained in excess of 0.4% by mass in order to fully exhibit these functions. The amount is said to be necessary. However, when the amount of Mg exceeds 0.4% by mass, a significant decrease in conductivity is inevitable. Moreover, it is disadvantageous in terms of manufacturing cost because special atmosphere control is required at the time of casting. In this respect, the present invention utilizes a remarkable effect of improving migration resistance that occurs when P is added in combination with Mg as described later. Therefore, the migration resistance equal to or higher than that of the conventional one can be realized while suppressing the Mg content to 0.4% by mass or less. Since the strength improvement effect by P is also exhibited, the strength level is maintained high. And by suppressing Mg content, while improving electrical conductivity, the raise of manufacturing cost is also suppressed. In order to sufficiently bring out such an effect, it is necessary to secure an Mg content of 0.1% by mass or more. For this reason, in this invention, Mg content is prescribed | regulated to 0.1-0.4 mass%. More preferably, the content is 0.15 to 0.4% by mass.

Pは、一般的に製造時の溶湯の脱酸に寄与し、またMg−P系化合物を析出させることによって強度や導電性の向上に寄与する元素として知られている。通常、このようなMg−P系化合物による強化作用は、Mgを含有する銅合金において0.05質量%以下のP添加によって十分に発揮される。このため、Mg含有銅合金においてPを例えば0.05質量%を超えて多量に添加することに特段の意義は見出されていなかった。ところが、発明者らの詳細な研究によれば、Mg含有銅合金においてPを0.08質量%以上添加したとき、耐マイグレーション性が顕著に向上することが明らかになった。Pは、Mgを含まない銅合金においては単体で耐マイグレーション性の向上に寄与しないが、MgとPの相互作用により耐マイグレーション性の向上作用を示すのである。そのような作用を得るには、Pは0.08質量%以上の含有が必要であるが、0.1質量%を超えるP含有量を確保することが一層効果的である。ただし、P含有量が0.35質量%を超えると熱間加工性が低下して製造性が悪くなる。したがって本発明では、P含有量を0.08〜0.35質量%に規定する。0.1超え〜0.35質量%のP含有量とすることが特に好ましい。またP含有量の上限は0.3質量%に制限することが一層好ましい。   P is generally known as an element that contributes to deoxidation of molten metal during production and contributes to improvement in strength and conductivity by precipitating an Mg-P compound. Usually, such a strengthening action by the Mg—P-based compound is sufficiently exerted by adding 0.05 mass% or less of P in a copper alloy containing Mg. For this reason, no special significance has been found in adding a large amount of P, for example, exceeding 0.05 mass% in the Mg-containing copper alloy. However, according to detailed studies by the inventors, it has been clarified that migration resistance is remarkably improved when 0.08 mass% or more of P is added to the Mg-containing copper alloy. P does not contribute to the improvement of migration resistance by itself in a copper alloy not containing Mg, but exhibits an effect of improving migration resistance by the interaction of Mg and P. In order to obtain such an action, the P content needs to be 0.08% by mass or more, but it is more effective to secure the P content exceeding 0.1% by mass. However, when P content exceeds 0.35 mass%, hot workability will fall and productivity will worsen. Therefore, in this invention, P content is prescribed | regulated to 0.08-0.35 mass%. A P content of more than 0.1 to 0.35% by mass is particularly preferable. Further, the upper limit of the P content is more preferably limited to 0.3% by mass.

Mgと共にPを積極的に添加したときに耐マイグレーション性が大幅に改善されるメカニズムについては、現時点では未解明なところが多いが、陽極側から溶け出したMg、Pの各成分がある所定の量・比になったときに陰極側に析出するCu系物質の生成が抑制されるか、あるいは析出するCu系物質の組成、形態、固有抵抗値等が変化することにより、結果的にリーク電流が低減する現象が生じるのではないかと推察される。   Regarding the mechanism by which migration resistance is greatly improved when P is added together with Mg, there are many unclear points at present, but there are predetermined amounts of Mg and P components dissolved from the anode side.・ The generation of Cu-based material that precipitates on the cathode side when the ratio is reached or the composition, form, resistivity, etc. of the deposited Cu-based material change, resulting in a leakage current. It is inferred that the phenomenon of reduction occurs.

本発明では、耐マイグレーション性の向上と同時に、高導電率を狙うことも重要な課題としている。そのためには、MgおよびPの含有量をそれぞれ上記の範囲に規定した上で、さらにこれらの元素の含有量を下記(1)式を満たすように厳密にコントロールする必要がある。
−0.14≦Mg−1.2P≦0.18 ……(1)
Mg−P系析出物は、導電率の挙動からMg32主体のものとなっている可能性が高く、Mg/P比(質量比)が1.2近傍で高い導電率を示す。「Mg−1.2P」の値が正になるとMgの固溶量が増加し、負になるとPの固溶量が増加するため、導電率を高く維持するためには「Mg−1.2P」の値が0近傍であることが望ましい。発明者らの検討によれば、75%IACS以上の導電率を得るには「Mg−1.2P」の値を−0.14〜+0.18の範囲にコントロールする必要がある。また、80%IACSを超える高導電率を得るには「Mg−1.2P」の値を−0.08〜+0.17にコントロールすることが望ましい。
In the present invention, aiming at high conductivity as well as improvement in migration resistance is an important issue. For that purpose, it is necessary to strictly control the contents of these elements so as to satisfy the following expression (1) after the contents of Mg and P are respectively defined in the above ranges.
−0.14 ≦ Mg-1.2P ≦ 0.18 (1)
The Mg-P-based precipitate is highly likely to be mainly composed of Mg 3 P 2 from the behavior of conductivity, and exhibits high conductivity when the Mg / P ratio (mass ratio) is near 1.2. When the value of “Mg-1.2P” becomes positive, the solid solution amount of Mg increases. When the value of “Mg-1.2P” becomes negative, the solid solution amount of P increases. To maintain high conductivity, “Mg-1.2P” It is desirable that the value of “is near zero. According to the study by the inventors, it is necessary to control the value of “Mg-1.2P” within a range of −0.14 to +0.18 in order to obtain a conductivity of 75% IACS or more. In order to obtain a high conductivity exceeding 80% IACS, it is desirable to control the value of “Mg-1.2P” to −0.08 to +0.17.

Snは、Cuマトリクス中に固溶することにより強度向上に寄与する。また、端子やバスバーはSnめっきして使用される場合が多く、リサイクル性の観点からもSnを含有した成分系を採用することは好ましい。ただし、Sn含有量が0.4質量%を超えると導電率の低下が大きくなるため好ましくない。したがってSnを含有させる場合は0.4質量%以下の範囲で行う必要があり、0.01〜0.4質量%のSn含有量を確保することが好ましい。80%IACSを超えるような高い導電率を求める場合はSn含有量の上限を0.2質量%に規制することが望ましい。   Sn contributes to strength improvement by dissolving in the Cu matrix. Further, terminals and bus bars are often used after being plated with Sn, and it is preferable to adopt a component system containing Sn from the viewpoint of recyclability. However, if the Sn content exceeds 0.4% by mass, the decrease in conductivity is increased, which is not preferable. Therefore, when it contains Sn, it is necessary to carry out in the range of 0.4 mass% or less, and it is preferable to ensure Sn content of 0.01-0.4 mass%. When high electrical conductivity exceeding 80% IACS is required, it is desirable to limit the upper limit of Sn content to 0.2% by mass.

Cu、Mg、P、Sn以外の元素(不純物元素を含む)は合計含有量が0.3質量%未満となるようにすることが好ましい。すなわち、下記(2)式を満たすように組成調整することが好ましい。
Cu+Mg+P+Sn≧99.7 ……(2)
Cu、Mg、P、Sn以外の元素の合計含有量が0.3質量%未満の範囲であれば、75%IACS以上あるいは80%IACS以上を満たす限りにおいて種々の元素の含有が許容される。例えば少量のFeを添加するなど、Cu、Mg、P、Sn以外の元素の合計含有量が0.3質量%未満であれば、耐マイグレーション性の向上作用は十分に得られる。80%IACS以上の高い導電率を求める場合には下記(2)’式を満たすように成分調整することが望ましく、下記(2)’’式を満たすようにすることが一層好ましい。
Cu+Mg+P+Sn≧99.8 ……(2)’
Cu+Mg+P+Sn≧99.95 ……(2)’’
It is preferable that elements other than Cu, Mg, P, and Sn (including impurity elements) have a total content of less than 0.3% by mass. That is, it is preferable to adjust the composition so as to satisfy the following formula (2).
Cu + Mg + P + Sn ≧ 99.7 (2)
If the total content of elements other than Cu, Mg, P, and Sn is less than 0.3% by mass, the inclusion of various elements is allowed as long as 75% IACS or more or 80% IACS or more is satisfied. For example, when the total content of elements other than Cu, Mg, P, and Sn is less than 0.3% by mass, such as adding a small amount of Fe, the effect of improving migration resistance is sufficiently obtained. When obtaining a high conductivity of 80% IACS or higher, it is desirable to adjust the components so as to satisfy the following expression (2) ′, and it is more preferable to satisfy the following expression (2) ″.
Cu + Mg + P + Sn ≧ 99.8 (2) ′
Cu + Mg + P + Sn ≧ 99.95 (2) ″

以上のように組成調整した本発明の銅合金は、通電材料を構成する段階で、Cuマトリクス中に平均粒径200nm以下のMg−P系化合物が分散している組織状態を有していることが好ましい。この場合の「粒径」は粒子の長径を意味する。Mg−P系化合物はMgとPを主体とする(MgとPの合計含有量が概ね50質量%以上である)化合物であり、例えばMg32が挙げられる。 The copper alloy of the present invention whose composition has been adjusted as described above has a structure state in which Mg—P-based compounds having an average particle size of 200 nm or less are dispersed in a Cu matrix at the stage of constituting a current-carrying material. Is preferred. “Particle size” in this case means the major axis of the particle. The Mg-P-based compound is a compound mainly composed of Mg and P (the total content of Mg and P is approximately 50% by mass or more), and examples thereof include Mg 3 P 2 .

本発明の銅合金材料は、熱間圧延、およびその後の冷間圧延、焼鈍の工程を以下のような条件で行うことによって製造することができる。
〔熱間圧延〕
熱間圧延前の加熱では、鋳造組織を壊し、均質な組成・組織に改変するために、鋳片を750℃以上に加熱することが望ましい。ただし、加熱温度が930℃を超えると熱間圧延時に割れが発生する恐れがある。800〜900℃程度に制御することが一層好ましい。鋳片の加熱保持時間は10min〜24hの範囲とすることが望ましい。10min未満では均質化が不十分となりやすく、24hを超える長時間加熱は経済性を損なう。熱間圧延の加工率は、動的再結晶を起こさせるためにも40%以上とすることが望ましい。
The copper alloy material of the present invention can be produced by performing hot rolling and subsequent cold rolling and annealing processes under the following conditions.
(Hot rolling)
In the heating before hot rolling, it is desirable to heat the slab to 750 ° C. or higher in order to break the cast structure and change it to a homogeneous composition / structure. However, if the heating temperature exceeds 930 ° C., cracks may occur during hot rolling. It is more preferable to control at about 800 to 900 ° C. The heating and holding time of the slab is preferably in the range of 10 min to 24 h. If it is less than 10 minutes, homogenization tends to be insufficient, and heating for a long time exceeding 24 h impairs economic efficiency. The processing rate of hot rolling is desirably 40% or more in order to cause dynamic recrystallization.

〔冷間圧延および焼鈍〕
熱間圧延後には、「冷間圧延+焼鈍」の工程を2回以上実施することにより所定の板厚の銅合金材料とする。冷間圧延前には酸化スケールを除去するために通常の機械的または化学的な手法で適宜表面の手入れを行う。ここで、本発明の前記所望の組織状態を得るためには、いずれかの冷間圧延の前に行われる焼鈍(すなわち中間焼鈍)のうち、少なくとも1回以上の焼鈍工程で、時効処理を兼ねた焼鈍を行う必要がある。その時効処理を兼ねた中間焼鈍は、400〜600℃で10min〜24hの加熱を行うことが望ましい。400℃未満の加熱温度または10min未満の加熱時間ではMg−P系化合物の析出が不十分であり、600℃を超えるとその化合物が再固溶してしまうため好ましくない。また、24hを超えるような長時間加熱は経済性を損なうので好ましくない。なお、最終の冷間圧延後には、275〜800℃好ましくは300〜600℃の歪取り焼鈍を行うことが望ましい。これにより歪みが除去され、ばね性、耐応力緩和特性および導電性が向上する。歪取り焼鈍の時間は5sec〜8hの範囲で調整する。
[Cold rolling and annealing]
After the hot rolling, the process of “cold rolling + annealing” is performed twice or more to obtain a copper alloy material having a predetermined plate thickness. Prior to cold rolling, the surface is appropriately cleaned by an ordinary mechanical or chemical method in order to remove the oxide scale. Here, in order to obtain the desired structure state of the present invention, at least one or more annealing steps of annealing performed before any cold rolling (that is, intermediate annealing) also serves as an aging treatment. It is necessary to perform annealing. In the intermediate annealing that also serves as the aging treatment, it is desirable to perform heating at 400 to 600 ° C. for 10 min to 24 h. If the heating temperature is less than 400 ° C. or the heating time is less than 10 minutes, the precipitation of the Mg—P compound is insufficient, and if it exceeds 600 ° C., the compound is dissolved again, which is not preferable. Further, heating for a long time exceeding 24 hours is not preferable because it impairs the economy. In addition, after the final cold rolling, it is desirable to perform strain relief annealing at 275 to 800 ° C., preferably 300 to 600 ° C. As a result, the strain is removed, and the spring property, stress relaxation resistance and conductivity are improved. The strain relief annealing time is adjusted in the range of 5 sec to 8 h.

表1に示す組成の銅合金を、高周波溶解炉またはシリコニット炉を用いて溶解し、カーボン鋳型中へ鋳込んでインゴットを作製した。高周波溶解炉はArガス雰囲気、シリコニット炉はカーボン被覆を行った。次いで、インゴットから切り出した厚さ20mm、幅40mm、長さ40mmの鋳片を、750〜900℃の温度で0.5h保持した後に、加工率63%で熱間圧延し、水中浸漬して冷却した。冷却後、表面の酸化物を除去した後に加工率66%で冷間圧延し、400℃〜600℃で1〜5hの時効焼鈍を行った。さらに加工率74%の冷間圧延を行い、280〜400℃で1h歪取り焼鈍を実施して板厚0.64mmの供試材とした。なお、No.13、14はそれぞれ市販の無酸素銅(C1020)と黄銅(C2600)を用いた。   A copper alloy having the composition shown in Table 1 was melted using a high-frequency melting furnace or a siliconit furnace, and cast into a carbon mold to produce an ingot. The high frequency melting furnace was coated with an Ar gas atmosphere, and the silicon furnace was coated with carbon. Next, a slab having a thickness of 20 mm, a width of 40 mm, and a length of 40 mm cut out from the ingot was held at a temperature of 750 to 900 ° C. for 0.5 h, and then hot-rolled at a processing rate of 63%, immersed in water, and cooled. did. After cooling, the surface oxide was removed, and then cold rolling was performed at a processing rate of 66%, and aging annealing was performed at 400 to 600 ° C. for 1 to 5 hours. Further, cold rolling was performed at a processing rate of 74%, and 1h strain relief annealing was performed at 280 to 400 ° C. to obtain a specimen having a thickness of 0.64 mm. For Nos. 13 and 14, commercially available oxygen-free copper (C1020) and brass (C2600) were used.

Figure 0004756197
Figure 0004756197

各供試材について、引張強さ、導電率、耐マイグレーション性を調べた。
引張強さは、試験片の長手方向を圧延方向に平行方向とし、JIS Z2241に基づいて測定した。導電率は、JIS H0505に基づいて測定した。
Each specimen was examined for tensile strength, conductivity, and migration resistance.
The tensile strength was measured based on JIS Z2241 with the longitudinal direction of the test piece being parallel to the rolling direction. The conductivity was measured based on JIS H0505.

耐マイグレーション性は次のようにして調べた。まず、供試材を幅10mm、長さ100mmに切断し、2枚1組の試験片とした。図1に試験片のセッティング状態を模式的に示す。2枚の試験片1はそれぞれL字型に折り曲げられ、長さ60mmにわたって1mmの間隔で隣接するようにアクリル板2の上に配置してある。この隣接している60mmの部分を平行部と呼ぶ。2枚の試験片1は、平行部において一方が陽極、他方が陰極となるように電極を構成する。図2には、耐マイグレーション性試験の回路構成を模式的に示す。1組の試験片1はクリップ3によってアクリル板2に取り付けられている。これを600mL試験液4の中に浸漬し、定電圧直流電源5、シャント抵抗6、および2枚の試験片1からなる電極を直列につないで回路を形成した。そして、2枚の試験片1の間に14Vの直流電圧を印加して、シャント抵抗6に付加される電圧の経時変化を記録計7に記録し、その電圧を電流値に換算してリーク電流をモニターした。試験液4は、純水に亜硫酸ナトリウムを加えて伝導度を85μS/cmに調整した水溶液である。初期液温は25℃で行った。耐マイグレーション性は、最大8hまでリーク電流をモニターした場合の最大リーク電流値によって評価した。この試験において最大リーク電流が4A以下のものは優れた耐マイグレーション性を有すると判断される。
これらの試験結果を表2に示す。
The migration resistance was examined as follows. First, the test material was cut into a width of 10 mm and a length of 100 mm to form a set of two test pieces. FIG. 1 schematically shows the setting state of the test piece. Each of the two test pieces 1 is bent in an L shape and is arranged on the acrylic plate 2 so as to be adjacent to each other at a distance of 1 mm over a length of 60 mm. This adjacent 60 mm portion is called a parallel portion. The two test pieces 1 constitute electrodes such that one of them becomes the anode and the other becomes the cathode in the parallel part. FIG. 2 schematically shows a circuit configuration of the migration resistance test. A set of test pieces 1 is attached to an acrylic plate 2 by a clip 3. This was immersed in a 600 mL test solution 4, and a circuit was formed by connecting a constant voltage DC power source 5, a shunt resistor 6, and an electrode composed of two test pieces 1 in series. Then, a DC voltage of 14 V is applied between the two test pieces 1, the change with time of the voltage applied to the shunt resistor 6 is recorded on the recorder 7, the voltage is converted into a current value, and the leakage current Was monitored. Test solution 4 is an aqueous solution prepared by adding sodium sulfite to pure water to adjust the conductivity to 85 μS / cm. The initial liquid temperature was 25 ° C. The migration resistance was evaluated by the maximum leakage current value when the leakage current was monitored up to 8 hours. In this test, those having a maximum leakage current of 4 A or less are judged to have excellent migration resistance.
These test results are shown in Table 2.

Figure 0004756197
Figure 0004756197

表2にから判るように、本発明例であるNo.1〜12は、所定量のMg、PあるいはさらにSnを含有することにより、優れた耐マイグレーション性を呈した。また、Cuマトリクス中には平均粒径200nm以下のMg−P系化合物が分散しており、優れた引張強さおよび導電率を有するものであった。   As can be seen from Table 2, Nos. 1 to 12, which are examples of the present invention, exhibited excellent migration resistance by containing a predetermined amount of Mg, P, or Sn. In addition, an Mg—P compound having an average particle size of 200 nm or less was dispersed in the Cu matrix, and had excellent tensile strength and electrical conductivity.

これに対し、比較例No.13は純銅であり、強度、耐マイグレーション性に劣った。No.14は黄銅であり、Znを多量に含有していることにより耐マイグレーション性には優れるものの、導電率が低かった。No.15、16はMgまたはPを単独で含有するものであり、耐マイグレーション性に劣った。No.16においては、固溶したPの影響で導電率も低くなった。No.17はMg、Pを含有するものの含有量が十分ではなく、耐マイグレーション性の改善が見られない。No.18、19は「Mg−1.2P」の値が(1)式を外れており、MgまたはPの固溶量が多くなって導電率が不十分であった。No.20はP含有量が多く、熱間圧延で割れが発生したため試験を中止した。No.21はSn含有量が多く、導電率が低くなった。   On the other hand, Comparative Example No. 13 was pure copper and was inferior in strength and migration resistance. No. 14 was brass, and although it had excellent migration resistance due to containing a large amount of Zn, the electrical conductivity was low. Nos. 15 and 16 contain Mg or P alone and were inferior in migration resistance. In No. 16, the conductivity was also lowered due to the effect of dissolved P. No. 17 contains Mg and P but the content is not sufficient, and no improvement in migration resistance is observed. In Nos. 18 and 19, the value of “Mg-1.2P” was out of the formula (1), and the solid solution amount of Mg or P increased, resulting in insufficient conductivity. No. 20 had a high P content, and cracking occurred during hot rolling, so the test was stopped. No. 21 had a high Sn content and a low electrical conductivity.

表1の本発明例No.1に相当する組成(良好な耐マイグレーション性が得られる組成)のインゴットから厚さ20mm、幅40mm、長さ40mmの鋳片を切り出し、それぞれ表3に示す条件で熱間圧延、冷間圧延1、時効焼鈍、冷間圧延2、歪取り焼鈍を施して板厚0.64mmの供試材とした。なお、本発明例No.Aは実施例1のNo.1と同じ条件を採用したものである。   A slab having a thickness of 20 mm, a width of 40 mm, and a length of 40 mm was cut out from an ingot having a composition corresponding to Invention Example No. 1 in Table 1 (a composition capable of obtaining good migration resistance). Hot rolling, cold rolling 1, aging annealing, cold rolling 2, and strain relief annealing were performed to obtain a specimen having a thickness of 0.64 mm. Inventive Example No. A employs the same conditions as No. 1 in Example 1.

得られた供試材について、実施例1と同様の方法により、導電率および引張強さを測定した。
また、応力緩和試験により応力緩和率の測定も行った。応力緩和率は日本電子材料工業会標準規格EMAS−1011(平成3年12月)に準拠した方法で、以下のようにして求めた。すなわち、供試材から幅10mm、長さ150mmの試験片(その長手方向が圧延方向に相当)を切り出し、試験片中央部の表面応力(表面最大応力)が300N/mm2となるようにアーチ曲げした状態で固定し、大気中150℃で500時間保持した後の曲げ癖を応力緩和率として次式により算出した。
応力緩和率(%)=(h1/h0)×100
ただし、h1:試験経過後の応力除荷時における試験片の永久たわみ変位(mm)
0:上記応力を得るのに必要な試験片の初期たわみ変位(mm)
この試験方法において応力緩和率が20%以下のものは、特に優れた耐応力緩和特性を有すると判断される。
結果を表4に示す。
About the obtained test material, the electrical conductivity and tensile strength were measured by the method similar to Example 1. FIG.
The stress relaxation rate was also measured by a stress relaxation test. The stress relaxation rate was calculated | required as follows by the method based on Japan Electronics Material Industries Association standard EMAS-1011 (December, 1991). That is, a specimen having a width of 10 mm and a length of 150 mm is cut out from the specimen (the longitudinal direction corresponds to the rolling direction), and the arch is formed so that the surface stress (maximum surface stress) at the center of the specimen is 300 N / mm 2. The bending wrinkle after fixing in the bent state and holding at 150 ° C. in the atmosphere for 500 hours was calculated as the stress relaxation rate by the following formula.
Stress relaxation rate (%) = (h 1 / h 0 ) × 100
However, h 1 : Permanent deflection displacement (mm) of the test piece at the time of stress unloading after the test
h 0 : Initial deflection displacement (mm) of the test piece necessary for obtaining the stress
In this test method, those having a stress relaxation rate of 20% or less are judged to have particularly excellent stress relaxation resistance.
The results are shown in Table 4.

Figure 0004756197
Figure 0004756197

Figure 0004756197
Figure 0004756197

表4に示すように、本発明例のものは80%IACSを超える高い導電率と、400N/mm2以上の引張強さを有している。一方、比較例であるNo.Dは熱間圧延の抽出温度が高いことに起因して熱間圧延で割れが発生したため試験を中止した。No.Eは熱間圧延の抽出温度が低かったため熱間圧延後も鋳造組織が残っており、均質性に欠けることから試験を中止した。No.Fは時効焼鈍保持温度が低かったためMg−P系化合物の析出が不十分となり、導電率が低かった。No.Gは時効焼鈍保持温度が高かったためMg、Pの固溶量が多くなり、導電率が低かった。なお、No.Hは歪取り焼鈍温度が低かったため、他の本発明例より応力緩和率が高かった。 As shown in Table 4, the examples of the present invention have a high conductivity exceeding 80% IACS and a tensile strength of 400 N / mm 2 or more. On the other hand, No. D, which is a comparative example, stopped the test because cracking occurred in hot rolling due to the high extraction temperature of hot rolling. For No. E, the extraction temperature of hot rolling was low, so the cast structure remained after hot rolling and the test was stopped because of lack of homogeneity. No. F had a low aging annealing retention temperature, so that the precipitation of the Mg—P compound was insufficient and the conductivity was low. No. G had a high age-annealing holding temperature, so the amount of Mg and P was increased and the conductivity was low. Since No. H had a low strain relief annealing temperature, the stress relaxation rate was higher than those of other examples of the present invention.

耐マイグレーション性試験に用いた試験片のセッティング状態を模式的に示す斜視図。The perspective view which shows typically the setting state of the test piece used for the migration resistance test. 耐マイグレーション性試験の回路構成を模式的に示す図。The figure which shows typically the circuit structure of a migration resistance test.

符号の説明Explanation of symbols

1 試験片
2 アクリル板
3 クリップ
4 試験液
5 定電圧直流電源
6 シャント抵抗
7 記録計
DESCRIPTION OF SYMBOLS 1 Test piece 2 Acrylic board 3 Clip 4 Test liquid 5 Constant voltage direct current power supply 6 Shunt resistance 7 Recorder

Claims (4)

質量%で、Mg:0.15〜0.4%、P:0.1〜0.3%残部Cuおよび不可避的不純物からなり、かつ下記(1)式を満たす組成をもち、Cuマトリクス中に平均粒径200nm以下のMg−P系化合物が分散し、引張強さ450N/mm 2 以上で導電率が80%IACSを超え、長さ150mmの試験片に両端支持式で表面最大応力300N/mm 2 となるようにアーチ曲げによるたわみ変位を与えた状態で大気中150℃で500時間保持したときの応力緩和率が20%以下であり、優れた耐マイグレーション性を有する銅合金。
−0.08≦Mg−1.2P≦+0.17 …… (1)
In a Cu matrix , the composition is composed of Mg: 0.15-0.4% , P: 0.1-0.3% , the balance Cu and unavoidable impurities , and satisfying the following formula (1). Mg-P-based compound having an average particle size of 200 nm or less is dispersed in a test piece having a tensile strength of 450 N / mm 2 or more, an electrical conductivity of more than 80% IACS, and a length of 150 mm. A copper alloy having a stress relaxation rate of 20% or less when held at 150 ° C. in the atmosphere for 500 hours in a state where a deflection displacement due to arch bending is applied so as to be mm 2 and having excellent migration resistance .
−0.08 ≦ Mg−1.2P ≦ + 0.17 (1)
質量%で、Mg:0.15〜0.4%、P:0.1〜0.3%、Sn:0.01〜0.4%残部Cuおよび不可避的不純物からなりCu、Mg、P、Sn以外の元素の合計含有量が0.3%未満であって、かつ下記(1)式を満たす組成をもち、Cuマトリクス中に平均粒径200nm以下のMg−P系化合物が分散し、引張強さ450N/mm 2 以上で導電率が80%IACSを超え、長さ150mmの試験片に両端支持式で表面最大応力300N/mm 2 となるようにアーチ曲げによるたわみ変位を与えた状態で大気中150℃で500時間保持したときの応力緩和率が20%以下であり、優れた耐マイグレーション性を有する銅合金。
−0.08≦Mg−1.2P≦+0.17 …… (1)
In mass%, Mg: 0.15-0.4% , P: 0.1-0.3% , Sn: 0.01-0.4% , balance Cu and unavoidable impurities , Cu, Mg, The total content of elements other than P and Sn is less than 0.3% and has a composition satisfying the following formula (1), and an Mg-P compound having an average particle size of 200 nm or less is dispersed in a Cu matrix. In a state where the tensile strength is 450 N / mm 2 or more, the electrical conductivity exceeds 80% IACS, and the bending displacement due to the arch bending is applied to the test piece of 150 mm in length so that the maximum surface stress is 300 N / mm 2 with both ends supported. A copper alloy having a stress relaxation rate of 20% or less when held at 150 ° C. in the atmosphere for 500 hours and having excellent migration resistance .
−0.08 ≦ Mg−1.2P ≦ + 0.17 (1)
鋳片を750〜930℃で保持したのち抽出して加工率40%以上で熱間圧延し、その後、冷間圧延と焼鈍を組み合わせた工程において、400〜600℃で保持する時効処理を少なくとも1回、中間焼鈍として行うことによりCuマトリクス中に平均粒径200nm以下のMg−P系化合物を分散析出させる請求項1または2に記載の銅合金の製造法。 The slab is held at 750 to 930 ° C., extracted and hot-rolled at a processing rate of 40% or more, and then at least one aging treatment that is held at 400 to 600 ° C. in a process of combining cold rolling and annealing. 3. The method for producing a copper alloy according to claim 1, wherein the Mg—P compound having an average particle size of 200 nm or less is dispersed and precipitated in the Cu matrix by performing the first annealing as intermediate annealing. 最終冷間圧延後に275〜800℃で歪取り焼鈍を行う請求項3に記載の銅合金の製造法。 The manufacturing method of the copper alloy of Claim 3 which performs strain relief annealing at 275-800 degreeC after the last cold rolling.
JP2005241382A 2005-08-23 2005-08-23 Cu-Mg-P-based copper alloy and method for producing the same Active JP4756197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005241382A JP4756197B2 (en) 2005-08-23 2005-08-23 Cu-Mg-P-based copper alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005241382A JP4756197B2 (en) 2005-08-23 2005-08-23 Cu-Mg-P-based copper alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007056297A JP2007056297A (en) 2007-03-08
JP4756197B2 true JP4756197B2 (en) 2011-08-24

Family

ID=37920030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005241382A Active JP4756197B2 (en) 2005-08-23 2005-08-23 Cu-Mg-P-based copper alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JP4756197B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031841A1 (en) 2011-08-29 2013-03-07 古河電気工業株式会社 Copper alloy material and manufacturing method thereof
JP2015141857A (en) * 2014-01-30 2015-08-03 三菱電機株式会社 Press-fit terminal and power semiconductor device

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5544591B2 (en) * 2011-01-20 2014-07-09 株式会社神戸製鋼所 Copper alloy tube
US10453582B2 (en) 2015-09-09 2019-10-22 Mitsubishi Materials Corporation Copper alloy for electronic/electrical device, copper alloy plastically-worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
EP3348656B1 (en) * 2015-09-09 2020-12-30 Mitsubishi Materials Corporation Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
MX2018001139A (en) * 2015-09-09 2018-04-20 Mitsubishi Materials Corp Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar.
JP6187629B1 (en) * 2016-03-30 2017-08-30 三菱マテリアル株式会社 Copper alloy for electronic and electric equipment, copper alloy plastic working material for electronic and electric equipment, parts for electronic and electric equipment, terminals, and bus bars
JP6187630B1 (en) * 2016-03-30 2017-08-30 三菱マテリアル株式会社 Copper alloy for electronic and electric equipment, copper alloy plastic working material for electronic and electric equipment, parts for electronic and electric equipment, terminals, and bus bars
US10128019B2 (en) 2015-09-09 2018-11-13 Mitsubishi Materials Corporation Copper alloy for electronic/electrical device, plastically-worked copper alloy material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
JP5910790B1 (en) * 2015-12-01 2016-04-27 三菱マテリアル株式会社 Copper alloy for electronic and electric equipment, copper alloy plastic working material for electronic and electric equipment, parts for electronic and electric equipment, terminals, and bus bars
JP6226097B2 (en) * 2016-03-30 2017-11-08 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet material for electronic and electrical equipment, electronic and electrical equipment parts, terminals, bus bars, and movable pieces for relays
US11319615B2 (en) 2016-03-30 2022-05-03 Mitsubishi Materials Corporation Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relay
WO2017170699A1 (en) 2016-03-30 2017-10-05 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relays
JP6780187B2 (en) 2018-03-30 2020-11-04 三菱マテリアル株式会社 Copper alloys for electronic / electrical equipment, copper alloy strips for electronic / electrical equipment, parts for electronic / electrical equipment, terminals, and busbars
EP3778941A4 (en) 2018-03-30 2021-11-24 Mitsubishi Materials Corporation Copper alloy for electronic/electric device, copper alloy sheet/strip material for electronic/electric device, component for electronic/electric device, terminal, and busbar
KR102685148B1 (en) * 2021-11-22 2024-07-15 한국생산기술연구원 Copper alloy and method of manufacturing the copper alloy

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61284946A (en) * 1985-06-11 1986-12-15 Mitsubishi Shindo Kk Cu alloy lead blank for semiconductor device
JPS63262435A (en) * 1987-04-21 1988-10-28 Nippon Mining Co Ltd High strength high electroconductive copper alloy
JP4057436B2 (en) * 2003-01-31 2008-03-05 Dowaホールディングス株式会社 Copper base alloy and heat sink material using the copper base alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031841A1 (en) 2011-08-29 2013-03-07 古河電気工業株式会社 Copper alloy material and manufacturing method thereof
JP2015141857A (en) * 2014-01-30 2015-08-03 三菱電機株式会社 Press-fit terminal and power semiconductor device

Also Published As

Publication number Publication date
JP2007056297A (en) 2007-03-08

Similar Documents

Publication Publication Date Title
JP4756197B2 (en) Cu-Mg-P-based copper alloy and method for producing the same
JP5097970B2 (en) Copper alloy sheet and manufacturing method thereof
JP4143662B2 (en) Cu-Ni-Si alloy
JP4677505B1 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP4937815B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP5818724B2 (en) Copper alloy material for electric and electronic parts, copper alloy material for plated electric and electronic parts
JP5506806B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
EP2319947A1 (en) Copper alloy material for electrical and electronic components, and manufacturing method therefor
WO2009122869A1 (en) Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRONIC MATERIAL AND PROCESS FOR PRODUCING THE SAME
JP5075447B2 (en) Cu-Fe-P-Mg based copper alloy, manufacturing method, and current-carrying component
JP5619389B2 (en) Copper alloy material
JP4787986B2 (en) Copper alloy and manufacturing method thereof
WO2006019035A1 (en) Copper alloy plate for electric and electronic parts having bending workability
JP2004149874A (en) Easily-workable high-strength high-electric conductive copper alloy
JP3977376B2 (en) Copper alloy
JP6053959B2 (en) Copper alloy sheet, method for producing the same, and electric / electronic component comprising the copper alloy sheet
JP4887851B2 (en) Ni-Sn-P copper alloy
KR101338710B1 (en) Ni-si-co copper alloy and manufacturing method therefor
JP6835638B2 (en) Copper alloy plate with excellent strength and conductivity
JP5132467B2 (en) Copper alloy and Sn-plated copper alloy material for electrical and electronic parts with excellent electrical conductivity and strength
JP2006299287A (en) Dual phase copper alloy, spring material and foil body, and method for producing dual phase copper alloy
JP5002768B2 (en) Highly conductive copper-based alloy with excellent bending workability and manufacturing method thereof
JP5098096B2 (en) Copper alloy, terminal or bus bar, and method for producing copper alloy
JP6301734B2 (en) Copper alloy material and method for producing the same
JP2012229467A (en) Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110506

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110506

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110506

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110506

R150 Certificate of patent or registration of utility model

Ref document number: 4756197

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250