JPS6338547A - High strength conductive copper alloy - Google Patents

High strength conductive copper alloy

Info

Publication number
JPS6338547A
JPS6338547A JP18298186A JP18298186A JPS6338547A JP S6338547 A JPS6338547 A JP S6338547A JP 18298186 A JP18298186 A JP 18298186A JP 18298186 A JP18298186 A JP 18298186A JP S6338547 A JPS6338547 A JP S6338547A
Authority
JP
Japan
Prior art keywords
alloy
strength
phosphor bronze
stress corrosion
corrosion cracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18298186A
Other languages
Japanese (ja)
Inventor
Shoji Shiga
志賀 章二
Toru Tanigawa
徹 谷川
Yoshimasa Ooyama
大山 好正
Masato Asai
真人 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP18298186A priority Critical patent/JPS6338547A/en
Publication of JPS6338547A publication Critical patent/JPS6338547A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain a high strength conductive Cu alloy for electronic and electrical apparatus having superior characteristics such as solderability, adhesion to plating and resistance to stress corrosion cracking by reducing the O2 content in a phosphor bronze type Cu alloy with a deoxidizing agent and adding Ni, other specified element and Cr, Fe or Co to the alloy. CONSTITUTION:A Cu alloy having superior characteristics as a lead material or a spring material for electronic and electrical appliances is obtd. by adding 0.05-0.5wt% Ni, <=5wt% in total of one or more among 0.05-5% Zn, 0.01-0.5% Mn, 0.01-0.1% B, 0.01-1% Al, 0.01-0.2% Mg, 0.01-0.5% Si and 0.01-0.5% Ti and 0.05-0.5wt% at least one among Cr, Fe and Co to a phosphor bronze type Cu alloy contg. 2-8wt% Sn, <0.2wt% P and <0.0025wt% O2.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電子電気機器に用いられるリード部材又はバネ
部材等に適した高力伝導性銅合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a high-strength conductive copper alloy suitable for lead members, spring members, etc. used in electronic and electrical equipment.

(従来技術) 従来、電子電気機器に用いられるコネクター、各種スイ
ッチ、電磁開閉器あるいは各種スプリング等には主にり
ん青銅が使用されている。
(Prior Art) Conventionally, phosphor bronze has been mainly used for connectors, various switches, electromagnetic switches, various springs, etc. used in electronic and electrical equipment.

りん青銅はSn5−9wt%(以下チと略記)、Pα0
3〜α35%を含有する銅合金であり、その特徴はan
の含有量により伝導性と引張り強さを目的に応じて適宜
選択できること及び固溶体合金として精密部品の成形加
工性に優れていることである。
Phosphor bronze has Sn5-9wt% (hereinafter abbreviated as Chi), Pα0
It is a copper alloy containing 3 to 35% α, and its characteristics are an
The conductivity and tensile strength can be appropriately selected according to the purpose depending on the content, and as a solid solution alloy, it has excellent moldability into precision parts.

りん青銅以外の電子電気機器用銅合金にはスピノーダル
型のCu−Ni −Sn系合金、及びCu −Be系合
金がある。前者は引張り強さはりん青銅より高いが導電
率が5〜7%IAGSと低く且つ加工性に乏しい、又後
者は非常に高価なため用途が限定される。
Copper alloys for electronic and electrical equipment other than phosphor bronze include spinodal Cu-Ni-Sn alloys and Cu-Be alloys. The former has a higher tensile strength than phosphor bronze, but has a low electrical conductivity of 5 to 7% IAGS and poor workability, and the latter is very expensive, so its uses are limited.

りん青銅の改良合金としては、熱間加工性の改良を目的
としてりん青銅にFe、 Go等を0.3〜2%、Cr
、 Zr 、 Ti、V等をα2〜0.8%添加したも
の(特開52/21211 )、りん青銅にFef0.
5α05〜α09%添加したもの(時開57メ894捧
9)等がある。
As an improved alloy for phosphor bronze, 0.3 to 2% of Fe, Go, etc., and Cr are added to phosphor bronze for the purpose of improving hot workability.
, Zr, Ti, V, etc. added at α2 to 0.8% (Japanese Patent Application Laid-open No. 52/21211), phosphor bronze with Fef0.
There are those with 5α05 to α09% added (time opening 57 metres 894 offerings 9).

又耐食性の改良を目的としてりん青銅にA1005〜1
%添加したもの(時開49%75417)がある。
In addition, A1005-1 is applied to phosphor bronze for the purpose of improving corrosion resistance.
% added (time opening 49% 75417).

(解決すべき問題点) りん青銅を電子電気機器等の各種部材に使用する場合、
半田付は部の接合強度が経時的に劣化する現象、又はS
n、5n−Pb等のメツキ被膜が経時的に剥離する現象
がみられる。
(Problems to be solved) When using phosphor bronze for various parts such as electronic and electrical equipment,
Soldering is a phenomenon in which the joint strength of parts deteriorates over time, or S
A phenomenon in which the plating film of n, 5n-Pb, etc. peels off over time is observed.

これらの現象は、りん青銅中のPかりん青銅と半田又は
メツキ皮膜との界面に拡散濃縮して界面に生成している
CuとSnの化合物であるε相を一層脆化させておきる
ものである。
These phenomena further embrittle the ε phase, which is a compound of Cu and Sn that diffuses and concentrates at the interface between the P phosphor bronze and the solder or plating film in the phosphor bronze and forms at the interface. .

メツキ皮膜の剥離に対してはCu又はN1の層をり云 ん青銅とメツキ皮膜の間に介在させる方法(特告が提案
されているが製造工程が煩雑になる等の問題がある。
To deal with the peeling of the plating film, a method has been proposed in which a layer of Cu or N1 is interposed between the bronze and the plating film, but there are problems such as the manufacturing process becoming complicated.

上記のうち半田接合部の経時劣化現象は、プリント基板
実装が、スルーホール実装から半田接続が多用される高
密化面実装へ移行しつつある現状において、早急に解決
されるべき課題である。
Of the above, the aging phenomenon of solder joints is an issue that needs to be solved as soon as possible in the current situation where printed circuit board mounting is transitioning from through-hole mounting to high-density surface mounting in which solder connections are frequently used.

一方これら部品の効率的利用設計が進む中で、部材には
より過大な応力が負荷される傾向にあり、NHs 、 
So! 、 NOx等の存在する腐食環境下でも割れを
生じない耐応力腐食割れ性に優れた合金の開発が益々望
まれている。
On the other hand, as designs for the efficient use of these parts progress, there is a tendency for members to be loaded with excessive stress, and NHs,
So! It is increasingly desired to develop an alloy with excellent stress corrosion cracking resistance that does not cause cracking even in a corrosive environment where , NOx, etc. are present.

りん青銅が電子電気機器の部材として、より効率的によ
り信頼性高く利用されていくために改良されるべき点を
要約すると、(1)半田接合部の経時劣化、(2)  
Sn 、 5n−Pbメツキの密着性の経時劣化、(3
)耐応力腐食割れ性、0)熱間加工性、(5)成形加工
性、(6)機械的強度特にバネ性及び応力緩和特性、(
7)導電率、等になる。
To summarize the points that need to be improved in order for phosphor bronze to be used more efficiently and reliably as a component of electronic and electrical equipment, (1) deterioration of solder joints over time; (2)
Sn, 5n-Pb plating adhesion deterioration over time, (3
) Stress corrosion cracking resistance, 0) Hot workability, (5) Formability, (6) Mechanical strength, especially springiness and stress relaxation properties, (
7) Conductivity, etc.

(問題点を解決するための手段) 本発明はかかる状況に鑑みなされたもので、半田接合性
、メツキ密着性及び耐応力腐食割れ性等に優れた電子電
気機器用部材に適した高力伝導性鋼合金に関するもので
ある。
(Means for Solving the Problems) The present invention was made in view of the above situation, and is a high-strength conductive material suitable for parts for electronic and electrical equipment having excellent solder bonding properties, plating adhesion properties, stress corrosion cracking resistance, etc. This relates to steel alloys.

即ち本発明はSn2〜8−%、P 0.2 w4チ以下
、0、α0025−%以下、Ni 0.05〜L5−係
を含有し、Zn (L 05−5m%、  Mn0.0
1−α5−チ、B0.01−0.1M%、Atα0l−
1st%、MgC101−02w1*%、S1αO1−
α5嘱チ、T1α01−0、5−%の1種又は2種以上
を合計で51114%以下含有し、Or 、 Fe 、
 Goの少なくとも1種’i0.05−0.5wpt%
含有し残部が銅からなる高力伝導性鋼合金である。
That is, the present invention contains Sn 2 to 8%, P 0.2 w4 or less, 0, α0025 or less, Ni 0.05 to L5, and Zn (L 05-5m%, Mn 0.0
1-α5-ti, B0.01-0.1M%, Atα0l-
1st%, MgC101-02w1*%, S1αO1-
Contains a total of 51114% or less of one or more of α5, T1α01-0, 5%, Or, Fe,
At least one species of Go'i0.05-0.5wpt%
It is a high-strength conductive steel alloy containing copper with the remainder being copper.

本発明においてSnは強度の向上に有効であるが、その
含有量を5〜8%に限定した理由は、3%未満では引張
り強さやバネ性が十分でなく、8%を超えると均一なα
固溶体となり雅く、成形加工性が低下するためである。
In the present invention, Sn is effective in improving strength, but the reason why the content is limited to 5 to 8% is that if it is less than 3%, the tensile strength and springiness are insufficient, and if it exceeds 8%, the uniform α
This is because it becomes a solid solution, resulting in poor moldability.

PはN1と反応してNls P、  Nis P宜、N
1t P等の化合物を生成し鋼中に微細に分散して、結
晶粒の粗大化全阻止して熱間加工性を高め、更に強度、
耐熱性及び耐応力腐食割れ性を向上させる。PとNiが
前記化合物を過不足なく形成するための化学量論比はN
ilに対しPO02であるが、これに対しPが過剰の場
合は熱間加工性、半田接合性、メツキ密着性が低下しN
1が過剰の場合は固溶N1が増大して導電率が低下する
P reacts with N1 to form Nls P, Nis P, N
Compounds such as 1tP are generated and finely dispersed in the steel, completely inhibiting the coarsening of crystal grains, improving hot workability, and further improving strength and strength.
Improves heat resistance and stress corrosion cracking resistance. The stoichiometric ratio of P and Ni to form the above compound is N
PO02 for il, but if P is excessive, hot workability, solder bondability, and plating adhesion will decrease.
When 1 is in excess, solid solution N1 increases and the conductivity decreases.

ここでPの含有量?02%以下に限定した理由は、0.
2%金超えるとPが半田又はメツキ界面に拡散濃縮して
半田接合性、メツキ密着性を経時的に劣化させるためで
ある。
What is the P content here? The reason for limiting it to 0.02% or less is that 0.02% or less.
This is because if the content exceeds 2% gold, P will diffuse and concentrate at the solder or plating interface, degrading solder bonding properties and plating adhesion over time.

N1の含有量を005〜L5%に限定した理由は、α0
5%未満では上記の効果が得られず、L5%を超えると
導電率、成形加工性、半田接合性、メツキ密着性が低下
するためである。実用上特に望ましい含有量はN1はO
11〜0.5%、Pは005〜0、1%である。
The reason for limiting the N1 content to 005 to L5% is that α0
This is because if it is less than 5%, the above effects cannot be obtained, and if it exceeds L5%, the electrical conductivity, moldability, solderability, and plating adhesion will decrease. The content that is particularly desirable in practice is N1 is O.
11-0.5%, P is 0.005-0.1%.

Osは不純物として含有されるが、その量6 0. 。Os is contained as an impurity, but its amount is 60. .

025%以下に限定した理由はO,OO25%を超える
と成形加工性が著しく低下するばかりでなく半田接合性
、メツキ密着性が低下するためである。
The reason why the content is limited to 0.025% or less is that if O and OO exceed 25%, not only the molding processability will be markedly lowered, but also the solder bondability and plating adhesion will be lowered.

上記元素に加えてZn0.05−5%、Mn O,OL
 −0,5%、AE0.01〜1%、Mg0.01〜0
.2%、Bα01〜0.1%、Si O,Ol〜0. 
5%、T10.01〜0.5%の1種又は2種以上全合
計で5%以下含有せしめるが、これらの元素には脱酸作
用があり銅中の0雪量を低減させて成形加工性、半田接
合性、耐応力腐食割れ性、メツキ密着性を改善し更に強
度の向上に寄与する。上記元素のうちB、Si、T1は
脱酸作用の外にN1と化合物を形成して微細に析出し強
度と導電率を共に向上させる副次的効果がある。
In addition to the above elements, Zn0.05-5%, MnO, OL
-0.5%, AE0.01-1%, Mg0.01-0
.. 2%, Bα01~0.1%, SiO,Ol~0.
5%, T10.01-0.5%, the total content of one or two or more elements is 5% or less, but these elements have a deoxidizing effect and reduce the amount of snow in the copper, making it easier to form. It improves solderability, stress corrosion cracking resistance, plating adhesion, and further contributes to increased strength. Among the above elements, B, Si, and T1 have the secondary effect of forming a compound with N1 and finely precipitating to improve both strength and conductivity, in addition to their deoxidizing effect.

これらの元素の含有量を上記のように限定した理由は、
各元素においてその含有量が下限未満では、上記の効果
が得られず、又上限を超えると、Znの場合は導電率の
低下が大きくなり又耐応力腐食割れ性が低下し、Mn、
 Ae、 B、 Si及びT1の場合は導電率の低下が
大きくなり、又Mgの場合は加工性が低下し製造が困難
になる、等のためである。
The reason for limiting the content of these elements as above is that
If the content of each element is less than the lower limit, the above effects cannot be obtained, and if it exceeds the upper limit, the electrical conductivity decreases greatly in the case of Zn, the stress corrosion cracking resistance decreases, and the content of Mn,
This is because, in the case of Ae, B, Si, and T1, the conductivity decreases greatly, and in the case of Mg, the workability decreases and manufacturing becomes difficult.

実用上特に望ましい含有量はZn0.1〜1%、Mnα
05〜0.2%、Alt0.05〜α2%、Mg0.0
2〜0.1%、80.03−0.08 %、Si 0.
02〜0.2 %、Ti0.02〜0.2%である。
Particularly desirable contents for practical use are Zn0.1-1%, Mnα
05-0.2%, Alt0.05-α2%, Mg0.0
2-0.1%, 80.03-0.08%, Si 0.
02 to 0.2%, and Ti 0.02 to 0.2%.

上記元素に加えてOr、Fe%COの少なくとも1種を
005〜0.5%含有せしめるが、Or 、 Fe%G
Oは前記N1の作用を補強するもので、微細な析出物と
して分散し、強度、耐熱性、耐応力腐食割れ性を向上せ
しめ更に熱間加工性を改善する。これらの含有量を0.
05〜0.5%に限定した理由は、0.05チ未満では
上記の効果が得られず、05%を超えると導電率の低下
が大きくなり又製造加工性が低下するためである。
In addition to the above elements, at least one of Or, Fe%CO is contained in an amount of 005 to 0.5%, but Or, Fe%G
O reinforces the action of N1, and is dispersed as fine precipitates, improving strength, heat resistance, stress corrosion cracking resistance, and further improving hot workability. These contents are 0.
The reason why it is limited to 0.05 to 0.5% is that if it is less than 0.05%, the above effect cannot be obtained, and if it exceeds 0.05%, the decrease in electrical conductivity will be large and the manufacturing processability will be reduced.

上記5元素の中でCrは導電率をそれ程低下させずに強
度の向上に寄与するが、Feは導′6率の低下が比較的
大きく且つ05%を超えると半田接合性が低下する。実
用上特に望ましい含有量は、Orは0.1〜04%、F
e及び艶は各々αO75−0,5%である。
Among the five elements mentioned above, Cr contributes to an improvement in strength without significantly lowering the electrical conductivity, but Fe has a relatively large decrease in conductivity, and if it exceeds 0.5%, the solderability deteriorates. Particularly desirable contents for practical use are 0.1 to 04% for Or, and 0.1 to 0.4% for F.
e and gloss are each αO75-0.5%.

以上の本発明の合金は、従来のりん青銅と同−Sn濃度
において比較した場合、強度がより大きく従って同一強
度ではSnの含有量を0.5〜2%低減でき、その分導
電率が向上する。
The above alloy of the present invention has higher strength when compared with conventional phosphor bronze at the same Sn concentration.Therefore, at the same strength, the Sn content can be reduced by 0.5 to 2%, and the electrical conductivity is improved accordingly. do.

本発明の合金は通常の方法で製造することができる。即
ちCut−溶解しこれに合金元素を添加し均質化して後
、水冷鋳造法にて鋳塊となし、これを熱間圧延し、次い
で必要に応じ中間熱処理を施しながら冷間圧延して所定
寸法に加工し、更に低温焼鈍、テンションレベラー、テ
ンションアニール等の処理を行い所定の材質に仕上げら
れる。
The alloys of the invention can be manufactured by conventional methods. That is, cut-melt, add alloying elements to it, homogenize it, make it into an ingot by water-cooling casting method, hot roll it, and then cold roll it with intermediate heat treatment as necessary to give it a predetermined size. The material is then processed into the desired material by further processing such as low-temperature annealing, tension leveling, and tension annealing.

黒鉛鋳型等を用いた連続ストリップキャスティング法で
薄型鋳塊に鋳造した場合は熱間圧延せずに直接冷間圧延
して所定の寸法に加工される。
When a thin ingot is cast by a continuous strip casting method using a graphite mold or the like, the ingot is directly cold rolled to the predetermined dimensions without hot rolling.

(実施例) 以下に本発明を実施例により詳細に説明する。(Example) The present invention will be explained in detail below using examples.

第1表に示す合金を、黒鉛るつぼを用いて大気中で木炭
被覆をして溶解し、150 X 30 X 300■の
金型に鋳造した。この鋳塊を面側して酸化スケールを除
去して後、850℃でBmtに熱間圧延し、次いでα9
mtまで冷間圧延して後、600℃で30分間熱処理し
、更にO−3ma tまで冷間圧延し、最后に300℃
で15分間熱処理した。
The alloys listed in Table 1 were melted in a graphite crucible in air with a charcoal coating, and cast into a 150 x 30 x 300 square mold. This ingot was face-faced to remove oxide scale, then hot-rolled to Bmt at 850°C, and then α9
After cold rolling to mt, heat treatment at 600℃ for 30 minutes, further cold rolling to O-3mat, and finally 300℃
Heat treatment was performed for 15 minutes.

このようにして得られたサンプルについて引張り強さ、
伸び、導電率、半田接合強度、耐応力腐食割れ性、Sn
メツキ密着性を調査した。
The tensile strength of the sample obtained in this way,
Elongation, electrical conductivity, solder joint strength, stress corrosion cracking resistance, Sn
The plating adhesion was investigated.

半田接合強度はサンプル’ii” 5 X 5 mのチ
ップに切り出しこれに211111φの硬銅線を共晶半
田付けし、これを150℃で500時間保持して後プル
試験を行って求めた。
The solder joint strength was determined by cutting a sample 'ii'' into a 5 x 5 m chip, to which a hard copper wire of 211111φ was eutectic soldered, holding it at 150° C. for 500 hours, and then performing a pull test.

耐応力腐食割れ性はJISCg306に準じて5 vo
1%のNH−蒸気中にて破断荷重の捧の荷重をかけて割
れ発生までの時間を計測した。
Stress corrosion cracking resistance is 5 vo according to JISCg306
A load equal to the breaking load was applied in 1% NH-vapor, and the time until cracking occurred was measured.

Snメツキ密着性はサンプルを脱脂・酸洗いしてから5
ni5μメツキしこれを120℃で1000時間保持し
て後、密着折り曲げ試験を行い曲げ部を顕微鏡で10倍
に拡大してSnメツキ層の剥離の有無を調べた。
Sn plating adhesion was determined after degreasing and pickling the sample.
After plating 5μ of Ni and holding it at 120° C. for 1000 hours, a close bending test was performed and the bent portion was magnified 10 times with a microscope to check for peeling of the Sn plating layer.

Snメツキの浴及び条件は、8nSOs: 100り/
1゜H*804: 5 Of /’s βナフトール:
1f/l、ニカワ: 2 f / L1浴温度16℃、
電流密度二L5A / diである。
The bath and conditions for Sn plating are 8nSOs: 100 ri/
1°H*804: 5 Of /'s β naphthol:
1 f/l, glue: 2 f/L1 bath temperature 16°C,
The current density is 2 L5A/di.

結果は第2表に示した。The results are shown in Table 2.

第1表 第2表より明らかなように、本発明品(1〜II)は、
従来のりん青銅(14,15)に比べて半田接合強度、
耐応力腐食割れ性、メツキ密着性に優れている。
As is clear from Table 1 and Table 2, the products (1 to II) of the present invention are:
Solder joint strength compared to conventional phosphor bronze (14, 15),
Excellent stress corrosion cracking resistance and plating adhesion.

比較品においてPが上限を超えているもの(8)t−を
半田接合強度、メツキ密着性に劣り、N1が下限未満の
ため耐応力腐食割れ性にも劣る。
Among the comparative products, P exceeds the upper limit (8) t- is inferior in solder joint strength and plating adhesion, and N1 is less than the lower limit, so stress corrosion cracking resistance is also inferior.

脱酸が不十分でO!が上限を超えるもの(9)は引張り
強さ、伸びが低く、半田接合強度、メツキ密着性にも劣
る。N1又はZnが上限を超えたもの(10,11)N
i又は、Zn又はSlが上限を超えたもの(10〜12
)は導電率の低下が大きい。Mgが上限を超えたもの(
6)はMgの強い0!との親和力により酸化物が鋼中に
とり込まれて健全な鋳塊が得られず引張り強さ、伸びが
低く又半田接合強度、メツキ密着性が劣る。
O due to insufficient deoxidation! (9) exceeding the upper limit has low tensile strength and elongation, and is also poor in solder joint strength and plating adhesion. N1 or Zn exceeds the upper limit (10, 11)N
i or those in which Zn or Sl exceeds the upper limit (10 to 12
) has a large decrease in conductivity. Items with Mg exceeding the upper limit (
6) is a strong Mg 0! Due to the affinity with steel, oxides are incorporated into the steel, making it impossible to obtain a healthy ingot, resulting in low tensile strength and elongation, and poor solder joint strength and plating adhesion.

Crが上限を超えたもの(6)は伸び、導電率が低い。The material (6) in which Cr exceeds the upper limit is elongated and has low electrical conductivity.

jr6が上限?超えたもの(7)は伸び、導電率が低い
上に半田接合強度、メツキ密着性にも劣る。Ni 、G
Is jr6 the upper limit? Those exceeding (7) are elongated, have low conductivity, and are also inferior in solder joint strength and plating adhesion. Ni, G
.

が下限未満のもの(5)は半田接合強度、耐応力腐食割
れ性に劣る。
(5) below the lower limit is inferior in solder joint strength and stress corrosion cracking resistance.

(本発明の効果) 本発明の合金は、従来のりん青銅より強度並びて伝導性
に優れ、半田接合性及びメツキ密着性において経時劣化
することがなく、更に耐応力腐食割れ性に優れているの
で、電子電気機器のリード部材又はバネ部材に適用して
顕著な効果を賽するものである。
(Effects of the present invention) The alloy of the present invention has superior strength and conductivity compared to conventional phosphor bronze, does not deteriorate over time in solder bondability and plating adhesion, and has excellent stress corrosion cracking resistance. Therefore, it can be applied to lead members or spring members of electronic and electrical equipment to achieve remarkable effects.

Claims (1)

【特許請求の範囲】[Claims] (1)Sn2〜8wt%、P0.2wt%以下、O_2
0.0025wt%以下、Ni0.05〜1.5wt%
を含有し、Zn0.05〜5wt%、Mn0.01〜0
.5wt%、B0.01〜0.1wt%、Al0.01
〜1wt%、Mg0.01〜0.2wt%、Si0.0
1〜0.5wt%、Ti0.01〜0.5wt%の1種
又は2種以上を合計で5wt%以下含有し、Cr、Fe
、Coの少なくとも1種を0.05〜0.5wt%含有
し残部が銅からなる高力伝導性銅合金。
(1) Sn2-8wt%, P0.2wt% or less, O_2
0.0025wt% or less, Ni0.05-1.5wt%
Contains Zn0.05-5wt%, Mn0.01-0
.. 5wt%, B0.01-0.1wt%, Al0.01
~1wt%, Mg0.01~0.2wt%, Si0.0
Contains a total of 5 wt% or less of one or more of 1 to 0.5 wt%, 0.01 to 0.5 wt% of Ti, and Cr, Fe.
, Co, in an amount of 0.05 to 0.5 wt%, with the remainder being copper.
JP18298186A 1986-08-04 1986-08-04 High strength conductive copper alloy Pending JPS6338547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18298186A JPS6338547A (en) 1986-08-04 1986-08-04 High strength conductive copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18298186A JPS6338547A (en) 1986-08-04 1986-08-04 High strength conductive copper alloy

Publications (1)

Publication Number Publication Date
JPS6338547A true JPS6338547A (en) 1988-02-19

Family

ID=16127678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18298186A Pending JPS6338547A (en) 1986-08-04 1986-08-04 High strength conductive copper alloy

Country Status (1)

Country Link
JP (1) JPS6338547A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115403U (en) * 1990-03-12 1991-11-28
US5392748A (en) * 1992-09-25 1995-02-28 Mitsubishi Denki Kabushiki Kaisha Ignition timing controlling device for an engine
EP0767244A1 (en) * 1995-08-10 1997-04-09 Mitsubishi Shindoh Co., Ltd. High-strength copper based alloy free from smutting during pretreatment for plating
JP2006328542A (en) * 2006-05-29 2006-12-07 Dowa Holdings Co Ltd Copper-based alloy material and manufacturing method therefor
JP2008231492A (en) * 2007-03-20 2008-10-02 Dowa Metaltech Kk Cu-Ni-Sn-P BASED COPPER ALLOY SHEET AND ITS MANUFACTURING METHOD
CN103540791A (en) * 2013-10-17 2014-01-29 常熟市良益金属材料有限公司 Copper-tin alloy
CN106399747A (en) * 2016-11-15 2017-02-15 扬州丰泽轨道交通科技有限公司 Friction disc for high-speed rail and preparation method of friction disc

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115403U (en) * 1990-03-12 1991-11-28
US5392748A (en) * 1992-09-25 1995-02-28 Mitsubishi Denki Kabushiki Kaisha Ignition timing controlling device for an engine
EP0767244A1 (en) * 1995-08-10 1997-04-09 Mitsubishi Shindoh Co., Ltd. High-strength copper based alloy free from smutting during pretreatment for plating
US5997810A (en) * 1995-08-10 1999-12-07 Mitsubishi Shindoh Co., Ltd. High-strength copper based alloy free from smutting during pretreatment for plating
JP2006328542A (en) * 2006-05-29 2006-12-07 Dowa Holdings Co Ltd Copper-based alloy material and manufacturing method therefor
JP4538813B2 (en) * 2006-05-29 2010-09-08 Dowaホールディングス株式会社 Connector and charging socket using copper-based alloy material
JP2008231492A (en) * 2007-03-20 2008-10-02 Dowa Metaltech Kk Cu-Ni-Sn-P BASED COPPER ALLOY SHEET AND ITS MANUFACTURING METHOD
CN103540791A (en) * 2013-10-17 2014-01-29 常熟市良益金属材料有限公司 Copper-tin alloy
CN106399747A (en) * 2016-11-15 2017-02-15 扬州丰泽轨道交通科技有限公司 Friction disc for high-speed rail and preparation method of friction disc

Similar Documents

Publication Publication Date Title
JP3550233B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
JPS63149344A (en) High strength copper alloy having high electrical conductivity
JPH0641660A (en) Cu alloy steel having fine structure for electric and electronic parts
JPS63109130A (en) Copper alloy for electronic equipment
JPS6338547A (en) High strength conductive copper alloy
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JPH06207232A (en) Copper alloy for electronic and electrical equipment and its production
JPS62182240A (en) Conductive high-tensile copper alloy
JPH0718356A (en) Copper alloy for electronic equipment, its production and ic lead frame
JPH0987814A (en) Production of copper alloy for electronic equipment
JPS59145745A (en) Copper alloy for lead material of semiconductor apparatus
JPH032341A (en) High strength and high conductivity copper alloy
JPH02190431A (en) Copper alloy for connecting apparatus
JPS6338545A (en) High strength conductive copper alloy
JPS63125631A (en) High-tensile high-conductivity copper alloy
JPH0219432A (en) High-strength and high-conductivity copper alloy for semiconductor equipment lead material or conductive spring material
JPH0575812B2 (en)
JPS6345342A (en) High strength conductive copper alloy
JPS6365038A (en) Copper alloy for electronic and electrical equipment
JPH0356294B2 (en)
JPS6338546A (en) High strength conductive copper alloy
JPS6338544A (en) High strength conductive copper alloy
JPS62133033A (en) Cu alloy lead material for semiconductor device
JPS6345341A (en) High strength conductive copper alloy
JPH0230727A (en) Copper alloy having high-strength and high-conductivity for semiconductor equipment lead material or conductive spring material