JP2006328542A - Copper-based alloy material and manufacturing method therefor - Google Patents

Copper-based alloy material and manufacturing method therefor Download PDF

Info

Publication number
JP2006328542A
JP2006328542A JP2006148234A JP2006148234A JP2006328542A JP 2006328542 A JP2006328542 A JP 2006328542A JP 2006148234 A JP2006148234 A JP 2006148234A JP 2006148234 A JP2006148234 A JP 2006148234A JP 2006328542 A JP2006328542 A JP 2006328542A
Authority
JP
Japan
Prior art keywords
copper
alloy material
based alloy
intermetallic compound
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006148234A
Other languages
Japanese (ja)
Other versions
JP4538813B2 (en
Inventor
Akira Sugawara
章 菅原
Yoshitake Hana
佳武 花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP2006148234A priority Critical patent/JP4538813B2/en
Publication of JP2006328542A publication Critical patent/JP2006328542A/en
Application granted granted Critical
Publication of JP4538813B2 publication Critical patent/JP4538813B2/en
Expired - Lifetime legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper-based alloy material having the surface superior in abrasion resistance and corrosion resistance formed by coating the surface of the copper-based alloy material with Sn and then appropriately forming a high-hardness Cu-Sn-based intermetallic compound in the treated surface layer of the material by heat treatment, and to provide a manufacturing method therefor. <P>SOLUTION: The copper-based alloy material having superior various characteristics such as high hardness, high strength and high electroconductivity is manufactured by the steps of: coating the surface of a Cu-Ni-Sn-P copper alloy or a Cu-Ni-Sn-P- (one or more elements of subcomponents including Fe, Co, Zn, Ti and Mg) copper alloy material with Sn; and then heat-treating the material on a predetermined condition to form a Cu-Sn-based coating film made from the intermetallic compound with high hardness on the surface of the material. The manufacturing method therefor is also provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、銅基合金材(銅及び銅合金を含む。以下単に「銅基合金材」という。)およびその製造法に関し、更に詳しくは、例えば自動車の電気配線等に使用される多ピンのコネクタの表面のように挿抜に際しての摩擦を小さくすることを要求される表面や、電気自動車の充電用ソケットのように挿抜回数が多いものや、モータのブラシのように回転体と接して耐摩耗性を要求される表面や、バッテリー端子のように耐摩耗性・耐腐食性が要求される表面を有した銅基合金材とその製造法に関するものである。   The present invention relates to a copper-based alloy material (including copper and a copper alloy; hereinafter simply referred to as “copper-based alloy material”) and a method for producing the same. Wear resistant to surfaces that require low friction during insertion and removal, such as the surface of connectors, and those that require frequent insertion and removal, such as charging sockets for electric vehicles, and motors such as brushes. The present invention relates to a copper-based alloy material having a surface that is required for wear resistance and a surface that is required for wear resistance and corrosion resistance such as a battery terminal, and a method for producing the same.

近年のエレクトロニクスの発達により、種々の機械の電気配線は複雑化,高集積化が進み、それに伴いコネクタの多ピン化も進んできている。従来のSnめっきをしたコネクタでは抜き差しに際し摩擦が大きくなり、コネクタの挿抜が困難になるという問題が生じてきている。   With the recent development of electronics, the electrical wiring of various machines has become more complex and highly integrated, and accordingly, the number of connectors has been increased. A conventional Sn-plated connector has a problem of increased friction when it is inserted and removed, making it difficult to insert and remove the connector.

また、現在の電気自動車では1日1回以上の充電を必要としており、充電用ソケット部品の耐摩耗性の確保が必要である。その上に10A以上の大電流が流れるため発熱が大きく、従来のSnめっき等の方法では該めっきが剥離してしまう等の問題も生じている。   In addition, current electric vehicles require charging once or more a day, and it is necessary to ensure wear resistance of the charging socket parts. On top of that, a large current of 10 A or more flows, so that heat generation is large, and there is a problem that the plating is peeled off by a conventional method such as Sn plating.

上記のような問題に対し、従来の表面処理方法では対応しきれないことが明らかになってきており、また本発明が提案する銅基合金材を表面処理後、熱拡散させる技術も従来から存在したが、従来の技術は表面処理層と素材との拡散により、加工または熱的な影響等による表面処理層の剥離を防止するだけのものであったため、やはり上記の問題には対応できなかった。   It has become clear that conventional surface treatment methods cannot cope with the above problems, and there is also a conventional technology for thermally diffusing the copper-based alloy material proposed by the present invention after surface treatment. However, since the conventional technology merely prevents the surface treatment layer from being peeled off due to processing or thermal influence due to the diffusion between the surface treatment layer and the material, it still cannot cope with the above problem. .

本発明は上記のような問題点を解決したもので、銅基合金材素材表面にSnまたはSn合金を被覆した後に熱処理を施し、該素材の表面処理層に非常に硬いCu−Sn系金属間化合物(Cu3Sn,Cu4Sn等)を適正に形成させることにより、例えばコネクタや電気自動車の充電ソケット等に好適な表面の摩擦係数が小さく、しかも耐摩耗性に優れた表面を有する銅基合金材とその製造法を提案するものである。 The present invention solves the above-described problems, and after the surface of the copper-based alloy material is coated with Sn or Sn alloy, heat treatment is performed, and the surface treatment layer of the material is made of a very hard Cu-Sn based metal. By appropriately forming a compound (Cu 3 Sn, Cu 4 Sn, etc.), for example, a copper base having a small surface friction coefficient suitable for a connector, a charging socket of an electric vehicle, etc., and having a surface excellent in wear resistance An alloy material and a manufacturing method thereof are proposed.

本発明は、特定組成の銅基合金材に被覆するSnの膜厚と熱処理条件を限定することにより、従来技術では難しく不可能であったCu−Sn系金属間化合物(Cu3Sn,Cu4Sn等)を積極的に形成させることにより、表面硬度を著しく向上させることができるとの知見を得て開発された技術であって、自動車のコネクタや電気自動車の充電用ソケット等に好適な表面の摩擦係数の小さい、耐摩耗性に優れた銅基合金材とその製造法を提供するものである。 In the present invention, the Cu-Sn intermetallic compound (Cu 3 Sn, Cu 4) , which was difficult and impossible in the prior art, is limited by limiting the film thickness of Sn and the heat treatment conditions to be coated on a copper-based alloy material having a specific composition. (Sn etc.) is a technology developed with the knowledge that the surface hardness can be remarkably improved by positively forming, such as a connector for an automobile or a charging socket for an electric automobile. The present invention provides a copper base alloy material having a small friction coefficient and excellent wear resistance and a method for producing the same.

即ち、本発明は、「表面にCuとSnとの高硬度金属間化合物被膜を有することを特徴とする銅基合金材」であり、   That is, the present invention is "a copper-based alloy material characterized by having a high hardness intermetallic compound coating of Cu and Sn on the surface"

また、本発明は、「重量%においてNi:0.1%〜15%,Sn:0.1〜10%,P:0.005%〜0.5%を含有し、残部がCuおよび不可避不純物からなり、表面にCuとSnとの高硬度金属間化合物被膜を有することを特徴とする銅基合金材」であり、   In addition, the present invention includes “in weight percent, Ni: 0.1% to 15%, Sn: 0.1 to 10%, P: 0.005% to 0.5%, with the balance being Cu and inevitable impurities. A copper-based alloy material characterized by having a high-hardness intermetallic compound coating of Cu and Sn on the surface thereof,

また、本発明は、「重量%においてNi:0.1〜15%,Sn:0.1〜10%,P:0.005〜0.5%を含有し、更にFe,Co,Zn,Ti,Mg,Zr,Ca,Si,Mn,Cd,Al,Pb,Be,Te,In,Ag,B,Y,La,Cr,Ce,Auの群から選ばれる1種または2種以上を総量で0.01〜40%含有し、残部がCuおよび不可避不純物からなり、表面にCuとSnとの高硬度金属間化合物被膜を有することを特徴とする銅基合金材」であり、   Further, the present invention includes "in weight percent, Ni: 0.1 to 15%, Sn: 0.1 to 10%, P: 0.005 to 0.5%, and Fe, Co, Zn, Ti" , Mg, Zr, Ca, Si, Mn, Cd, Al, Pb, Be, Te, In, Ag, B, Y, La, Cr, Ce, and Au, in a total amount A copper-based alloy material characterized by comprising 0.01 to 40%, the balance being Cu and inevitable impurities, and having a high-hardness intermetallic compound coating of Cu and Sn on the surface "

また、本発明は、「銅基合金材の素材表面をSnで被覆した後、加熱処理することにより該素材表面にCuとSnとの高硬度金属間化合物被膜を形成することを特徴とする銅基合金材の製造法」であり、   In addition, the present invention provides a “copper characterized by forming a high-hardness intermetallic compound film of Cu and Sn on the surface of the material by coating the surface of the material of the copper-based alloy material with Sn and then performing a heat treatment. Manufacturing method of the base alloy material,

また、本発明は、「重量%においてNi:0.1〜15%,Sn:0.1〜10%,P:0.005〜0.5%を含有し、残部がCuおよび不可避不純物から成る銅基合金材素材表面をSnで被覆した後、加熱処理することにより、該素材表面にCuとSnとの高硬度金属間化合物被膜を形成することをを特徴とする銅基合金材の製造法」であり、   Further, the present invention includes "in weight percent, Ni: 0.1 to 15%, Sn: 0.1 to 10%, P: 0.005 to 0.5%, with the balance being Cu and inevitable impurities. A method for producing a copper-based alloy material, characterized in that a high-hardness intermetallic compound film of Cu and Sn is formed on the surface of the material by coating the surface of the copper-based alloy material with Sn, followed by heat treatment. And

また、本発明は、「重量%においてNi:0.1〜15%,Sn:0.1〜10%,P:0.005〜0.5%を含有し、更にFe,Co,Zn,Ti,Mg,Zr,Ca,Si,Mn,Cd,Al,Pb,Be,Te,In,Ag,B,Y,La,Cr,Ce,Auの群から選ばれる1種または2種以上を総量で0.01〜40%含有し、残部がCuおよび不可避不純物から成る銅基合金材素材表面をSnで被覆した後、加熱処理することにより、該素材表面にCuとSnとの高硬度金属間化合物被膜を形成することを特徴とする銅基合金材の製造法」を提供するものである。   Further, the present invention includes "in weight percent, Ni: 0.1 to 15%, Sn: 0.1 to 10%, P: 0.005 to 0.5%, and Fe, Co, Zn, Ti" , Mg, Zr, Ca, Si, Mn, Cd, Al, Pb, Be, Te, In, Ag, B, Y, La, Cr, Ce, and Au, in a total amount A high-hardness intermetallic compound of Cu and Sn is coated on the surface of the copper-based alloy material containing 0.01 to 40%, the remainder comprising Cu and inevitable impurities, and then heat-treated. The present invention provides a method for producing a copper-based alloy material characterized by forming a film.

上記本発明において、Snの被覆厚さが0.5〜20μm、好ましくは1〜10μmで、最も好ましくは1〜5μmであり、被覆後の熱処理条件としては、温度100〜600℃で処理時間0.5〜24時間が好ましく、より好ましくは温度200〜500℃で処理時間0.5〜24時間の範囲であり、最も好ましくは温度250〜500℃で処理時間3〜10時間の範囲である。   In the present invention, the Sn coating thickness is 0.5 to 20 μm, preferably 1 to 10 μm, and most preferably 1 to 5 μm. The heat treatment conditions after coating are as follows: the temperature is 100 to 600 ° C. and the processing time is 0. 0.5 to 24 hours is preferable, more preferably the temperature is 200 to 500 ° C. and the processing time is 0.5 to 24 hours, and most preferably the temperature is 250 to 500 ° C. and the processing time is 3 to 10 hours.

上記本発明において、Ni:Pの組成比が重量百分率比率で5〜50の範囲であることが好ましいのである。   In the present invention, the composition ratio of Ni: P is preferably in the range of 5 to 50 in terms of weight percentage.

次に、本発明の内容を具体的に説明する。まず、本発明に係る銅基合金材の添加元素の選択とその含有量の範囲の限定理由について述べると、次の通りである。   Next, the contents of the present invention will be specifically described. First, selection of the additive element of the copper-based alloy material according to the present invention and the reason for limiting the range of the content will be described as follows.

(1)Ni
Niは、素材の強度,弾性,耐熱性および耐応力緩和特性等の向上に寄与する元素であり、更にPと化合物を形成して分散析出させることにより電気伝導性も向上する。また、表面被覆処理後の熱処理によるCu−Sn系拡散層の形成を効果的に行うことができる。また、更に添加したNiの一部が表面処理層側に拡散し、その界面ないし拡散層においてNi−Sn,Cu−Ni−Sn等の金属間化合物を形成し、強度,硬さ,密着性および耐食性等を向上させる。
(1) Ni
Ni is an element that contributes to improving the strength, elasticity, heat resistance, stress relaxation resistance, and the like of the material, and further improves electrical conductivity by forming and dispersing P with a compound. In addition, the Cu—Sn diffusion layer can be effectively formed by heat treatment after the surface coating treatment. Further, a part of the added Ni diffuses to the surface treatment layer side, and an intermetallic compound such as Ni—Sn, Cu—Ni—Sn is formed at the interface or diffusion layer, and the strength, hardness, adhesion and Improve corrosion resistance.

上記の効果を発揮するためには、0.1wt%以上の含有が必要であり、15wt%を超えて含有すると、電気伝導性の低下が顕著になり、経済的にも不利になる。従って、Niの含有量は0.1〜15wt%の範囲が好ましいのである。   In order to exhibit the above effect, it is necessary to contain 0.1 wt% or more. If it exceeds 15 wt%, the electrical conductivity is remarkably lowered, which is economically disadvantageous. Therefore, the Ni content is preferably in the range of 0.1 to 15 wt%.

(2)Sn
Snは、素材のCuマトリックス中に固溶して強度,弾性および耐食性を向上させる。しかし、Sn含有量が0.1wt%未満では、強度,弾性の向上が充分でなく、10wt%を超えると電気伝導性や加工性の抵下が顕著となり、更に耐マイグレーション性の低下を招くおそれがある。従って、Snの含有量は0.1〜10wt%の範囲が好ましいのである。
(2) Sn
Sn is dissolved in the raw material Cu matrix to improve the strength, elasticity and corrosion resistance. However, if the Sn content is less than 0.1 wt%, the strength and elasticity are not sufficiently improved. If the Sn content exceeds 10 wt%, the electrical conductivity and workability are significantly reduced, and the migration resistance may be further deteriorated. There is. Therefore, the Sn content is preferably in the range of 0.1 to 10 wt%.

(3)P
PはNiと化合物を形成して分散析出することにより、電気伝導性を向上させ、かつ強度,弾性、耐応力緩和特性を向上させる。しかし、Pの含有量が0.005wt%未満では上記の効果が充分に得られず、0.5wt%を超えるとNi共存下でも電気伝導性,加工性や半田耐候性の低下が著しくなり、更に耐マイグレーション性の低下を招く。従って、Pの含有量は0.005〜0.5wt%の範囲が好ましいのである。
(3) P
P forms a compound with Ni and disperses and precipitates, thereby improving electrical conductivity and improving strength, elasticity, and stress relaxation resistance. However, if the P content is less than 0.005 wt%, the above effects cannot be obtained sufficiently. If the P content exceeds 0.5 wt%, the electrical conductivity, workability and solder weather resistance are significantly reduced even in the presence of Ni. Further, the migration resistance is reduced. Accordingly, the P content is preferably in the range of 0.005 to 0.5 wt%.

(4)Ni:Pの組成比について
また、本発明に係る銅基合金材においては、添加したNi,Pの一部がNi−P系化合物を形成し、これが均一微細に分散析出することにより電気伝導性をはじめ、強度,弾性,耐応力緩和特性を向上させることができる。従って、NiとPの重量百分率の比(Ni/P)を限定するのが好ましく、そのNi/Pの重量百分率組成比率は、5〜50の範囲が好ましいのである。
(4) About the composition ratio of Ni: P In addition, in the copper-based alloy material according to the present invention, a part of the added Ni and P forms a Ni-P-based compound, which is uniformly finely dispersed and precipitated. In addition to electrical conductivity, strength, elasticity, and stress relaxation resistance can be improved. Therefore, it is preferable to limit the weight percentage ratio of Ni and P (Ni / P), and the Ni / P weight percentage composition ratio is preferably in the range of 5-50.

(5)副成分について
更に副成分として、Fe,Co,Zn,Ti,Mg,Zr,Ca,Si,Mn,Cd,Al,Pb,Be,Te,In,Ag,B,Y,La,Cr,Ce,Auの群のうち1種または2種以上を0.01〜40wt%含有させると上記諸特性をより向上させる。
(5) Subcomponents As subcomponents, Fe, Co, Zn, Ti, Mg, Zr, Ca, Si, Mn, Cd, Al, Pb, Be, Te, In, Ag, B, Y, La, Cr , Ce, Au, and the like, the above characteristics are further improved by containing 0.01 to 40 wt% of one or more of the groups.

ここで、Znは、銅基合金材のめっき耐候性を更に向上させるばかりかその他、比重が小さいので、該合金の重量の軽減化や安価であるので経済的である等の利点がある。しかし、添加量が多くなると耐応力腐食割れ性や電気伝導性が低下するので、Znの含有量は0.01〜40wt%の範囲が好ましいのである。   Here, Zn not only further improves the plating weather resistance of the copper-based alloy material, but also has advantages such as being economical because the specific gravity is small and the weight of the alloy is reduced and it is inexpensive. However, since the stress corrosion cracking resistance and electrical conductivity are lowered when the amount added is increased, the Zn content is preferably in the range of 0.01 to 40 wt%.

その他の元素Fe,Co,Zn,Ti,Mg,Zr,Ca,Si,Mn,Cd,Al,Pb,Be,Te,In,Al,B,Y,La,Cr,Ce,Auにつては、それらの含有により強度,弾性等の特性を向上させる。また、これらの副成分は、本発明に係る銅基合金材の電気伝導性を低下させることなく、強度,弾性および加工性の向上にも効果的である。   For other elements Fe, Co, Zn, Ti, Mg, Zr, Ca, Si, Mn, Cd, Al, Pb, Be, Te, In, Al, B, Y, La, Cr, Ce, Au, Their inclusion improves the properties such as strength and elasticity. Moreover, these subcomponents are effective in improving strength, elasticity and workability without deteriorating the electrical conductivity of the copper-based alloy material according to the present invention.

ただし、電気伝導性や成形加工性または製造のし易さ等から、より好ましい範囲としては、Fe:0.01〜5wt%,Co:0.01〜5wt%,Ti:0.01〜5wt%,Mg:0.01〜3wt%,Zr:0.01〜3wt%,Ca:0.01〜1wt%,Si:0.01〜3wt%,Mn:0.01〜10wt%,Cd:0.01〜5wt%,Al:0.01〜10wt%,Pb:0.01〜5wt%,Be:0.01〜3wt%,Te:0.01〜5wt%,In:0.01〜5wt%,Ag:0.01〜5wt%,B:0.01〜1wt%,Y:0.01〜5wt%,La:0.01〜5wt%,Cr:0.01〜5wt%,Ce:0.01〜5wt%,Au:0.01〜5wt%である。   However, from the viewpoint of electrical conductivity, molding processability, ease of production, etc., more preferable ranges are Fe: 0.01-5 wt%, Co: 0.01-5 wt%, Ti: 0.01-5 wt% Mg: 0.01-3 wt%, Zr: 0.01-3 wt%, Ca: 0.01-1 wt%, Si: 0.01-3 wt%, Mn: 0.01-10 wt%, Cd: 0. 01-5 wt%, Al: 0.01-10 wt%, Pb: 0.01-5 wt%, Be: 0.01-3 wt%, Te: 0.01-5 wt%, In: 0.01-5 wt%, Ag: 0.01-5 wt%, B: 0.01-1 wt%, Y: 0.01-5 wt%, La: 0.01-5 wt%, Cr: 0.01-5 wt%, Ce: 0.01 -5 wt%, Au: 0.01-5 wt%.

(6)銅基合金材の銅成分量について
工業的に生産し得る銅合金としてCuに最も多量に添加される元素はZnであるが、その最大含有量は45wt%であり、またCu−Sn系金属間化合物(Cu3Sn,Cu4Sn等)を効果的に形成させるためにも、Cuは少なくとも55wt%以上含有する必要がある。
(6) About the amount of copper component in the copper-based alloy material The most commonly added element to Cu as a copper alloy that can be produced industrially is Zn, but its maximum content is 45 wt%, and Cu-Sn. In order to effectively form an intermetallic compound (Cu 3 Sn, Cu 4 Sn, etc.), it is necessary to contain Cu at least 55 wt% or more.

上記のように調整した銅基合金材は耐熱性に優れ、次に行なう被覆後の熱拡散にも充分耐えられ、熱拡散によるCu−Sn系の金属間化合物の形成を効果的に行なうことができる。   The copper-based alloy material prepared as described above has excellent heat resistance, can sufficiently withstand thermal diffusion after coating, and can effectively form a Cu-Sn intermetallic compound by thermal diffusion. it can.

次に、Snの被覆厚さおよび拡散処理条件の限定理由について述べる。   Next, the reason for limiting the Sn coating thickness and the diffusion treatment conditions will be described.

(7)Snの被覆厚さについて
Snの被覆の厚さが0.5μm未満では耐食性が低下し易く、特にH2Sガスによる腐食が問題になることがある。また、金属間化合物の層が薄くなり物性面でも不利になる。Sn被覆の厚さが20μmを超えると拡散層の厚さが厚くなり過ぎ、加工時に割れが発生するなどの成形加工性の低下が認められ、更に疲労特性の低下や、経済的にも不利になる等の問題が生じる。
(7) Sn coating thickness When the Sn coating thickness is less than 0.5 μm, the corrosion resistance tends to decrease, and corrosion due to H 2 S gas may be a problem. In addition, the intermetallic compound layer becomes thin, which is disadvantageous in terms of physical properties. When the thickness of the Sn coating exceeds 20 μm, the thickness of the diffusion layer becomes too thick, and a decrease in molding processability such as cracking during processing is recognized. Further, the fatigue characteristics are reduced and economically disadvantageous. The problem of becoming.

従って、Sn被覆の厚さは、0.5〜20μmの範囲が好ましく、より好ましくは1〜10μmの範囲で、最も好ましくは1〜5μmの範囲である。   Therefore, the thickness of the Sn coating is preferably in the range of 0.5 to 20 μm, more preferably in the range of 1 to 10 μm, and most preferably in the range of 1 to 5 μm.

Sn被膜層の形成方法としては、電気めっき,化学めっき,蒸着,溶融めっき等の公知の方法が適用できるが、被覆の密着性や均一ならびに経済的な面から、電気めっきや溶融浸漬法が好ましいのである。   As a method for forming the Sn coating layer, known methods such as electroplating, chemical plating, vapor deposition, and hot dipping can be applied, but electroplating and hot dipping are preferable from the viewpoint of coating adhesion, uniformity, and economy. It is.

また、被覆するSnについては、Snの含有量が50%以上のSn−Pb合金であってもよい。   Further, Sn to be coated may be a Sn—Pb alloy having a Sn content of 50% or more.

(8)熱処理条件について
100℃未満の熱処理ではSnの拡散に要する時間が長くなり過ぎ、経済的に不利となる。また600℃を超えると短時間で素材の銅基合金材が軟化し始めるため、強度,硬度が低下する。
(8) Heat treatment conditions Heat treatment at a temperature lower than 100 ° C is disadvantageous economically because the time required for Sn diffusion becomes too long. When the temperature exceeds 600 ° C., the material copper-based alloy material starts to soften in a short time, so that the strength and hardness decrease.

加熱処理時間については、0.5時間未満ではSnの拡散が不充分となり、有効な金属間化合物の形成ができなくなり、また24時間を超えると経済的に不利となって生産性も低下する。   When the heat treatment time is less than 0.5 hours, Sn diffusion is insufficient, and it becomes impossible to form an effective intermetallic compound, and when it exceeds 24 hours, it is economically disadvantageous and productivity is lowered.

従って、熱処理条件としては、温度100〜600℃で処理時間0.5〜24時間が好ましく、より好ましい範囲としては温度200〜500℃で処理時間0.5〜24時間で、最も好ましい範囲としては温度250〜500℃で処理時間3〜10時間である。   Accordingly, the heat treatment conditions are preferably a temperature of 100 to 600 ° C. and a treatment time of 0.5 to 24 hours, and a more preferred range is a temperature of 200 to 500 ° C. and a treatment time of 0.5 to 24 hours. The processing time is 3 to 10 hours at a temperature of 250 to 500 ° C.

また、熱処理時の雰囲気としては、不活性または還元性雰囲気を特に必要としないので、経済的に有利である。   Further, the atmosphere during the heat treatment is economically advantageous because an inert or reducing atmosphere is not particularly required.

上記の工程を経ることにより、素材表面に形成された金属間化合物と素材との密着性が向上し、また焼鈍による素材の特性の劣化を防ぐことができる。更に、表層の金属間化合物と素材との密着性が向上することから、曲げ加工や張り出し加工時の表層の剥離や割れの発生を防ぐことができ、一般に言われるクラッド材の難加工性の問題も解決される。   By passing through the above steps, the adhesion between the intermetallic compound formed on the surface of the material and the material can be improved, and deterioration of the properties of the material due to annealing can be prevented. Furthermore, since the adhesion between the intermetallic compound and the material of the surface layer is improved, it is possible to prevent the peeling and cracking of the surface layer during bending and overhanging, and the generally difficult problem of the clad material that is said to be difficult Is also resolved.

更に、熱処理後、表面の酸化皮膜は酸洗等の化学的処理またはバフかけ等の機械的処理により除去すればなお好ましい。この皮膜除去によって、より一層の接触抵抗値や半田付け性の向上が望める。従って、表層から0.01〜0.2μmの範囲で除去するのが好ましい。   Further, after the heat treatment, the oxide film on the surface is more preferably removed by chemical treatment such as pickling or mechanical treatment such as buffing. By removing this film, further improvement in contact resistance value and solderability can be expected. Therefore, it is preferable to remove from the surface layer in the range of 0.01 to 0.2 μm.

後記する実施例からも明らかなように、本発明に係る銅基合金材は、高強度,高弾性および高電気伝導率を有し、しかも曲げ加工性,張り出し加工性に優れたコネクタ用,充電用ソケット用等として好適な銅合金であり、近年の自動車電装品の高密度化に対応できるコネクタ材および電気自動車の大電流の充電に充分対応できる充電用ソケット材を製造できるのである。   As will be apparent from the examples described later, the copper-based alloy material according to the present invention has high strength, high elasticity, and high electrical conductivity, and has excellent bending workability and overhang workability. Therefore, it is possible to manufacture a connector material that can be used for high-density automotive automobile electrical components and a charging socket material that can sufficiently handle high-current charging of an electric vehicle.

また、本発明法によって製造された銅基合金材は、上記のような耐摩耗性,耐腐食性に優れた特性を有しているので、かかる特性を利用して電気,電子部品用材料や構造材として多くの分野に利用することができる。   In addition, since the copper-based alloy material produced by the method of the present invention has the above-described characteristics with excellent wear resistance and corrosion resistance, the materials for electric and electronic parts and It can be used in many fields as a structural material.

表1に示される化学成分(wt%)を有する本発明銅基合金材No.1〜2と、比較のための銅基合金材No.3を、それぞれ0.3 tmmまで圧延したものにSnを被覆(硫酸浴を用いた電気めっきによる)した後、熱処理を行なった。この熱処理条件は、Sn膜厚7.0μm,熱処理温度350℃,処理時間5時間とした。 This invention copper base alloy material No. which has a chemical component (wt%) shown by Table 1 is shown. 1-2 and copper base alloy material No. for comparison. Each of Nos. 3 was rolled to 0.3 t mm and coated with Sn (by electroplating using a sulfuric acid bath), and then heat-treated. The heat treatment conditions were Sn film thickness 7.0 μm, heat treatment temperature 350 ° C., and treatment time 5 hours.

Figure 2006328542
Figure 2006328542

以上のようにして得られた試験材を用いて、硬度,引張強さ,ばね限界値および導電率の測定を行ない、それぞれJIS−Z−2244,JIS−Z−2241,JIS−H−3130およびJIS−H−0505に従って行なった。   Using the test materials obtained as described above, the hardness, tensile strength, spring limit value and conductivity were measured, and JIS-Z-2244, JIS-Z-2241, JIS-H-3130 and This was performed according to JIS-H-0505.

曲げ加工性は、90°W曲げ試験(CES−M−0002−6,R=0.2mm,圧延方向および垂直方向)も行ない、中央部の山表面が良好なものを○印、しわの発生したものを△印、割れの発生したものを×印として評価した。張り出し加工性は、エリクセン試験を行ない、JIS−Z−2247A法に従った。   As for bending workability, a 90 ° W bending test (CES-M-0002-6, R = 0.2 mm, rolling direction and vertical direction) was also performed, and a mark with a good crest surface at the center was marked with a circle. These were evaluated as Δ marks and those with cracks as X marks. The stretch workability was subjected to an Erichsen test and was in accordance with the JIS-Z-2247A method.

以上の測定結果を表2に示す。表2の結果から、本発明に係るNo.1,No.2の銅基合金材は表面の硬度が著しく改善され、かつ引張強さ,ばね限界値および導電率のバランスに優れ、また曲げ加工性,張り出し加工性も良好である。従って、コネクタ,充電用ソケット等の用途に非常に優れた特性を有する銅基合金材である。これに対して、本発明の成分組成範囲外のNo.3の比較合金は、熱処理時に合金が軟化し、合金の硬度および引張強さが著しく低下していることが分る。   The above measurement results are shown in Table 2. From the results in Table 2, No. 1 according to the present invention. 1, No. 1 The copper base alloy material No. 2 has a markedly improved surface hardness, an excellent balance of tensile strength, spring limit value and electrical conductivity, and also has good bending workability and overhang workability. Therefore, it is a copper-based alloy material having very excellent characteristics for applications such as connectors and charging sockets. On the other hand, No. out of the component composition range of the present invention. It can be seen that the comparative alloy No. 3 is softened during heat treatment, and the hardness and tensile strength of the alloy are significantly reduced.

Figure 2006328542
Figure 2006328542

本発明合金No.1について、めっき厚,熱処理温度の条件を変化させたときに、実施例1と同様に硬度,引張強さ,ばね限界値,導電率,曲げ加工性および張り出し加工性について試験測定した。その結果を表3に示す。   Invention alloy No. As for Example 1, when the conditions of plating thickness and heat treatment temperature were changed, as in Example 1, the hardness, tensile strength, spring limit value, conductivity, bending workability, and overhang workability were measured. The results are shown in Table 3.

Figure 2006328542
Figure 2006328542

表3の結果から、表面処理後に熱処理を行なうことにより、表面の硬さが著しく向上し、例えばめっき厚3.5μm,7.0μmで熱処理温度250,350℃の場合、表面硬度,母材硬度およびばね限界値の向上が認められる。   From the results of Table 3, the surface hardness is remarkably improved by performing the heat treatment after the surface treatment. For example, when the plating thickness is 3.5 μm, 7.0 μm and the heat treatment temperature is 250, 350 ° C., the surface hardness and the base material hardness An improvement in the spring limit is also observed.

しかし、本発明に係る条件からはずれると、表面と素材の特性を同時に充分発現させることができない。例えば、めっき厚7μmで熱処理温度700℃の場合、熱処理時に軟化して素材硬度や引張強さ,ばね限界値および曲げ加工性が著しく劣化しており、まためっき厚22μmで熱処理温度350℃の場合、曲げ加工性が著しく劣化していることが分る。   However, if it deviates from the conditions according to the present invention, the characteristics of the surface and the material cannot be expressed sufficiently. For example, when the plating thickness is 7 μm and the heat treatment temperature is 700 ° C., the material hardness, tensile strength, spring limit value and bending workability are significantly deteriorated due to the softening during the heat treatment. It can be seen that the bending workability is significantly deteriorated.

従って、本発明に係る銅合金はコネクタ用,充電用ソケット用等の用途に充分適用することができる優れた諸特性を有している。
Therefore, the copper alloy according to the present invention has excellent characteristics that can be sufficiently applied to uses such as connectors and charging sockets.

Claims (7)

重量%において、Ni:0.1〜15%、Sn:0.1〜10%、P:0.005〜0.5%を含有し、残部がCuおよび不可避不純物からなる銅基合金素材の表面に、CuとSnの金属間化合物層を有する銅基合金材。 The surface of a copper-based alloy material containing Ni: 0.1 to 15%, Sn: 0.1 to 10%, P: 0.005 to 0.5%, with the balance being Cu and inevitable impurities in weight% And a copper-based alloy material having an intermetallic compound layer of Cu and Sn. 重量%において、Ni:0.1〜15%、Sn:0.1〜10%、P:0.005〜0.5%を含有し、残部がCuおよび不可避不純物からなる銅基合金素材の表面に、Ni−Sn及び/またはCu−Ni−Snの金属間化合物層を有し、最表面にCuとSnの金属間化合物層を有する銅基合金材。 The surface of a copper-based alloy material containing Ni: 0.1 to 15%, Sn: 0.1 to 10%, P: 0.005 to 0.5%, with the balance being Cu and inevitable impurities in weight% A copper-based alloy material having an intermetallic compound layer of Ni-Sn and / or Cu-Ni-Sn and having an intermetallic compound layer of Cu and Sn on the outermost surface. 重量%において、Ni:0.1〜15%、Sn:0.1〜10%、P:0.005〜0.5%を含有し、残部がCuおよび不可避不純物からなる銅基合金素材の表面に、Cu−Ni−Snの金属間化合物層を有する銅基合金材。 The surface of a copper-based alloy material containing Ni: 0.1 to 15%, Sn: 0.1 to 10%, P: 0.005 to 0.5%, with the balance being Cu and inevitable impurities in weight% And a copper-based alloy material having a Cu—Ni—Sn intermetallic compound layer. 重量%において、Ni:0.1〜15%、Sn:0.1〜10%、P:0.005〜0.5%を含有し、更にFe、Co、Zn、Ti、Mg、Zr、Ca、Si、Mn、Cd、Al、Pb、Be、Te、In、Ag、B、Y、La、Cr、Ce、Auの群から選ばれる1種または2種以上を総量で0.01〜40%含有し、残部がCuおよび不可避不純物からなる銅基合金素材の表面に、CuとSnの金属間化合物層を有する銅基合金材。 In wt%, Ni: 0.1-15%, Sn: 0.1-10%, P: 0.005-0.5%, Fe, Co, Zn, Ti, Mg, Zr, Ca , Si, Mn, Cd, Al, Pb, Be, Te, In, Ag, B, Y, La, Cr, Ce, Au, in a total amount of 0.01 to 40% A copper-based alloy material having an intermetallic compound layer of Cu and Sn on the surface of a copper-based alloy material that contains Cu and inevitable impurities. 重量%において、Ni:0.1〜15%、Sn:0.1〜10%、P:0.005〜0.5%を含有し、更にFe、Co、Zn、Ti、Mg、Zr、Ca、Si、Mn、Cd、Al、Pb、Be、Te、In、Ag、B、Y、La、Cr、Ce、Auの群から選ばれる1種または2種以上を総量で0.01〜40%含有し、残部がCuおよび不可避不純物からなる銅基合金素材の表面に、Ni−Sn及び/またはCu−Ni−Snの金属間化合物層を有し、最表面にCuとSnの金属間化合物層を有する銅基合金材。 In wt%, Ni: 0.1-15%, Sn: 0.1-10%, P: 0.005-0.5%, Fe, Co, Zn, Ti, Mg, Zr, Ca , Si, Mn, Cd, Al, Pb, Be, Te, In, Ag, B, Y, La, Cr, Ce, Au, in a total amount of 0.01 to 40% It has an intermetallic compound layer of Ni-Sn and / or Cu-Ni-Sn on the surface of the copper-based alloy material that contains Cu and inevitable impurities, and the Cu and Sn intermetallic compound layer on the outermost surface A copper-based alloy material. 重量%において、Ni:0.1〜15%、Sn:0.1〜10%、P:0.005〜0.5%を含有し、更にFe、Co、Zn、Ti、Mg、Zr、Ca、Si、Mn、Cd、Al、Pb、Be、Te、In、Ag、B、Y、La、Cr、Ce、Auの群から選ばれる1種または2種以上を総量で0.01〜40%含有し、残部がCuおよび不可避不純物からなる銅基合金素材の表面に、Cu−Ni−Snの金属間化合物層を有する銅基合金材。 In wt%, Ni: 0.1-15%, Sn: 0.1-10%, P: 0.005-0.5%, Fe, Co, Zn, Ti, Mg, Zr, Ca , Si, Mn, Cd, Al, Pb, Be, Te, In, Ag, B, Y, La, Cr, Ce, Au, in a total amount of 0.01 to 40% A copper-based alloy material comprising a Cu-Ni-Sn intermetallic compound layer on the surface of a copper-based alloy material that contains Cu and inevitable impurities. 引張強さが504N/mm2以上、ばね限界値が442N/mm2以上であることを特徴とする、請求項1〜6に記載の銅基合金材。 A tensile strength of 504N / mm 2 or more, and wherein the spring limit value is 442N / mm 2 or more, a copper-based alloy material according to claims 1-6.
JP2006148234A 2006-05-29 2006-05-29 Connector and charging socket using copper-based alloy material Expired - Lifetime JP4538813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006148234A JP4538813B2 (en) 2006-05-29 2006-05-29 Connector and charging socket using copper-based alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006148234A JP4538813B2 (en) 2006-05-29 2006-05-29 Connector and charging socket using copper-based alloy material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP31102093A Division JP3903326B2 (en) 1993-11-05 1993-11-05 Copper-based alloy and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2006328542A true JP2006328542A (en) 2006-12-07
JP4538813B2 JP4538813B2 (en) 2010-09-08

Family

ID=37550523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006148234A Expired - Lifetime JP4538813B2 (en) 2006-05-29 2006-05-29 Connector and charging socket using copper-based alloy material

Country Status (1)

Country Link
JP (1) JP4538813B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103740977A (en) * 2014-01-16 2014-04-23 九星控股集团有限公司 Corrosion-resistant white copper tube and manufacturing method thereof
CN103773989A (en) * 2014-03-04 2014-05-07 南京信息工程大学 Ferromagnetic-element and gadolinium-modified conductive copper material and preparation method thereof
CN103866157A (en) * 2014-03-11 2014-06-18 宁波金田铜管有限公司 High-strength corrosion-resistant micro-alloying copper pipe and manufacturing method thereof
CN105274386A (en) * 2015-10-30 2016-01-27 北京有色金属研究总院 High-performance complex multi-element phosphor bronze alloy material and preparation method thereof
CN105441712A (en) * 2015-11-02 2016-03-30 苏州金仓合金新材料有限公司 Novel high-strength titanium diboride particle-reinforced copper-based composite alloy material for nuclear energy steam pipeline
CN105970018A (en) * 2016-07-28 2016-09-28 李华清 Rosy anti-corrosion fastness copper alloy material
CN106048302A (en) * 2016-08-09 2016-10-26 苏州天兼新材料科技有限公司 Casting material for nuclear power and wind power and manufacture method thereof
CN106191510A (en) * 2016-06-30 2016-12-07 宁波兴敖达金属新材料有限公司 The calcium tellurium bronze material of lead-free free-cutting high conductivity
CN106464094A (en) * 2014-06-20 2017-02-22 株式会社村田制作所 Sliding member, rotating machine, and sliding member manufacturing method
CN106555072A (en) * 2016-11-21 2017-04-05 西北工业大学 A kind of sulfuration resistant discoloration Ag Cu Ge alloys and preparation method thereof
JPWO2015194445A1 (en) * 2014-06-20 2017-04-20 株式会社村田製作所 Rotating machine
EP3243917A4 (en) * 2015-01-07 2018-05-23 Mitsubishi Materials Corporation Superconduction stabilizer material, superconducting wire, and superconducting coil
EP3243916A4 (en) * 2015-01-07 2018-05-30 Mitsubishi Materials Corporation Superconducting wire and superconducting coil
WO2019022527A1 (en) * 2017-07-27 2019-01-31 주식회사 지.에이.엠 High-strength copper alloy exhibiting silver-white color, and high-strength copper alloy casting
CN109881040A (en) * 2019-04-18 2019-06-14 江西富鸿金属有限公司 A kind of tin plating alloy wire of bonding containing gold
CN111235426A (en) * 2020-03-23 2020-06-05 河北雄安地一新材料科技有限公司 Multi-element copper alloy, preparation method thereof and application thereof in additive manufacturing
US10971278B2 (en) 2016-04-06 2021-04-06 Mitsubishi Materials Corporation Superconducting wire and superconducting coil
CN113215436A (en) * 2021-04-14 2021-08-06 安徽绿能技术研究院有限公司 Copper-aluminum-nickel alloy material and preparation method thereof
US11149329B2 (en) 2016-04-06 2021-10-19 Mitsubishi Materials Corporation Stabilizer material for superconductor
CN114457256A (en) * 2022-02-23 2022-05-10 江西理工大学 Stress relaxation resistant high-strength high-elasticity copper alloy and preparation method thereof
CN115747563A (en) * 2022-11-23 2023-03-07 河南科技大学 Cu-15Ni-8 Sn-based alloy for ocean engineering and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111826547B (en) * 2020-07-13 2021-09-17 苏州金江铜业有限公司 Copper-nickel-tin-silver-boron alloy and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338547A (en) * 1986-08-04 1988-02-19 Furukawa Electric Co Ltd:The High strength conductive copper alloy
JPS6353872A (en) * 1986-08-22 1988-03-08 三菱電機株式会社 Contactor material
JPH04154942A (en) * 1990-10-17 1992-05-27 Dowa Mining Co Ltd Manufacture of copper base alloy for connector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338547A (en) * 1986-08-04 1988-02-19 Furukawa Electric Co Ltd:The High strength conductive copper alloy
JPS6353872A (en) * 1986-08-22 1988-03-08 三菱電機株式会社 Contactor material
JPH04154942A (en) * 1990-10-17 1992-05-27 Dowa Mining Co Ltd Manufacture of copper base alloy for connector

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103740977B (en) * 2014-01-16 2016-01-20 九星控股集团有限公司 A kind of corrosion-resistant White Copper Tubes and preparation method thereof
CN103740977A (en) * 2014-01-16 2014-04-23 九星控股集团有限公司 Corrosion-resistant white copper tube and manufacturing method thereof
CN103773989A (en) * 2014-03-04 2014-05-07 南京信息工程大学 Ferromagnetic-element and gadolinium-modified conductive copper material and preparation method thereof
CN103866157A (en) * 2014-03-11 2014-06-18 宁波金田铜管有限公司 High-strength corrosion-resistant micro-alloying copper pipe and manufacturing method thereof
JPWO2015194444A1 (en) * 2014-06-20 2017-04-20 株式会社村田製作所 Sliding member, rotating machine, manufacturing method of sliding member
US10505328B2 (en) 2014-06-20 2019-12-10 Murata Manufacturing Co., Ltd. Sliding member, rotary device, and method for manufacturing sliding member
CN106464094A (en) * 2014-06-20 2017-02-22 株式会社村田制作所 Sliding member, rotating machine, and sliding member manufacturing method
JPWO2015194445A1 (en) * 2014-06-20 2017-04-20 株式会社村田製作所 Rotating machine
US10964453B2 (en) 2015-01-07 2021-03-30 Mitsubishi Materials Corporation Superconducting stabilization material, superconducting wire, and superconducting coil
EP3243916A4 (en) * 2015-01-07 2018-05-30 Mitsubishi Materials Corporation Superconducting wire and superconducting coil
EP3243917A4 (en) * 2015-01-07 2018-05-23 Mitsubishi Materials Corporation Superconduction stabilizer material, superconducting wire, and superconducting coil
US10964454B2 (en) 2015-01-07 2021-03-30 Mitsubishi Materials Corporation Superconducting wire and superconducting coil
CN105274386A (en) * 2015-10-30 2016-01-27 北京有色金属研究总院 High-performance complex multi-element phosphor bronze alloy material and preparation method thereof
CN105441712B (en) * 2015-11-02 2017-06-16 苏州金仓合金新材料有限公司 A kind of Nuclear steam pipeline titanium diboride particle enhanced copper-based composite alloy new material of high intensity
CN105441712A (en) * 2015-11-02 2016-03-30 苏州金仓合金新材料有限公司 Novel high-strength titanium diboride particle-reinforced copper-based composite alloy material for nuclear energy steam pipeline
US10971278B2 (en) 2016-04-06 2021-04-06 Mitsubishi Materials Corporation Superconducting wire and superconducting coil
US11149329B2 (en) 2016-04-06 2021-10-19 Mitsubishi Materials Corporation Stabilizer material for superconductor
CN106191510A (en) * 2016-06-30 2016-12-07 宁波兴敖达金属新材料有限公司 The calcium tellurium bronze material of lead-free free-cutting high conductivity
CN105970018B (en) * 2016-07-28 2018-08-03 李华清 A kind of anti-corrosion fastness Cu alloy material of rosiness
CN105970018A (en) * 2016-07-28 2016-09-28 李华清 Rosy anti-corrosion fastness copper alloy material
CN106048302A (en) * 2016-08-09 2016-10-26 苏州天兼新材料科技有限公司 Casting material for nuclear power and wind power and manufacture method thereof
CN106555072A (en) * 2016-11-21 2017-04-05 西北工业大学 A kind of sulfuration resistant discoloration Ag Cu Ge alloys and preparation method thereof
WO2019022527A1 (en) * 2017-07-27 2019-01-31 주식회사 지.에이.엠 High-strength copper alloy exhibiting silver-white color, and high-strength copper alloy casting
CN109881040A (en) * 2019-04-18 2019-06-14 江西富鸿金属有限公司 A kind of tin plating alloy wire of bonding containing gold
CN111235426A (en) * 2020-03-23 2020-06-05 河北雄安地一新材料科技有限公司 Multi-element copper alloy, preparation method thereof and application thereof in additive manufacturing
CN111235426B (en) * 2020-03-23 2021-12-14 河北励恩新材料科技有限公司 Multi-element copper alloy, preparation method thereof and application thereof in additive manufacturing
CN113215436A (en) * 2021-04-14 2021-08-06 安徽绿能技术研究院有限公司 Copper-aluminum-nickel alloy material and preparation method thereof
CN114457256A (en) * 2022-02-23 2022-05-10 江西理工大学 Stress relaxation resistant high-strength high-elasticity copper alloy and preparation method thereof
CN114457256B (en) * 2022-02-23 2022-09-27 江西理工大学 Stress relaxation resistant high-strength high-elasticity copper alloy and preparation method thereof
CN115747563A (en) * 2022-11-23 2023-03-07 河南科技大学 Cu-15Ni-8 Sn-based alloy for ocean engineering and preparation method thereof
WO2023061514A1 (en) * 2022-11-23 2023-04-20 河南科技大学 Cu-15ni-8sn-based alloy for ocean engineering, and preparation method therefor
CN115747563B (en) * 2022-11-23 2023-12-19 河南科技大学 Cu-15Ni-8 Sn-based alloy for ocean engineering and preparation method thereof

Also Published As

Publication number Publication date
JP4538813B2 (en) 2010-09-08

Similar Documents

Publication Publication Date Title
JP4538813B2 (en) Connector and charging socket using copper-based alloy material
JP3408929B2 (en) Copper-based alloy and method for producing the same
US5849424A (en) Hard coated copper alloys, process for production thereof and connector terminals made therefrom
JP3880877B2 (en) Plated copper or copper alloy and method for producing the same
JP4814552B2 (en) Surface treatment method
JP4090302B2 (en) Conductive material plate for forming connecting parts
JP4218042B2 (en) Method for producing copper or copper base alloy
JP3465876B2 (en) Wear-resistant copper or copper-based alloy, method for producing the same, and electric component comprising the wear-resistant copper or copper-based alloy
JP2001526734A (en) Tin coated electrical connector
CN1940137A (en) Heat resistant film, its manufacturing method, and electrical and electronic parts
JP6380174B2 (en) Silver plated copper terminal material and terminal
CN1455829A (en) Metal-plated material and method for preparation, and electric and electronic parts using same
US20090176125A1 (en) Sn-Plated Cu-Ni-Si Alloy Strip
JP3903326B2 (en) Copper-based alloy and its manufacturing method
JP4397245B2 (en) Tin-plated copper alloy material for electric and electronic parts and method for producing the same
JP4090483B2 (en) Conductive connection parts
JP4186095B2 (en) Copper alloy for connector and its manufacturing method
JP2005251762A (en) Tin coated electrical connector
JP5436391B2 (en) Film and electrical / electronic parts
JP2009013499A (en) Copper alloy for connector
CN107849721B (en) Plating material having excellent heat resistance and method for producing same
JP7281971B2 (en) Electrical contact material and its manufacturing method, connector terminal, connector and electronic component
JP7281970B2 (en) Electrical contact material and its manufacturing method, connector terminal, connector and electronic component
JP5761400B1 (en) Wire for connector pin, method for manufacturing the same, and connector
JP4570948B2 (en) Sn-plated strip of Cu-Zn alloy with reduced whisker generation and method for producing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Effective date: 20090810

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20100608

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100610

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20130702

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term