JP4090302B2 - Conductive material plate for forming connecting parts - Google Patents

Conductive material plate for forming connecting parts Download PDF

Info

Publication number
JP4090302B2
JP4090302B2 JP2002219155A JP2002219155A JP4090302B2 JP 4090302 B2 JP4090302 B2 JP 4090302B2 JP 2002219155 A JP2002219155 A JP 2002219155A JP 2002219155 A JP2002219155 A JP 2002219155A JP 4090302 B2 JP4090302 B2 JP 4090302B2
Authority
JP
Japan
Prior art keywords
layer
plating
thickness
alloy
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2002219155A
Other languages
Japanese (ja)
Other versions
JP2004068026A (en
Inventor
利久 原
良一 尾▼崎▲
雅弘 川口
康弘 真谷
昌康 西村
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001232611 priority Critical
Priority to JP2002020526 priority
Priority to JP2002171059 priority
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to JP2002219155A priority patent/JP4090302B2/en
Publication of JP2004068026A publication Critical patent/JP2004068026A/en
Application granted granted Critical
Publication of JP4090302B2 publication Critical patent/JP4090302B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、主として自動車・民生に使用される端子、コネクタ及びジャンクションブロック等の接続部品成形加工用導電材料に関する。
【0002】
【従来の技術】
自動車等の電線の接続に用いられるコネクタには、銅合金にSnめっきを施したオス端子とメス端子の組み合せからなる嵌合型端子が使用されている。嵌合型端子が複数個集合したコネクタを多極端子コネクタという。
自動車の電装化が進むなかで、このようなコネクタの極数、すなわち、一つのコネクタの中の端子の数は増加している。端子数が増加すると挿入力が大きくなり、実装に道具が必要になったり、人が挿入する場合でも大きな力を必要とするようになり、その組み立て作業の効率を低下させる原因になる。このため、極数が増加しても、挿入力が従来よりも大きくならないように、低挿入力の端子が要求されている。
【0003】
Snめっき端子は、Snめっきを薄くすることにより挿入力が低下する。しかし、自動車室内の省スペース化の要求からコネクターの設置個所は室内からエンジンルーム内への移行が進展し、エンジンルームでの雰囲気温度は最大150℃程度に到達する。そのため、Snめっきを薄くするとCu又はCu合金母材からCu及び合金元素が拡散し、あるいはNi等の下地めっきが拡散してSnめっき表層に酸化物を形成し、端子の接触抵抗が増加する問題が顕在化する。接触抵抗が増加すると、電子制御機器の誤作動が懸念される。従って、現実にはSnめっき厚さを薄くし、かつ電気的信頼性を維持することは大変困難である。
また、排ガスとして亜硫酸ガスが発生する工業地帯等において長時間運転又は放置する場合、その亜硫酸ガスにより表面めっき層が腐食し、さらに腐食が銅合金母材にまで達して嵌合型端子としての信頼性が失われる。
【0004】
一方、同じくSnめっきを施した銅合金材料が、自動車等の駆動用及び信号用の電源分配装置(ジャンクションブロック:JB)内に、導電材料として使用されている。JBの構造はその銅合金材料と樹脂とが積層した構造であり、これにより、複雑な制御回路を形成することが可能となっている。
自動車の電装化及び小型化に伴い、リフロー処理(リフローソルダリング)により電子部品を表面実装した基板をJB内に搭載する技術が進展してきた。その際、その基板と内部回路であるSnめっき銅合金材料を接着するために100℃程度の熱処理、さらに、基板に電子部品を実装するためのリフローソルダリングと、従来工程にない熱影響の負荷を伴う組立て工程へと変化している。そのため、これらの加熱処理を受けた後もはんだ濡れ性確保ができるSnめっき銅合金材料が要求されている。
また、このJBについても自動車室内の省スペース化の要求から設置個所は室内からエンジンルーム内への移行が進展し、そのため、先にコネクタに関して述べたと同様、接触抵抗の増加とそれに伴う電子制御機器の誤作動の問題が懸念され、亜硫酸ガスによる表面めっき層の腐食の問題もある。
【0005】
【発明が解決しようとする課題】
特開平6−196349号公報には、リードフレームの耐熱性を向上させるため、洋白からなる母材の表面にNiめっき層、Sn及びCuの合金層、さらにSnめっき層からなる表面多層めっき層を形成したリードフレーム材が提案されている。しかし、前記公報の開示に従いCu合金母材にこのタイプの表面多層めっき層を形成し、当該Cu合金材を用いて嵌合型端子を製造したとき、挿入力が高いとか、きびしい曲げ加工を行うと割れが発生するという問題が出てくる。また、リフロー処理後に接触抵抗が高くなるという問題もある。
一方、はんだ濡れ性を向上させるには、Snめっき厚さを例えば従来より厚い2μmを超える厚さとすることが有効と考えられるが、それだけではリフローソルダリング後又は実車での高温長時間経過後における電気的信頼性(低接触抵抗)を維持できず、またリフロー処理(Snめっき材料製造時のリフロー処理)後のSnめっきにピットが発生するという問題が出てくる。
【0006】
本発明は上記問題点に鑑み、Cu又はCu合金からなる母材表面に表面多層めっき層を形成した材料について、高温雰囲気下で長時間経過後も電気的信頼性(低接触抵抗)を維持することができ、亜硫酸ガス耐食性に優れ、厳しい加工で割れが発生しない接続部品成形加工用導電材料を提供することを目的とする。同時に、特に多極の嵌合型端子用としては挿入力が低く、JBのような非嵌合型接続部品用としてはリフローソルダリング等の加熱処理を受けた後でもはんだ濡れ性が確保され、かつピットの発生がない、接続部品成形加工用導電材料を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明に係る接続部品成形加工用導電材料の1つは、Cu又はCu合金からなる母材表面に、Ni層及びCu−Sn合金層からなる表面めっき層がこの順に形成され、かつ前記Ni層の厚さが0.1〜1.0μm、前記Cu−Sn合金層の厚さが0.1〜1.0μm、そのCu濃度が35〜75at%(原子%)であることを特徴とする。この接続部品成形加工用導電材料は、嵌合型端子用材料として特に適するものである。
この導電材料において、前記表面めっき層は望ましくはCu−Sn合金層の上にさらに厚さ0.5μm以下のSn層を有し、そのSn層は0.001〜0.1質量%のカーボンを含有することが望ましい。この導電材料は表面光沢が60%以上であることが望ましい。
【0009】
さらに、本発明に係る接続部品成形加工用導電材料板の1つは、Cu又はCu合金からなる母材表面に、Ni層、Cu−Sn合金層及びSn層からなる表面めっき層がこの順に形成され、かつ前記Ni層の厚さが0.1〜1.0μm、前記Cu−Sn合金層の厚さが0.1〜1.0μm、そのCu濃度が35〜75at%、前記Sn層の厚さが0.5μmを超え2μm以下であることを特徴とする。この接続部品成形加工用導電材料板は、JB等の非嵌合型端子用材料として特に適するものである。
この導電材料板において、Sn層は0.001〜0.1質量%のカーボンを含有することが望ましい。
なお、本発明において、Cu−Sn合金層のCu濃度は、本願明細書の段落0033に記載した測定方法により測定した濃度を意味する。
【0010】
【発明の実施の形態】
上記接続部品用導電材料の表面めっき層のうちNi層は、亜硫酸ガス耐食性の向上のため施される。このNi層は厚さが0.1μm未満ではめっき層中のピット欠陥を基点として母材の主成分のCuと亜硫酸ガスとが反応し、母材腐食が進行するため、実用上使用できない。また、母材のCu及び合金成分がCu−Sn合金層に拡散してその表層に酸化物を形成し、さらにSn層が形成されている場合はSn層の表層まで拡散して酸化物を形成し、接触抵抗が高くなる。一方、1.0μmを超えると曲げ加工で割れが発生するなど、端子への成形加工性が低下する。従って、Ni層は厚さ0.1〜1.0μmとする。好ましくは0.1〜0.5μmである。
【0011】
表面めっき層のうちCu−Sn合金層は、Ni層からCu−Sn合金層表層、さらにSn層が形成されている場合はSn層へのNiの拡散を防止する。このCu−Sn合金層は厚さが0.1μm未満では上記拡散防止効果が不十分であり、NiがCu−Sn合金層又はSn層の表層まで拡散して酸化物を形成し、接触抵抗が高くなり電気的信頼性が低下する。一方、1.0μmを超えると曲げ加工で割れが発生するなど、端子への成形加工性が低下する。従って、Cu−Sn合金層は厚さ0.1〜1.0μmとする。好ましくは0.1〜0.5μmである。
また、Cu−Sn合金層において、Cu濃度が35at%未満ではNiの拡散防止効果が不十分であり、75at%を超えると当該合金層の硬さが増加し、さらにSn層が形成されている場合はCuがその表層へも拡散して、皮膜硬さが増加するため、曲げ加工性が低下する。従って、Cu−Sn合金層のCu濃度は35〜75at%とするのが望ましい。好ましくは45〜65%である。
【0012】
表面めっき層のうちSn層は後述する製造方法において、Cu−Sn合金層の形成後も表面めっき層の最上層として残留するものであり、その厚さによって具体的用途が嵌合型端子用導電材料と非嵌合型接続部品用導電材料に分けられる。
嵌合型端子用の場合、Sn層は端子に一般耐食性を与えるもので、Sn層が厚くなると動摩擦係数が高くなり、多極端子において挿入力が大きくなるので、Sn層の厚さは0.5μm以下に規制する。耐食性を与えるためにはSn層は0.1μm以上であることが望ましい。しかし、Sn層の厚さは0μmでも(つまりSn層がなくても)、嵌合型端子用導電材料として使用できる。
一方、非嵌合型接続部品用の場合、表面めっき層のうちSn層は、端子の接触抵抗を低く維持して電気的信頼性を高め、かつはんだ濡れ性を与える。しかし、Sn層が2μm以上になると、リフロー処理後の表面にピットが発生しやすく、耐食性が低下する。また、Snめっき厚さが0.5μm以下になると、はんだ濡れ性が低下する。よって、Sn層の厚さは0.5μmを超え2μm以下に規制する。好ましくは、1.0〜2.0μmである。
【0013】
いずれの場合も、Sn層中のカーボン量は、望ましくは0.001〜0.1質量%に規制するが、これは主として製造上の理由からである。すなわち、0.001質量%未満では、Snめっきの均一電着性(厚みのムラがないこと)が低下し、リフロー処理後もその影響で外観が低下する。一方、0.1質量%を越えるようであると、リフロー処理後のSn層表面にカーボンの一部が浮遊、析出し、接触抵抗が増加する。なお、Sn層中のカーボン量は、主としてめっき液中の光沢剤、添加剤の量及びめっき電流密度で調整する。
【0014】
本発明に係る導電材料を嵌合型端子用導電材料として用いる場合、上記表面めっき層構成とすることにより、実施例に示すように、動摩擦係数0.45以下、接触抵抗100mΩ以下、及び優れた曲げ加工性を実現することができる。
一方、非嵌合型接続部品用導電材料として用いる場合、上記表面めっき層構成とすることにより、実施例に示すように、はんだ濡れ時間1.5秒以下、高温放置後の接触抵抗100mΩ以下、及び優れた曲げ加工性を実現することができる。
【0015】
本発明に係る導電材料の上記表面めっき層構成は、いずれも、Cu又はCu合金母材にNiめっき層、Cuめっき層、さらにSnめっき層をこの順に形成した後、加熱、拡散させてCu−Sn合金層を形成することで得ることができる。このCu−Sn合金層は金属間化合物であり、全部又は大部分がη相、一部にε相が入ることがある。加熱、拡散によりCuめっき層をすべてCu−Sn合金層とし、表層部には適宜Snめっき層を残留させ、表面めっき層を厚さ0.1〜1.0μmのNiめっき層、厚さ0.1〜1.0μmのCu−Sn合金層、及び厚さ0〜0.5μm又は厚さ0.5超〜2μmのSn層とする。このとき、Cuめっき層が残留すると、高温放置後のNi層とCu−Sn合金層との界面において、めっき剥離が発生するため、Cuめっき層は消滅させることが望ましい。
【0016】
より具体的な製造方法を示すと、嵌合型端子用導電材料(熱処理後の表面めっき層のSn層厚さが0.5μm以下)の場合、Cu又はCu合金母材表面に厚さ0.1〜1.0μmのNiめっき層、厚さ0.1〜0.45μmのCuめっき層及び0.001〜0.1質量%のカーボンを含有する厚さ0.4〜1.1μmのSnめっき層をこの順に形成した後、加熱、拡散の熱処理を行うことで製造することができる。熱処理は、230〜300℃の温度で3〜30秒間加熱するリフロー処理が望ましい。
上記製造方法において、Cuめっき層の厚さが0.1μm未満では、加熱後に形成されるCu−Sn合金層が薄いため、下地NiめっきのNiがSn相へ拡散するのを十分抑制できない。一方、Cuめっき層の厚さが0.45μmを越えると、加熱後に形成されるCu−Sn合金層が厚くなり過ぎる。あるいは、Cu−Sn合金層の直下部にCuめっき層が残存して、耐食性が低下したり、高温放置後にめっき剥離を生じたりする。従って、Cuめっき層の厚さは0.1〜0.45μmとし、望ましくは0.1〜0.3μm、品質安定化の観点から、より好ましくは0.1〜0.25μmとする。
【0017】
また、上記製造方法において、Snめっき層の厚さが0.4μm未満の場合、熱処理後の表面が梨地状の不均一な表面形態となる。一方、Snめっき層の厚さが1.1μmを越えると、Cuめっき層の厚さにもよるが加熱後も厚いSn層が残存し摩擦係数低減効果が低下する。従って、Snめっき層の厚さは0.4〜1.1μm、望ましくは0.4〜0.8μmとする。
好ましくは、Cuめっき層の厚さとSnめっき層の厚さの比が0.15≦Cu/Sn≦0.41である。この比が0.15未満では、熱処理により形成されるCu−Sn合金層の成長が不十分で、下地Niが表面へ拡散するのを抑制する効果が少なく高温放置後の接触抵抗が高くなり、あるいはSn層が過剰に残存し摩擦係数が高くなる。一方、この比が0.41を越えると、熱処理により形成されるCu−Sn合金層が表面近くまで成長して、残存するSn層の厚みが0.1μmに達せず耐食性が低下し、また表面に凹凸が発生して外観(表面光沢)が悪く、接触抵抗も悪くなる。
なお、この比を0.41以下に規制することで熱処理後の表面に凹凸が発生するのが抑制され、表面光沢を60%以上とすることができる。本発明の製造方法ではSnめっき層の厚さを0.4〜1.1μm(望ましくは0.4〜0.8μm)と薄く規制したこともあり、Cu/Sn比を上記範囲内に規制しないと、熱処理後に所定のCu−Sn合金層厚さ及びSn層厚さを得ることができず、また、外観、耐食性、接触抵抗などに優れた端子材料を得ることができない。
【0018】
一方、非嵌合型接続部品用導電材料(熱処理後の表面めっき層のSn層厚さが0.5μm超〜2μm)の場合、Cu又はCu合金母材表面に厚さ0.1〜1.0μmのNiめっき層、厚さ0.1〜0.45μmのCuめっき層及び0.001〜0.1質量%のカーボンを含有する厚さ1.1〜2.5μmのSnめっき層をこの順に形成した後、加熱、拡散の熱処理を行うことで製造することができる。
【0019】
上記製造方法において、熱処理としてリフロー処理を行う。このリフロー処理を行うことにより、Cu−Sn合金層が形成され、また、めっき粒子が大きくなり、めっき応力が低下し、ウイスカが発生しなくなる。その加熱条件は、230〜300℃×3〜30秒間とする。加熱温度が230℃未満ではSnが溶融しない。一方、Cu−Sn合金層を均一に成長させるためには、300℃以下のできるだけ少ない熱量で行うことが望ましい。加熱時間が3秒未満では熱伝達が不均一となりリフロー後の外観ムラが発生し、30秒を越えると表面のSn層の酸化が進行するため、接触抵抗が増加する。
【0020】
上記製造方法において、Cu又はCu合金母材表面に形成するNiめっき層、Cuめっき層及びSnめっき層は、いずれも電気めっきで形成するのが望ましい。無電解めっきで行う方法もあるが、無電解めっきでは還元剤がめっき皮膜中に取り込まれ、高温放置後にボイドを発生する。
電気めっきの望ましい条件として、Niめっきはワット浴やスルファミン酸浴を用い、Niめっき温度40〜55℃、電流密度3〜20A/dmで行う。Niめっきで重要なのは電流密度であり、3A/dm未満では均一電着性と生産性が悪く、20A/dmを越えるとNiめっき粒が荒れてくる(粗大化する)。
【0021】
Cuめっきのめっき浴としては、通常はシアン浴が用いられるが、Snめっき液へのシアン混入による液劣化や排水処理の問題があるため、硫酸銅浴が望ましい。一方、硫酸銅浴は均一な厚みのめっきを行うことが難しく(均一電着性が悪い)、通常光沢剤が添加されている。しかし、Cuめっきの上にSnめっきを施し、さらに熱処理する場合、高温放置後にボイドが増加する問題があるため、めっき浴に光沢剤の添加は避けることが望ましい。
本発明では、表面めっき層のCuめっき厚さが薄くかつめっき厚範囲が狭いため、均一にめっきすることが不可欠である。Cuめっきの厚さが不均一(後述するようにCuめっき粒が荒れるのが主原因)であると、熱処理後のCu−Sn合金層の成長が不均一となり、表面光沢が低下するとともに特性が低下するからである。特に嵌合型端子用の場合はSnめっき厚さも薄くかつめっき厚範囲が狭いため、その傾向が顕著となる。
【0022】
そこで、本発明者らは、光沢剤を含まない硫酸銅浴を用い、均一なCuめっきを行う方法について検討した結果、めっき条件によりCuめっき粒径を制御でき、さらには均一なCuめっきを行うことができることを見いだした。その条件は、本発明のようにNiめっきの上にCuめっきを行う場合、めっき温度30〜40℃、電流密度2.5〜10A/dmである。
めっき温度が40℃を越えるとCuめっき粒が荒れ(粗大化し)、結果的に均一な厚みのCuめっきができない(本発明ではCuめっき厚さが非常に薄く規定されているので、Cuめっき粒が荒れると均一な厚みにならない)。しかし、めっき温度が30℃未満となると、Cuめっき粒は荒れないが、やはり均一電着性が悪くなる。また、電流密度が2.5A/dm未満又は10A/dmを越えるとCuめっき粒が荒れ、結果的に均一な厚みのCuめっきができない。
【0023】
最上層の電気Snめっきは、例えば硫酸錫浴を用い、めっき温度25℃以下、電流密度2〜10A/dmで行えばよい。
【0024】
なお、これまで、本発明に係る導電材料の製造方法に関し、Cu又はCu合金母材にNiめっき層、Cuめっき層、さらにSnめっき層をこの順に形成した後、加熱、拡散させてCu−Sn合金層を形成する方法を説明したが、前記表面めっき層構成は、Niめっき層の上にCu−Sn合金めっき層を施し、その上に必要に応じてSnめっき層を形成することでも得ることができる。
【0025】
【実施例】
(実施例1)
<供試材の作成条件>
銅合金母材としてC2600、厚さ0.30mmの板材を用い、Niめっき、Cuめっき及びSnめっきをそれぞれ所定厚さで施した。Niめっき、Cuめっき及びSnめっきのめっき浴及びめっき条件を表1〜表3に、各めっき層の厚さを表4に示す(No.1〜15)。
なお、各めっき層の厚さは下記要領で測定した。
[Sn及びNiめっき層厚さ測定]
蛍光X線膜厚計(セイコー電子工業株式会社;型式SFT156A)を用いて測定した。
[Cuめっき層厚さ測定]
ミクロトーム法にて加工した板材の断面をSEM観察し、画像解析処理により平均厚さとして算出した。
【0026】
【表1】
【0027】
【表2】
【0028】
【表3】
【0029】
【表4】
【0030】
続いて、この板材に対し、表4に示す熱処理条件でリフロー処理を行い、表5に示す表面めっき構成を有する供試材を得た。各供試材について、各めっき層厚さ及びCu−Sn合金層中のCu含有量(at%)、Sn層中のカーボン含有量(質量%)を下記要領で測定した。また、各供試材について、外観評価、動摩擦係数及び高温放置後の接触抵抗の測定試験、亜硫酸ガス試験並びに曲げ加工性試験を下記要領で行った。その結果を表5に示す。
【0031】
【表5】
【0032】
[Sn層厚さ測定]
まず、蛍光X線膜厚計(セイコー電子工業株式会社;型式SFT156A)を用いてSnめっき厚さを測定する。その後、p−ニトロフェノール及び苛性ソーダを成分とする剥離液に10分間浸漬し、Sn層を剥離後、再度、蛍光X線膜厚計で、Cu−Sn合金層中のSn量を測定する。このようにして求めたSnめっき厚さからCu−Sn合金層中のSn量を差引くことにより、Sn層厚さを算出した。
[Cu−Sn合金層厚さ測定]
Cu−Sn合金層厚さは、上記の剥離液に供試材を浸漬しSn層を剥離した後、蛍光X線膜厚計を用いて測定した。
[Ni厚さ測定]
Ni層厚さは、直接、蛍光X線膜厚計を用いて測定した。
【0033】
[Cu−Sn合金層中のCu含有量測定]
Cu−Sn合金層中のCu含有量(at%)は、下記の要領で行った。まず、p−ニトロフェノール及び苛性ソーダを成分とする剥離液に10分間浸漬し、最表面のSn層を除去する。その後、試料表面の酸化及び汚れ等の付着物の影響をなくすため深さ300Aの地点までアルゴンエッチングし、Cu−Sn合金層中のCu含有量をESCA−LAB210D(VG社製)で測定した。
[Sn層中のカーボン含有量測定]
リフロー後の供試材及びそれらの最表面の純Sn層のみを5%硝酸で溶解した供試材を用意し、それぞれを酸素気流中で高温で燃焼させ、発生した二酸化炭素及び一酸化炭素量を赤外線吸収量により求め、両者の差からSn層中に存在するカーボンの質量%を求めた。なお、Sn層厚が0と算出されたものでも、部分的にはわずかにSn層が残っているところがあり、それで測定できる。リフロー処理後のSn層中のカーボン量は、リフロー処理前のSnめっき層中のカーボン含有量と同じとみてよい。
【0034】
[動摩擦係数測定]
嵌合型端子の接点部の形状を模擬し、図1に示すように、供試材から切り出した板状のオス試験片1を水平な台2に固定し、その上に供試材を内径1.5mmで半球加工したメス試験片3を置いてめっき面同士を接触させ、メス試験片3に3.0N(310gf)の荷重(錘4)をかけてオス試験片1を押さえ、横型荷重測定器(アイコーエンジニアリング株式会社製Model−2152)を用いて、オス試験片1を水平方向に引っ張り(摺動速度を80mm/min)、摺動距離5mmまでの最大摩擦力Fを測定した。摩擦係数を下記式(1)により求めた。なお、5はロードセル、矢印は摺動方向である。
摩擦係数=F/P・・・・(1)
【0035】
[高温放置後の接触抵抗測定]
供試材に対し大気中にて160℃×120hrの熱処理を行った後、接触抵抗を四端子法により、解放電圧20mV、電流10mA、無摺動の条件にて測定した。
[曲げ加工性]
試験片を圧延方向が長手となるように切出し、JISH3110に規定されるW曲げ試験治具を用い、圧延方向に対して直角方向となるように9.8×10Nの荷重で曲げ加工を施した。その後、ミクロトーム法にて、断面を切出し観察を行った。曲げ加工性評価は、試験後の曲げ加工部に発生したクラックが銅合金母材へ伝播しないレベルを○と評価し、銅合金母材へ伝播し銅合金母材にクラックが発生するレベルを×と評価した。
【0036】
[亜硫酸ガス耐食性]
亜硫酸ガス試験は25ppm、35℃、75%RH、96hrの条件で行った。供試材は、実用環境下を想定し、すべて160℃・120hr高温放置した材料を用いた。耐食性評価基準は、試験後の断面を観察し、母材の腐食が認められないレベルを○とし、深さ1μm以上の母材腐食が観察されたレベルを×と評価した。
[外観評価]
リフロー処理後の表面の鏡面反射率を測定し、表面光沢が60%以上のレベルと○とし、60%より低いレベルを×と評価した。
【0037】
表5に示すように、No.1〜8は、いずれも動摩擦係数が0.45以下、高温放置後の接触抵抗が100mΩ以下、かつ曲げ加工性、亜硫酸ガス耐食性に優れている。ただし、No.7は表面のSn層が消滅し、リフロー後の外観が劣っていた。
一方、Ni層の厚さが規定値未満のNo.9は亜硫酸ガス耐食性が劣り、Ni層の厚さが規定値を超えるNo.10は曲げ加工性に劣り、Cu−Sn合金層の厚さが規定値未満のNo.11は接触抵抗が高く、Cu−Sn合金層の厚さが規定値を超えるNo.12は曲げ加工性に劣り、Cu−Sn合金層のCu含有量が規定値未満のNo.13は接触抵抗が高く、Cu−Sn合金層のCu含有量が規定値を超えるNo.14は曲げ加工性に劣り、Sn層の厚さが規定値を超えるNo.15は動摩擦係数が高い。
【0038】
(実施例2)
実施例1と同様に、銅合金母材としてC2600、厚さ0.30mmの板材を用い、その表面にNiめっき層、Cuめっき層及びSnめっき層をそれぞれ所定厚さで施した。Niめっきは表1の条件で、Cuめっきは表6の条件で、Snめっきは表3の条件(ただし、光沢剤の添加量を0〜10g/lの範囲内で変化させた)で行った。各めっき層の厚さ及びCu/Snめっき層厚比を表7に示す(No.16〜39)。各めっき層の厚さは実施例1と同じ要領で測定した。
【0039】
【表6】
【0040】
【表7】
【0041】
続いて、この板材に対し、表7に示す熱処理条件でリフロー処理を行い、表8に示す表面めっき構成を有する供試材を得た。各供試材について、各めっき層厚さを下記要領で測定し、さらにCu−Sn合金層中のCu含有量(at%)、Sn層中のカーボン含有量(質量%)を実施例1と同じ要領で測定した。また、各供試材について、外観評価、動摩擦係数及び高温放置後の接触抵抗の測定試験、亜硫酸ガス試験並びに曲げ加工性試験を実施例1と同じ要領で行った。その結果を表8に示す。
[Ni層、Cu−Sn合金層、Sn層の厚さ測定]
ミクロトーム法にて加工した板材の断面をSEM観察し、画像解析処理により平均厚さとして算出した。
【0042】
【表8】
【0043】
表7、8に示すように、リフロー処理前の表面めっき層構成が本発明の規定範囲内にあるNo.16〜27は、リフロー処理後に本発明の規定範囲内(Ni層厚;0.1〜1.0μm、Cu−Sn合金層厚;0.1〜1.0μm、Sn層厚;0.5μm以下)の表面めっき層構成が得られ、いずれも動摩擦係数が0.45以下、高温放置後の接触抵抗が100mΩ以下、かつ曲げ加工性、亜硫酸ガス耐食性、リフロー後の外観に優れている。
【0044】
一方、Niめっき層の厚さが規定値未満のNo.28は亜硫酸ガス耐食性が劣り、Ni層の厚さが規定値を超えるNo.29は曲げ加工性に劣る。Cuめっき層の厚さが規定未満のNo.30はリフロー処理により形成されたCu−Sn合金層が薄く、接触抵抗が高く、Cuめっき層の厚さが規定値を越えるNo.31はリフロー処理後の外観が悪い。また、高温放置後にめっき剥離が発生しているが、これはCu−Sn合金層の直下部にCuめっき層が部分的に残存したためと思われる。Snめっき層の厚さが規定値未満、かつCu/Sn合金層中のCu含有量が高いNo.32は、リフロー処理により形成されたCu−Sn合金層が表面にまで成長しかつ表面にCu濃縮層ができて接触抵抗が高く、表面光沢も低下して外観が悪く、Snめっき層の厚さが規定値を越えるNo.33は、リフロー処理後もSn層が厚く残り、動摩擦係数が高い。Sn層中のカーボン量が規定値未満のNo.34はリフロー処理後の外観が不良であり、Sn層中のカーボン量が規定を越えるNo.35は接触抵抗が高い。リフロー熱処理条件(温度、時間)が規定を外れるNo.36〜39のうち、低温又は短時間でリフロー処理が適切でないNo.36、38は、リフロー処理後の外観が不良であり、またCuめっき層が残留しているものと考えられ、過度に高温又は長時間のリフロー処理を行ったNo.37、39は外観が不良であるほか、Niの拡散が起こり接触抵抗が高い。
【0045】
(実施例3)
実施例2と同じ板材を用い、その表面にNiめっき層、Cuめっき層及びSnめっき層をそれぞれ0.3μm、0.15μm、0.5μmの厚さで施した。めっき条件は、基本的に実施例2と同じであるが、表8に示すように、Niめっきでは電流密度、Cuめっきではめっき温度と電流密度を種々変えてめっきを行った。その板材(No.40〜50)について下記要領でめっき均一電着性の観察を行った。その結果を表9に示す。
[めっき均一電着性]
リフロー処理前のめっき表面及びめっき断面をSEMで観察し、Cuめっき粒の平均直径が0.25μm以下のレベルと○とし、0.25μmを越えるレベルを×と評価した。なお、Cuめっき厚さが薄いため、めっき粒の大きさとめっき厚みの間には相関関係があり、めっき粒が細かいとめっき厚さが均一で、めっき粒が荒いとめっき厚さが不均一になっている。
【0046】
上記板材に対し、熱処理条件280℃×10秒間でリフロー処理を行い、供試材(No.40〜50)を得た。
【0047】
【表9】
【0048】
表9に示すように、めっき条件が本発明の規定範囲内にあるNo.40〜44は、いずれもめっき粒が小さく、均一にめっきされていた。そのため、リフロー処理によるCu−Sn合金層の成長にムラがなく、リフロー処理後の表面めっき構成はいずれもNi層厚さが0.3μm、Cu−Sn合金層厚さが0.3μm、Sn層厚さが0.2μmであり、動摩擦係数が0.45以下、高温放置後の接触抵抗が100mΩ以下、亜硫酸ガス耐食性にも優れていた。
一方、Niめっきの電流密度が規定値未満のNo.45は、素材の影響を大きく受けてNiめっきが不均一になりそれに伴いCuめっきも均一電着性が悪く、接触抵抗が高くなり、Niめっきの電流密度が規定値を越えるNo.46ではNiめっき粒の荒れが発生し、それによりCuめっき粒も荒れ、接触抵抗が高くなった。Cuめっき温度が規定値未満のNo.47、Cuめっき温度が規定値を越えるNo.48、Cuめっき電流密度が規定値未満のNo.49、及びCuめっき電流密度が規定値を越えるNo.50は、Cuめっき粒が粗大化し、Cuめっき層厚さが均一でないため、リフロー処理によるCu−Sn合金層の成長もばらつき、接触抵抗が高くなった。
なお、Cuめっき粒の直径が0.25μmを越えるレベルのものをリフロー処理し、断面を観察すると、Cu−Sn合金層が表面に達し、Cu−Sn合金層の異常形態が確認できる。
【0049】
(実施例4)
実施例1と同様に、銅合金母材としてC2600、厚さ0.30mmの板材を用い、Niめっき層、Cuめっき層及びSnめっき層をそれぞれ所定厚さで施した。Niめっき、Cuめっき及びSnめっきはそれぞれ表1〜3の条件で行った。各めっき層の厚さ及びCu/Snめっき層比を表10に示す(No.51〜66)。各めっき層の厚さは実施例1と同じ要領で測定した。
【0050】
【表10】
【0051】
続いて、この板材に対し、表10に示す熱処理条件でリフロー処理を行い、表11に示す表面めっき構成を有する供試材を得た。各供試材について、各めっき層厚さ及びCu−Sn合金層中のCu含有量(at%)、Sn層中のカーボン含有量(質量%)を実施例1と同じ要領で測定した。また、各供試材について、外観評価及び加熱後のはんだ濡れ性評価試験を下記要領で行い、さらに、高温放置後の接触抵抗の測定試験、亜硫酸ガス試験並びに曲げ加工性試験を実施例1と同じ要領で行った。その結果を表11に示す。
【0052】
[外観評価]
リフロー処理後の供試材の外観を観察してピット生成の有無を検査し、ピットが生成していないものを○、生成しているものを×と評価した。なお、あわせて実施例1と同様に鏡面反射率を測定したが、○と評価されたものは全て鏡面反射率が60%以上、×と評価されたものは鏡面反射率が60%未満であった。
[はんだ濡れ性評価]
電子部品実装のためのリフローソルダリングを想定し、250℃・5分大気中で加熱する。その後、供試材を圧延方向直角が長手となるように10mm×30mmに切り出した後、非活性フラックス(α−100:株式会社日本アルファメタルズ)を1秒間浸漬塗布する。この供試材のはんだ濡れ性評価としてソルダーチェッカー(SAT−5100型)により、はんだ濡れ時間を求めた。
【0053】
【表11】
【0054】
表11に示すように、No.51〜58は、いずれもリフロー後のSnめっき層の外観が優れ、はんだ濡れ時間が1.5秒以下、高温放置後の接触抵抗が100mΩ以下、かつ曲げ加工性、亜硫酸ガス耐食性に優れている。
一方、Ni層の厚さが規定値未満のNo.59は亜硫酸ガス耐食性が劣り、Ni層の厚さが規定値を超えるNo.60は曲げ加工性に劣り、Cu−Sn合金層の厚さが規定値未満のNo.61は接触抵抗が高く、Cu−Sn合金層の厚さが規定値を超えるNo.62は曲げ加工性に劣り、Cu−Sn合金層のCu含有量が規定値未満のNo.63は接触抵抗が高く、Cu−Sn合金層のCu含有量が規定値を超えるNo.64は曲げ加工性に劣り、Sn層の厚さが規定値以下のNo.15では、はんだ濡れ時間が2.5秒であり、Sn層の厚さが規定値以上のNo.16では表面にピットが生成し外観不良となっていた。
【0055】
【発明の効果】
本発明によれば、高温雰囲気下で長時間保持されても電気的信頼性(低接触抵抗)を維持でき、亜硫酸ガス耐食性及び曲げ加工性にも優れた接続部品用導電材料を得ることができる。従って、エンジンルーム等、高温で使用される箇所に配置された場合においても優れた電気的信頼性が保持できる。
また、特に嵌合型端子用として、動摩擦係数を低く抑えることができたので、例えば自動車等において多極コネクタに使用した場合、オス、メス端子の嵌合時の挿入力が低く、組立作業を効率よく行うことができ、一方、非嵌合型接続部品用としては、電子部品実装工程において加熱処理を受けた場合でも、その後のはんだ濡れ性が確保できる。
【図面の簡単な説明】
【図1】 摩擦係数測定治具の概念図である。
【符号の説明】
1 オス試験片
2 台
3 メス試験片
4 錘
5 ロードセル
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to connection parts such as terminals, connectors and junction blocks mainly used in automobiles and consumer products.MoldingConductive materialBoardAbout.
[0002]
[Prior art]
A connector used for connecting an electric wire of an automobile or the like uses a fitting type terminal composed of a combination of a male terminal and a female terminal obtained by applying Sn plating to a copper alloy. A connector in which a plurality of fitting type terminals are gathered is called a multipolar terminal connector.
The number of poles of such a connector, that is, the number of terminals in one connector, is increasing as automobiles are becoming more electrical. When the number of terminals increases, the insertion force increases, and a tool is required for mounting, or a large force is required even when a person inserts, which causes a reduction in the efficiency of the assembly work. For this reason, even if the number of poles increases, a terminal with a low insertion force is required so that the insertion force does not become larger than before.
[0003]
As for Sn plating terminal, insertion force falls by making Sn plating thin. However, due to the demand for space saving in the automobile interior, the connector installation location has been shifted from the interior to the engine compartment, and the ambient temperature in the engine compartment reaches about 150 ° C. at the maximum. Therefore, when Sn plating is thinned, Cu and alloy elements diffuse from the Cu or Cu alloy base material, or the base plating such as Ni diffuses to form an oxide on the surface of the Sn plating, thereby increasing the contact resistance of the terminal. Becomes apparent. When the contact resistance increases, there is a concern about malfunction of the electronic control device. Therefore, in reality, it is very difficult to reduce the Sn plating thickness and maintain the electrical reliability.
In addition, when operating or leaving for a long time in an industrial area where sulfurous acid gas is generated as exhaust gas, the surface plating layer corrodes due to the sulfurous acid gas, and further, the corrosion reaches the copper alloy base material, which is reliable as a mating type terminal. Sex is lost.
[0004]
On the other hand, a copper alloy material similarly plated with Sn is used as a conductive material in power distribution devices (junction blocks: JB) for driving and signals of automobiles and the like. The structure of JB is a structure in which the copper alloy material and the resin are laminated, thereby making it possible to form a complicated control circuit.
Along with the electrical and miniaturization of automobiles, a technology has been developed in which a substrate on which electronic components are surface-mounted by reflow processing (reflow soldering) is mounted in JB. At that time, heat treatment at about 100 ° C. to bond the substrate to the Sn-plated copper alloy material as the internal circuit, reflow soldering for mounting electronic components on the substrate, and a heat impact load not present in the conventional process It has changed to an assembly process involving. Therefore, an Sn-plated copper alloy material that can ensure solder wettability after these heat treatments is required.
In addition, as for JB, the installation location has been shifted from the interior to the engine room due to the demand for space saving in the automobile interior. Therefore, as described above with regard to the connector, the increase in contact resistance and the accompanying electronic control equipment There is a concern about the malfunction of the surface plating, and there is also a problem of corrosion of the surface plating layer by sulfurous acid gas.
[0005]
[Problems to be solved by the invention]
Japanese Patent Laid-Open No. 6-196349 discloses a surface multilayer plating layer comprising a Ni plating layer, an Sn and Cu alloy layer, and an Sn plating layer on the surface of a base material made of white and white in order to improve the heat resistance of the lead frame. There has been proposed a lead frame material in which the above is formed. However, when this type of surface multilayer plating layer is formed on a Cu alloy base material in accordance with the disclosure of the above publication and a fitting type terminal is manufactured using the Cu alloy material, the insertion force is high or severe bending is performed. The problem that cracks occur. There is also a problem that the contact resistance increases after the reflow treatment.
On the other hand, in order to improve the solder wettability, it is considered effective to make the Sn plating thickness, for example, a thickness exceeding 2 μm, which is thicker than before, but that alone is after reflow soldering or after a high temperature and long time in an actual vehicle. There is a problem that electrical reliability (low contact resistance) cannot be maintained, and pits are generated in Sn plating after reflow processing (reflow processing at the time of Sn plating material manufacture).
[0006]
  In view of the above problems, the present invention maintains electrical reliability (low contact resistance) even after a long period of time in a high-temperature atmosphere with respect to a material in which a surface multilayer plating layer is formed on the surface of a base material made of Cu or Cu alloy. Connection parts that are excellent in sulfurous acid gas corrosion resistance and do not crack even in severe processingMoldingConductive materialBoardThe purpose is to provide. At the same time, especially for multi-pole mating type terminals, the insertion force is low, and for non-mating type connection parts such as JB, solder wettability is ensured even after heat treatment such as reflow soldering, Connected parts without pitsMoldingConductive materialBoardThe purpose is to provide.
[0007]
[Means for Solving the Problems]
  Connecting component according to the present inventionMoldingConductive materialBoardOne of them is that a surface plating layer composed of a Ni layer and a Cu—Sn alloy layer is formed in this order on the surface of a base material composed of Cu or a Cu alloy, and the thickness of the Ni layer is 0.1 to 1.0 μm. The Cu—Sn alloy layer has a thickness of 0.1 to 1.0 μm and a Cu concentration of 35 to 75 at% (atomic%). This connecting partMoldingConductive materialBoardIs particularly suitable as a mating type terminal material.
  This conductive materialBoardThe surface plating layer preferably has a Sn layer having a thickness of 0.5 μm or less on the Cu—Sn alloy layer, and the Sn layer contains 0.001 to 0.1% by mass of carbon. Is desirable. This conductive materialBoardThe surface gloss is desirably 60% or more.
[0009]
  Furthermore, in one of the conductive material plates for forming a connecting part according to the present invention, a surface plating layer composed of a Ni layer, a Cu—Sn alloy layer, and a Sn layer is formed in this order on the surface of the base material composed of Cu or Cu alloy. And the thickness of the Ni layer is 0.1 to 1.0 μm, the thickness of the Cu—Sn alloy layer is 0.1 to 1.0 μm, the Cu concentration is 35 to 75 at%, the thickness of the Sn layer Is more than 0.5 μm and 2 μm or less. This conductive material plate for forming a connection part is particularly suitable as a non-fitting type terminal material such as JB.
  In this conductive material plate, the Sn layer preferably contains 0.001 to 0.1% by mass of carbon.
  In the present invention, the Cu concentration of the Cu—Sn alloy layer means a concentration measured by the measurement method described in paragraph 0033 of the present specification.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Of the surface plating layer of the conductive material for connecting parts, the Ni layer is applied to improve the sulfurous acid gas corrosion resistance. If the Ni layer has a thickness of less than 0.1 μm, Cu, which is the main component of the base material, reacts with sulfurous acid gas based on the pit defects in the plating layer, and the base material corrosion proceeds, so that it cannot be used practically. Also, Cu and alloy components of the base material diffuse into the Cu—Sn alloy layer to form an oxide on the surface layer, and further, when an Sn layer is formed, diffuse to the surface layer of the Sn layer to form an oxide. In addition, the contact resistance increases. On the other hand, if it exceeds 1.0 μm, the formability to the terminal is deteriorated, for example, cracking occurs in bending. Therefore, the Ni layer has a thickness of 0.1 to 1.0 μm. Preferably it is 0.1-0.5 micrometer.
[0011]
Of the surface plating layer, the Cu—Sn alloy layer prevents Ni diffusion from the Ni layer to the surface of the Cu—Sn alloy layer, and further Sn when the Sn layer is formed. The Cu—Sn alloy layer has an insufficient diffusion preventing effect when the thickness is less than 0.1 μm, Ni diffuses to the surface layer of the Cu—Sn alloy layer or Sn layer to form an oxide, and the contact resistance is low. It becomes higher and the electrical reliability decreases. On the other hand, if it exceeds 1.0 μm, the formability to the terminal is deteriorated, for example, cracking occurs in bending. Therefore, the Cu—Sn alloy layer has a thickness of 0.1 to 1.0 μm. Preferably it is 0.1-0.5 micrometer.
Further, in the Cu—Sn alloy layer, if the Cu concentration is less than 35 at%, the effect of preventing Ni diffusion is insufficient, and if it exceeds 75 at%, the hardness of the alloy layer increases and a Sn layer is further formed. In this case, since Cu diffuses to the surface layer and the film hardness increases, bending workability decreases. Therefore, the Cu concentration of the Cu—Sn alloy layer is desirably 35 to 75 at%. Preferably it is 45 to 65%.
[0012]
Among the surface plating layers, the Sn layer remains as the uppermost layer of the surface plating layer even after the formation of the Cu-Sn alloy layer in the manufacturing method described later. It is divided into materials and conductive materials for non-fitting type connection parts.
In the case of a mating type terminal, the Sn layer gives general corrosion resistance to the terminal. When the Sn layer becomes thicker, the dynamic friction coefficient becomes higher, and the insertion force becomes larger in the multipolar terminal. Restrict to 5 μm or less. In order to provide corrosion resistance, the Sn layer is desirably 0.1 μm or more. However, even if the thickness of the Sn layer is 0 μm (that is, even if there is no Sn layer), it can be used as a conductive material for fitting type terminals.
On the other hand, in the case of a non-fitting type connection component, the Sn layer of the surface plating layer maintains the contact resistance of the terminal low, enhances electrical reliability, and gives solder wettability. However, when the Sn layer is 2 μm or more, pits are easily generated on the surface after the reflow treatment, and the corrosion resistance is lowered. Further, when the Sn plating thickness is 0.5 μm or less, the solder wettability is lowered. Therefore, the thickness of the Sn layer is restricted to more than 0.5 μm and 2 μm or less. Preferably, it is 1.0-2.0 micrometers.
[0013]
In any case, the amount of carbon in the Sn layer is desirably limited to 0.001 to 0.1% by mass, mainly for manufacturing reasons. That is, if it is less than 0.001 mass%, the uniform electrodeposition property (there is no unevenness in thickness) of Sn plating is lowered, and the appearance is also lowered by the influence after the reflow treatment. On the other hand, if it exceeds 0.1% by mass, a part of carbon floats and precipitates on the surface of the Sn layer after the reflow treatment, and the contact resistance increases. The amount of carbon in the Sn layer is mainly adjusted by the amount of brightener and additive in the plating solution and the plating current density.
[0014]
When the conductive material according to the present invention is used as a conductive material for a mating type terminal, by using the above-described surface plating layer configuration, the dynamic friction coefficient is 0.45 or less, the contact resistance is 100 mΩ or less, as shown in the examples. Bending workability can be realized.
On the other hand, when used as a conductive material for non-fitting type connection parts, by using the surface plating layer configuration, as shown in the examples, as shown in the examples, the solder wetting time is 1.5 seconds or less, the contact resistance after being left at high temperature is 100 mΩ or less, In addition, excellent bending workability can be realized.
[0015]
In any of the above surface plating layer configurations of the conductive material according to the present invention, a Ni plating layer, a Cu plating layer, and a Sn plating layer are formed in this order on a Cu or Cu alloy base material, and then heated and diffused to form Cu- It can be obtained by forming a Sn alloy layer. This Cu—Sn alloy layer is an intermetallic compound, and all or most of the Cu—Sn alloy layer may contain an η phase and a part of an ε phase. All the Cu plating layers are made Cu—Sn alloy layers by heating and diffusion, the Sn plating layer is appropriately left on the surface layer portion, the surface plating layer is a Ni plating layer having a thickness of 0.1 to 1.0 μm, and a thickness of 0. A Cu—Sn alloy layer having a thickness of 1 to 1.0 μm and a Sn layer having a thickness of 0 to 0.5 μm or a thickness of more than 0.5 to 2 μm are used. At this time, if the Cu plating layer remains, plating peeling occurs at the interface between the Ni layer and the Cu—Sn alloy layer after being left at a high temperature, so it is desirable to eliminate the Cu plating layer.
[0016]
  More specifically, in the case of a conductive material for fitting type terminals (Sn layer thickness of the surface plating layer after heat treatment is 0.5 μm or less), a thickness of 0. 0 on the surface of the Cu or Cu alloy base material. Sn plating having a thickness of 0.4 to 1.1 μm containing a Ni plating layer having a thickness of 1 to 1.0 μm, a Cu plating layer having a thickness of 0.1 to 0.45 μm, and 0.001 to 0.1% by mass of carbon. After the layers are formed in this order, they can be manufactured by performing heating and diffusion heat treatment. Heat treatment230-300A reflow process of heating at a temperature of 3 ° C. for 3 to 30 seconds is desirable.
  In the said manufacturing method, if the thickness of Cu plating layer is less than 0.1 micrometer, since the Cu-Sn alloy layer formed after a heating is thin, it cannot fully suppress that Ni of base Ni plating diffuses into Sn phase. On the other hand, when the thickness of the Cu plating layer exceeds 0.45 μm, the Cu—Sn alloy layer formed after heating becomes too thick. Alternatively, the Cu plating layer remains immediately below the Cu—Sn alloy layer, resulting in a decrease in corrosion resistance, or plating peeling after being left at a high temperature. Therefore, the thickness of the Cu plating layer is 0.1 to 0.45 μm, desirably 0.1 to 0.3 μm, and more preferably 0.1 to 0.25 μm from the viewpoint of stabilizing the quality.
[0017]
Moreover, in the said manufacturing method, when the thickness of Sn plating layer is less than 0.4 micrometer, the surface after heat processing becomes a satin-like uneven surface form. On the other hand, if the thickness of the Sn plating layer exceeds 1.1 μm, although depending on the thickness of the Cu plating layer, a thick Sn layer remains after heating, and the effect of reducing the friction coefficient decreases. Therefore, the thickness of the Sn plating layer is 0.4 to 1.1 μm, preferably 0.4 to 0.8 μm.
Preferably, the ratio of the thickness of the Cu plating layer to the thickness of the Sn plating layer is 0.15 ≦ Cu / Sn ≦ 0.41. If this ratio is less than 0.15, the growth of the Cu—Sn alloy layer formed by the heat treatment is insufficient, the effect of suppressing the diffusion of the underlying Ni to the surface is small, and the contact resistance after standing at high temperature is increased, Or Sn layer remains excessively and a friction coefficient becomes high. On the other hand, if this ratio exceeds 0.41, the Cu—Sn alloy layer formed by heat treatment grows to near the surface, the thickness of the remaining Sn layer does not reach 0.1 μm, and the corrosion resistance decreases. Concavities and convexities are generated on the surface, resulting in poor appearance (surface gloss) and poor contact resistance.
In addition, by restrict | limiting this ratio to 0.41 or less, it is suppressed that an unevenness | corrugation generate | occur | produces on the surface after heat processing, and surface glossiness can be 60% or more. In the manufacturing method of the present invention, the thickness of the Sn plating layer is sometimes regulated as thin as 0.4 to 1.1 μm (desirably 0.4 to 0.8 μm), and the Cu / Sn ratio is not regulated within the above range. In addition, a predetermined Cu—Sn alloy layer thickness and Sn layer thickness cannot be obtained after the heat treatment, and a terminal material excellent in appearance, corrosion resistance, contact resistance and the like cannot be obtained.
[0018]
On the other hand, in the case of a conductive material for non-fitting type connection parts (Sn layer thickness of the surface plating layer after heat treatment is more than 0.5 μm to 2 μm), a thickness of 0.1 to 1. A Ni plating layer having a thickness of 0 μm, a Cu plating layer having a thickness of 0.1 to 0.45 μm, and a Sn plating layer having a thickness of 1.1 to 2.5 μm containing 0.001 to 0.1% by mass of carbon in this order. After the formation, it can be manufactured by heating and diffusion heat treatment.
[0019]
  In the above manufacturing method, reflow treatment is performed as heat treatment.Do. By performing this reflow treatment, a Cu—Sn alloy layer is formed, plating particles are increased, plating stress is reduced, and whiskers are not generated. ThatHeating condition is 230 ~300C. x 3 to 30 seconds. Sn melts at heating temperatures below 230 ° Cdo not do. On the other hand, in order to uniformly grow the Cu—Sn alloy layer, it is desirable to carry out with a heat amount as low as possible of 300 ° C. or less.If the heating time is less than 3 seconds, heat transfer becomes non-uniform and unevenness in appearance after reflow occurs, and if it exceeds 30 seconds, oxidation of the Sn layer on the surface proceeds, so that contact resistance increases.
[0020]
In the above manufacturing method, it is desirable that the Ni plating layer, the Cu plating layer, and the Sn plating layer formed on the surface of the Cu or Cu alloy base material are all formed by electroplating. Although there is a method of performing electroless plating, in electroless plating, a reducing agent is taken into the plating film, and voids are generated after being left at a high temperature.
As desirable conditions for electroplating, Ni plating uses a Watt bath or a sulfamic acid bath, Ni plating temperature of 40 to 55 ° C., current density of 3 to 20 A / dm.2To do. What is important for Ni plating is the current density, 3 A / dm.2If it is less than 20, uniform electrodeposition and productivity are poor, and 20 A / dm.2If it exceeds 1, Ni plating grains become rough (coarse).
[0021]
As a plating bath for Cu plating, a cyan bath is usually used, but a copper sulfate bath is desirable because there is a problem of liquid deterioration and wastewater treatment due to cyan mixing in the Sn plating solution. On the other hand, it is difficult to perform plating with a uniform thickness in a copper sulfate bath (poor electrodeposition properties), and a brightener is usually added. However, when Sn plating is performed on Cu plating and further heat treatment is performed, there is a problem that voids increase after being left at a high temperature, so it is desirable to avoid the addition of a brightener to the plating bath.
In the present invention, since the Cu plating thickness of the surface plating layer is thin and the plating thickness range is narrow, uniform plating is essential. If the thickness of the Cu plating is not uniform (mainly due to roughening of the Cu plating grains as will be described later), the growth of the Cu—Sn alloy layer after the heat treatment becomes uneven, the surface gloss is lowered and the characteristics are reduced. It is because it falls. In particular, in the case of a fitting type terminal, since the Sn plating thickness is thin and the plating thickness range is narrow, the tendency becomes remarkable.
[0022]
Therefore, the present inventors have studied a method for performing uniform Cu plating using a copper sulfate bath that does not contain a brightener. As a result, the Cu plating particle diameter can be controlled by the plating conditions, and further uniform Cu plating is performed. I found that I could do it. As for the conditions, when Cu plating is performed on Ni plating as in the present invention, the plating temperature is 30 to 40 ° C., and the current density is 2.5 to 10 A / dm.2It is.
When the plating temperature exceeds 40 ° C., the Cu plating grains become rough (coarse), and as a result Cu plating with a uniform thickness cannot be performed (in the present invention, the Cu plating thickness is regulated to be very thin. If the surface becomes rough, the thickness will not be uniform). However, when the plating temperature is less than 30 ° C., the Cu plating grains are not roughened, but the throwing power is also deteriorated. The current density is 2.5 A / dm2Less than or 10 A / dm2If it exceeds 1, Cu plating grains become rough, and as a result, Cu plating with a uniform thickness cannot be performed.
[0023]
The uppermost electric Sn plating uses, for example, a tin sulfate bath, a plating temperature of 25 ° C. or less, and a current density of 2 to 10 A / dm.2Just do it.
[0024]
In addition, until now, regarding the manufacturing method of the electrically conductive material which concerns on this invention, after forming Ni plating layer, Cu plating layer, and also Sn plating layer in this order on Cu or Cu alloy base material, it is made to heat and diffuse and Cu-Sn. Although the method of forming the alloy layer has been described, the surface plating layer configuration can also be obtained by applying a Cu-Sn alloy plating layer on the Ni plating layer and forming an Sn plating layer on the Ni-plating layer as necessary. Can do.
[0025]
【Example】
Example 1
<Conditions for creating specimens>
A plate material of C2600 and a thickness of 0.30 mm was used as a copper alloy base material, and Ni plating, Cu plating, and Sn plating were each applied with a predetermined thickness. The plating baths and plating conditions for Ni plating, Cu plating and Sn plating are shown in Tables 1 to 3, and the thickness of each plating layer is shown in Table 4 (Nos. 1 to 15).
In addition, the thickness of each plating layer was measured in the following way.
[Sn and Ni plating layer thickness measurement]
It was measured using a fluorescent X-ray film thickness meter (Seiko Electronics Co., Ltd .; model SFT156A).
[Cu plating layer thickness measurement]
The cross section of the plate material processed by the microtome method was observed with an SEM, and the average thickness was calculated by image analysis processing.
[0026]
[Table 1]
[0027]
[Table 2]
[0028]
[Table 3]
[0029]
[Table 4]
[0030]
Subsequently, the plate material was subjected to a reflow treatment under the heat treatment conditions shown in Table 4 to obtain test materials having a surface plating configuration shown in Table 5. About each test material, each plating layer thickness, Cu content (at%) in a Cu-Sn alloy layer, and carbon content (mass%) in a Sn layer were measured in the following way. Each test material was subjected to appearance evaluation, dynamic friction coefficient and contact resistance measurement test after standing at high temperature, sulfurous acid gas test, and bending workability test in the following manner. The results are shown in Table 5.
[0031]
[Table 5]
[0032]
[Sn layer thickness measurement]
First, the Sn plating thickness is measured using a fluorescent X-ray film thickness meter (Seiko Electronics Co., Ltd .; model SFT156A). Then, after dipping in a stripping solution containing p-nitrophenol and caustic soda as components for 10 minutes and stripping the Sn layer, the amount of Sn in the Cu-Sn alloy layer is again measured with a fluorescent X-ray film thickness meter. The Sn layer thickness was calculated by subtracting the Sn amount in the Cu—Sn alloy layer from the Sn plating thickness thus determined.
[Cu-Sn alloy layer thickness measurement]
The Cu—Sn alloy layer thickness was measured using a fluorescent X-ray film thickness meter after immersing the test material in the above stripping solution and stripping the Sn layer.
[Ni thickness measurement]
The Ni layer thickness was directly measured using a fluorescent X-ray film thickness meter.
[0033]
[Measurement of Cu content in Cu-Sn alloy layer]
The Cu content (at%) in the Cu-Sn alloy layer was performed as follows. First, the outermost Sn layer is removed by immersing in a stripping solution containing p-nitrophenol and caustic soda as components for 10 minutes. Thereafter, the surface of the sample was subjected to argon etching up to a point of a depth of 300 A in order to eliminate the influence of oxidation and contamination on the sample surface, and the Cu content in the Cu—Sn alloy layer was measured with ESCA-LAB210D (manufactured by VG).
[Measurement of carbon content in Sn layer]
Prepare the test materials after reflow and the pure Sn layer on the outermost surface with 5% nitric acid, and burn them at a high temperature in an oxygen stream. The amount of carbon dioxide and carbon monoxide generated. Was determined from the amount of infrared absorption, and the mass% of carbon present in the Sn layer was determined from the difference between the two. Even if the Sn layer thickness is calculated to be 0, there is a portion where the Sn layer remains slightly, and measurement can be performed therewith. The amount of carbon in the Sn layer after the reflow treatment may be regarded as the same as the carbon content in the Sn plating layer before the reflow treatment.
[0034]
[Dynamic friction coefficient measurement]
As shown in FIG. 1, a plate-shaped male test piece 1 cut out from a test material is fixed to a horizontal base 2 and an inner diameter of the test material is set on it. Place a female test piece 3 hemispherically processed at 1.5 mm, bring the plating surfaces into contact with each other, apply a load (weight 4) of 3.0 N (310 gf) to the female test piece 3, hold down the male test piece 1, and load horizontally Using a measuring instrument (Model-2152 manufactured by Aiko Engineering Co., Ltd.), the male test piece 1 was pulled in the horizontal direction (sliding speed was 80 mm / min), and the maximum frictional force F up to a sliding distance of 5 mm was measured. The coefficient of friction was determined by the following formula (1). In addition, 5 is a load cell and the arrow is a sliding direction.
Friction coefficient = F / P (1)
[0035]
[Measurement of contact resistance after standing at high temperature]
After heat-treating the test material at 160 ° C. × 120 hr in the air, the contact resistance was measured by a four-terminal method under the conditions of an open voltage of 20 mV, a current of 10 mA, and no sliding.
[Bending workability]
The test piece was cut out so that the rolling direction was long, and using a W bending test jig specified in JISH3110, it was 9.8 × 10 so as to be perpendicular to the rolling direction.3Bending was performed with a load of N. Then, the cross section was cut out and observed by the microtome method. For the evaluation of bending workability, the level at which cracks occurring in the bent part after the test do not propagate to the copper alloy base material is evaluated as ◯, and the level at which cracks are propagated to the copper alloy base material and cracks occur in the copper alloy base material is evaluated as x It was evaluated.
[0036]
[Sulfurous acid corrosion resistance]
The sulfurous acid gas test was conducted under the conditions of 25 ppm, 35 ° C., 75% RH, and 96 hours. As the test materials, all materials that were allowed to stand at a high temperature of 160 ° C. for 120 hours were used assuming a practical environment. Corrosion resistance evaluation criteria were evaluated by observing the cross section after the test, ◯ indicating the level at which corrosion of the base metal was not observed, and X indicating the level at which corrosion of the base material with a depth of 1 μm or more was observed.
[Appearance evaluation]
The specular reflectance of the surface after the reflow treatment was measured, and the surface gloss was evaluated as “◯” when the surface gloss was 60% or higher, and the level lower than 60% was evaluated as “X”.
[0037]
  As shown in Table 5, No. 1-8All have a dynamic friction coefficient of 0.45 or less, a contact resistance after standing at high temperature of 100 mΩ or less, and excellent bending workability and sulfurous acid gas corrosion resistance. However, no. In No. 7, the Sn layer on the surface disappeared, and the appearance after reflow was inferior.
  On the other hand, the thickness of the Ni layer is less than the specified value. No. 9 is inferior in sulfurous acid gas corrosion resistance and the thickness of the Ni layer exceeds the specified value. No. 10 is inferior in bending workability, and the thickness of the Cu—Sn alloy layer is less than the specified value. No. 11 has a high contact resistance, and the thickness of the Cu—Sn alloy layer exceeds the specified value. No. 12 is inferior in bending workability, and the Cu-Sn alloy layer has a Cu content of less than the specified value. No. 13 has a high contact resistance, and the Cu content of the Cu—Sn alloy layer exceeds the specified value. No. 14 is inferior in bending workability, and the thickness of the Sn layer exceeds the specified value. 15 has a high coefficient of dynamic friction.
[0038]
(Example 2)
In the same manner as in Example 1, a plate material of C2600 and a thickness of 0.30 mm was used as a copper alloy base material, and a Ni plating layer, a Cu plating layer, and a Sn plating layer were applied to the surfaces thereof with a predetermined thickness. Ni plating was performed under the conditions of Table 1, Cu plating was performed under the conditions of Table 6, and Sn plating was performed under the conditions of Table 3 (however, the addition amount of the brightener was changed within the range of 0 to 10 g / l). . The thickness of each plating layer and the Cu / Sn plating layer thickness ratio are shown in Table 7 (No. 16 to 39). The thickness of each plating layer was measured in the same manner as in Example 1.
[0039]
[Table 6]
[0040]
[Table 7]
[0041]
Subsequently, the plate material was subjected to a reflow treatment under the heat treatment conditions shown in Table 7 to obtain a test material having a surface plating structure shown in Table 8. For each sample material, the thickness of each plating layer was measured as follows, and the Cu content (at%) in the Cu—Sn alloy layer and the carbon content (mass%) in the Sn layer were as in Example 1. Measured in the same way. In addition, for each test material, appearance evaluation, dynamic friction coefficient, contact resistance measurement test after standing at high temperature, sulfurous acid gas test, and bending workability test were performed in the same manner as in Example 1. The results are shown in Table 8.
[Ni layer, Cu-Sn alloy layer, Sn layer thickness measurement]
The cross section of the plate material processed by the microtome method was observed with an SEM, and the average thickness was calculated by image analysis processing.
[0042]
[Table 8]
[0043]
As shown in Tables 7 and 8, the surface plating layer configuration before the reflow treatment is No. in the specified range of the present invention. 16 to 27 are within the specified range of the present invention after reflow treatment (Ni layer thickness: 0.1 to 1.0 μm, Cu—Sn alloy layer thickness; 0.1 to 1.0 μm, Sn layer thickness; 0.5 μm or less The surface plating layer structure is obtained with a dynamic friction coefficient of 0.45 or less, contact resistance after standing at high temperature of 100 mΩ or less, and excellent bending workability, sulfurous acid corrosion resistance, and appearance after reflow.
[0044]
On the other hand, the thickness of the Ni plating layer is less than the specified value. No. 28 is inferior in sulfurous acid gas corrosion resistance, and the thickness of the Ni layer exceeds the specified value. 29 is inferior in bending workability. The thickness of the Cu plating layer is less than the standard No. No. 30 is a No. 30 Cu-Sn alloy layer formed by a reflow process is thin, contact resistance is high, and the thickness of the Cu plating layer exceeds the specified value. No. 31 has a poor appearance after the reflow process. In addition, plating peeling occurred after being left at a high temperature, which is probably because the Cu plating layer partially remained immediately below the Cu—Sn alloy layer. No. 2 in which the thickness of the Sn plating layer is less than the specified value and the Cu content in the Cu / Sn alloy layer is high. No. 32, a Cu—Sn alloy layer formed by reflow treatment grows to the surface, and a Cu enriched layer is formed on the surface, the contact resistance is high, the surface gloss is lowered, the appearance is poor, and the thickness of the Sn plating layer No. exceeding the specified value. In No. 33, the Sn layer remains thick even after the reflow treatment, and the dynamic friction coefficient is high. No. in which the amount of carbon in the Sn layer is less than the specified value. No. 34 has a poor appearance after reflow treatment, and the amount of carbon in the Sn layer exceeds the specified number. 35 has high contact resistance. Reflow heat treatment conditions (temperature, time) are out of specification. No. 36 to 39, the reflow treatment is not suitable at a low temperature or in a short time. Nos. 36 and 38 have a bad appearance after the reflow treatment, and the Cu plating layer is considered to remain. Nos. 37 and 39 have a poor appearance, and Ni is diffused, resulting in high contact resistance.
[0045]
(Example 3)
The same plate material as in Example 2 was used, and a Ni plating layer, a Cu plating layer, and a Sn plating layer were applied to the surface with thicknesses of 0.3 μm, 0.15 μm, and 0.5 μm, respectively. The plating conditions were basically the same as in Example 2. However, as shown in Table 8, the plating was performed by changing the current density in Ni plating and the plating temperature and current density in Cu plating. With respect to the plate material (No. 40 to 50), the plating uniform electrodeposition was observed in the following manner. The results are shown in Table 9.
[Plating uniform electrodeposition]
The plating surface and the plating cross section before the reflow treatment were observed with SEM, and the average diameter of the Cu plating grains was evaluated as ◯ and the level exceeding 0.25 μm, and the level exceeding 0.25 μm was evaluated as x. In addition, since the Cu plating thickness is thin, there is a correlation between the size of the plating grain and the plating thickness. If the plating grain is fine, the plating thickness is uniform, and if the plating grain is rough, the plating thickness is non-uniform. It has become.
[0046]
The plate material was subjected to a reflow treatment under heat treatment conditions of 280 ° C. for 10 seconds to obtain test materials (No. 40 to 50).
[0047]
[Table 9]
[0048]
As shown in Table 9, No. in which the plating conditions are within the specified range of the present invention. 40-44 all had a small plating grain and were plated uniformly. Therefore, there is no unevenness in the growth of the Cu—Sn alloy layer by the reflow process, and the surface plating configuration after the reflow process has a Ni layer thickness of 0.3 μm, a Cu—Sn alloy layer thickness of 0.3 μm, and an Sn layer. The thickness was 0.2 μm, the coefficient of dynamic friction was 0.45 or less, the contact resistance after standing at high temperature was 100 mΩ or less, and the sulfurous acid gas corrosion resistance was excellent.
On the other hand, no. No. 45 is greatly affected by the material, and the Ni plating becomes non-uniform, and accordingly, the Cu plating also has poor uniform electrodeposition, the contact resistance increases, and the current density of the Ni plating exceeds the specified value. In No. 46, the Ni plating grains were roughened, the Cu plating grains were also roughened, and the contact resistance was high. No. Cu plating temperature is less than the specified value. 47, No. with Cu plating temperature exceeding specified value. 48, No. 48 with Cu plating current density less than specified value. No. 49 and No. 49 in which the Cu plating current density exceeds the specified value. In No. 50, since the Cu plating grains were coarsened and the Cu plating layer thickness was not uniform, the growth of the Cu—Sn alloy layer by reflow treatment was also varied, and the contact resistance was increased.
In addition, when the diameter of the Cu plating grain exceeds 0.25 μm, when the reflow treatment is performed and the cross section is observed, the Cu—Sn alloy layer reaches the surface, and the abnormal form of the Cu—Sn alloy layer can be confirmed.
[0049]
Example 4
As in Example 1, a plate material of C2600 and a thickness of 0.30 mm was used as the copper alloy base material, and the Ni plating layer, the Cu plating layer, and the Sn plating layer were each given a predetermined thickness. Ni plating, Cu plating, and Sn plating were performed under the conditions shown in Tables 1 to 3, respectively. The thickness of each plating layer and the Cu / Sn plating layer ratio are shown in Table 10 (No. 51 to 66). The thickness of each plating layer was measured in the same manner as in Example 1.
[0050]
[Table 10]
[0051]
Subsequently, the plate material was subjected to a reflow treatment under the heat treatment conditions shown in Table 10 to obtain a test material having a surface plating structure shown in Table 11. About each test material, each plating layer thickness, Cu content (at%) in a Cu-Sn alloy layer, and carbon content (mass%) in a Sn layer were measured in the same manner as Example 1. In addition, for each test material, an appearance evaluation and a solder wettability evaluation test after heating were performed as follows, and a contact resistance measurement test, a sulfurous acid gas test, and a bending workability test after being left at high temperature were performed as in Example 1. I went in the same way. The results are shown in Table 11.
[0052]
[Appearance evaluation]
The appearance of the test material after the reflow treatment was observed to inspect for the presence or absence of pits, and the case where no pits were generated was evaluated as ◯, and the case where the pits were generated was evaluated as ×. In addition, the specular reflectivity was measured in the same manner as in Example 1. However, the specular reflectivity of all the samples evaluated as ○ was 60% or more, and the specular reflectivity of less than 60% was evaluated as x. It was.
[Solder wettability evaluation]
Assuming reflow soldering for mounting electronic components, heat in air at 250 ° C for 5 minutes. Then, after cutting out a test material to 10 mm x 30 mm so that the orthogonal | vertical direction of a rolling direction may become a length, an inactive flux ((alpha) -100: Nippon Alpha Metals Co., Ltd.) is dip-coated for 1 second. As the solder wettability evaluation of this test material, the solder wet time was determined by a solder checker (SAT-5100 type).
[0053]
[Table 11]
[0054]
  As shown in Table 11, No. 51-58In each case, the appearance of the Sn plating layer after reflow is excellent, the solder wetting time is 1.5 seconds or less, the contact resistance after standing at high temperature is 100 mΩ or less, and the bending workability and the sulfurous acid gas corrosion resistance are excellent.
  On the other hand, the thickness of the Ni layer is less than the specified value. No. 59 is inferior in sulfurous acid gas corrosion resistance, and the thickness of the Ni layer exceeds the specified value. No. 60 is inferior in bending workability, and the thickness of the Cu—Sn alloy layer is less than the specified value. No. 61 has high contact resistance, and the thickness of the Cu—Sn alloy layer exceeds the specified value. No. 62 is inferior in bending workability, and the Cu-Sn alloy layer has a Cu content of less than the specified value. No. 63 has high contact resistance, and the Cu content of the Cu—Sn alloy layer exceeds the specified value. No. 64 is inferior in bending workability, and the thickness of the Sn layer is no more than the specified value. In No. 15, the solder wetting time is 2.5 seconds and the thickness of the Sn layer is a specified value or more. In No. 16, pits were generated on the surface and the appearance was poor.
[0055]
【The invention's effect】
According to the present invention, it is possible to obtain a conductive material for a connection component that can maintain electrical reliability (low contact resistance) even when held in a high temperature atmosphere for a long time, and is excellent in sulfurous acid gas corrosion resistance and bending workability. . Therefore, excellent electrical reliability can be maintained even when it is arranged at a location where it is used at a high temperature such as an engine room.
In addition, since the coefficient of dynamic friction could be kept low, especially for mating type terminals, for example, when used for multipolar connectors in automobiles, the insertion force when mating male and female terminals is low, and assembly work On the other hand, for non-fitting type connection parts, solder wettability after that can be ensured even when subjected to heat treatment in the electronic component mounting process.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a friction coefficient measuring jig.
[Explanation of symbols]
1 Male specimen
2 units
3 Female test pieces
4 spindles
5 Load cell

Claims (6)

  1. Cu又はCu合金からなる母材表面に、Ni層及びCu−Sn合金層からなる表面めっき層がこの順に形成され、かつ前記Ni層の厚さが0.1〜1.0μm、前記Cu−Sn合金層の厚さが0.1〜1.0μm、前記Cu−Sn合金層のCu濃度が35〜75at%であることを特徴とする成形加工前の接続部品成形加工用導電材料板。A surface plating layer comprising a Ni layer and a Cu—Sn alloy layer is formed in this order on the surface of the base material comprising Cu or a Cu alloy, and the thickness of the Ni layer is 0.1 to 1.0 μm, and the Cu—Sn A conductive material plate for forming a connecting part before forming, wherein the alloy layer has a thickness of 0.1 to 1.0 μm, and the Cu—Sn alloy layer has a Cu concentration of 35 to 75 at%.
  2. Cu又はCu合金からなる母材表面に、Ni層、Cu−Sn合金層及びSn層からなる表面めっき層がこの順に形成され、かつ前記Ni層の厚さが0.1〜1.0μm、前記Cu−Sn合金層の厚さが0.1〜1.0μm、前記Cu−Sn合金層のCu濃度が35〜65at%、前記Sn層の厚さが0.5μm以下であることを特徴とする成形加工前の接続部品成形加工用導電材料板。On the surface of the base material made of Cu or Cu alloy, a surface plating layer made of Ni layer, Cu—Sn alloy layer and Sn layer is formed in this order, and the thickness of the Ni layer is 0.1 to 1.0 μm, The thickness of the Cu—Sn alloy layer is 0.1 to 1.0 μm, the Cu concentration of the Cu —Sn alloy layer is 35 to 65 at%, and the thickness of the Sn layer is 0.5 μm or less. Conductive material plate for connecting parts forming before forming.
  3. 前記Sn層の厚さが0.1〜0.5μmであることを特徴とする請求項2に記載された成形加工前の接続部品成形加工用導電材料板。  The conductive material plate for forming a connection part before forming according to claim 2, wherein the Sn layer has a thickness of 0.1 to 0.5 μm.
  4. 表面光沢が60%以上であることを特徴とする請求項2又は3に記載された成形加工前の接続部品成形加工用導電材料板。  4. The conductive material plate for forming a connection part before forming according to claim 2, wherein the surface gloss is 60% or more.
  5. 嵌合型端子用であることを特徴とする請求項1〜4のいずれかに記載された成形加工前の接続部品成形加工用導電材料板。  It is an object for fitting type terminals, The conductive material board for connection component shaping | molding processing before shaping | molding processing described in any one of Claims 1-4 characterized by the above-mentioned.
  6. Cu又はCu合金からなる母材表面に、Ni層、Cu−Sn合金層及びSn層からなる表面めっき層がこの順に形成され、かつ前記Ni層の厚さが0.1〜1.0μm、前記Cu−Sn合金層の厚さが0.1〜1.0μm、前記Cu−Sn合金層のCu濃度が35〜65at%、前記Sn層の厚さが0.5μmを超え2μm以下であることを特徴とする成形加工前の接続部品成形加工用導電材料板。On the surface of the base material made of Cu or Cu alloy, a surface plating layer made of Ni layer, Cu—Sn alloy layer and Sn layer is formed in this order, and the thickness of the Ni layer is 0.1 to 1.0 μm, The thickness of the Cu—Sn alloy layer is 0.1 to 1.0 μm, the Cu concentration of the Cu —Sn alloy layer is 35 to 65 at%, and the thickness of the Sn layer is more than 0.5 μm and 2 μm or less. A conductive material plate for forming a connecting part before forming.
JP2002219155A 2001-07-31 2002-07-29 Conductive material plate for forming connecting parts Active JP4090302B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001232611 2001-07-31
JP2002020526 2002-01-29
JP2002171059 2002-06-12
JP2002219155A JP4090302B2 (en) 2001-07-31 2002-07-29 Conductive material plate for forming connecting parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002219155A JP4090302B2 (en) 2001-07-31 2002-07-29 Conductive material plate for forming connecting parts

Publications (2)

Publication Number Publication Date
JP2004068026A JP2004068026A (en) 2004-03-04
JP4090302B2 true JP4090302B2 (en) 2008-05-28

Family

ID=32034333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002219155A Active JP4090302B2 (en) 2001-07-31 2002-07-29 Conductive material plate for forming connecting parts

Country Status (1)

Country Link
JP (1) JP4090302B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9449728B2 (en) 2012-03-30 2016-09-20 Kobe Steel, Ltd. Electroconductive material for connection component

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4090483B2 (en) * 2001-07-31 2008-05-28 株式会社神戸製鋼所 Conductive connection parts
JP4090488B2 (en) * 2001-07-31 2008-05-28 株式会社神戸製鋼所 Conductive material plate for connecting part forming process and manufacturing method thereof
JP3880877B2 (en) * 2002-03-29 2007-02-14 Dowaホールディングス株式会社 Plated copper or copper alloy and method for producing the same
JP4461268B2 (en) * 2004-03-30 2010-05-12 Dowaメタルテック株式会社 Semiconductor device component, manufacturing method thereof, and semiconductor device using the same
JP4560642B2 (en) * 2004-04-19 2010-10-13 Dowaメタルテック株式会社 Method for producing Sn-coated conductive material
JP4552550B2 (en) * 2004-07-20 2010-09-29 パナソニック株式会社 Method for producing tin plating film
EP1788585B1 (en) * 2004-09-10 2015-02-18 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Conductive material for connecting part and method for fabricating the conductive material
JP4813785B2 (en) 2004-09-29 2011-11-09 Dowaメタルテック株式会社 Tin plating material
JP2006161127A (en) * 2004-12-09 2006-06-22 Takamatsu Mekki:Kk Electronic material suitable for insertion type connection terminal and method for producing the same
JP2006193778A (en) * 2005-01-13 2006-07-27 Fujitsu Ltd Sn PLATING FILM FOR ELECTRONIC COMPONENT
JP2007039789A (en) * 2005-03-29 2007-02-15 Nikko Kinzoku Kk Cu-Ni-Si-Zn-Sn BASED ALLOY STRIP EXCELLENT IN THERMAL PEELING RESISTANCE OF TIN PLATING, AND TIN PLATED STRIP THEREOF
JP2007063624A (en) * 2005-08-31 2007-03-15 Nikko Kinzoku Kk Copper alloy tinned strip having excellent insertion/withdrawal property and heat resistance
JP4571062B2 (en) * 2005-11-14 2010-10-27 日鉱金属株式会社 Reflow Sn or Sn alloy plating strip and electronic parts
JP4934456B2 (en) 2006-02-20 2012-05-16 古河電気工業株式会社 Plating material and electric / electronic component using the plating material
JP4653133B2 (en) * 2006-03-17 2011-03-16 古河電気工業株式会社 Plating material and electric / electronic component using the plating material
JP4804191B2 (en) * 2006-03-29 2011-11-02 Jx日鉱日石金属株式会社 Cu-Zn alloy tin plating strip
JP4986499B2 (en) * 2006-04-26 2012-07-25 Jx日鉱日石金属株式会社 Method for producing Cu-Ni-Si alloy tin plating strip
JP4522970B2 (en) 2006-04-26 2010-08-11 日鉱金属株式会社 Cu-Zn alloy heat resistant Sn plating strip with reduced whisker
JP2007314859A (en) 2006-05-29 2007-12-06 Nikko Kinzoku Kk Cu-Zn ALLOY STRIP WITH EXCELLENT RESISTANCE TO THERMAL PEELING OF Sn PLATING, AND Sn-PLATED STRIP THEREOF
JP4602285B2 (en) * 2006-05-30 2010-12-22 Jx日鉱日石金属株式会社 Copper alloy reflow Sn plating material excellent in whisker resistance and electronic component using the same
JP4740814B2 (en) * 2006-09-29 2011-08-03 Jx日鉱日石金属株式会社 Copper alloy reflow Sn plating material with excellent whisker resistance
JP4503620B2 (en) * 2007-01-25 2010-07-14 株式会社神戸製鋼所 Conductive material for connecting parts and method for manufacturing the same
CN101682135B (en) 2007-04-09 2013-10-02 古河电气工业株式会社 Connector and metallic material for connector
US7700883B2 (en) 2007-04-20 2010-04-20 (Kobe Steel, Ltd.) Terminal for engaging type connector
JP5464792B2 (en) * 2007-04-20 2014-04-09 株式会社神戸製鋼所 Method for manufacturing mating connector terminal
JP4916379B2 (en) * 2007-05-15 2012-04-11 Dowaメタルテック株式会社 Male terminal for PCB connector and manufacturing method thereof
JP4402132B2 (en) * 2007-05-18 2010-01-20 日鉱金属株式会社 Reflow Sn plating material and electronic component using the same
JP5355935B2 (en) 2007-05-29 2013-11-27 古河電気工業株式会社 Metal materials for electrical and electronic parts
JP4795466B2 (en) * 2007-06-29 2011-10-19 古河電気工業株式会社 Metal material, manufacturing method thereof, and electric / electronic component using the same
JP5025387B2 (en) 2007-08-24 2012-09-12 株式会社神戸製鋼所 Conductive material for connecting parts and method for manufacturing the same
JP2009097053A (en) 2007-10-19 2009-05-07 Hitachi Ltd Metal strip, connector, and mehod of manufacturing metal strip
JP2009135097A (en) * 2007-11-02 2009-06-18 Furukawa Electric Co Ltd:The Metal material for electric and electronic equipment, method of manufacturing metal material for electric and electronic equipment
JP4964795B2 (en) * 2008-01-23 2012-07-04 Jx日鉱日石金属株式会社 Copper alloy tin plating strip with excellent wear resistance
JP5410154B2 (en) * 2008-12-24 2014-02-05 三菱伸銅株式会社 Method and apparatus for producing plated copper strip
EP2351875B1 (en) 2009-01-20 2016-12-07 Mitsubishi Shindoh Co., Ltd. Conductive member and method for producing the same
JP5306870B2 (en) * 2009-03-25 2013-10-02 株式会社神戸製鋼所 Tin-plated copper alloy sheet for mating terminals
JP5384382B2 (en) * 2009-03-26 2014-01-08 株式会社神戸製鋼所 Copper or copper alloy with Sn plating excellent in heat resistance and method for producing the same
KR101175092B1 (en) 2010-04-21 2012-08-21 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Cu ALLOY Sn-PLATED STRIP HAVING EXCELLENT SOLDER WETTABILITY AND INSERTABILITY/EXTRABILITY
JP5789207B2 (en) 2012-03-07 2015-10-07 株式会社神戸製鋼所 Copper alloy plate with Sn coating layer for fitting type connection terminal and fitting type connection terminal
EP2703524A3 (en) 2012-08-29 2014-11-05 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Sn-coated copper alloy strip having excellent heat resistance
JP5692192B2 (en) * 2012-09-21 2015-04-01 株式会社オートネットワーク技術研究所 Method for manufacturing connector terminal and method for manufacturing connector terminal material
JP6134557B2 (en) * 2013-03-29 2017-05-24 Jx金属株式会社 Copper strip or copper alloy strip and heat dissipating part provided with the strip
JP6113674B2 (en) 2014-02-13 2017-04-12 株式会社神戸製鋼所 Copper alloy strip with surface coating layer with excellent heat resistance
JP6173943B2 (en) 2014-02-20 2017-08-02 株式会社神戸製鋼所 Copper alloy strip with surface coating layer with excellent heat resistance
JP6445895B2 (en) * 2014-03-04 2018-12-26 Dowaメタルテック株式会社 Sn plating material and method for producing the same
CN106795643B (en) 2014-08-25 2019-03-05 株式会社神户制钢所 The excellent connecting component conductive material of resistance to micro- skimming wear
JP6000392B1 (en) 2015-03-23 2016-09-28 株式会社神戸製鋼所 Conductive material for connecting parts
JP6081513B2 (en) * 2015-03-30 2017-02-15 株式会社神戸製鋼所 Copper alloy plate for heat dissipation parts
US20160344127A1 (en) * 2015-05-20 2016-11-24 Delphi Technologies, Inc. Electroconductive material with an undulating surface, an electrical terminal formed of said material, and a method of producing said material
CN107532321B (en) * 2015-06-01 2019-09-17 古河电气工业株式会社 Electric conductivity web and its manufacturing method
JP6113822B1 (en) 2015-12-24 2017-04-12 株式会社神戸製鋼所 Conductive material for connecting parts
JP2020105574A (en) * 2018-12-27 2020-07-09 三菱マテリアル株式会社 Anticorrosive terminal material, terminal and wire terminal structure

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02145793A (en) * 1988-11-28 1990-06-05 Kobe Steel Ltd Copper or copper alloy material coated with tin or solder plating excellent in thermal peeling resistance
JP2801793B2 (en) * 1991-04-30 1998-09-21 株式会社神戸製鋼所 Tin-plated copper alloy material and method for producing the same
JPH06196349A (en) * 1992-12-24 1994-07-15 Kobe Steel Ltd Copper lead frame material for tantalum capacitor and manufacture thereof
JPH11135226A (en) * 1997-10-27 1999-05-21 Harness Syst Tech Res Ltd Manufacture of fitting type connecting terminal
JP4514012B2 (en) * 2001-01-19 2010-07-28 古河電気工業株式会社 Plating material, manufacturing method thereof, and electric / electronic parts using the same
JP2002226982A (en) * 2001-01-31 2002-08-14 Dowa Mining Co Ltd Heat resistant film, its manufacturing method, and electrical and electronic parts
JP4090483B2 (en) * 2001-07-31 2008-05-28 株式会社神戸製鋼所 Conductive connection parts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9449728B2 (en) 2012-03-30 2016-09-20 Kobe Steel, Ltd. Electroconductive material for connection component

Also Published As

Publication number Publication date
JP2004068026A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
TWI577542B (en) Metal material for electronic parts and manufacturing method thereof
JP6113605B2 (en) Copper alloy strip with surface coating layer with excellent heat resistance
TWI548512B (en) Metal materials for electronic components
JP3408929B2 (en) Copper-based alloy and method for producing the same
CA2240239C (en) Tin coated electrical connector
US9330804B2 (en) Metallic material for electronic components, and connector terminals, connectors and electronic components using same
KR101639994B1 (en) Surface-treated plated material and method for producing same, and electronic component
US5780172A (en) Tin coated electrical connector
JP6050664B2 (en) METAL MATERIAL FOR ELECTRONIC COMPONENT AND ITS MANUFACTURING METHOD, CONNECTOR TERMINAL USING THE SAME, CONNECTOR AND ELECTRONIC COMPONENT
TWI473707B (en) Electronic material for electronic parts and method for manufacturing the same, use of its connector terminals, connectors and electronic parts
JP4308931B2 (en) Sn or Sn alloy-plated copper alloy thin plate and connector manufactured with the thin plate
US7871710B2 (en) Conductive material for a connecting part
CN101318390B (en) Remelting plating Sn material and electronic component using the same
CN103227369B (en) Tinplated copper alloy terminal material and the manufacture method thereof of plug property excellence
JP4372835B1 (en) Conductive member and manufacturing method thereof
EP1256981A1 (en) Metal article coated with near-surface doped tin or tin alloy
JP5280957B2 (en) Conductive member and manufacturing method thereof
JP4319247B1 (en) Conductive member and manufacturing method thereof
JP2007184142A (en) Flat cable
JP5464792B2 (en) Method for manufacturing mating connector terminal
JP4024244B2 (en) Conductive material for connecting parts and method for manufacturing the same
KR101682791B1 (en) A copper alloy sheet with sn coating layer for a fitting type connection terminal and a fitting type connection terminal
JP4771970B2 (en) Conductive material for connecting parts
EP2216426B1 (en) Tin-plated material for electronic part
JP6740635B2 (en) Tin-plated copper terminal material, its manufacturing method, and wire terminal structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080226

R150 Certificate of patent or registration of utility model

Ref document number: 4090302

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6