JP4814552B2 - Surface treatment method - Google Patents
Surface treatment method Download PDFInfo
- Publication number
- JP4814552B2 JP4814552B2 JP2005172578A JP2005172578A JP4814552B2 JP 4814552 B2 JP4814552 B2 JP 4814552B2 JP 2005172578 A JP2005172578 A JP 2005172578A JP 2005172578 A JP2005172578 A JP 2005172578A JP 4814552 B2 JP4814552 B2 JP 4814552B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- alloy
- thickness
- plating
- alloy layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Electroplating Methods And Accessories (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Description
本発明は、例えば自動車の電気配線などに使用される多ピンコネクタの表面のように、耐熱性と挿抜に際しての摩耗や摩擦係数を小さくすることの両立が要求される表面や、電気自動車の充電ソケットのように挿抜回数が多く大電流を流すものや、モーターのブラシのように回転体と接して耐摩耗性を要求される表面や、バッテリー端子のように耐摩耗性・耐腐食性が要求される表面や、更にプリント基板の接続等のはんだ付け性が必要な電気電子部品の表面処理とその製造法に関するものである。 The present invention, for example, a surface of a multi-pin connector used for an electric wiring of an automobile or the like, a surface that requires both heat resistance and reduced wear and friction coefficient during insertion and removal, and charging of an electric vehicle Require high wear resistance / corrosion resistance, such as sockets that allow a large current flow, such as sockets, surfaces that require contact with rotating bodies such as motor brushes, and wear resistance. The present invention relates to the surface treatment of electrical and electronic parts that require solderability such as the surface to be connected and the connection of a printed circuit board, and the manufacturing method thereof.
近年のエレクトロニクスの発達により、電気配線は複雑化、高集積化が進み、それに伴いコネクタの多ピン化も進んできている。また、外部からの熱やジュール熱による発熱等、熱環境もますます厳しくなってきている。
従来のSnめっきをしたコネクタでは抜き差しに際し、摩擦力が大きくなり、コネクタの挿入が困難になるという問題が生じてきている。更に、Snめっき材は熱影響により、素材や下地めっきからCuが拡散し、Cu―Sn系化合物層やその酸化皮膜の形成によって接触抵抗が増大するため耐熱性に劣り、また高湿度や高温度による保管でも、拡散や酸化によるはんだ付け性の低下が問題であった。
多ピン化したSnめっき付き端子の挿入力の低減策として、従来はSnめっきの下地に硬質なNiめっき等を施したり、Cu−Sn拡散層を設け、下地の硬さの向上や拡散バリア効果を狙った案が提案されている。
With the recent development of electronics, electrical wiring has become more complex and highly integrated, and accordingly, the number of connectors has been increased. In addition, the thermal environment is becoming increasingly severe, such as heat generated from the outside and Joule heat.
A conventional Sn-plated connector has a problem in that the frictional force increases when the connector is inserted and removed, making it difficult to insert the connector. Furthermore, the Sn plating material is inferior in heat resistance because Cu diffuses from the material and the underlying plating due to thermal effects, and the contact resistance increases due to the formation of the Cu-Sn compound layer and its oxide film. Even in storage by, deterioration of solderability due to diffusion and oxidation was a problem.
Conventionally, as a measure to reduce the insertion force of the Sn-plated terminals with multiple pins, hard Ni plating or the like is applied to the base of Sn plating, or a Cu-Sn diffusion layer is provided to improve the base hardness and diffusion barrier effect Proposals aimed at have been proposed.
しかしながら、Niめっき上にSnめっきを施した場合は、加熱試験後に生じるNi−Sn合金または更にその酸化物の接触抵抗が大きく、耐熱性に劣っている。また、端子挿入時に、Snが掘り起こされNiがむき出しになると、加熱後にNiの酸化物が接触抵抗を著しく悪化させる。更に、通常はNi下地めっきを1〜2μm程度施すため、端子成型時の曲げ加工時にクラック等を生じやすい欠点もある。Ni下地めっきを0.5μm程度に薄くしたとしても、上記接触抵抗の増大は解決できなかった。
中間層にCu−Sn拡散層を利用する際も、長期加熱により接触抵抗は増大し、またはんだ付け性にも劣っている。また、製造方法においても、表層にSnを残し、内側にCu−Sn拡散層を設ける方法として熱拡散を利用する方法があるが、拡散層の厚さの制御が難しく、また、制御したとしても、使用時の温度環境による拡散の進行を避けられず、耐熱性に劣っている。Cu―Sn拡散層を形成させた後にSnめっきをする案は、極めて複雑な工程を必要とし、コスト面および表面のSnめっきの密着性、成形加工性に劣り現実的ではない。
However, when Sn plating is performed on Ni plating, the contact resistance of the Ni—Sn alloy or its oxide generated after the heating test is large and the heat resistance is poor. Further, when Sn is dug up and Ni is exposed when the terminal is inserted, the Ni oxide significantly deteriorates the contact resistance after heating. In addition, since Ni base plating is usually applied in an amount of about 1 to 2 μm, there is a drawback that cracks and the like are likely to occur during bending at the time of terminal molding. Even if the Ni base plating is thinned to about 0.5 μm, the increase in the contact resistance cannot be solved.
When a Cu—Sn diffusion layer is used for the intermediate layer, the contact resistance increases due to long-term heating, or the soldering property is inferior. Also in the manufacturing method, there is a method using thermal diffusion as a method of leaving Sn on the surface layer and providing a Cu—Sn diffusion layer on the inner side, but it is difficult to control the thickness of the diffusion layer. , The progress of diffusion due to the temperature environment during use is inevitable, and heat resistance is poor. The proposal of Sn plating after forming the Cu—Sn diffusion layer requires an extremely complicated process, and is not practical because it is inferior in cost and surface Sn plating adhesion and formability.
また、現在の電気自動車では1日1回以上の充電を必要としており、充電用ソケット部品の耐摩耗性の確保が必要である。その上に10A以上の大電流が流れるため発熱が大きく、従来のSnめっき等の方法では、めっきが剥離してしまう等の問題も生じている。
更に、プリント基板の接続用では、環境対策としてPbフリーによる高温はんだへの移行や活性度の小さいフラックスへの移行のために、従来のSnめっき材よりも更に優れたはんだ付け性の要求がある。具体的には保管時の湿気や高温によっても、はんだ付け性が低下せず優れていることが必要である。
上記のような問題に対し、従来の表面処理方法では対応しきれないことが明らかになってきている。また本発明が提案する表面処理において、SnまたはSn合金層、Cu−Sn合金層あるいは更にCu層、そしてNiまたはNi合金層の被覆やその被覆方法は従来から提案されているが、その全てを含んだ最適な組み合わせやその最適な厚さは検討されていなかった。
In addition, current electric vehicles require charging once or more a day, and it is necessary to ensure wear resistance of the charging socket parts. On top of that, a large current of 10 A or more flows, so that the heat generation is large, and the conventional method such as Sn plating causes problems such as peeling of the plating.
Furthermore, for connection of printed circuit boards, there is a demand for solderability that is even better than conventional Sn plating materials for the transition to Pb-free high-temperature solder and the transition to flux with low activity as environmental measures. . Specifically, it is necessary that the solderability is not deteriorated even by humidity or high temperature during storage.
It has become clear that conventional surface treatment methods cannot cope with the above problems. Further, in the surface treatment proposed by the present invention, the coating of Sn or Sn alloy layer, Cu-Sn alloy layer or further Cu layer, and Ni or Ni alloy layer and its coating method have been conventionally proposed. The optimal combination and the optimal thickness were not considered.
本発明者らは上記課題を達成するために鋭意研究した結果、最表面にSnまたはSn合金層、その内側にCu−Sn合金層(Cu3Sn、Cu4Sn、Cu6Sn5等のCu−Sn金属間化合物を含む合金層や下地のNiが熱拡散したCu−Sn−Ni等の合金層等)を有し、場合によっては反応で残ったCu層を有し、更にその内側にNiまたはNi合金層を、所望の厚さに適正に形成させることにより、例えば多ピンコネクタや電気自動車の充電ソケット等に好適な耐熱性と摩擦係数が小さくしかも耐摩耗性に優れ、更にはんだ付け性に優れた表面を有する表面処理皮膜が得られることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that an Sn or Sn alloy layer is formed on the outermost surface, and a Cu—Sn alloy layer (Cu 3 Sn, Cu 4 Sn, Cu 6 Sn 5 or the like Cu is formed on the inner surface thereof. An alloy layer containing Sn intermetallic compound, an alloy layer such as Cu-Sn-Ni in which Ni of the base is thermally diffused, etc., and in some cases, a Cu layer left by the reaction may be provided, and Ni inside Or by forming the Ni alloy layer appropriately to the desired thickness, it is suitable for, for example, multi-pin connectors and electric vehicle charging sockets, has low heat resistance, low friction coefficient, excellent wear resistance, and solderability The inventors have found that a surface-treated film having an excellent surface can be obtained, and have completed the present invention.
すなわち本発明は、第1に、最表面に厚さXが0.05〜2μmのSnまたはSn合金層、その内側に厚さYが0.05〜2μmのCu−Snを主体とする金属間化合物を含む合金層、更にその内側に厚さZが0.01〜1μmのNiまたはNi合金層が形成されてなり、160℃で1000時間加熱した後にJIS H 3110によってR=0.2mmで圧延方向及び垂直方法に90°W曲げ試験を行った後のテープによるピーリングによって剥離が発生しない耐熱密着性を有することを特徴とする皮膜;第2に、0.2X≦Y≦5X、且つ、0.05Y≦Z≦3Yである第1記載の皮膜;第3に、前記金属間化合物を含む合金層と前記NiまたはNi合金層との間に厚さが0.7μm以下のCu層を有する第1または2記載の皮膜;第4に、前記皮膜で被覆される素材の少なくとも表面層がCuまたはCu合金である第1〜3のいずれかに記載の皮膜;第5に、素材表面上に、該表面側から順にNiまたはNi合金層、Cu層、SnまたはSn合金層を被覆した後に熱処理を施すことを特徴とする第1〜4のいずれかに記載の皮膜の製造方法;第6に、素材表面上に、該表面側から順にNiまたはNi合金層、Cu層、SnまたはSn合金層を被覆した後にリフロー処理を施すことを特徴とする第1〜4のいずれかに記載の皮膜の製造方法;第7に、表面粗さにおいて十点平均粗さが1.5μm以下で且つ中心線平均粗さが0.15μm以下である素材表面上に、該表面側から順にNiまたはNi合金層、Cu層、SnまたはSn合金層を被覆した後に熱処理を施すことを特徴とする第1〜4のいずれかに記載の皮膜の製造方法;第8に、表面粗さにおいて十点平均粗さが1.5μm以下で且つ中心線平均粗さが0.15μm以下である素材表面上に、該表面側から順にNiまたはNi合金層、Cu層、SnまたはSn合金層を被覆した後にリフロー処理を施すことを特徴とする第1〜4のいずれかに記載の皮膜の製造方法;第9に、前記NiまたはNi合金層を被覆する前に予め前記素材表面上にCuまたはCu合金層を被覆する第5〜8のいずれかに記載の製造方法;第10に、素材表面が第1〜4のいずれかに記載の皮膜で被覆されてなることを特徴とする電気電子部品;第11に、最表面に厚さXが0.05〜2μmのSnまたはSn合金層、その内側に厚さYが0.05〜2μmのCu−Snを主体とする金属間化合物を含む合金層、更にその内側に厚さZが0.01〜1μmのNiまたはNi合金層が形成されてなり、Ni、Snを含むCu合金素材の表面を被覆することを特徴とする皮膜;第12に、Ni、Snを含むCu合金素材の表面上に、該表面側から順にNiまたはNi合金層、Cu層、SnまたはSn合金層を被覆した後にリフロー処理を施すことを特徴とする第11記載の皮膜の製造方法;第13に、Ni、Snを含むCu合金素材の表面が第11記載の皮膜で被覆されてなることを特徴とする電気電子部品、を提供するものである。 That is, according to the present invention, firstly, an Sn- or Sn-alloy layer having a thickness X of 0.05 to 2 μm on the outermost surface, and an intermetallic mainly composed of Cu—Sn having a thickness Y of 0.05 to 2 μm inside An alloy layer containing a compound and a Ni or Ni alloy layer having a thickness Z of 0.01 to 1 μm are formed on the inner side of the alloy layer. After heating at 160 ° C. for 1000 hours, rolling with R = 0.2 mm by JIS H 3110 A film characterized by having heat-resistant adhesion that does not cause peeling by peeling with a tape after performing a 90 ° W bending test in the direction and the vertical method; second, 0.2X ≦ Y ≦ 5X, and 0 .05Y.ltoreq.Z.ltoreq.3Y. Third, a Cu layer having a thickness of 0.7 .mu.m or less between the alloy layer containing the intermetallic compound and the Ni or Ni alloy layer. A coating according to 1 or 2; The film according to any one of 1 to 3, wherein at least the surface layer of the material to be coated with the film is Cu or Cu alloy; fifth, the Ni or Ni alloy layer in order from the surface side on the material surface; A method for producing a coating film according to any one of claims 1 to 4, wherein a heat treatment is performed after the Cu layer, Sn or Sn alloy layer is coated; sixth, Ni on the material surface in order from the surface side; Or a method for producing a coating film according to any one of 1 to 4, wherein the Ni alloy layer, Cu layer, Sn or Sn alloy layer is coated, and then reflow treatment is performed; A Ni or Ni alloy layer, a Cu layer, a Sn or Sn alloy layer were coated in order from the surface side on the surface of the material having a point average roughness of 1.5 μm or less and a center line average roughness of 0.15 μm or less. It is characterized by heat treatment afterwards The method for producing a coating according to any one of 1 to 4; eighth, on the surface of the material having a ten-point average roughness of 1.5 μm or less and a centerline average roughness of 0.15 μm or less in surface roughness The method for producing a coating according to any one of 1 to 4, wherein a reflow treatment is performed after coating the Ni or Ni alloy layer, Cu layer, Sn or Sn alloy layer in order from the surface side; The manufacturing method according to any one of 5 to 8, wherein the surface of the raw material is coated with Cu or a Cu alloy layer in advance before the Ni or Ni alloy layer is coated; 4. An electric / electronic component coated with the coating according to any one of 4; 11th, an Sn or Sn alloy layer having a thickness X of 0.05 to 2 μm on the outermost surface, and a thickness on the inner side thereof Intermetallic compound mainly composed of Cu-Sn with Y of 0.05-2 μm An alloy layer containing an object, and further a Ni or Ni alloy layer having a thickness Z of 0.01 to 1 μm is formed on the inner side thereof, and coats the surface of a Cu alloy material containing Ni and Sn Twelfth, the surface of the Cu alloy material containing Ni and Sn is coated with the Ni or Ni alloy layer, the Cu layer, the Sn or Sn alloy layer in this order from the surface side, and then reflow treatment is performed. A method for producing a coating according to the eleventh aspect; thirteenthly, provides an electrical and electronic component characterized in that the surface of a Cu alloy material containing Ni and Sn is coated with the coating according to the eleventh.
後記の実施例から明らかなように、本発明に係る表面処理およびその製造方法、更にこれらによって得られた電気電子部品は、摩擦抵抗、成型加工性、はんだ付け性に優れ、且つ、長期加熱後の密着性、接触抵抗、耐変色等に優れることから、近時の自動車電装品等の高密度化に対応できるコネクタ材ならびに耐摩耗性やはんだ付け性等が要求されるプリント基板の接続用コネクタ等、電気電子部品用材料として優れたものである。 As will be apparent from the examples described later, the surface treatment according to the present invention and the manufacturing method thereof, and the electric and electronic parts obtained by these methods are excellent in friction resistance, molding processability, solderability, and after long-term heating. Connector material that can handle high density of recent automobile electrical components, etc., and printed circuit board connection connectors that require wear resistance, solderability, etc. It is excellent as a material for electrical and electronic parts.
本発明の内容を具体的に説明する。また本発明の数値範囲の限定理由を述べる。
まず、最表面のSn層の厚さであるが、厚さが0.05μm未満であると接触抵抗の安定性、はんだ付け性が低下する。特に、低荷重での接触抵抗が不安定になりやすく、保管時の湿気や温度によるはんだ付け性の低下も生じる。また、H2SやSO2による腐食や水分の存在下におけるNH3ガスによる腐食等耐食性低下が問題となる。Sn層の厚さが2μmを越えると、端子挿入時の掘り起こし摩擦による挿入力抵抗の増大、疲労特性の低下や、経済的にも不利になる等の問題を生じる。更にその内側に形成すべき熱処理によって得られるCu−Sn拡散層の厚さが厚くなりすぎ、加工時に割れるなどの成形加工性の低下が認められる。したがって、Sn層の厚さは、0.05〜2μmの範囲とする。更に、好ましい範囲としては、0.1〜1μmの範囲とする。
The contents of the present invention will be specifically described. The reason for limiting the numerical range of the present invention will be described.
First, regarding the thickness of the outermost Sn layer, if the thickness is less than 0.05 μm, the stability of the contact resistance and the solderability deteriorate. In particular, the contact resistance at low load tends to become unstable, and the solderability deteriorates due to moisture and temperature during storage. Further, there is a problem of corrosion resistance degradation such as corrosion due to H 2 S or SO 2 or corrosion due to NH 3 gas in the presence of moisture. When the thickness of the Sn layer exceeds 2 μm, problems such as an increase in insertion force resistance due to digging friction during terminal insertion, a decrease in fatigue characteristics, and an economical disadvantage arise. Furthermore, the thickness of the Cu—Sn diffusion layer obtained by heat treatment to be formed on the inside becomes too thick, and a decrease in molding processability such as cracking during processing is recognized. Therefore, the thickness of the Sn layer is in the range of 0.05 to 2 μm. Furthermore, a preferable range is 0.1 to 1 μm.
ここで、Sn層の形成は、めっき、溶融浸漬、ショットピーニング、クラッド等いずれの方法を用いても良いが、厚さの制御やコスト面からめっきが望ましい。また、ここでいうSn層の厚さは、熱処理等による拡散処理が完了した後の最表面のSn層の厚さであり、Cu−Sn金属間化合物層の外側(表面側)の部分である。ただし、拡散処理の影響により、20wt%以下のSn以外の元素を含んでも良い。Sn以外の元素を20wt%を超えて含有すると、長期加熱後のはんだ付け性や接触抵抗に問題が生じる場合がある。さらに、拡散処理前の最表面に被覆するSnは、Sn−Cu、Sn−Ag、Sn−Bi、Sn−Zn、Sn−Pb等の合金めっきやSn−In等の溶融浸漬でも構わない。ただし、内側にCu−Sn金属間化合物を含む合金層を設ける拡散処理を行った際や長期加熱により、Sn中のCu、Ag、Bi、Zn、Pb、In等が最表面に拡散し、酸化しても、はんだ付け性や接触抵抗を低下させないことが重要である。 Here, the Sn layer may be formed by any method such as plating, melt dipping, shot peening, and cladding, but plating is desirable from the viewpoint of thickness control and cost. Moreover, the thickness of Sn layer here is the thickness of Sn layer of the outermost surface after the diffusion process by heat processing etc. is completed, and is the part of the outer side (surface side) of a Cu-Sn intermetallic compound layer. . However, 20 wt% or less of elements other than Sn may be included due to the influence of the diffusion treatment. If elements other than Sn are contained in excess of 20 wt%, problems may occur in solderability and contact resistance after long-term heating. Furthermore, Sn coated on the outermost surface before the diffusion treatment may be alloy plating such as Sn—Cu, Sn—Ag, Sn—Bi, Sn—Zn, Sn—Pb, or melt dipping such as Sn—In. However, Cu, Ag, Bi, Zn, Pb, In, etc. in Sn diffuses to the outermost surface when diffusion treatment is performed in which an alloy layer containing a Cu—Sn intermetallic compound is provided on the inside or by long-term heating. Even so, it is important not to lower the solderability and the contact resistance.
また、Sn被覆の下地として、厚さ0.05〜2μmのCu―Sn金属間化合物を含む合金層が必要である。このCu−Sn金属間化合物を含む合金層は、熱処理によって下地Cu被覆例えばCuめっきからのCuの拡散を利用し、表面に被覆したSnと合金化することを利用して形成させるのが好ましい。したがって反応後に残るCuを含むものとする。ただし、Cuとして残るめっき厚さは0.7μm以下、更に0.3μm以下が望ましい。余剰なCuは、長期加熱により拡散し、Cu−Sn拡散層を成長させ、最表層部のSn厚さを減少し、接触抵抗やはんだ付け性を低下させる。 In addition, an alloy layer containing a Cu—Sn intermetallic compound having a thickness of 0.05 to 2 μm is required as a base for Sn coating. The alloy layer containing the Cu—Sn intermetallic compound is preferably formed by heat treatment using an underlying Cu coating, for example, Cu diffusion from Cu plating, and alloying with Sn coated on the surface. Therefore, Cu remaining after the reaction is included. However, the plating thickness remaining as Cu is preferably 0.7 μm or less, and more preferably 0.3 μm or less. Excess Cu diffuses by long-term heating, grows a Cu-Sn diffusion layer, decreases the Sn thickness of the outermost layer, and decreases contact resistance and solderability.
このようにして得られたCu―Sn金属間化合物を含む合金層は、更にその内側(下地側)からのNiの拡散を効果的に抑制し、表面にNi−Snの合金層やその酸化物の形成を効果的に抑制する。これにより、長期加熱後の接触抵抗の増大を抑制することができる。更に、硬質なCu−Sn系金属間化合物を含む合金層は挿入力の低減効果にも寄与する。このような効果を効率的に発現させるためには0.05μm以上、好ましくは0.1μm以上の厚さが必要である。
しかしながら、Cu−Sn金属間化合物を含む合金層が厚すぎると、加工性が著しく低下する。また、拡散によって生じたCu−Sn拡散層は表面粗さを増大するため、最表層部のSn被覆を調整しても、外観の荒れや挿入力に悪影響を及ぼしやすい。したがって、好ましいCu−Sn厚さは2μm以下、更に好ましくは1μm以下とする。
The alloy layer containing the Cu—Sn intermetallic compound thus obtained further effectively suppresses the diffusion of Ni from the inner side (underlying side), and the Ni—Sn alloy layer and its oxide are formed on the surface. Is effectively suppressed. Thereby, the increase in contact resistance after long-term heating can be suppressed. Furthermore, the alloy layer containing a hard Cu—Sn intermetallic compound also contributes to the effect of reducing the insertion force. In order to efficiently exhibit such an effect, a thickness of 0.05 μm or more, preferably 0.1 μm or more is required.
However, if the alloy layer containing the Cu—Sn intermetallic compound is too thick, the workability is significantly reduced. In addition, since the Cu—Sn diffusion layer produced by diffusion increases the surface roughness, even if the Sn coating of the outermost layer portion is adjusted, it is easy to adversely affect the appearance roughness and insertion force. Therefore, the preferable Cu—Sn thickness is 2 μm or less, more preferably 1 μm or less.
更にCu−Sn金属間化合物を含む合金層の内側(下地)に、NiまたはNi合金層の被覆を必要とする。このNiまたはNi合金層は、素材に銅または銅合金を利用した際のCuの拡散を効果的に抑制するばかりでなく、銅合金中の添加元素の拡散を効果的に抑制し、接触抵抗やはんだ付け性、更には皮膜の耐熱密着性の低下を効果的に防止する。例えば、黄銅中のZn、りん青銅中のP等である。
また、このNiまたはNi合金層は、その上のCu−Sn金属間化合物を含む合金層と相まって、挿入力抵抗、耐熱性、耐食性等を向上する効果がある。このNiまたはNi合金層は、めっきによって形成される場合が多いが前述のSn同様、いかなる方法でも良い。また、被覆するのはNiでも良いし、Ni合金でも良い。電気めっきで行うNi合金としては、Ni−Co、Ni−P等が挙げられる。また、Cu−Sn拡散層を得る熱処理の際に、素材やCuめっきと拡散し、Ni―Cu等の合金層が形成されても構わない。
Furthermore, it is necessary to coat Ni or a Ni alloy layer on the inner side (underlayer) of the alloy layer containing a Cu—Sn intermetallic compound. This Ni or Ni alloy layer not only effectively suppresses the diffusion of Cu when copper or a copper alloy is used as the material, but also effectively suppresses the diffusion of additive elements in the copper alloy, It effectively prevents the solderability and the heat resistance adhesion of the film from decreasing. For example, Zn in brass and P in phosphor bronze.
In addition, this Ni or Ni alloy layer has an effect of improving insertion force resistance, heat resistance, corrosion resistance and the like in combination with an alloy layer containing a Cu—Sn intermetallic compound thereon. This Ni or Ni alloy layer is often formed by plating, but any method may be used as in the case of Sn described above. Further, Ni may be coated or Ni alloy may be coated. Ni-Co, Ni-P, etc. are mentioned as Ni alloy performed by electroplating. Further, during the heat treatment for obtaining the Cu—Sn diffusion layer, an alloy layer such as Ni—Cu may be formed by diffusing with the material or Cu plating.
また、素材を鉄鋼材料やステンレス、アルミ合金等の銅、銅合金以外にも応用できる。この場合、NiやNi合金皮膜の密着性向上のために、Cu下地めっきを行うことができるが、この下地めっきからのCuの拡散を効果的に抑制できるため、長期加熱時の接触抵抗変化やはんだ付け性の劣化を効果的に抑制できる。
一般的には、電気電子部品は、その電気伝導性やばね性、磁性等必要な特性等を考慮すると、素材は銅または銅合金が好ましいが、前述のようにこの限りではない。素材を銅または銅合金とした場合は下地側から、NiまたはNi合金、(Cu)、Cu−Sn金属間化合物を含む合金、SnまたはSn合金の順、あるいはCuまたはCu合金、NiまたはNi合金、(Cu)、Cu−Sn金属間化合物を含む合金、SnまたはSn合金の層構造であることが必要である。
In addition, the material can be applied to materials other than copper and copper alloys such as steel materials, stainless steel, and aluminum alloys. In this case, in order to improve the adhesion of Ni or Ni alloy film, Cu base plating can be performed, but since diffusion of Cu from the base plating can be effectively suppressed, contact resistance change during long-term heating and Degradation of solderability can be effectively suppressed.
In general, the electric and electronic parts are preferably made of copper or a copper alloy in consideration of necessary properties such as electric conductivity, springiness, and magnetism, but are not limited thereto as described above. When the material is copper or copper alloy, from the base side, Ni or Ni alloy, (Cu), Cu-Sn intermetallic compound, Sn or Sn alloy, or Cu or Cu alloy, Ni or Ni alloy , (Cu), an alloy containing a Cu—Sn intermetallic compound, a Sn or Sn alloy layer structure.
素材を銅合金とした場合は、強度、弾性、電気伝導性、加工性、耐食性などの面から好ましい添加元素の範囲として、Zn:0.01〜50wt%、Sn:0.1〜12wt%、Fe:0.01〜5wt%、Ni:0.01〜30wt%、Co:0.01〜5wt%、Ti:0.01〜5wt%、Mg:0.01〜3wt%、Zr:0.01〜3wt%、Ca:0.01〜1wt%、Si:0.01〜5wt%、Mn:0.01〜20wt%、Cd:0.01〜5wt%、Al:0.01〜10wt%、Pb:0.01〜5wt%、Bi:0.01〜5wt%、Be:0.01〜3wt%、Te:0.01〜1wt%、Y:0.01〜5wt%、La:0.01〜5wt%、Cr:0.01〜5wt%、Ce:0.01〜5wt%、Au:0.01〜5wt%、Ag:0.01〜5wt%、P:0.005〜0.5wt%のうち少なくとも1種以上の元素を含み、その総量が0.01〜50wt%であることが望ましい。
なお、原料としてのリサイクル性を考慮すると銅合金にNi、Snを含むことが望ましい。
When the material is a copper alloy, Zn: 0.01 to 50 wt%, Sn: 0.1 to 12 wt%, as a preferable range of additive elements from the viewpoint of strength, elasticity, electrical conductivity, workability, corrosion resistance, etc. Fe: 0.01-5 wt%, Ni: 0.01-30 wt%, Co: 0.01-5 wt%, Ti: 0.01-5 wt%, Mg: 0.01-3 wt%, Zr: 0.01 -3 wt%, Ca: 0.01-1 wt%, Si: 0.01-5 wt%, Mn: 0.01-20 wt%, Cd: 0.01-5 wt%, Al: 0.01-10 wt%, Pb : 0.01-5 wt%, Bi: 0.01-5 wt%, Be: 0.01-3 wt%, Te: 0.01-1 wt%, Y: 0.01-5 wt%, La: 0.01- 5 wt%, Cr: 0.01-5 wt%, Ce: 0.01-5 wt%, Au: 0 01~5wt%, Ag: 0.01~5wt%, P: comprises at least one element of 0.005 to 0.5%, it is desirable that the total amount thereof is 0.01~50wt%.
In consideration of recyclability as a raw material, it is desirable that the copper alloy contains Ni and Sn.
次に各層の厚さとその限定理由について述べる。
最表面のSnまたはSn合金層の厚さ(X)、その内側のCu−Snを主体とする金属間化合物を含む合金層の厚さ(Y)、その内側のNiまたはNi合金層の厚さ(Z)、それぞれの厚さの最適値については前述したとおりである。しかしながら、それぞれの表面処理に相互作用があり、厚さの比率を限定した方が望ましいことがわかった。
具体的には、長期加熱による各元素の拡散、酸化による電気性能劣化への対応、端子挿入時の掘り起こし抵抗や凝着による挿入力増大への対応、摩耗や腐食への対応等で、最適な膜厚比が得られることである。膜厚比は以下であることが望ましい。
0.2X ≦ Y ≦ 5X (1)式
0.05Y ≦ Z ≦ 3Y (2)式
膜厚比が上限を越えた場合あるいは下限未満の場合は、加熱後の接触抵抗、耐湿試験後のはんだ付け性、端子挿入力抵抗、摩耗量、耐食性等のいずれかが低下し、全てを満足できなくなる。したがって(1)式、(2)式を満たす膜厚にすることが重要である。
Next, the thickness of each layer and the reason for the limitation will be described.
The thickness (X) of the outermost Sn or Sn alloy layer, the thickness (Y) of the alloy layer containing an intermetallic compound mainly composed of Cu-Sn inside thereof, and the thickness of the Ni or Ni alloy layer inside thereof (Z), and the optimum value of each thickness is as described above. However, it has been found that it is desirable to limit the thickness ratio because there is an interaction between the respective surface treatments.
Specifically, it is optimal for diffusion of each element due to long-term heating, response to electrical performance deterioration due to oxidation, resistance to digging resistance when inserting a terminal, response to increased insertion force due to adhesion, response to wear and corrosion, etc. The film thickness ratio is obtained. The film thickness ratio is desirably as follows.
0.2X ≦ Y ≦ 5X (1) Formula
0.05Y ≤ Z ≤ 3Y (2) If the film thickness ratio exceeds the upper limit or less than the lower limit, contact resistance after heating, solderability after moisture resistance test, terminal insertion force resistance, wear amount, corrosion resistance Etc. will drop, and all will not be satisfied. Therefore, it is important to make the film thickness satisfying the expressions (1) and (2).
次に素材の表面粗さにおいて、JIS B 0601に準拠した測定方法によって、十点平均粗さが1.5μm以下で且つ中心線平均粗さが0.15μm以下であることが好ましい。素材の表面粗さを限定することにより、その素材上に被覆する各層の表面平滑度が安定し、密着性や外観が向上する。まためっきを行う場合は、耐熱密着性や膜厚分布にも効果がある。
素材の表面粗さの規定は、特に、下地側から場合によってはCuまたはCu合金を被覆し、更にNiまたはNi合金、Cu、SnまたはSn合金を被覆した表面と、その後に行うリフロー等の熱処理後の外観や表面粗さの安定に寄与する。リフロー後の表面粗さは、十点平均粗さが1.0μm以下で且つ中心線平均粗さが0.1μm以下であることが好ましい。
Next, in terms of the surface roughness of the material, it is preferable that the ten-point average roughness is 1.5 μm or less and the center line average roughness is 0.15 μm or less by a measuring method based on JIS B 0601. By limiting the surface roughness of the material, the surface smoothness of each layer coated on the material is stabilized, and the adhesion and appearance are improved. Moreover, when plating, it is effective also in heat resistant adhesiveness and film thickness distribution.
In particular, the surface roughness of the material is defined by a surface coated with Cu or a Cu alloy as occasion demands, and further coated with Ni or a Ni alloy, Cu, Sn or Sn alloy, followed by a heat treatment such as reflow. Contributes to the stability of the subsequent appearance and surface roughness. The surface roughness after reflow is preferably such that the ten-point average roughness is 1.0 μm or less and the center line average roughness is 0.1 μm or less.
また、素材自体の酸化皮膜厚さは各層を形成する上で重要である。特に前処理との関わりで、めっき法で皮膜を形成する場合は、密着性、外観、拡散時のボイド発生等に影響するので、素材の酸化皮膜は20nm以下、好ましくは12nm以下とするべきである。
これらにより、最表面に厚さが0.05〜2μmのSnまたはSn合金層とその内側に厚さが0.05〜2μmで且つ式(1)を満足するCu−Snを主体とする金属間化合物を含む合金層または更にCuと、更にその内側に厚さが0.01〜1μmで且つ式(2)を満足するNiまたはNi合金層で構成された耐熱性の皮膜を効果的に得ることができる。
Further, the thickness of the oxide film of the material itself is important in forming each layer. In particular, in the case of forming a film by plating in relation to the pretreatment, it affects the adhesion, appearance, void generation at the time of diffusion, etc., so the oxide film of the material should be 20 nm or less, preferably 12 nm or less. is there.
Accordingly, the Sn or Sn alloy layer having a thickness of 0.05 to 2 μm on the outermost surface and a metal mainly composed of Cu—Sn having a thickness of 0.05 to 2 μm inside and satisfying the formula (1) To effectively obtain a heat-resistant film composed of an alloy layer containing a compound or further Cu, and further Ni or a Ni alloy layer satisfying the formula (2) having a thickness of 0.01 to 1 μm inside thereof Can do.
次に製造方法に関して述べる。
本発明の構成を効果的に得る方法として以下に詳述する。
まず、表面粗さや酸化皮膜厚さを調整した素材を準備し、場合によってはCuを被覆する。素材が銅や銅合金である場合には下地のCu被覆を省略できる。以下、被覆の望ましい方法であるめっきを例として記述する。
素材またはCuめっきした素材にNiまたはNi合金をめっきする。ただし、密着性を考慮し、脱脂、酸洗等の洗浄を充分に行う必要がある。次にCuめっきを行う。ただし、このCuのめっき後の外観や密着性を向上するために、NiめっきとCuめっきとの工程間で酸洗を行うことが望ましい。
そして、最表層にSnまたはSn合金めっきを行う。このように、下地側から、Ni、Cu、Snの基本構造をとることが重要である。
Next, a manufacturing method will be described.
A method for effectively obtaining the configuration of the present invention will be described in detail below.
First, a material whose surface roughness and oxide film thickness are adjusted is prepared, and in some cases, Cu is coated. When the material is copper or a copper alloy, the underlying Cu coating can be omitted. Hereinafter, plating, which is a desirable method of coating, will be described as an example.
Ni or Ni alloy is plated on the material or Cu-plated material. However, it is necessary to sufficiently perform cleaning such as degreasing and pickling in consideration of adhesion. Next, Cu plating is performed. However, in order to improve the appearance and adhesion after Cu plating, it is desirable to perform pickling between the steps of Ni plating and Cu plating.
Then, Sn or Sn alloy plating is performed on the outermost layer. Thus, it is important to take the basic structure of Ni, Cu, and Sn from the base side.
次に、中間めっきのCuと最表面のSnを拡散させ、Cu−Sn拡散層を得る。この処理は、最表面のSnを溶融させるリフロー処理と兼ねることが望ましい。具体的には、リフロー処理時のヒートパターンを適正にすることにより、所望の厚さのSnとCu−Sn拡散層が得られる。ただし、中間のCuめっきは、Cu―Sn拡散層を形成するための厚さであればよく、反応で残された余剰な厚さとしては必要ない。具体的にはCuとして残る厚さは0.7μm以下、更に0.3μm以下が望ましい。余剰なCuは、長期加熱により拡散し、Cu−Sn拡散層を成長させ、最表層部のSn厚さを減少し、接触抵抗やはんだ付け性を低下させる。
リフロー処理条件は、300〜900℃の温度、1〜300秒間の条件が望ましい。300℃より低い温度や900℃を越える温度では、リフローと拡散の両方を同時に制御しにくい。特に良好な表面状態と酸化抑制の面と、拡散層の厚さ制御や部分的に急激に拡散層が成長する異常拡散の抑制面で温度因子は重要である。雰囲気ガスはリフローの方法によって適宜選択可能である。主なリフロー方式は、バーナー方式、熱風循環方式、赤外線方式、ジュール熱方式があるが、いずれの方式を用いてもよい。ただし、それらの方法によって加熱時間が異なるが、1秒未満では充分な拡散層が得られず、且つ300秒を超える時間では効果が飽和し、コスト的にも不利になる。
Next, Cu of the intermediate plating and Sn on the outermost surface are diffused to obtain a Cu—Sn diffusion layer. This treatment is preferably combined with a reflow treatment for melting the outermost Sn. Specifically, Sn and Cu—Sn diffusion layers having a desired thickness can be obtained by making the heat pattern during the reflow process appropriate. However, the intermediate Cu plating only needs to have a thickness for forming the Cu—Sn diffusion layer, and is not required as an excessive thickness left by the reaction. Specifically, the thickness remaining as Cu is preferably 0.7 μm or less, and more preferably 0.3 μm or less. Excess Cu diffuses by long-term heating, grows a Cu-Sn diffusion layer, decreases the Sn thickness of the outermost layer, and decreases contact resistance and solderability.
The reflow treatment conditions are preferably a temperature of 300 to 900 ° C. and a condition of 1 to 300 seconds. At temperatures lower than 300 ° C. or temperatures exceeding 900 ° C., it is difficult to control both reflow and diffusion at the same time. In particular, the temperature factor is important in terms of a good surface state and oxidation suppression, and a control of the thickness of the diffusion layer and a suppression of abnormal diffusion in which the diffusion layer grows abruptly. The atmospheric gas can be appropriately selected depending on the reflow method. The main reflow methods include a burner method, a hot air circulation method, an infrared method, and a Joule heat method, but any method may be used. However, although the heating time varies depending on these methods, if less than 1 second, a sufficient diffusion layer cannot be obtained, and if the time exceeds 300 seconds, the effect is saturated and the cost becomes disadvantageous.
また、Snのリフロー後の酸化皮膜厚さはできるだけ薄い方が望ましいが、その厚さは30nm以下が望ましい。表面の酸化皮膜厚さが30nmを越えると接触抵抗が増加し、また極めて不安定となり電気性能が劣化する。さらにはんだ付け性や酸化皮膜の密着性が低下し、その後の加工で剥離する場合がある。更に好ましい酸化皮膜厚さは、20nm以下である。ここで、酸化皮膜は、酸化錫が主体であるが、この酸化皮膜はSnに添加した元素やCu−Sn拡散層中のCu、下地のNiまたはNi合金元素が拡散したもの、あるいは素材の銅基合金中に含まれる添加元素が拡散したものがSnと共に複合酸化物を形成したものを含む。 Further, the thickness of the oxide film after Sn reflow is desirably as thin as possible, but the thickness is desirably 30 nm or less. If the thickness of the oxide film on the surface exceeds 30 nm, the contact resistance increases and becomes extremely unstable and the electrical performance deteriorates. Furthermore, the solderability and the adhesion of the oxide film may be reduced, and peeling may occur in subsequent processing. A more preferable oxide film thickness is 20 nm or less. Here, the oxide film is mainly composed of tin oxide. This oxide film is formed by diffusion of an element added to Sn, Cu in a Cu—Sn diffusion layer, Ni or an Ni alloy element as a base, or copper as a material. What diffused the additive element contained in a base alloy includes what formed complex oxide with Sn.
このような表面に形成された酸化物は、下地のCu−Snの拡散層、NiまたはNi合金層と相まって耐摩耗性やすべり性を向上させる効果がある。しかしながら、表面酸化物は、接触抵抗やはんだ付け性に悪影響を及ぼすため、薄く制御した方が好ましい。
以上によって構成された皮膜は、電気部品のオス、メス端子に応用する場合において、オス側、メス側のいずれかもしくはその両方に適用できる。さらに、必要な部分のみに適用しても差し支えない。
The oxide formed on such a surface has an effect of improving wear resistance and slipperiness in combination with the underlying Cu—Sn diffusion layer, Ni or Ni alloy layer. However, since the surface oxide adversely affects contact resistance and solderability, it is preferable to control the surface oxide thinly.
The film constituted as described above can be applied to either or both of the male side and the female side when applied to the male and female terminals of the electrical component. Furthermore, it may be applied only to necessary portions.
以下に本発明の実施例を記載する。 Examples of the present invention will be described below.
[実施例1] 表1にその厚さと構成を示す表面処理材No.1〜16を準備した。ただし、各層の形成手段はすべて電気めっきにて行った。具体的には、Niはスルファミン酸ニッケル浴を、Cuは硫酸銅浴を、Snは硫酸塩浴を用いた。また、Niめっきの前後の工程で酸洗を行った。
ただし、No.9、10、15はNiを、No.11はNi、Cuを、No.12はCuを、No.16はSnめっきを行わなかった(表1でその皮膜厚さに棒線を引いている)。
素材は、1wt%Ni、0.9wt%Sn、0.05wt%Pを含んだ銅合金の板厚0.25mmの圧延材を用い、表面粗さは、十点平均粗さが0.9μmで且つ中心線平均粗さが0.08μmであり、素材の酸化皮膜厚さは約7nmであって、20nmよりも充分に小さい値であった。
[Example 1] In Table 1, the surface treatment material No. 1-16 were prepared. However, all the means for forming each layer were performed by electroplating. Specifically, Ni was a nickel sulfamate bath, Cu was a copper sulfate bath, and Sn was a sulfate bath. Moreover, pickling was performed in the steps before and after the Ni plating.
However, no. 9, 10 and 15 are Ni, No. 11 is Ni, Cu, No. 11; 12 is Cu. No. 16 did not perform Sn plating (the bar is drawn to the film thickness in Table 1).
The material used is a rolled material of 0.25 mm thick copper alloy containing 1 wt% Ni, 0.9 wt% Sn, and 0.05 wt% P. The surface roughness is 0.9 μm with a 10-point average roughness of 0.9 μm. The center line average roughness was 0.08 μm, and the thickness of the oxide film of the material was about 7 nm, which was a value sufficiently smaller than 20 nm.
次にリフロー条件を変化させ、450〜700℃、4〜20秒間の連続リフロー処理を行い、リフロー処理と同時に拡散層の形成も行った。リフロー後の最表面の酸化皮膜厚さは、AES、ESCAの測定結果から、No.1〜14は約3〜8nm、No.15、16はいずれも約15nmであって、いずれの試料も30nmよりも充分に小さい値であった。また表面粗さは、十点平均粗さが0.2〜0.7μmで、且つ、中心線平均粗さが0.05〜0.10μmであった。
各層の厚さは、一層ずつ電解法により表層側から溶解し、X線膜厚計と電解法により測定した。更に、厚さが薄いものに対しては、オージェ電子分光装置(AES)、光電子分光装置(ESCA)等の分析装置を併用したり、断面を透過電子顕微鏡(TEM)観察し、測定した。また、計算によって得られる目標電着量との整合性も確認しながら各層の膜厚を測定した。そして膜厚として確認できなかった皮膜(Sn<0.05μm、Cu−Sn<0.05μm、Cu<0.05μm)についてはNDと表示した。
Next, the reflow conditions were changed, and a continuous reflow process was performed at 450 to 700 ° C. for 4 to 20 seconds, and a diffusion layer was formed simultaneously with the reflow process. From the measurement results of AES and ESCA, the thickness of the outermost oxide film after the reflow is No. Nos. 1 to 14 are about 3 to 8 nm. 15 and 16 were both about 15 nm, and both samples were sufficiently smaller than 30 nm. Further, the surface roughness was 10-point average roughness of 0.2 to 0.7 μm and center line average roughness of 0.05 to 0.10 μm.
The thickness of each layer was dissolved one by one from the surface layer side by an electrolytic method, and measured by an X-ray film thickness meter and an electrolytic method. Furthermore, for thin materials, an analyzer such as an Auger electron spectrometer (AES) or a photoelectron spectrometer (ESCA) was used in combination, or the cross section was observed with a transmission electron microscope (TEM) and measured. Further, the thickness of each layer was measured while confirming the consistency with the target electrodeposition amount obtained by calculation. And about the film | membrane (Sn <0.05micrometer, Cu-Sn <0.05micrometer, Cu <0.05micrometer) which could not be confirmed as a film thickness, it displayed as ND.
以上のようにして得られた試験材の摩擦係数測定、成形加工性、はんだ付け試験、耐熱密着性、接触抵抗、変色を調査した。
摩擦係数の測定方法は、図1に示すように、内側半径R=1mmの3つのインデントを設けた表面処理板材を上側とし、これに15Nの荷重をかけながら100mm/分の速度で、同じ表面処理を施した下側板材の上を移動し、ロードセルで摩擦力を測定し、摩擦係数を計算した。
成形加工性は、90゜W曲げ試験(JIS H 3110、R=0.2mm、圧延方向および垂直方向)を行い、試料中央部の山表面を24倍の実体顕微鏡で観察して評価した。また、摩擦係数測定のためにインデント加工した際のひび割れも24倍の実体顕微鏡で観察した。両方の試験で割れが観察されなかったものを○印、どちらかの加工で割れが観察されたものを×印として評価した。
The friction coefficient measurement, molding processability, soldering test, heat-resistant adhesion, contact resistance, and discoloration of the test materials obtained as described above were investigated.
As shown in FIG. 1, the friction coefficient is measured using the same surface at a speed of 100 mm / min while applying a load of 15 N to the surface treatment plate material provided with three indents with an inner radius R = 1 mm. It moved on the processed lower board | plate material, the frictional force was measured with the load cell, and the friction coefficient was calculated.
Forming workability was evaluated by performing a 90 ° W bending test (JIS H 3110, R = 0.2 mm, rolling direction and vertical direction), and observing the mountain surface of the central part of the sample with a 24 × stereo microscope. In addition, cracks when indented to measure the friction coefficient were also observed with a 24 × stereo microscope. The case where no crack was observed in both tests was evaluated as “◯”, and the case where crack was observed in either processing was evaluated as “×”.
はんだ付け性は、MIL−STD−202F−208Eに準拠し、沸騰蒸気に1時間暴露した後に、非活性フラックスを用いて試験した。試験結果は、95%以上濡れていれば○、95%未満を×として評価した。
耐熱密着性は、160℃、1000時間加熱した後に90゜W曲げ試験(JIS H 3110、R=0.2mm、圧延方向および垂直方向)を行った後に、テ−プによるピ−リングを行い評価した。ピーリングにより剥離が発生しなかったものを○印、剥離が発生したものを×印とした。また同時に表面の変色度合いを目視で観察し、加熱前に対し著しく変色したものを×として評価した。
接触抵抗の試験は、試料を160℃、1000時間加熱した後に、低電流低電圧測定装置を用い、4端子法により測定した。Au接触子の最大加重を0.5Nとし、このときの抵抗値を測定した。
以上の評価結果を表2に示す。
Solderability was tested in accordance with MIL-STD-202F-208E using an inactive flux after 1 hour exposure to boiling steam. The test results were evaluated as ○ when less than 95% was wet, and x when less than 95%.
Heat resistant adhesion was evaluated by heating at 160 ° C. for 1000 hours and then performing a 90 ° W bending test (JIS H 3110, R = 0.2 mm, rolling direction and vertical direction), and then tape peeling. did. The case where peeling did not occur due to peeling was marked with ○, and the case where peeling occurred was marked with ×. At the same time, the degree of discoloration of the surface was visually observed, and those markedly discolored with respect to those before heating were evaluated as x.
The contact resistance test was measured by a four-terminal method using a low current low voltage measuring device after heating the sample at 160 ° C. for 1000 hours. The maximum load of the Au contact was 0.5 N, and the resistance value at this time was measured.
The above evaluation results are shown in Table 2.
表1および表2の結果から、本発明に係わるNo.1〜8の材料は、摩擦係数が小さく優れており、且つ、成形加工性、はんだ付け性、加熱試験後の皮膜密着性、接触抵抗、耐変色に優れている。したがって、近時の多ピン用コネクタ、充電ソケット、プリント基板の接続部品等の用途に極めて優れた特性を有するといえる。
これに対し、Ni層の無いNo.9、10は摩擦係数が大きく、且つ加熱後の接触抵抗や変色の点で劣っている。No.11は、下地のNiめっきおよび中間めっきのCuを行わず、素材のCuと表面のSnで拡散層を形成させたものであるが、摩擦係数は小さいものの、はんだ付け性、加熱後の接触抵抗、変色の点で劣っている。
From the results of Tables 1 and 2, No. 1 according to the present invention is obtained. The materials 1 to 8 have a small coefficient of friction and are excellent, and are excellent in molding processability, solderability, film adhesion after a heating test, contact resistance, and discoloration resistance. Therefore, it can be said that the present invention has extremely excellent characteristics for applications such as recent multi-pin connectors, charging sockets, printed circuit board connection parts, and the like.
On the other hand, no. Nos. 9 and 10 have a large friction coefficient and are inferior in terms of contact resistance and discoloration after heating. No. No. 11 does not perform the underlying Ni plating and intermediate plating Cu, but forms a diffusion layer with the raw material Cu and the surface Sn, but with a small friction coefficient, solderability, contact resistance after heating Inferior in terms of discoloration.
Cuの中間めっきを行わず、Cu−Sn拡散層のないNo.12は、はんだ付け性、加熱後の接触抵抗、変色の点で劣っている。
Niが厚いNo.13は成形加工性に劣り、Snが厚いNo.14は摩擦係数に劣り、Ni層がなく且つCu―Sn拡散層が厚いNo.15は、成形加工性、はんだ付け性、加熱後の接触抵抗、変色の点で劣っている。Snの無いNo.16は、はんだ付け性、加熱後の接触抵抗、変色の点で劣っている。
No intermediate plating of Cu and no Cu—Sn diffusion layer. No. 12 is inferior in terms of solderability, contact resistance after heating, and discoloration.
No. with thick Ni No. 13 is inferior in moldability and has a thick Sn. No. 14 is inferior in friction coefficient, has no Ni layer, and has a thick Cu—Sn diffusion layer. No. 15 is inferior in terms of moldability, solderability, contact resistance after heating, and discoloration. No. with no Sn. No. 16 is inferior in terms of solderability, contact resistance after heating, and discoloration.
[実施例2] 実施例1と同様に各層を電気めっきで構成した。ただし、No.17、18、21は素材を黄銅一種(板厚0.8mm)、No.19、20、22は素材をりん青銅(板厚0.2mm)とした。また、それぞれの表面粗さは、十点平均粗さが1.0、0.9μmで且つ中心線平均粗さが0.13、0.08μmであり、素材の酸化皮膜厚さはいずれも約8nmであって、20nmよりも充分に薄い値であった。
次に雰囲気温度が350〜800℃、時間5〜20秒で連続的にリフロー処理を行い、リフロー処理と同時にCu−Sn拡散を形成させ、上記試料を準備した。得られた試験材の摩擦係数測定、成形加工性、はんだ付け試験、耐熱密着性、接触抵抗、変色を実施例1と同様に調査した。
[Example 2] Each layer was formed by electroplating in the same manner as in Example 1. However, no. Nos. 17, 18, and 21 are made of a kind of brass (plate thickness 0.8 mm). Nos. 19, 20, and 22 were made of phosphor bronze (plate thickness: 0.2 mm). In addition, the surface roughness of each of the ten-point average roughness is 1.0 and 0.9 μm, and the center line average roughness is 0.13 and 0.08 μm. The value was 8 nm, which was sufficiently thinner than 20 nm.
Next, reflow treatment was continuously performed at an ambient temperature of 350 to 800 ° C. for a time of 5 to 20 seconds, and Cu—Sn diffusion was formed simultaneously with the reflow treatment to prepare the sample. The friction coefficient measurement, molding processability, soldering test, heat-resistant adhesion, contact resistance, and discoloration of the obtained test material were investigated in the same manner as in Example 1.
表3、表4から明らかなように、本願発明のNo.17〜20は摩擦係数が小さく優れており、且つ、成形加工性、はんだ付け性、加熱試験後の皮膜密着性、接触抵抗、耐変色に優れている。したがって、素材を黄銅やリン青銅にしても本発明の効果は変わらないと言える。
これに対し、Ni層の無いNo.21、22は摩擦係数が大きく、且つ加熱後の接触抵抗や変色の点で劣っている。特にNo.22は、加熱後の皮膜の密着性にも劣り、No.19、20との比較から本発明の効果が極めて大きいことがわかる。
As is apparent from Tables 3 and 4, No. 1 of the present invention is obtained. Nos. 17 to 20 have a small coefficient of friction and are excellent, and are excellent in moldability, solderability, film adhesion after a heating test, contact resistance, and discoloration resistance. Therefore, it can be said that the effect of the present invention does not change even if the material is brass or phosphor bronze.
On the other hand, no. Nos. 21 and 22 have a large coefficient of friction and are inferior in terms of contact resistance and discoloration after heating. In particular, no. No. 22 is inferior in the adhesion of the film after heating. Comparison with 19 and 20 shows that the effect of the present invention is extremely large.
[実施例3] 実施例1で使用した素材に実施例1と同様に電気めっきによって各層を形成させた。No.23、24、27は最表面のめっきをSn合金めっきとし、No.23、27は下地をNiに、No.24は下地をNi合金めっきとした。No.25、26、28は最表面のめっきをSnとし、No.25、26、28共に下地をNi合金めっきとした。
Sn合金めっきとしては、有機錯塩浴を用い、Sn−10wt%Znをめっきした。Ni合金めっきとしては、ワット浴に亜リン酸を添加し、Ni−5wt%Pをめっきした。
Example 3 Each layer was formed on the material used in Example 1 by electroplating in the same manner as in Example 1. No. In Nos. 23, 24 and 27, the outermost plating is Sn alloy plating. Nos. 23 and 27 have Ni as the base and No. 23. For 24, the base was Ni alloy plating. No. Nos. 25, 26 and 28 have Sn as the outermost plating. For 25, 26 and 28, the base was Ni alloy plating.
As Sn alloy plating, Sn-10 wt% Zn was plated using an organic complex salt bath. As Ni alloy plating, phosphorous acid was added to the Watt bath, and Ni-5 wt% P was plated.
実施例1と同様にリフロー条件を適宜選んでリフローしたところ、Sn−Zn合金めっきのZnが表面に拡散し、亜鉛酸化物を中心とした酸化物を形成したが、接触抵抗に特に大きな影響を与えなかった。また酸化皮膜厚さは約5〜11nmであって、30nmより薄い値であった。
なお、No.23〜26はリフローの熱影響でCu−Sn拡散層を生じたが、No.27、28はCu層が無いために、Cu―Sn拡散層ではなくNi−Sn拡散層を生じた。
As in Example 1, reflow conditions were appropriately selected and reflowed. As a result, Zn in the Sn—Zn alloy plating diffused on the surface and formed an oxide centered on zinc oxide, which had a particularly large effect on contact resistance. Did not give. The oxide film thickness was about 5 to 11 nm, which was a value smaller than 30 nm.
In addition, No. Nos. 23 to 26 produced Cu—Sn diffusion layers due to the heat effect of reflow. Since 27 and 28 did not have a Cu layer, a Ni—Sn diffusion layer was formed instead of a Cu—Sn diffusion layer.
表5、表6より明らかなように、本発明のNo.23〜26は摩擦係数が小さく優れており、且つ、成形加工性、はんだ付け性、加熱試験後の皮膜密着性、接触抵抗、耐変色に優れている。したがって、表面のSn層をSn合金にしたり、Ni層をNi合金にしても本発明の効果は変わらないと言える。
これに対し、Cu−Sn中間層の無いNo.27は、はんだ付け性、加熱後の接触抵抗に劣り、またNo.28は成形加工性、はんだ付け性、加熱後の皮膜密着性、接触抵抗や変色の点で劣っている。したがって、本発明の効果が極めて大きいことがわかる。
As apparent from Tables 5 and 6, No. 1 of the present invention. Nos. 23 to 26 have a small coefficient of friction and are excellent, and are excellent in moldability, solderability, film adhesion after a heating test, contact resistance, and discoloration resistance. Therefore, it can be said that the effect of the present invention does not change even if the Sn layer on the surface is made of Sn alloy or the Ni layer is made of Ni alloy.
On the other hand, No. without a Cu—Sn intermediate layer. No. 27 is inferior in solderability and contact resistance after heating. No. 28 is inferior in terms of moldability, solderability, film adhesion after heating, contact resistance and discoloration. Therefore, it can be seen that the effect of the present invention is extremely large.
1 インデント付き上側試験片
2 下側試験片
3 重錘(15N)
4 水平台
5 プーリー
6 ロードセル
1 Upper test piece with indent 2 Lower test piece 3 Weight (15N)
4 Horizontal table 5
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005172578A JP4814552B2 (en) | 2005-06-13 | 2005-06-13 | Surface treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005172578A JP4814552B2 (en) | 2005-06-13 | 2005-06-13 | Surface treatment method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001024031A Division JP2002226982A (en) | 2001-01-31 | 2001-01-31 | Heat resistant film, its manufacturing method, and electrical and electronic parts |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010237063A Division JP5436391B2 (en) | 2010-10-22 | 2010-10-22 | Film and electrical / electronic parts |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005350774A JP2005350774A (en) | 2005-12-22 |
JP4814552B2 true JP4814552B2 (en) | 2011-11-16 |
Family
ID=35585484
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005172578A Expired - Lifetime JP4814552B2 (en) | 2005-06-13 | 2005-06-13 | Surface treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4814552B2 (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4868892B2 (en) * | 2006-03-02 | 2012-02-01 | 富士通株式会社 | Plating method |
JP4986499B2 (en) * | 2006-04-26 | 2012-07-25 | Jx日鉱日石金属株式会社 | Method for producing Cu-Ni-Si alloy tin plating strip |
JP4522970B2 (en) | 2006-04-26 | 2010-08-11 | 日鉱金属株式会社 | Cu-Zn alloy heat resistant Sn plating strip with reduced whisker |
JP4402132B2 (en) * | 2007-05-18 | 2010-01-20 | 日鉱金属株式会社 | Reflow Sn plating material and electronic component using the same |
JP5490144B2 (en) * | 2009-12-25 | 2014-05-14 | Ykk株式会社 | Fastener components and slide fasteners |
JP2011198977A (en) * | 2010-03-19 | 2011-10-06 | Sumitomo Metal Mining Co Ltd | Manufacturing method of semiconductor device |
JP5226032B2 (en) * | 2010-04-23 | 2013-07-03 | Jx日鉱日石金属株式会社 | Cu-Zn alloy heat resistant Sn plating strip with reduced whisker |
JP5767521B2 (en) * | 2011-07-21 | 2015-08-19 | 古河電気工業株式会社 | Lead frame for optical semiconductor device and manufacturing method thereof |
JP5393739B2 (en) * | 2011-08-01 | 2014-01-22 | Jx日鉱日石金属株式会社 | Cu-Ni-Si alloy tin plating strip |
JP5956240B2 (en) * | 2012-05-01 | 2016-07-27 | Dowaメタルテック株式会社 | Plating material and method for producing the same |
TW201413068A (en) | 2012-07-02 | 2014-04-01 | Mitsubishi Materials Corp | Tin-plated copper alloy terminal member with outstanding insertion and removal characteristics and method of manufacturing the same |
JP5846655B2 (en) * | 2014-02-05 | 2016-01-20 | Shマテリアル株式会社 | Manufacturing method of semiconductor device |
JP2015155571A (en) * | 2014-02-21 | 2015-08-27 | 株式会社Kanzacc | composite metal material |
JP6100203B2 (en) * | 2014-05-19 | 2017-03-22 | 日新製鋼株式会社 | Material for connecting parts |
JP6365182B2 (en) * | 2014-09-26 | 2018-08-01 | 株式会社オートネットワーク技術研究所 | Electrical contact material for connector and manufacturing method thereof |
JP7060514B2 (en) * | 2016-10-17 | 2022-04-26 | 古河電気工業株式会社 | Conductive strip |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61177393A (en) * | 1985-01-31 | 1986-08-09 | Furukawa Electric Co Ltd:The | Method for plating phosphor bronze with sn or sn alloy |
JPS6345812A (en) * | 1986-08-13 | 1988-02-26 | 松尾電機株式会社 | Electronic parts |
JPH06196349A (en) * | 1992-12-24 | 1994-07-15 | Kobe Steel Ltd | Copper lead frame material for tantalum capacitor and manufacture thereof |
JP3391427B2 (en) * | 1996-05-14 | 2003-03-31 | 三菱伸銅株式会社 | Plated copper alloy sheet and connector manufactured from the sheet |
JPH11135226A (en) * | 1997-10-27 | 1999-05-21 | Harness Syst Tech Res Ltd | Manufacture of fitting type connecting terminal |
JP4308931B2 (en) * | 1997-11-04 | 2009-08-05 | 三菱伸銅株式会社 | Sn or Sn alloy-plated copper alloy thin plate and connector manufactured with the thin plate |
JP3953169B2 (en) * | 1997-12-26 | 2007-08-08 | 株式会社神戸製鋼所 | Manufacturing method of plating material for mating type connection terminal |
JPH11350189A (en) * | 1998-06-03 | 1999-12-21 | Furukawa Electric Co Ltd:The | Material for electrical and electronic parts, its production and electrical and electronic parts using the material |
JP3465876B2 (en) * | 1999-01-27 | 2003-11-10 | 同和鉱業株式会社 | Wear-resistant copper or copper-based alloy, method for producing the same, and electric component comprising the wear-resistant copper or copper-based alloy |
JP2000256814A (en) * | 1999-03-03 | 2000-09-19 | Sumitomo Metal Mining Co Ltd | Manufacture of copper-based alloy bar for terminal |
-
2005
- 2005-06-13 JP JP2005172578A patent/JP4814552B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2005350774A (en) | 2005-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4814552B2 (en) | Surface treatment method | |
JP3880877B2 (en) | Plated copper or copper alloy and method for producing the same | |
JP2002226982A (en) | Heat resistant film, its manufacturing method, and electrical and electronic parts | |
JP5319101B2 (en) | Sn plating material for electronic parts | |
JP4538813B2 (en) | Connector and charging socket using copper-based alloy material | |
KR101682791B1 (en) | A copper alloy sheet with sn coating layer for a fitting type connection terminal and a fitting type connection terminal | |
JP5355935B2 (en) | Metal materials for electrical and electronic parts | |
JP3465876B2 (en) | Wear-resistant copper or copper-based alloy, method for producing the same, and electric component comprising the wear-resistant copper or copper-based alloy | |
JP2018078109A (en) | Tin-plated copper terminal material and terminal, and electric wire terminal part structure | |
US20110020664A1 (en) | Metallic material for a connecting part and a method of producing the same | |
TW201812108A (en) | Tinned copper terminal material, terminal, and electrical wire end part structure | |
JP4522970B2 (en) | Cu-Zn alloy heat resistant Sn plating strip with reduced whisker | |
JP5436391B2 (en) | Film and electrical / electronic parts | |
JP2004300524A (en) | Sn-COATED COPPER OR COPPER ALLOY MEMBER AND ITS MANUFACTURING METHOD | |
JP5325734B2 (en) | Conductive member and manufacturing method thereof | |
JP2008248332A (en) | Tin-plated strip and its production method | |
TWI752184B (en) | Corrosion-resistant terminal material, corrosion-resistant terminal, and wire termination structure | |
JP4090483B2 (en) | Conductive connection parts | |
WO2018212174A1 (en) | Tin-plated copper terminal material, terminal, and power cable terminal structure | |
JP4247256B2 (en) | Cu-Zn-Sn alloy tin-plated strip | |
JP7060514B2 (en) | Conductive strip | |
JP4090488B2 (en) | Conductive material plate for connecting part forming process and manufacturing method thereof | |
JP5226032B2 (en) | Cu-Zn alloy heat resistant Sn plating strip with reduced whisker | |
JP2019011503A (en) | Anticorrosion terminal material, manufacturing method thereof, anticorrosion terminal and wire terminal part structure | |
JP7281971B2 (en) | Electrical contact material and its manufacturing method, connector terminal, connector and electronic component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050916 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051011 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071221 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080131 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20080131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080215 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20080215 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080201 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100824 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101022 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101116 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110107 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110201 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110428 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20110608 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110809 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110826 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4814552 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140902 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |