JP2004300524A - Sn-COATED COPPER OR COPPER ALLOY MEMBER AND ITS MANUFACTURING METHOD - Google Patents

Sn-COATED COPPER OR COPPER ALLOY MEMBER AND ITS MANUFACTURING METHOD Download PDF

Info

Publication number
JP2004300524A
JP2004300524A JP2003095313A JP2003095313A JP2004300524A JP 2004300524 A JP2004300524 A JP 2004300524A JP 2003095313 A JP2003095313 A JP 2003095313A JP 2003095313 A JP2003095313 A JP 2003095313A JP 2004300524 A JP2004300524 A JP 2004300524A
Authority
JP
Japan
Prior art keywords
layer
copper
thickness
copper alloy
exposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003095313A
Other languages
Japanese (ja)
Inventor
Hiroto Narueda
宏人 成枝
Original Assignee
Dowa Mining Co Ltd
同和鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd, 同和鉱業株式会社 filed Critical Dowa Mining Co Ltd
Priority to JP2003095313A priority Critical patent/JP2004300524A/en
Publication of JP2004300524A publication Critical patent/JP2004300524A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper or copper alloy member which has an inexpensive coating excellent in electric reliability, leakage resistance, corrosion resistance, solderability and heat resistance on the surface which has been exposed through molding of copper or a copper alloy material into a desired shape. <P>SOLUTION: On at least a part of the surface which has been exposed through molding of the copper or copper alloy member 14 into the desired shape, an Ni-containing layer 16 with a thickness of 0.1-5 μm is formed, a Cu-containing layer 18 with a thickness of 0.2-3 μm is formed on the Ni-containing layer 16, and an Sn-containing layer 20 with a thickness of 0.2-10 μm is formed on the Cu-containing layer 16 to achieve a ratio (thickness ratio of Cu/Sn) of the thickness of the Sn-containing layer 20 to the thickness of the Cu-containing layer 18 of ≤2. After forming the Ni-containing layer 16, the Cu-containing layer 18 and the Sn-containing layer 20 through electroplating, the member is subjected to heating and melting or dipped into molten Sn. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、Sn被覆を施した銅または銅合金部材に関し、特に、自動車用コネクタ端子、バスバー、電気電子部品の端子などに使用される銅または銅合金部材に関する。
【0002】
【従来の技術】
端子やバスバーなどの電気電子部品材料として、電気伝導性に優れ、コスト面でも優れた銅または銅合金が広く利用されている。このような端子材料の最表面には、電気的信頼性、耐食性、はんだ付け性、外観およびコスト面の観点から、Sn被覆が施されることが多い。この被覆では、耐ウイスカ性に優れた溶融加熱処理や溶融Sn浸漬処理が広く利用されている。
【0003】
また、従来、自動車用ジャンクションブロック(以下「J/B」という)内のバスバーとリレーやヒューズなどとの接続には、両側が雌構造の中継端子が使用されていたが、近年、部品の小型化や低コスト化の観点から中継端子がない構造になり、バスバー内に成形された音叉型端子によってバスバーにリレーやヒューズなどが接続されるようになっている。このバスバーはSnめっきが施された銅または銅合金条から成形され、音叉型端子の表面にもSnめっきが施されているが、リレーやヒューズなどの脚部と接続される部分では、プレス時に打ち抜かれて素材が露出した切断面がそのまま接触するようになっている。また、小型化や電気制御品の増加に伴う高密度化により、バスバー間の隙間が狭くなっており、このようなバスバー間の対向する面もプレス打ち抜き面であり、素材が露出した面になっている。
【0004】
また、自動車用や民生用の端子においても、小型化や多極化により端面接触させる構造が増えている。この場合、J/Bの音叉型端子よりも接圧が小さいことから(J/Bの音叉型端子の場合は接圧が10N以上であり、小型端子の場合は接圧が0.1〜20N程度)、電気的信頼性を保つために、プレス後に素材の表面および端面にNi下地Auめっき、はんだめっきまたは光沢Snめっきなどが施されている。さらに、端子の電線接合方式として、端面で電線の被覆を破って電線芯と接続する圧接方式も広く利用されている。この端面にも、電線との電気的信頼性を保つために、プレス後にはんだめっきまたは光沢Snめっきが施されることが多い。
【0005】
また、銅または銅合金部材の被覆については、タンタルコンデンサー用リードフレーム材の耐熱剥離性およびはんだ濡れ性を向上させるために、洋白(Cu−Ni−Zn系合金)からなる基材上に、Niめっき層、0.2〜2.0μmの厚さのCu−Sn合金層およびSnめっき層(またははんだめっき層)を順次形成することが知られている(例えば、特許文献1参照)。また、銅合金などの素材表面の耐熱性、成形加工性、はんだ付け性などを向上させるために、銅合金などの素材表面に、表面側から順にNiまたはNi合金層、Cu層、SnまたはSn合金層を被覆した後にリフロー処理を施すことが知られている(例えば、特許文献2参照)。さらに、バスバーの表面の耐リーク性を向上させるために、銅または銅合金板条にNiまたはNi合金めっき層を形成し、その上にSnまたはSn合金層を形成することが知られている(例えば、特許文献3参照)。
【0006】
【特許文献1】
特開平6−196349号公報(段落番号0007−0008)
【特許文献2】
特開2002−226982号公報(段落番号0004)
【特許文献3】
特開2001−203020号公報(段落番号0007)
【0007】
【発明が解決しようとする課題】
しかし、従来のJ/Bでは、音叉型端子の端面において素材が露出しており、接圧によって電気的信頼性を補完するために、挿入力が増大したり、耐応力緩和特性の素材依存度が大きいなどの問題があった。また、バスバー間の隙間の狭幅化や素材の露出面の対向によって、結露による水分や外部環境からの混入水などによるリークの発生が問題となっていた。そのため、プレス後の音叉型端子の端面およびバスバーの端面に電気的信頼性が高く且つ耐リーク性に優れた表面処理が施されれば、素材の選定において、より導電性の高い材料や低コストの材料を選択することができる。
【0008】
また、小型端子では、Ni下地Auめっきの場合にはコストが高く、はんだめっきの場合にはPbを含むため環境負荷が大きく、光沢Snめっきの場合には耐ウイスカ性および耐熱性が悪いという問題がある。この場合、ウイスカ対策としてSnめっき後に加熱溶融処理を行ったとしても、自動車のエンジンルームなどの高温環境では、十分な耐熱性を確保することはできない。そのため、Ni下地Auめっきよりも低コストで、Pbなどの有害元素を含まず、耐ウイスカ性に優れ、通常のSnめっきよりも耐熱性に優れた表面処理を端面に施した銅または銅合金部材が求められていた。
【0009】
また、特許文献1は、銅合金部材の耐熱剥離性およびはんだ濡れ性を向上させることについて開示しているが、電気的信頼性、耐リーク性、耐食性および耐熱性を向上させることについては開示していない。また、特許文献2は、銅合金などの素材の表面の耐熱性、成形加工性、はんだ付け性などを向上させることについて開示しているが、端面の電気的信頼性、耐リーク性および耐食性を向上させることについては開示していない。さらに、特許文献3に開示された方法では、バスバーの表面の耐リーク性の向上を目的としているが、下地層のNiが表層に拡散して高温保持後の接触抵抗が増加するため、耐熱性が十分ではない。また、端面の電気的信頼性、耐リーク性および耐食性を向上させることについても開示していない。
【0010】
したがって、本発明は、このような従来の問題点に鑑み、銅または銅合金の素材を所望の形状に成形することにより露出した面に、電気的信頼性、耐リーク性、耐食性、はんだ付け性および耐熱性に優れた安価な被覆を施した銅または銅合金部材を提供することを目的とする。また、本発明は、上記の特性に加えて耐ウイスカ性にも優れた被覆を施した銅または銅合金部材を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために鋭意研究した結果、銅または銅合金の素材を所望の形状に成形することにより露出した面の少なくとも一部に、厚さ0.1〜5μmのNi含有層を形成し、このNi含有層の上に厚さ0.2〜3μmのCu含有層を形成し、このCu含有層の上に厚さ0.2〜10μmのSn含有層を形成し、Sn含有層の厚さに対するCu含有層の厚さの比(Cu/Sn厚さ比)が2以下になるようにすることにより、素材の成形により露出した面の少なくとも一部において、電気的信頼性、耐リーク性、耐食性、はんだ付け性および耐熱性に優れた安価な被覆を施した銅または銅合金部材を提供することができることを見出し、本発明を完成するに至った。
【0012】
すなわち、本発明によるSn被覆を施した銅または銅合金部材は、銅または銅合金の素材を所望の形状に成形することにより露出した面の少なくとも一部に、厚さ0.1〜5μmのNi含有層が形成され、このNi含有層の上に厚さ0.2〜3μmのCu含有層が形成され、このCu含有層の上に厚さ0.2〜10μmのSn含有層が形成され、Sn含有層の厚さに対するCu含有層の厚さの比(Cu/Sn厚さ比)が2以下であることを特徴とする。
【0013】
このSn被覆を施した銅または銅合金部材において、露出した面がプレス、ワイヤカットまたはエッチング加工により露出した面であり、露出した面の少なくとも一部が、他の部材と電気的に接触する端面または耐リーク性が必要な端面であるのが好ましい。 また、Cu含有層の一部または全部がCuSnやCuSnなどのCu−Sn合金層を含むのが好ましい。また、Ni含有層がNiからなる層であり、Cu含有層がCuからなる層であり、Sn含有層がSnからなる層にしてもよい。あるいは、Ni含有層がNiに加えてCo、Cu、PおよびSの1種以上を0〜10重量%含有し、Cu含有層がCuに加えてZn、NiおよびSnの1種以上を0〜10重量%含有し、Sn含有層がSnに加えてPb、Zn、Ni、CuおよびAgの1種以上を0〜20重量%含有してもよい。
【0014】
また、本発明によるSn被覆を施した銅または銅合金部材の製造方法は、銅または銅合金の素材を所望の形状に成形し、この成形により露出した面の少なくとも一部に厚さ0.1〜5μmのNi含有層を形成し、このNi含有層の上に厚さ0.2〜3μmのCu含有層を形成し、このCu含有層の上に厚さ0.2〜10μmのSn含有層を形成し、Sn含有層の厚さに対するCu含有層の厚さの比(Cu/Sn厚さ比)を2以下にすることを特徴とする。
【0015】
このSn被覆を施した銅または銅合金部材の製造方法において、銅または銅合金の素材の成形が、プレス、ワイヤカットまたはエッチング加工により行われるのが好ましい。また、露出した面の少なくとも一部が、他の部材と電気的に接触する端面または耐リーク性が必要な端面であるのが好ましい。また、Ni含有層とCu含有層とSn含有層を形成した後に、プレスなどの二次加工を行うのが好ましい。 また、Ni含有層とCu含有層とSn含有層を電気めっきにより形成するのが好ましい。さらに、Sn含有層を電気めっきした後に加熱溶融処理または溶融Sn浸漬処理を行うのが好ましい。
【0016】
さらに、本発明による電気または電子部材は、銅または銅合金の素材を所望の形状に成形することにより露出した面の少なくとも一部に、厚さ0.1〜5μmのNi含有層が形成され、このNi含有層の上に厚さ0.2〜3μmのCu含有層が形成され、このCu含有層の上に厚さ0.2〜10μmのSn含有層が形成され、Sn含有層の厚さに対するCu含有層の厚さの比(Cu/Sn厚さ比)が2以下であることを特徴とする。
【0017】
この電気または電子部材において、露出した面がプレス、ワイヤカットまたはエッチング加工により露出した面であるのが好ましく、露出した面の少なくとも一部が、他の端子、バスバーまたは電線と電気的に接触する端面または耐リーク性が必要な端面であるのが好ましい。
【0018】
【発明の実施の形態】
本発明によるSn被覆を施した銅または銅合金部材の製造方法の実施の形態では、まず、銅または銅合金の板または条の端面において電気的接続の信頼性、耐リーク性、耐食性およびはんだ付け性が必要な端子やバスバーなどの端面を、プレス、ワイヤーカットまたはエッチング加工などにより露出させる。次いで、表面および露出した端面をめっきや蒸着などにより厚さ0.1〜5μmのNi含有層で被覆した後、厚さ0.2〜3μmのCu含有層で被覆する。その上を厚さ0.2〜10μmのSn含有層でめっき、蒸着または溶融金属浸漬処理などにより被覆する。このSn含有層の厚さは、Sn含有層の厚さに対するCu含有層の厚さの比(以下、「Cu/Sn厚さ比」という)が2以下になるようにする。Sn含有層の被覆方法がSn浸漬以外の場合には、その後に加熱溶融処理を行って、Sn被覆した銅または銅合金部材を形成する。なお、上述した被覆層の厚さは、端子やバスバーなどに成形されて、他の端子、バスバーまたは電線などと電気的に接触する端面や、耐リーク性、耐食性およびはんだ付け性が必要な端面における被覆層の厚さであるが、端面以外の表面でも他の電気部品と接続される部分がある場合には、電気的信頼性、耐熱性、耐食性およびはんだ付け性などの観点から、上述した厚さで被覆するのが好ましい。
【0019】
Ni含有層は、Niの他にCo、Cu、PおよびSの1種以上を0〜10重量%含有してもよい。また、Cu含有層は、Zn、NiおよびSnの1種以上を0〜10重量%含有してもよい。さらに、Sn含有層は、Pb、Zn、Ni、CuおよびAgの1種以上を0〜20重量%含有してもよい。
【0020】
次に、Ni含有層の厚さを0.1〜5μmとした理由を説明する。Ni含有層で被覆する主な目的は、素材である銅および銅合金の成分の表層への拡散防止と、耐リーク性の向上である。Ni含有層の厚さが0.1μm未満では、拡散防止および耐リーク性の向上の効果が小さく、一方、Ni含有層の厚さが5μmを超えると、経済的に不利になり、端面と同時に被覆した平面部において追加の曲げ加工を行った際にNi含有層が起点となってクラックが生じる場合がある。なお、上記の目的を達成するためには、Niの他にCo、Cu、PおよびSの1種以上を0〜10重量%含有してもよいが、10重量%を超えて含有すると、5μm以下の厚さでもクラックが生じ易くなる。
【0021】
次に、Cu含有層の厚さを0.2〜3μmとした理由を説明する。Cu含有層で被覆する主な目的は、下被覆層のNiと上被覆層のSnとの合金化の抑制である。Cu含有層がない場合、NiとSnが合金化し、経時変化によってNiが被覆の最表面に拡散して電気比抵抗の大きい酸化物を形成するため、電気的信頼性が低下する。Cu含有層の厚さが0.2μm未満では、Ni−Sn合金化の抑制効果が十分ではない。また、Cu含有層のCuは、上層のSnに拡散してCuSnやCuSnなどのCu−Sn合金層を形成する。Cuが過剰に存在すると、残ったCuが表層に拡散してSn酸化物よりも電気比抵抗の大きい酸化物を形成するため、電気的信頼性が低下する。そのため、Cu含有層の厚さの上限を3μmとし、Cu/Sn厚さ比を2以下にする。
【0022】
次に、Sn含有層の厚さを0.2〜10μmとした理由を説明する。Sn含有層は、本来、電気的接続信頼性、耐食性およびはんだ付け性などを確保するために施されるものであり、Sn含有層の厚さが0.2μm未満では、その機能を保つことができず、一方、10μmを超えると、経済的に不利となる。
【0023】
なお、Sn含有層の被覆方法を、電気めっき後に加熱溶融処理を行う方法または溶融Sn浸漬処理による方法とした理由は、耐ウイスカ性を向上させるためである。但し、耐ウイスカ性を必要としない場合は、加熱溶融処理や溶融Sn浸漬処理を行わなくてもよい。
【0024】
また、本発明によるSn被覆を施した銅または銅合金部材を音叉型端子に適用した例を図1および図2に示す。図1および図2に示すように、音叉型端子10の対向する端面間に舌片型端子12が挿入されて嵌合することにより、両者の電気的接続が行われるようになっている。舌片型端子12と嵌合する音叉型端子10の端部の被覆構造は、図3(a)および図3(b)に示すように、素材としての銅または銅合金部材14の端部の表面をNi層で被覆し、その上をCu−Sn層(またはCu層+Cu−Sn層)18で被覆し、その上をSn層20で被覆する構造になっている。ここで、図3(a)は、銅または銅合金の素材をプレスなどによって音叉型端子10の内側の部分(舌片型端子12と電気的接続が行われる部分を含む)を成形した後に、上記の被覆を施し、その後、プレスなどによって音叉型端子10の外側の部分を成形して、舌片型端子12と電気的接続が行われる部分と反対側の部分を除去した例を示し、図3(b)は、銅または銅合金の素材をプレスなどによって音叉型端子10の形状に成形した後に、上記の被覆を施した例を示している。なお、上記の被覆を施す必要がない部分に上記の被覆を施さないで、舌片型端子12と電気的接続が行われる部分のみに上記の被覆を施してもよい。
【0025】
【実施例】
以下、本発明によるSn被覆を施した銅または銅合金部材およびその製造方法の実施例について詳細に説明する。
【0026】
[実施例1]
まず、ビッカース硬さHV105、厚さ0.8mm、幅10mm、長さ60mmのC1020(無酸素銅)からなる試験片をプレス金型で打ち抜いて作製した。この試験片の表面および端面を電解脱脂と酸洗により活性化した後、試験片の一端から30mmまでの部分を、厚さ0.5μmのNi層、厚さ0.5μmのCu層および厚さ2μmのSn層で順次被覆し、加熱溶融処理を行った。これらの層の被覆は、厚さの制御に優れ且つコスト的にも有利な電気めっきにより行った。Niめっきはスルファミン酸Ni浴、Cuめっきは硫酸銅浴、Snめっきは硫酸錫浴によって行った。各めっき浴にはいずれも光沢剤を添加せず、無光沢めっきを行った。また、表面と端面のめっき厚が等しくなるように陽極板の位置を調整した。加熱溶融処理は、対向させたバーナー間で試験片のめっき部を熱して、表面全体に光沢が広がった直後に、バーナーの下に設置した水槽内に落下させて水冷する方法によって行った。
【0027】
Ni被覆層の厚さは、上記と同じめっき条件によりNiのみでめっきした試験片を、端面が水平になるように固定し、コリメーターをφ0.1mmとして蛍光X線膜厚測定器によって測定した。Sn被覆層の厚さも同様に測定した。Cu被覆層の厚さは、Niめっき後にCuめっきした試験片を樹脂に埋め込んだ後に研磨し、その断面を走査型電子顕微鏡(SEM)で1万倍に拡大して観察することによって測定した。
【0028】
次に、この実施例で得られた試験片について、大気雰囲気中において160℃で120時間保持した後の接触抵抗値によって耐熱性を評価した。この接触抵抗値は、マイクロオームメーターを使用し、開放電圧20mV、電流10mA、0.5φmmのU型金線プローブ、最大荷重100gf、摺動無しの条件で、試験数N=3回測定し、その平均値を求めた。この測定の際にプローブが試験片の端面に垂直に接触するように試験片をジグで固定した。なお、この実施例で得られた試験片の耐熱性の評価の前に測定した接触抵抗値は5mΩであった。
【0029】
また、図3に示すように、この実施例で得られた一対の同じ試験片100を1mm離間して対向するように樹脂板102に固定した。この試験片100の先端10mmの部分を、純水に亜硫酸ナトリウムを加えて85μS/cmに調整した0.5Lの試験水溶液104中に浸漬し、直流電源106により両極に直流電圧14Vを印加した状態でリークした電流を電流計108により測定した。この測定をリーク電流が1Aを超えるまで行い、要した時間により試験片100の耐リーク性を評価した。なお、120分経過してもリーク電流が1Aを超えない場合は測定を終了した。
【0030】
また、この実施例で得られた試験片について、90゜W曲げ試験(内側曲げ半径0.8mm)を行った後、曲げ部の表面を観察し、割れの有無により曲げ加工性を評価した。
【0031】
これらの試験の結果、大気雰囲気中において160℃で120時間保持した後の接触抵抗値が5mΩであり、耐リーク性の評価において120分経過してもリーク電流が1Aを超えず、曲げ加工性の評価において割れが観察されなかった。したがって、この実施例で得られた試験片は、耐熱性、耐リーク性、曲げ加工性のいずれも優れていることがわかった。
【0032】
[実施例2]
Ni層の厚さを0.1μm、Cu層の厚さを0.2μm、Sn層の厚さを0.5μmとした以外は実施例1と同様の方法により試験片を作製し、実施例1と同様の試験を行った。なお、この実施例で得られた試験片の耐熱性の評価の前に測定した接触抵抗値は5mΩであった。
【0033】
この実施例では、大気雰囲気中において160℃で120時間保持した後の接触抵抗値が82mΩであり、耐リーク性の評価において120分経過してもリーク電流が1Aを超えず、曲げ加工性の評価において割れが観察されなかった。したがって、この実施例で得られた試験片は、耐熱性、耐リーク性、曲げ加工性のいずれも優れていることがわかった。
【0034】
[実施例3]
Ni層の厚さを2μm、Cu層の厚さを1μm、Sn層の厚さを1.5μmとした以外は実施例1と同様の方法により試験片を作製し、実施例1と同様の試験を行った。なお、この実施例で得られた試験片の耐熱性の評価の前に測定した接触抵抗値は5mΩであった。
【0035】
この実施例では、大気雰囲気中において160℃で120時間保持した後の接触抵抗値は17mΩであり、耐リーク性の評価において120分経過してもリーク電流が1Aを超えず、曲げ加工性の評価において割れが観察されなかった。したがって、この実施例で得られた試験片は、耐熱性、耐リーク性、曲げ加工性のいずれも優れていることがわかった。
【0036】
[比較例1]
被覆を行わなかった以外は実施例1と同様の試験片(裸材)を用意し、実施例1と同様の試験を行った。なお、この比較例の試験片の耐熱性の評価の前に測定した接触抵抗値は18mΩであった。
【0037】
この比較例では、大気雰囲気中において160℃で120時間保持した後の接触抵抗値が2000mΩを超え、接触信頼性に欠けていた。また、耐リーク性の評価において18分で1Aを超え、耐リーク性に劣っていた。接触抵抗値が2000mΩを超えた原因は、素材のCuが酸化したためであり、耐リーク性に劣っていた原因は、陽極側から溶出したCuが容易に陰極に析出して陽極−陰極間にブリッジを形成したためである。
【0038】
[比較例2]
厚さ1μmのSn層のみで被覆した以外は実施例1と同様の試験片を作製し、実施例1と同様の試験を行った。なお、この比較例の試験片の耐熱性の評価の前に測定した接触抵抗値は5mΩであった。
【0039】
この比較例では、大気雰囲気中において160℃で120時間保持した後の接触抵抗値が277mΩであり、接触信頼性に欠けていた。また、耐リーク性の評価において100分で1Aを超え、耐リーク性に劣っていた。接触抵抗値が100mΩを超えた原因は素材のCuが最表層に拡散してCu酸化物を形成したためである。
【0040】
[比較例3]
Ni層の厚さを1μm、Sn層の厚さを1μmとし、Cu被覆を施さなかった以外は実施例1と同様の試験片を作製し、実施例1と同様の試験を行った。なお、この比較例の試験片の耐熱性の評価の前に測定した接触抵抗値は5mΩであった。
【0041】
この比較例では、大気雰囲気中において160℃で120時間保持した後の接触抵抗値が205mΩであり、接触信頼性に欠けていた。接触抵抗値が100mΩを超えた原因は、下地の被覆層中のNiが最表層に拡散してNi酸化物を形成したためである。
【0042】
[比較例4]
Ni層の厚さを6μm、Cu層の厚さを0.5μm、Sn層の厚さを1μmとした以外は実施例1と同様の方法により試験片を作製し、実施例1と同様の試験を行った。なお、この比較例で得られた試験片の耐熱性の評価の前に測定した接触抵抗値は5mΩであった。
【0043】
この比較例では、大気雰囲気中において160℃で120時間保持した後の接触抵抗値が24mΩであり、耐リーク性の評価において120分経過してもリーク電流が1Aを超えなかった。したがって、この比較例で得られた試験片は、耐熱性および耐リーク性には優れていた。しかし、Ni層が厚すぎるため、曲げ加工性の評価において割れが観察された。
【0044】
[比較例5]
Ni層の厚さを0.5μm、Cu層の厚さを0.1μm、Sn層の厚さを0.1μmとした以外は実施例1と同様の方法により試験片を作製し、実施例1と同様の試験を行った。なお、この比較例で得られた試験片の耐熱性の評価の前に測定した接触抵抗値は15mΩであった。
【0045】
この比較例では、大気雰囲気中において160℃で120時間保持した後の接触抵抗値が2000mΩを超え、接触信頼性に欠けていた。接触抵抗値が100mΩを超えた原因は、Sn被覆層が薄く、下地の被覆層の成分(Ni、Cu)が最表層で酸化物を形成したためである。
【0046】
[比較例6]
Ni層の厚さを1μm、Cu層の厚さを2μm、Sn層の厚さを0.5μmとした以外は実施例1と同様の方法により試験片を作製し、実施例1と同様の試験を行った。なお、この比較例で得られた試験片の耐熱性の評価の前に測定した接触抵抗値は5mΩであった。
【0047】
この比較例では、大気雰囲気中において160℃で120時間保持した後の接触抵抗値が311mΩであり、接触信頼性に欠けていた。接触抵抗値が100mΩを超えた原因は、Cu/Sn厚さ比が大きく、過剰に残ったCu被覆層の成分が最表層に拡散してCu酸化物を形成したためである。
【0048】
なお、実施例1〜3および比較例1〜6の結果を表1に示す。
【0049】
【表1】
【0050】
【発明の効果】
上述したように、本発明によるSn被覆を施した銅または銅合金部材は、特に成形によって露出した端面の耐熱性および耐リーク性に優れているため、部材の端面が端子、バスバー、電線などに電気的に接続される部位を含むコネクタ端子やバスバー、耐リーク性が要求されるバスバーやリードフレームなどの電気電子部品用材料として優れている。また、部材の端面の耐食性およびはんだ付け性も向上させることができるので、PCB端子などの端子の端面の耐食性やはんだ付け性が要求される分野にも応用できる。
【図面の簡単な説明】
【図1】本発明によるSn被覆を施した銅または銅合金部材を利用した音叉型端子とその音叉型端子に挿入される舌片型端子を示す斜視図。
【図2】図1の音叉型端子の平面図。
【図3】図1の音叉型端子の被覆構造の例を示す、図1のIII−III線断面図。
【図4】実施例および比較例における耐リーク性の試験を説明する図。
【符号の説明】
10 音叉型端子
12 舌片型端子
14 銅または銅合金部材
16 Ni層
18 Cu−Sn層(またはCu層+Cu−Sn層)
20 Sn層
100 試験片
102 樹脂板
104 試験水溶液
106 直流電源(14V)
108 電流計
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a copper or copper alloy member coated with Sn, and more particularly to a copper or copper alloy member used for a connector terminal for an automobile, a bus bar, a terminal of an electric / electronic component, and the like.
[0002]
[Prior art]
Copper or copper alloys, which are excellent in electric conductivity and low in cost, are widely used as materials for electric and electronic parts such as terminals and bus bars. The outermost surface of such a terminal material is often coated with Sn from the viewpoints of electrical reliability, corrosion resistance, solderability, appearance and cost. In this coating, a melting heat treatment and a molten Sn immersion treatment having excellent whisker resistance are widely used.
[0003]
Conventionally, a relay terminal having a female structure on both sides has been used to connect a bus bar and a relay or a fuse in a junction block (hereinafter referred to as “J / B”) for an automobile. From the viewpoint of cost reduction and cost reduction, a structure without a relay terminal is adopted, and a relay, a fuse, or the like is connected to the bus bar by a tuning fork type terminal formed in the bus bar. This busbar is formed from Sn-plated copper or copper alloy strip, and the surface of the tuning fork type terminal is also Sn-plated. The cut surface, which is punched and the material is exposed, comes into contact with it. In addition, the gap between the bus bars is becoming narrower due to the miniaturization and the increase in the density due to the increase in the number of electric control products, and the opposing surface between such bus bars is also a press punched surface, and the material is exposed. ing.
[0004]
Further, also for terminals for automobiles and consumer use, a structure for bringing the end surfaces into contact with each other has been increasing due to miniaturization and multipolarization. In this case, since the contact pressure is smaller than that of the J / B tuning fork type terminal (the contact pressure is 10 N or more for the J / B tuning fork type terminal and 0.1 to 20 N for the small terminal). In order to maintain electrical reliability, the surface and the end face of the material are subjected to Au plating, solder plating, bright Sn plating, or the like on the Ni base after pressing. Further, as a wire joining method of terminals, a pressure welding method of breaking a sheath of an electric wire at an end face and connecting to a wire core is also widely used. This end face is also often subjected to solder plating or bright Sn plating after pressing in order to maintain electrical reliability with the electric wire.
[0005]
Regarding the coating of copper or a copper alloy member, in order to improve the heat-peeling resistance and solder wettability of the lead frame material for a tantalum capacitor, on a base material made of nickel silver (Cu-Ni-Zn-based alloy), It is known that a Ni plating layer, a Cu—Sn alloy layer having a thickness of 0.2 to 2.0 μm, and a Sn plating layer (or a solder plating layer) are sequentially formed (for example, see Patent Document 1). In addition, in order to improve heat resistance, molding workability, solderability, and the like of the surface of the material such as a copper alloy, a Ni or Ni alloy layer, a Cu layer, Sn or Sn It is known to perform a reflow treatment after coating an alloy layer (for example, see Patent Document 2). Further, it is known to form a Ni or Ni alloy plating layer on a copper or copper alloy plate and form an Sn or Sn alloy layer thereon to improve the leak resistance of the surface of the bus bar ( For example, see Patent Document 3).
[0006]
[Patent Document 1]
JP-A-6-196349 (paragraphs 0007-0008)
[Patent Document 2]
JP-A-2002-226982 (paragraph number 0004)
[Patent Document 3]
JP 2001-203020 A (Paragraph No. 0007)
[0007]
[Problems to be solved by the invention]
However, in the conventional J / B, the material is exposed at the end face of the tuning fork-type terminal, and in order to supplement the electrical reliability by the contact pressure, the insertion force is increased, and the material dependence of the stress relaxation resistance is increased. There was a problem such as large. Also, due to the narrowing of the gap between the bus bars and the facing of the exposed surface of the material, the occurrence of leaks due to moisture due to dew condensation or water mixed in from the external environment has been a problem. Therefore, if the end face of the tuning fork type terminal and the end face of the bus bar after pressing are subjected to a surface treatment with high electrical reliability and excellent leak resistance, in selecting a material, a material having higher conductivity and a lower cost can be used. Material can be selected.
[0008]
In the case of small terminals, the cost is high in the case of Au plating over Ni, the environmental load is large because Pb is contained in the case of solder plating, and the whisker resistance and heat resistance are poor in the case of bright Sn plating. There is. In this case, even if heat melting treatment is performed after Sn plating as a measure for whisker, sufficient heat resistance cannot be ensured in a high temperature environment such as an engine room of an automobile. Therefore, a copper or copper alloy member which has been subjected to a surface treatment that is lower in cost than Ni-base Au plating, does not contain harmful elements such as Pb, has excellent whisker resistance, and has better heat resistance than ordinary Sn plating. Was required.
[0009]
Patent Document 1 discloses improving the heat-peeling resistance and solder wettability of a copper alloy member, but discloses improving electrical reliability, leak resistance, corrosion resistance and heat resistance. Not. Patent Document 2 discloses improving the heat resistance, molding workability, solderability, and the like of the surface of a material such as a copper alloy. However, the electrical reliability, leak resistance, and corrosion resistance of the end face are disclosed. No improvement is disclosed. Further, the method disclosed in Patent Document 3 aims at improving the leak resistance of the surface of the bus bar. However, since the Ni of the underlayer diffuses into the surface layer to increase the contact resistance after holding at a high temperature, the heat resistance is increased. Is not enough. Moreover, it does not disclose improving the electrical reliability, leak resistance, and corrosion resistance of the end face.
[0010]
Accordingly, the present invention has been made in view of the above-mentioned conventional problems, and it has been found that electrical reliability, leak resistance, corrosion resistance, and solderability can be provided on a surface exposed by molding a copper or copper alloy material into a desired shape. Another object of the present invention is to provide an inexpensive copper or copper alloy member having excellent heat resistance. Another object of the present invention is to provide a copper or copper alloy member coated with excellent whisker resistance in addition to the above characteristics.
[0011]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, at least a part of a surface exposed by molding a copper or copper alloy material into a desired shape has a thickness of 0.1 to 5 μm. A Ni-containing layer is formed, a Cu-containing layer having a thickness of 0.2 to 3 μm is formed on the Ni-containing layer, and a Sn-containing layer having a thickness of 0.2 to 10 μm is formed on the Cu-containing layer. By controlling the ratio of the thickness of the Cu-containing layer to the thickness of the Sn-containing layer (Cu / Sn thickness ratio) to be 2 or less, at least a part of the surface exposed by molding of the material is electrically connected. The present inventors have found that it is possible to provide an inexpensive coated copper or copper alloy member having excellent reliability, leak resistance, corrosion resistance, solderability, and heat resistance, and have completed the present invention.
[0012]
That is, the copper or copper alloy member provided with the Sn coating according to the present invention has a Ni or Ni alloy having a thickness of 0.1 to 5 μm on at least a part of a surface exposed by molding a copper or copper alloy material into a desired shape. A Cu-containing layer having a thickness of 0.2 to 3 μm is formed on the Ni-containing layer; a Sn-containing layer having a thickness of 0.2 to 10 μm is formed on the Cu-containing layer; The ratio of the thickness of the Cu-containing layer to the thickness of the Sn-containing layer (Cu / Sn thickness ratio) is 2 or less.
[0013]
In the copper or copper alloy member provided with the Sn coating, an exposed surface is a surface exposed by pressing, wire cutting or etching, and at least a part of the exposed surface is an end surface which is in electrical contact with another member. Alternatively, it is preferable that the end surface has leak resistance. In addition, it is preferable that a part or the whole of the Cu-containing layer includes a Cu—Sn alloy layer such as Cu 6 Sn 5 or Cu 3 Sn. Further, the Ni-containing layer may be a layer made of Ni, the Cu-containing layer may be a layer made of Cu, and the Sn-containing layer may be a layer made of Sn. Alternatively, the Ni-containing layer contains 0 to 10% by weight of one or more of Co, Cu, P and S in addition to Ni, and the Cu-containing layer contains one or more of Zn, Ni and Sn in addition to Cu. 10% by weight, and the Sn-containing layer may contain 0 to 20% by weight of one or more of Pb, Zn, Ni, Cu and Ag in addition to Sn.
[0014]
In addition, the method of manufacturing a copper or copper alloy member coated with Sn according to the present invention comprises forming a copper or copper alloy material into a desired shape, and forming at least a part of a surface exposed by this molding to a thickness of 0.1%. Forming a Ni-containing layer having a thickness of 0.2 to 3 μm, forming a Cu-containing layer having a thickness of 0.2 to 3 μm on the Ni-containing layer, and forming a Sn-containing layer having a thickness of 0.2 to 10 μm on the Cu-containing layer. Is formed, and the ratio of the thickness of the Cu-containing layer to the thickness of the Sn-containing layer (Cu / Sn thickness ratio) is set to 2 or less.
[0015]
In the method for producing a copper or copper alloy member coated with Sn, it is preferable that the copper or copper alloy material is formed by pressing, wire cutting, or etching. It is preferable that at least a part of the exposed surface is an end surface that is in electrical contact with another member or an end surface that requires leak resistance. After forming the Ni-containing layer, the Cu-containing layer, and the Sn-containing layer, it is preferable to perform secondary processing such as pressing. Further, it is preferable to form the Ni-containing layer, the Cu-containing layer and the Sn-containing layer by electroplating. Further, it is preferable to perform a heat melting treatment or a molten Sn immersion treatment after electroplating the Sn-containing layer.
[0016]
Further, in the electric or electronic member according to the present invention, a Ni-containing layer having a thickness of 0.1 to 5 μm is formed on at least a part of a surface exposed by molding a copper or copper alloy material into a desired shape, A Cu-containing layer having a thickness of 0.2 to 3 μm is formed on the Ni-containing layer, and a Sn-containing layer having a thickness of 0.2 to 10 μm is formed on the Cu-containing layer. The ratio of the thickness of the Cu-containing layer to the thickness (Cu / Sn thickness ratio) is 2 or less.
[0017]
In this electric or electronic member, the exposed surface is preferably a surface exposed by pressing, wire cutting or etching, and at least a part of the exposed surface is in electrical contact with another terminal, bus bar or electric wire. The end face or the end face that requires leak resistance is preferable.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
In the embodiment of the method for producing a copper or copper alloy member provided with a Sn coating according to the present invention, first, the reliability of electrical connection, leakage resistance, corrosion resistance, and soldering at the end face of a copper or copper alloy plate or strip are described. An end face of a terminal or a bus bar or the like which requires properties is exposed by pressing, wire cutting or etching. Next, the surface and the exposed end face are coated with a Ni-containing layer having a thickness of 0.1 to 5 μm by plating or vapor deposition, and then coated with a Cu-containing layer having a thickness of 0.2 to 3 μm. The surface is coated with a Sn-containing layer having a thickness of 0.2 to 10 μm by plating, vapor deposition, molten metal immersion, or the like. The thickness of the Sn-containing layer is such that the ratio of the thickness of the Cu-containing layer to the thickness of the Sn-containing layer (hereinafter referred to as “Cu / Sn thickness ratio”) is 2 or less. When the method of coating the Sn-containing layer is other than Sn immersion, heat melting treatment is performed thereafter to form a Sn-coated copper or copper alloy member. The thickness of the above-mentioned coating layer is determined by forming an end face which is formed on a terminal or a bus bar, etc., and which electrically contacts another terminal, a bus bar, an electric wire, or the like, or an end face which requires leak resistance, corrosion resistance and solderability. Although it is the thickness of the coating layer in the case where there is a portion connected to other electric components even on the surface other than the end surface, from the viewpoint of electrical reliability, heat resistance, corrosion resistance and solderability, the above-mentioned is described. It is preferable to coat with a thickness.
[0019]
The Ni-containing layer may contain 0 to 10% by weight of one or more of Co, Cu, P and S in addition to Ni. Further, the Cu-containing layer may contain 0 to 10% by weight of at least one of Zn, Ni and Sn. Further, the Sn-containing layer may contain 0 to 20% by weight of at least one of Pb, Zn, Ni, Cu and Ag.
[0020]
Next, the reason why the thickness of the Ni-containing layer is set to 0.1 to 5 μm will be described. The main purpose of coating with the Ni-containing layer is to prevent the components of copper and copper alloy, which are raw materials, from diffusing into the surface layer and to improve leak resistance. When the thickness of the Ni-containing layer is less than 0.1 μm, the effects of preventing diffusion and improving the leak resistance are small. On the other hand, when the thickness of the Ni-containing layer exceeds 5 μm, it becomes economically disadvantageous, When an additional bending process is performed on the covered plane portion, a crack may occur from the Ni-containing layer as a starting point. In order to achieve the above object, one or more of Co, Cu, P and S may be contained in addition to Ni in an amount of 0 to 10% by weight. Cracks are likely to occur even with the following thickness.
[0021]
Next, the reason why the thickness of the Cu-containing layer is set to 0.2 to 3 μm will be described. The main purpose of coating with the Cu-containing layer is to suppress alloying between Ni of the lower coating layer and Sn of the upper coating layer. When there is no Cu-containing layer, Ni and Sn are alloyed, and Ni diffuses to the outermost surface of the coating due to aging to form an oxide having a large electric resistivity, so that the electrical reliability is reduced. When the thickness of the Cu-containing layer is less than 0.2 μm, the effect of suppressing the Ni—Sn alloying is not sufficient. Further, Cu in the Cu-containing layer diffuses into the upper Sn to form a Cu—Sn alloy layer such as Cu 6 Sn 5 or Cu 3 Sn. If there is an excessive amount of Cu, the remaining Cu diffuses into the surface layer to form an oxide having an electrical resistivity higher than that of the Sn oxide, and thus the electrical reliability is reduced. Therefore, the upper limit of the thickness of the Cu-containing layer is set to 3 μm, and the Cu / Sn thickness ratio is set to 2 or less.
[0022]
Next, the reason why the thickness of the Sn-containing layer is set to 0.2 to 10 μm will be described. The Sn-containing layer is originally provided to ensure electrical connection reliability, corrosion resistance, solderability, and the like. If the thickness of the Sn-containing layer is less than 0.2 μm, its function may be maintained. On the other hand, if it exceeds 10 μm, it is economically disadvantageous.
[0023]
The reason why the method of coating the Sn-containing layer is a method of performing a heat melting treatment after electroplating or a method of applying a molten Sn immersion treatment is to improve whisker resistance. However, when whisker resistance is not required, the heat melting treatment or the molten Sn immersion treatment may not be performed.
[0024]
FIGS. 1 and 2 show examples in which a copper or copper alloy member coated with Sn according to the present invention is applied to a tuning fork type terminal. As shown in FIGS. 1 and 2, the tongue-shaped terminal 12 is inserted between the opposed end surfaces of the tuning-fork type terminal 10 and fitted to each other, so that the electrical connection between them is made. As shown in FIGS. 3 (a) and 3 (b), the end of the tuning fork type terminal 10 fitted with the tongue-shaped terminal 12 has a coating structure of the end of the copper or copper alloy member 14 as a raw material. The surface is covered with a Ni layer, the upper surface is covered with a Cu-Sn layer (or Cu layer + Cu-Sn layer) 18, and the upper surface is covered with a Sn layer 20. Here, FIG. 3A shows a state in which a portion of the inside of the tuning fork type terminal 10 (including a portion to be electrically connected to the tongue type terminal 12) is formed by pressing a copper or copper alloy material by pressing or the like. FIG. 7 shows an example in which the above-mentioned coating is applied, and then the outer portion of the tuning fork type terminal 10 is formed by pressing or the like, and the portion on the opposite side of the portion to be electrically connected to the tongue type terminal 12 is removed. FIG. 3B shows an example in which the above-mentioned coating is applied after forming a material of copper or copper alloy into the shape of the tuning fork type terminal 10 by pressing or the like. Note that the above-mentioned coating may not be applied to a portion that does not need to be applied, and the above-described coating may be applied only to a portion to be electrically connected to the tongue-shaped terminal 12.
[0025]
【Example】
Hereinafter, embodiments of a copper or copper alloy member coated with Sn and a method of manufacturing the same according to the present invention will be described in detail.
[0026]
[Example 1]
First, a test piece made of C1020 (oxygen-free copper) having a Vickers hardness of HV105, a thickness of 0.8 mm, a width of 10 mm, and a length of 60 mm was punched out using a press die. After activating the surface and the end face of this test piece by electrolytic degreasing and pickling, a portion from one end of the test piece to 30 mm was formed by a 0.5 μm thick Ni layer, a 0.5 μm thick Cu layer and a 0.5 μm thick Cu layer. It was sequentially covered with a 2 μm Sn layer and subjected to a heat melting treatment. The coating of these layers was performed by electroplating, which was excellent in thickness control and advantageous in cost. Ni plating was performed using a nickel sulfamate bath, Cu plating was performed using a copper sulfate bath, and Sn plating was performed using a tin sulfate bath. Bright plating was performed without adding a brightener to each plating bath. Further, the position of the anode plate was adjusted so that the plating thickness on the surface and the end face was equal. The heat melting treatment was performed by heating the plated portion of the test piece between the opposed burners, and immediately after the gloss spread over the entire surface, dropped into a water tank installed under the burner and cooled with water.
[0027]
The thickness of the Ni coating layer was measured using a fluorescent X-ray film thickness measuring instrument with a collimator having a diameter of 0.1 mm, with a test piece plated with Ni only under the same plating conditions as described above, with the end face horizontal. . The thickness of the Sn coating layer was measured in the same manner. The thickness of the Cu coating layer was measured by embedding a Ni-plated Cu-plated test piece in a resin, polishing the resin, and observing the cross section at a magnification of 10,000 with a scanning electron microscope (SEM).
[0028]
Next, the test piece obtained in this example was evaluated for heat resistance by a contact resistance value after holding at 160 ° C. for 120 hours in an air atmosphere. The contact resistance value was measured using a micro-ohm meter under the conditions of an open-circuit voltage of 20 mV, a current of 10 mA, a U-shaped metal wire probe of 0.5 mm, a maximum load of 100 gf, and no sliding. The average was determined. At the time of this measurement, the test piece was fixed with a jig such that the probe was in vertical contact with the end face of the test piece. The contact resistance measured before the evaluation of the heat resistance of the test piece obtained in this example was 5 mΩ.
[0029]
Further, as shown in FIG. 3, a pair of the same test pieces 100 obtained in this example were fixed to a resin plate 102 so as to face each other at a distance of 1 mm. A portion of the test piece 100 having a tip of 10 mm was immersed in a 0.5 L test aqueous solution 104 adjusted to 85 μS / cm by adding sodium sulfite to pure water, and a DC voltage of 14 V was applied to both electrodes by a DC power supply 106. Was measured by the ammeter 108. This measurement was performed until the leak current exceeded 1 A, and the leak resistance of the test piece 100 was evaluated based on the time required. If the leak current did not exceed 1 A even after 120 minutes, the measurement was terminated.
[0030]
Further, the test piece obtained in this example was subjected to a 90 ° W bending test (inner bending radius: 0.8 mm), and then the surface of the bent portion was observed, and the bending workability was evaluated based on the presence or absence of cracks.
[0031]
As a result of these tests, the contact resistance after holding at 160 ° C. for 120 hours in the air atmosphere was 5 mΩ, and the leakage current did not exceed 1 A even after 120 minutes in the leak resistance evaluation. No crack was observed in the evaluation of. Therefore, it was found that the test pieces obtained in this example were excellent in heat resistance, leak resistance, and bending workability.
[0032]
[Example 2]
A test piece was prepared in the same manner as in Example 1 except that the thickness of the Ni layer was 0.1 μm, the thickness of the Cu layer was 0.2 μm, and the thickness of the Sn layer was 0.5 μm. The same test was performed. The contact resistance measured before the evaluation of the heat resistance of the test piece obtained in this example was 5 mΩ.
[0033]
In this example, the contact resistance after holding at 160 ° C. for 120 hours in the air atmosphere was 82 mΩ, and the leak current did not exceed 1 A even after 120 minutes had passed in the evaluation of leak resistance. No crack was observed in the evaluation. Therefore, it was found that the test pieces obtained in this example were excellent in heat resistance, leak resistance, and bending workability.
[0034]
[Example 3]
A test piece was prepared in the same manner as in Example 1 except that the thickness of the Ni layer was 2 μm, the thickness of the Cu layer was 1 μm, and the thickness of the Sn layer was 1.5 μm. Was done. The contact resistance measured before the evaluation of the heat resistance of the test piece obtained in this example was 5 mΩ.
[0035]
In this example, the contact resistance after holding at 160 ° C. for 120 hours in the air atmosphere was 17 mΩ, and the leak current did not exceed 1 A even after 120 minutes had passed in the leak resistance evaluation. No crack was observed in the evaluation. Therefore, it was found that the test pieces obtained in this example were excellent in heat resistance, leak resistance, and bending workability.
[0036]
[Comparative Example 1]
A test piece (bare material) similar to that of Example 1 was prepared except that the coating was not performed, and the same test as that of Example 1 was performed. In addition, the contact resistance value measured before the heat resistance evaluation of the test piece of this comparative example was 18 mΩ.
[0037]
In this comparative example, the contact resistance after holding at 160 ° C. for 120 hours in the air atmosphere exceeded 2000 mΩ, and the contact reliability was lacking. In addition, in the evaluation of leak resistance, it exceeded 1 A in 18 minutes, and was inferior in leak resistance. The reason why the contact resistance value exceeded 2000 mΩ was that Cu of the material was oxidized, and the reason for the poor leak resistance was that Cu eluted from the anode side was easily deposited on the cathode and a bridge was formed between the anode and the cathode. Is formed.
[0038]
[Comparative Example 2]
A test piece similar to that of Example 1 was prepared except that the test piece was covered with only the Sn layer having a thickness of 1 μm, and a test similar to that of Example 1 was performed. The contact resistance measured before the evaluation of the heat resistance of the test piece of this comparative example was 5 mΩ.
[0039]
In this comparative example, the contact resistance after holding at 160 ° C. for 120 hours in the air atmosphere was 277 mΩ, and the contact reliability was lacking. In addition, in the evaluation of leak resistance, it exceeded 1 A in 100 minutes, and was inferior in leak resistance. The reason why the contact resistance value exceeds 100 mΩ is that Cu of the material diffused into the outermost layer to form Cu oxide.
[0040]
[Comparative Example 3]
A test piece similar to that of Example 1 was prepared except that the thickness of the Ni layer was 1 μm and the thickness of the Sn layer was 1 μm, and the Cu coating was not applied, and the same test as in Example 1 was performed. The contact resistance measured before the evaluation of the heat resistance of the test piece of this comparative example was 5 mΩ.
[0041]
In this comparative example, the contact resistance after holding at 160 ° C. for 120 hours in the air atmosphere was 205 mΩ, and the contact reliability was lacking. The reason why the contact resistance value exceeds 100 mΩ is that Ni in the underlying coating layer diffused into the outermost layer to form Ni oxide.
[0042]
[Comparative Example 4]
A test piece was prepared in the same manner as in Example 1 except that the thickness of the Ni layer was 6 μm, the thickness of the Cu layer was 0.5 μm, and the thickness of the Sn layer was 1 μm. Was done. The contact resistance measured before the evaluation of the heat resistance of the test piece obtained in this comparative example was 5 mΩ.
[0043]
In this comparative example, the contact resistance after holding at 160 ° C. for 120 hours in the air atmosphere was 24 mΩ, and the leak current did not exceed 1 A even after 120 minutes in the leak resistance evaluation. Therefore, the test piece obtained in this comparative example was excellent in heat resistance and leak resistance. However, since the Ni layer was too thick, cracks were observed in the evaluation of bending workability.
[0044]
[Comparative Example 5]
A test piece was prepared in the same manner as in Example 1 except that the thickness of the Ni layer was 0.5 μm, the thickness of the Cu layer was 0.1 μm, and the thickness of the Sn layer was 0.1 μm. The same test was performed. In addition, the contact resistance measured before the heat resistance evaluation of the test piece obtained in this comparative example was 15 mΩ.
[0045]
In this comparative example, the contact resistance after holding at 160 ° C. for 120 hours in the air atmosphere exceeded 2000 mΩ, and the contact reliability was lacking. The reason why the contact resistance value exceeded 100 mΩ was that the Sn coating layer was thin and the components (Ni, Cu) of the underlying coating layer formed an oxide on the outermost layer.
[0046]
[Comparative Example 6]
A test piece was prepared in the same manner as in Example 1 except that the thickness of the Ni layer was 1 μm, the thickness of the Cu layer was 2 μm, and the thickness of the Sn layer was 0.5 μm, and the same test as in Example 1 was performed. Was done. The contact resistance measured before the evaluation of the heat resistance of the test piece obtained in this comparative example was 5 mΩ.
[0047]
In this comparative example, the contact resistance after holding at 160 ° C. for 120 hours in the air atmosphere was 311 mΩ, and the contact reliability was lacking. The reason why the contact resistance value exceeds 100 mΩ is that the Cu / Sn thickness ratio is large and the excessively remaining components of the Cu coating layer diffused into the outermost layer to form Cu oxide.
[0048]
Table 1 shows the results of Examples 1 to 3 and Comparative Examples 1 to 6.
[0049]
[Table 1]
[0050]
【The invention's effect】
As described above, the copper or copper alloy member coated with Sn according to the present invention is particularly excellent in heat resistance and leak resistance of the end face exposed by molding, so that the end face of the member is used for terminals, bus bars, electric wires, and the like. It is excellent as a material for electrical and electronic parts such as connector terminals and bus bars including parts to be electrically connected, and bus bars and lead frames requiring leak resistance. In addition, since the corrosion resistance and solderability of the end face of the member can be improved, the present invention can be applied to a field where the corrosion resistance and solderability of the end face of a terminal such as a PCB terminal are required.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a tuning fork type terminal using a copper or copper alloy member coated with Sn according to the present invention and a tongue type terminal inserted into the tuning fork type terminal.
FIG. 2 is a plan view of the tuning fork type terminal of FIG. 1;
FIG. 3 is a sectional view taken along line III-III of FIG. 1, showing an example of a coating structure of the tuning fork type terminal of FIG. 1;
FIG. 4 is a view for explaining a leak resistance test in Examples and Comparative Examples.
[Explanation of symbols]
Reference Signs List 10 tuning fork type terminal 12 tongue type terminal 14 copper or copper alloy member 16 Ni layer 18 Cu-Sn layer (or Cu layer + Cu-Sn layer)
Reference Signs List 20 Sn layer 100 Test piece 102 Resin plate 104 Test aqueous solution 106 DC power supply (14 V)
108 ammeter

Claims (20)

  1. 銅または銅合金の素材を所望の形状に成形することにより露出した面の少なくとも一部に、厚さ0.1〜5μmのNi含有層が形成され、このNi含有層の上に厚さ0.2〜3μmのCu含有層が形成され、このCu含有層の上に厚さ0.2〜10μmのSn含有層が形成され、Sn含有層の厚さに対するCu含有層の厚さの比(Cu/Sn厚さ比)が2以下であることを特徴とする、Sn被覆を施した銅または銅合金部材。A Ni-containing layer having a thickness of 0.1 to 5 μm is formed on at least a part of the exposed surface by molding a copper or copper alloy material into a desired shape. A Cu-containing layer having a thickness of 2 to 3 μm is formed, a Sn-containing layer having a thickness of 0.2 to 10 μm is formed on the Cu-containing layer, and the ratio of the thickness of the Cu-containing layer to the thickness of the Sn-containing layer (Cu / Sn thickness ratio) is 2 or less, the copper or copper alloy member coated with Sn.
  2. 前記露出した面がプレス、ワイヤカットまたはエッチング加工により露出した面であることを特徴とする、請求項1に記載のSn被覆を施した銅または銅合金部材。The copper or copper alloy member coated with Sn according to claim 1, wherein the exposed surface is a surface exposed by pressing, wire cutting, or etching.
  3. 前記露出した面の少なくとも一部が、他の部材と電気的に接触する端面であることを特徴とする、請求項1または2に記載のSn被覆を施した銅または銅合金部材。The Sn or copper-coated copper or copper alloy member according to claim 1, wherein at least a part of the exposed surface is an end surface that is in electrical contact with another member.
  4. 前記露出した面の少なくとも一部が、耐リーク性が必要な端面であることを特徴とする、請求項1乃至3のいずれかに記載のSn被覆を施した銅または銅合金部材。The copper or copper alloy member coated with Sn according to any one of claims 1 to 3, wherein at least a part of the exposed surface is an end surface requiring leak resistance.
  5. 前記Cu含有層の一部または全部がCu−Sn合金層を含むことを特徴とする、請求項1乃至4のいずれかに記載のSn被覆を施した銅または銅合金部材。The copper or copper alloy member provided with Sn coating according to any one of claims 1 to 4, wherein a part or the whole of the Cu-containing layer includes a Cu-Sn alloy layer.
  6. 前記Cu−Sn合金層がCuSnまたはCuSnからなることを特徴とする、請求項5に記載のSn被覆を施した銅または銅合金部材。The Cu-Sn alloy layer is characterized by comprising the Cu 6 Sn 5 or Cu 3 Sn, copper or copper alloy member subjected to the Sn coating of claim 5.
  7. 前記Ni含有層がNiからなる層であり、前記Cu含有層がCuからなる層であり、前記Sn含有層がSnからなる層であることを特徴とする、請求項1乃至6のいずれかに記載のSn被覆を施した銅または銅合金部材。The Ni-containing layer is a layer made of Ni, the Cu-containing layer is a layer made of Cu, and the Sn-containing layer is a layer made of Sn. A copper or copper alloy member coated with the Sn coating as described above.
  8. 前記Ni含有層がNiに加えてCo、Cu、PおよびSの1種以上を0〜10重量%含有し、前記Cu含有層がCuに加えてZn、NiおよびSnの1種以上を0〜10重量%含有し、前記Sn含有層がSnに加えてPb、Zn、Ni、CuおよびAgの1種以上を0〜20重量%含有することを特徴とする、請求項1乃至6のいずれかに記載のSn被覆を施した銅または銅合金部材。The Ni-containing layer contains 0 to 10% by weight of one or more of Co, Cu, P and S in addition to Ni, and the Cu-containing layer contains one or more of Zn, Ni and Sn in addition to Cu. 7% by weight, and the Sn-containing layer contains 0 to 20% by weight of at least one of Pb, Zn, Ni, Cu and Ag in addition to Sn. 4. A copper or copper alloy member provided with a Sn coating according to 4.
  9. 銅または銅合金の素材を所望の形状に成形し、この成形により露出した面の少なくとも一部に厚さ0.1〜5μmのNi含有層を形成し、このNi含有層の上に厚さ0.2〜3μmのCu含有層を形成し、このCu含有層の上に厚さ0.2〜10μmのSn含有層を形成し、Sn含有層の厚さに対するCu含有層の厚さの比(Cu/Sn厚さ比)を2以下にすることを特徴とする、Sn被覆を施した銅または銅合金部材の製造方法。A material of copper or a copper alloy is formed into a desired shape, and a Ni-containing layer having a thickness of 0.1 to 5 μm is formed on at least a part of the exposed surface by this forming. A Cu-containing layer having a thickness of 0.2 to 3 μm is formed, a Sn-containing layer having a thickness of 0.2 to 10 μm is formed on the Cu-containing layer, and the ratio of the thickness of the Cu-containing layer to the thickness of the Sn-containing layer ( Cu / Sn thickness ratio (Cu / Sn thickness ratio) 2 or less.
  10. 前記銅または銅合金の素材の成形が、プレス、ワイヤカットまたはエッチング加工により行われることを特徴とする、請求項9に記載のSn被覆を施した銅または銅合金部材の製造方法。The method for producing a copper or copper alloy member coated with Sn according to claim 9, wherein the forming of the copper or copper alloy material is performed by pressing, wire cutting, or etching.
  11. 前記露出した面の少なくとも一部が、他の部材と電気的に接触する端面であることを特徴とする、請求項9または10に記載のSn被覆を施した銅または銅合金部材の製造方法。The method according to claim 9 or 10, wherein at least a part of the exposed surface is an end surface that is in electrical contact with another member.
  12. 前記露出した面の少なくとも一部が、耐リーク性が必要な端面であることを特徴とする、請求項9乃至11のいずれかに記載のSn被覆を施した銅または銅合金部材の製造方法。The method for manufacturing a copper or copper alloy member coated with Sn according to any one of claims 9 to 11, wherein at least a part of the exposed surface is an end surface requiring leak resistance.
  13. 前記Ni含有層と前記Cu含有層と前記Sn含有層を形成した後に、二次加工を行うことを特徴とする、請求項9乃至12のいずれかに記載のSn被覆を施した銅または銅合金部材の製造方法。After forming the Ni-containing layer, the Cu-containing layer, and the Sn-containing layer, secondary processing is performed, and the Sn-coated copper or copper alloy according to any one of claims 9 to 12, A method for manufacturing a member.
  14. 前記二次加工がプレスであることを特徴とする、請求項13に記載のSn被覆を施した銅または銅合金部材の製造方法。The method for producing a copper or copper alloy member with a Sn coating according to claim 13, wherein the secondary processing is a press.
  15. 前記Ni含有層と前記Cu含有層と前記Sn含有層を電気めっきにより形成することを特徴とする、請求項9乃至14のいずれかに記載のSn被覆を施した銅または銅合金部材の製造方法。The method for producing a copper or copper alloy member with a Sn coating according to any one of claims 9 to 14, wherein the Ni-containing layer, the Cu-containing layer, and the Sn-containing layer are formed by electroplating. .
  16. 前記Sn含有層を電気めっきした後に加熱溶融処理または溶融Sn浸漬処理を行うことを特徴とする、請求項15に記載のSn被覆を施した銅または銅合金部材の製造方法。The method for producing a copper or copper alloy member coated with Sn according to claim 15, wherein a heat melting treatment or a molten Sn immersion treatment is performed after the Sn-containing layer is electroplated.
  17. 銅または銅合金の素材を所望の形状に成形することにより露出した面の少なくとも一部に、厚さ0.1〜5μmのNi含有層が形成され、このNi含有層の上に厚さ0.2〜3μmのCu含有層が形成され、このCu含有層の上に厚さ0.2〜10μmのSn含有層が形成され、Sn含有層の厚さに対するCu含有層の厚さの比(Cu/Sn厚さ比)が2以下であることを特徴とする、電気または電子部材。A Ni-containing layer having a thickness of 0.1 to 5 μm is formed on at least a part of the exposed surface by molding a copper or copper alloy material into a desired shape. A Cu-containing layer having a thickness of 2 to 3 μm is formed, a Sn-containing layer having a thickness of 0.2 to 10 μm is formed on the Cu-containing layer, and the ratio of the thickness of the Cu-containing layer to the thickness of the Sn-containing layer (Cu / Sn thickness ratio) is 2 or less.
  18. 前記露出した面がプレス、ワイヤカットまたはエッチング加工により露出した面であることを特徴とする、請求項17に記載の電気または電子部材。The electric or electronic member according to claim 17, wherein the exposed surface is a surface exposed by pressing, wire cutting, or etching.
  19. 前記露出した面の少なくとも一部が、他の端子、バスバーまたは電線と電気的に接触する端面であることを特徴とする、請求項17または18に記載の電気または電子部材。The electric or electronic member according to claim 17, wherein at least a part of the exposed surface is an end surface that is in electrical contact with another terminal, a bus bar, or an electric wire.
  20. 前記露出した面の少なくとも一部が、耐リーク性が必要な端面であることを特徴とする、請求項17乃至19のいずれかに記載の電気または電子部材。20. The electric or electronic member according to claim 17, wherein at least a part of the exposed surface is an end surface requiring leak resistance.
JP2003095313A 2003-03-31 2003-03-31 Sn-COATED COPPER OR COPPER ALLOY MEMBER AND ITS MANUFACTURING METHOD Pending JP2004300524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003095313A JP2004300524A (en) 2003-03-31 2003-03-31 Sn-COATED COPPER OR COPPER ALLOY MEMBER AND ITS MANUFACTURING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003095313A JP2004300524A (en) 2003-03-31 2003-03-31 Sn-COATED COPPER OR COPPER ALLOY MEMBER AND ITS MANUFACTURING METHOD

Publications (1)

Publication Number Publication Date
JP2004300524A true JP2004300524A (en) 2004-10-28

Family

ID=33407669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003095313A Pending JP2004300524A (en) 2003-03-31 2003-03-31 Sn-COATED COPPER OR COPPER ALLOY MEMBER AND ITS MANUFACTURING METHOD

Country Status (1)

Country Link
JP (1) JP2004300524A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161127A (en) * 2004-12-09 2006-06-22 Takamatsu Mekki:Kk Electronic material suitable for insertion type connection terminal and method for producing the same
JP2006161146A (en) * 2004-12-10 2006-06-22 Nikko Metal Manufacturing Co Ltd TINNED STRIP OF Cu-Zn BASED ALLOY IN WHICH GENERATION OF WHISKER IS SUPPRESSED AND METHOD FOR PRODUCING THE SAME
JP2006206945A (en) * 2005-01-27 2006-08-10 Toyo Kohan Co Ltd SURFACE-TREATED Al SHEET HAVING EXCELLENT SOLDERABILITY WITH LOW MELTING POINT
WO2007097338A1 (en) * 2006-02-20 2007-08-30 The Furukawa Electric Co., Ltd. Plating material and electrical and electronic component using the plating material
JP2007277715A (en) * 2006-03-17 2007-10-25 Furukawa Electric Co Ltd:The Plated material and electric/electronic component using the same
WO2007126011A1 (en) * 2006-04-26 2007-11-08 Nippon Mining & Metals Co., Ltd. TIN-PLATED Cu-Ni-Si ALLOY STRIP
WO2008075723A1 (en) * 2006-12-20 2008-06-26 Hitachi, Ltd. Metal strip, connector and metal strip manufacturing method
JP2008169445A (en) * 2007-01-12 2008-07-24 Kobe Steel Ltd Copper alloy material provided with plating film for fuse, and manufacturing method therefor
JP2009010301A (en) * 2007-06-29 2009-01-15 Furukawa Electric Co Ltd:The Printed wiring board and printed circuit board
JP2009084616A (en) * 2007-09-28 2009-04-23 Nikko Kinzoku Kk REFLOW Sn PLATED MATERIAL AND ELECTRONIC COMPONENT USING THE SAME
US7700883B2 (en) 2007-04-20 2010-04-20 (Kobe Steel, Ltd.) Terminal for engaging type connector
JP2011109065A (en) * 2009-10-22 2011-06-02 Tdk Corp Electronic component and method of manufacturing the electronic component
CN102201626A (en) * 2010-03-26 2011-09-28 株式会社神户制钢所 Copper alloy and electrically conductive material for connecting parts, and mating-type connecting part and method for producing the same
JP2011204617A (en) * 2010-03-26 2011-10-13 Kobe Steel Ltd Copper alloy for component for connection and conductive material
US8835771B2 (en) 2010-12-07 2014-09-16 Kobe Steel, Ltd. PCB terminal and method for manufacturing the same
KR101544264B1 (en) * 2012-08-29 2015-08-12 가부시키가이샤 고베 세이코쇼 Sn-PLATED COPPER ALLOY STRIP HAVING EXCELLENT HEAT RESISTANCE

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61177393A (en) * 1985-01-31 1986-08-09 Furukawa Electric Co Ltd:The Method for plating phosphor bronze with sn or sn alloy
JPH0617176U (en) * 1992-08-11 1994-03-04 株式会社エンプラス IC socket
JPH10134869A (en) * 1996-10-30 1998-05-22 Yazaki Corp Terminal material and terminal
JPH11135226A (en) * 1997-10-27 1999-05-21 Harness Syst Tech Res Ltd Manufacture of fitting type connecting terminal
JP2001203020A (en) * 2000-01-18 2001-07-27 Kobe Steel Ltd Electronic connecting parts
JP2002226982A (en) * 2001-01-31 2002-08-14 Dowa Mining Co Ltd Heat resistant film, its manufacturing method, and electrical and electronic parts

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61177393A (en) * 1985-01-31 1986-08-09 Furukawa Electric Co Ltd:The Method for plating phosphor bronze with sn or sn alloy
JPH0617176U (en) * 1992-08-11 1994-03-04 株式会社エンプラス IC socket
JPH10134869A (en) * 1996-10-30 1998-05-22 Yazaki Corp Terminal material and terminal
JPH11135226A (en) * 1997-10-27 1999-05-21 Harness Syst Tech Res Ltd Manufacture of fitting type connecting terminal
JP2001203020A (en) * 2000-01-18 2001-07-27 Kobe Steel Ltd Electronic connecting parts
JP2002226982A (en) * 2001-01-31 2002-08-14 Dowa Mining Co Ltd Heat resistant film, its manufacturing method, and electrical and electronic parts

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161127A (en) * 2004-12-09 2006-06-22 Takamatsu Mekki:Kk Electronic material suitable for insertion type connection terminal and method for producing the same
JP2006161146A (en) * 2004-12-10 2006-06-22 Nikko Metal Manufacturing Co Ltd TINNED STRIP OF Cu-Zn BASED ALLOY IN WHICH GENERATION OF WHISKER IS SUPPRESSED AND METHOD FOR PRODUCING THE SAME
JP4570948B2 (en) * 2004-12-10 2010-10-27 日鉱金属株式会社 Sn-plated strip of Cu-Zn alloy with reduced whisker generation and method for producing the same
JP2006206945A (en) * 2005-01-27 2006-08-10 Toyo Kohan Co Ltd SURFACE-TREATED Al SHEET HAVING EXCELLENT SOLDERABILITY WITH LOW MELTING POINT
JP2007247060A (en) * 2006-02-20 2007-09-27 Furukawa Electric Co Ltd:The Plating material and electrical and electronic component using the plating material
US7824776B2 (en) 2006-02-20 2010-11-02 The Furukawa Electric Co., Ltd. Plated material and electric and electronic parts using the plated material
WO2007097338A1 (en) * 2006-02-20 2007-08-30 The Furukawa Electric Co., Ltd. Plating material and electrical and electronic component using the plating material
JP2007277715A (en) * 2006-03-17 2007-10-25 Furukawa Electric Co Ltd:The Plated material and electric/electronic component using the same
JP4653133B2 (en) * 2006-03-17 2011-03-16 古河電気工業株式会社 Plating material and electric / electronic component using the plating material
WO2007126011A1 (en) * 2006-04-26 2007-11-08 Nippon Mining & Metals Co., Ltd. TIN-PLATED Cu-Ni-Si ALLOY STRIP
JP2007291458A (en) * 2006-04-26 2007-11-08 Nikko Kinzoku Kk Cu-Ni-Si ALLOY-TINNED STRIP
KR101058764B1 (en) 2006-04-26 2011-08-24 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Cu-Ni-Si alloy tin plated strips
WO2008075723A1 (en) * 2006-12-20 2008-06-26 Hitachi, Ltd. Metal strip, connector and metal strip manufacturing method
JP2008150690A (en) * 2006-12-20 2008-07-03 Hitachi Ltd Metal strip, connector, and method of manufacturing metal strip
JP2008169445A (en) * 2007-01-12 2008-07-24 Kobe Steel Ltd Copper alloy material provided with plating film for fuse, and manufacturing method therefor
US8076582B2 (en) 2007-04-20 2011-12-13 Kobe Steel, Ltd. Terminal for engaging type connector
US7700883B2 (en) 2007-04-20 2010-04-20 (Kobe Steel, Ltd.) Terminal for engaging type connector
JP2009010301A (en) * 2007-06-29 2009-01-15 Furukawa Electric Co Ltd:The Printed wiring board and printed circuit board
JP2009084616A (en) * 2007-09-28 2009-04-23 Nikko Kinzoku Kk REFLOW Sn PLATED MATERIAL AND ELECTRONIC COMPONENT USING THE SAME
JP2011109065A (en) * 2009-10-22 2011-06-02 Tdk Corp Electronic component and method of manufacturing the electronic component
JP2011204617A (en) * 2010-03-26 2011-10-13 Kobe Steel Ltd Copper alloy for component for connection and conductive material
CN102201626A (en) * 2010-03-26 2011-09-28 株式会社神户制钢所 Copper alloy and electrically conductive material for connecting parts, and mating-type connecting part and method for producing the same
US8940405B2 (en) 2010-03-26 2015-01-27 Kobe Steel, Ltd. Copper alloy and electrically conductive material for connecting parts, and mating-type connecting part and method for producing the same
US8956735B2 (en) 2010-03-26 2015-02-17 Kabushiki Kaisha Kobe Seiko Sho Copper alloy and electrically conductive material for connecting parts, and mating-type connecting part and method for producing the same
US9373925B2 (en) 2010-03-26 2016-06-21 Kobe Steel, Ltd. Method for producing a mating-type connecting part
US8835771B2 (en) 2010-12-07 2014-09-16 Kobe Steel, Ltd. PCB terminal and method for manufacturing the same
KR101544264B1 (en) * 2012-08-29 2015-08-12 가부시키가이샤 고베 세이코쇼 Sn-PLATED COPPER ALLOY STRIP HAVING EXCELLENT HEAT RESISTANCE
US9508462B2 (en) 2012-08-29 2016-11-29 Kobe Steel, Ltd. Sn-coated copper alloy strip having excellent heat resistance

Similar Documents

Publication Publication Date Title
TWI577542B (en) Metal material for electronic parts and manufacturing method thereof
JP4934456B2 (en) Plating material and electric / electronic component using the plating material
JP5356544B2 (en) Crimp terminal, connection structure, and method for producing crimp terminal
EP1257004B1 (en) Metal article with multilayer coating
DE60211808T2 (en) Clad copper alloy and process for its production
JP6113605B2 (en) Copper alloy strip with surface coating layer with excellent heat resistance
EP1788585B1 (en) Conductive material for connecting part and method for fabricating the conductive material
US10826203B2 (en) Metallic material for electronic components and method for producing same, and connector terminals, connectors and electronic components using same
JP6183543B2 (en) Terminal pair and connector pair with terminal pair
CN1318647C (en) Metal-plated material and method for preparation, and electric and electronic parts using same
JP5138827B1 (en) Metal materials for electronic parts, connector terminals, connectors and electronic parts using the same
JP5968668B2 (en) Metal materials for electronic parts
JP5284526B1 (en) Metal material for electronic parts and method for producing the same
JP4956997B2 (en) Flat cable
US10530084B2 (en) Metallic material for electronic components and method for producing same, and connector terminals, connectors and electronic components using same
US8142906B2 (en) Sn-plated copper or Sn-plated copper alloy having excellent heat resistance and manufacturing method thereof
JP2008282802A (en) Connector and metallic material for connector
JP2004339555A (en) Plating treatment material and its production method, terminal member for connector, and connector
JP5789207B2 (en) Copper alloy plate with Sn coating layer for fitting type connection terminal and fitting type connection terminal
JP3926355B2 (en) Conductive material for connecting parts and method for manufacturing the same
JP4771970B2 (en) Conductive material for connecting parts
EP2216426B1 (en) Tin-plated material for electronic part
US20110003520A1 (en) Terminal for connector and method of producing the same
JP2009079250A (en) Copper or copper alloy member having silver alloy layer formed as outermost surface layer, and manufacturing method therefor
US6403234B1 (en) Plated material for connectors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080715

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080724

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081121