JPH11350189A - Material for electrical and electronic parts, its production and electrical and electronic parts using the material - Google Patents

Material for electrical and electronic parts, its production and electrical and electronic parts using the material

Info

Publication number
JPH11350189A
JPH11350189A JP15505998A JP15505998A JPH11350189A JP H11350189 A JPH11350189 A JP H11350189A JP 15505998 A JP15505998 A JP 15505998A JP 15505998 A JP15505998 A JP 15505998A JP H11350189 A JPH11350189 A JP H11350189A
Authority
JP
Japan
Prior art keywords
layer
alloy
surface layer
plating
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15505998A
Other languages
Japanese (ja)
Inventor
Toshio Tani
俊夫 谷
Morimasa Tanimoto
守正 谷本
Hitoshi Tanaka
仁志 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP15505998A priority Critical patent/JPH11350189A/en
Publication of JPH11350189A publication Critical patent/JPH11350189A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To impart excellent solderability to a material and to improve the strength of a joint part after soldering by providing the surface of a substrate of Cu or a Cu alloy with a surface layer consisting of Sn alloy phases contg. Ag3 Sn via an intermediate layer of Ni or an Ni alloy. SOLUTION: On the surface of a substrate, a surface layer composed of an Sn or Sn alloy layer is formed via an intermediate layer composed of an Ni or Ni alloy layer. As for the substrate, all may be used if its surface is formed by Cu or a Cu alloy. The surface layer is composed of Sn or Sn alloy phases of 0.5 to 20 μm thickness contg. an Ag3 Sn (ε phase) compd. The Ag3 Sn compd. is in a stable condition in the Sn or Sn alloy layer and does not diffuse and move in the surface layer on a temp. level in the vicinity of a room temp. The intermediate layer is formed by an Ni or Ni alloy layer. This intermediate layer secures the adhesion between the surface of the substrate and the surface layer. The content of the Ag3 Sn compd. in the surface layer is preferably 0.5 to 5 wt.% expressed in terms of Ag.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電気・電子部品用材
料とその製造方法、その材料を用いた電気・電子部品に
関し、更に詳しくは、各種半導体装置用のリード材料
や、端子,コネクタ,スイッチなどのコンタクト材料と
して用いて好適な材料とそれを製造する方法、およびそ
の材料を用いた電気・電子部品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material for electric / electronic parts, a method for manufacturing the same, and an electric / electronic part using the material, and more particularly, to a lead material for various semiconductor devices, terminals, connectors and switches. The present invention relates to a material suitable for use as a contact material, a method for manufacturing the same, and an electric / electronic component using the material.

【0002】[0002]

【従来の技術】各種の電気・電子機器に組み込まれる部
品の材料としては、従来から、CuまたはCu合金が広
く用いられている。すなわち、その用途は個別半導体や
ICパッケージのリード線やリードピン、またはリード
フレームなどのリード材料を代表例とし、更にはソケッ
ト類やコネクタ,スイッチの端子や接点ばねなどのコン
タクト材料にも及んでいる。これらの用途は、Cuまた
はCu合金が、導電性,熱伝導性が優れているととも
に、機械的な強度や加工性の点でも優れ、また経済的に
も有利であるという性質を利用したものである。
2. Description of the Related Art Conventionally, Cu or Cu alloy has been widely used as a material of components incorporated in various electric and electronic devices. That is, the application is typically lead materials such as lead wires and lead pins of individual semiconductors and IC packages, or lead frames, and also extends to contact materials such as sockets, connectors, switch terminals, and contact springs. . These applications are based on the fact that Cu or Cu alloy has excellent electrical and thermal conductivity, mechanical strength and workability, and is economically advantageous. is there.

【0003】とりわけ、半導体パッケージのリード材料
に関しては、各種合金設計のCu合金が開発されてい
る。そして、それらは、端子や接点ばねなどのコンタク
ト材料の分野でも応用されるようになっている。
In particular, Cu alloys of various alloy designs have been developed for lead materials of semiconductor packages. They are also being applied in the field of contact materials such as terminals and contact springs.

【0004】上記したリード材料としては、従来から、
コバール合金や42アロイに代表されるFe−Ni系合
金,Fe−C系合金などのFe系材料も使用されてい
る。このFe系材料は、前記したCu合金に比べると、
熱伝導性や導電性は劣るものの、機械的な強度が高く、
また熱膨張率がSiチップやパッケージの封止樹脂のそ
れに近似しているので、その表面に厚み数十μm程度の
Cuめっきを施して導電性とはんだ濡れ性を高めた状態
にしてダイオードやコンデンサなどのリード線として用
いられている。
[0004] As the lead material described above, conventionally,
Fe-based materials such as Kovar alloys, Fe-Ni-based alloys represented by 42 alloys, and Fe-C-based alloys are also used. This Fe-based material, compared to the above-mentioned Cu alloy,
Thermal conductivity and conductivity are inferior, but mechanical strength is high,
In addition, since the coefficient of thermal expansion is similar to that of the sealing resin for Si chips and packages, the surface of the diode or capacitor is plated with Cu several tens of μm thick to improve conductivity and solder wettability. It is used as a lead wire.

【0005】また、従来、Cu系材料はその機械的な強
度の点で問題を有していたが、最近では強度特性も向上
したCu合金が開発されている。例えば、NiとSiを
少量含有せしめて、それらをNi2Siなどの形態で析
出させた析出強化型のCu合金が知られている。そし
て、このCu合金は、スタンピング性や応力緩和特性が
優れているので、リード材料,端子やコネクタのコンタ
クト材料として使用されはじめている。
Conventionally, Cu-based materials have had a problem in mechanical strength, but recently Cu alloys having improved strength characteristics have been developed. For example, a precipitation-strengthened Cu alloy in which a small amount of Ni and Si are contained and then precipitated in a form such as Ni 2 Si is known. Since this Cu alloy has excellent stamping properties and stress relaxation properties, it has begun to be used as a lead material, a contact material for terminals and connectors.

【0006】そして、上記した部品材料の場合、その表
面には、めっきに代表される表面処理を施すことにより
材料機能の信頼性を高めて実使用するということが行わ
れている。
[0006] In the case of the above-mentioned component materials, the surface thereof is subjected to a surface treatment represented by plating to enhance the reliability of the material functions and is actually used.

【0007】例えば、はんだ付けによってプリント基板
に部品を実装するときに用いるリード材料の場合、その
表面にSnめっきまたはSn合金めっきを施してはんだ
付け性を高めるという処置が採られている。具体的に
は、ICパッケージを組み立てたのちリードフレームの
アウターリード部に例えばSn−Pb合金を用いて外装
はんだめっきを施したり、個別半導体やコンデンサのリ
ード線にも予めSnめっきやSn−Pb合金めっきを施
し、更に加熱してリフロー処理を行うこともある。
For example, in the case of a lead material used for mounting components on a printed circuit board by soldering, a measure is taken to improve the solderability by applying Sn plating or Sn alloy plating on the surface. Specifically, after assembling the IC package, the outer lead portion of the lead frame is subjected to exterior solder plating using, for example, an Sn-Pb alloy, or the lead wires of individual semiconductors and capacitors are previously subjected to Sn plating or Sn-Pb alloy. In some cases, plating is performed, and reheating is performed by heating.

【0008】更には、基体がCuまたはCu合金から成
る材料の場合、その表面にSnまたはSn合金のめっき
を施すと、得られた材料は前記した特性の外に耐食性,
耐摩耗性も優れ、しかも経済的に有利であるということ
から、リード材料の外に各種端子やコネクタなどの材料
としても多用されている。そして、表面光沢が必要とさ
れる用途分野では、SnまたはSn合金の光沢めっきを
施したものや、更にはリフロー処理を施したものが使用
され、とくにリフロー処理を施したものは、耐ウイスカ
ー性や耐熱性も優れているので、厳しい温度環境で使用
される部品の材料として賞用されはじめている。
Further, when the substrate is made of Cu or Cu alloy, if the surface is plated with Sn or Sn alloy, the obtained material has corrosion resistance,
Since they have excellent wear resistance and are economically advantageous, they are widely used as materials for various terminals and connectors in addition to lead materials. In applications where surface gloss is required, those plated with bright plating of Sn or Sn alloy or those subjected to reflow treatment are used. In particular, those subjected to reflow treatment have whisker resistance. Because of its excellent heat resistance and heat resistance, it has begun to be used as a material for components used in harsh temperature environments.

【0009】例えば、電装品が広く搭載されるようにな
ってきている自動車関連分野の場合、組み込まれる端子
やコネクタなどのコンタクト材料は、エンジンルーム内
をはじめとして、温度100〜170℃程度の高温環境
に曝されることになる。従来、このような分野では、黄
銅やリン青銅の基体の表面にSnめっきやはんだなどの
Sn合金めっきを施した材料が主として使用されてきて
いるが、厳しい使用環境に対しては必ずしも満足すべき
性能ではないということで、強度特性の向上と応力緩和
特性の改善を目的として前記したNiとSiを含有する
Cu合金にSnめっきを施したのちリフロー処理を行っ
た材料が使用されはじめている。
For example, in the field of automobiles in which electric components have been widely mounted, contact materials such as terminals and connectors to be incorporated are in a high temperature range of about 100 to 170 ° C., including in an engine room. You will be exposed to the environment. Conventionally, in such a field, a material obtained by subjecting the surface of a substrate made of brass or phosphor bronze to Sn alloy plating such as Sn plating or solder has been mainly used, but must always be satisfied in a severe use environment. Because it is not the performance, the material which has been subjected to reflow treatment after Sn plating is applied to the above-described Cu alloy containing Ni and Si for the purpose of improving the strength characteristics and the stress relaxation characteristics has begun to be used.

【0010】ところで、CuまたはCu合金の表面にS
nめっきを施した材料の場合には次のような問題があ
る。
On the surface of Cu or Cu alloy, S
In the case of an n-plated material, there are the following problems.

【0011】まず、形成されたSnめっき層にはSnの
ウイスカーが発生しやすく、部品実装したときに短絡事
故を引き起こすことの可能性があるということである。
また、Snの融点は232℃であるため、例えばその材
料部品を回路基板にはんだ付けして実装する場合、基板
材料(樹脂)はそれ以上の耐熱性を備えることが必要に
なると同時に、そのときにSnそれ自体が酸化されては
んだ付け性の劣化が起こりやすくなるということであ
る。
First, Sn whiskers are liable to occur in the formed Sn plating layer, which may cause a short circuit accident when components are mounted.
Further, since the melting point of Sn is 232 ° C., for example, when the material component is soldered and mounted on a circuit board, the board material (resin) needs to have higher heat resistance, and at that time, In addition, Sn itself is oxidized and solderability is likely to deteriorate.

【0012】また、コンタクト材料の場合には、例えば
リードフレームのアウターリード部の外装はんだ皮膜の
場合とは異なって、通常、表面層であるSnまたはSn
合金層の厚みが1〜1.5μmと薄いために、前記した
ような高温環境下では基体表面のCu成分が前記表面層
まで早期の段階で熱拡散し、その結果、表面層の表層部
の変色や酸化が起こり、相手材との接触抵抗が高くなる
という問題が起こってくる。
In the case of a contact material, unlike the case of, for example, an outer solder film of an outer lead portion of a lead frame, Sn or Sn which is a surface layer is usually used.
Since the thickness of the alloy layer is as thin as 1 to 1.5 μm, the Cu component on the substrate surface is thermally diffused to the surface layer at an early stage in the high temperature environment as described above, and as a result, the surface layer of the surface layer is Discoloration and oxidation occur, resulting in a problem that the contact resistance with the partner material increases.

【0013】更に、コンデンサ用リード線の場合は、溶
接対象の例えばアルミ線との溶接部の肉盛りを行うた
め、めっき層の厚みを厚肉化しているが、そのようなリ
ード線に前記リフロー処理を行うと、処理後に凝固して
形成されたSnめっき層の偏肉が大きくなるという問題
がある。
Further, in the case of a lead wire for a capacitor, the thickness of the plating layer is increased in order to build up a welded portion with, for example, an aluminum wire to be welded. When the treatment is performed, there is a problem that the uneven thickness of the Sn plating layer formed by solidification after the treatment is increased.

【0014】上記したウイスカーの発生という問題はリ
フロー処理を施すことによって略防止することができ、
まためっき層の材料としてSn合金を用いればかなり抑
制することが可能である。このようなSn合金の代表例
ははんだ(Sn−Pb合金)であり、従来から広く用い
られている。
The above problem of whiskers can be substantially prevented by performing a reflow process.
If an Sn alloy is used as the material of the plating layer, it can be suppressed considerably. A typical example of such a Sn alloy is solder (Sn-Pb alloy), which has been widely used in the past.

【0015】しかしながら、はんだに含まれているPb
は人体に悪影響を与えるおそれがあるとのことから、今
後は、その優れた性質を備えているにもかかわらず使用
が敬遠されようとしている。そして、Pbを含有しない
Sn合金、具体的には、Sn−Ag系,Sn−Bi系,
Sn−In系,Sn−Zn系のものへの移行が検討され
ている。
However, the Pb contained in the solder
In the future, it is expected that its use will be shunned in spite of its excellent properties because it may adversely affect the human body. And a Sn alloy containing no Pb, specifically, a Sn-Ag system, a Sn-Bi system,
The transition to Sn-In type and Sn-Zn type is under study.

【0016】しかしながら、これらのSn合金でめっき
層を形成した材料には次のような問題がある。
However, the materials in which the plating layers are formed of these Sn alloys have the following problems.

【0017】まず、これら合金の融点がSn−Pb系に
比べて比較的高温であったり、低温であったりする点で
あり、あるいは、例えばICパッケージの組み立て時に
おける加熱工程の熱で、基体表面の構成材料であるCu
などがこのSn合金めっき層の表層部に熱拡散してき
て、当該Sn合金めっき層のはんだ付け性が劣化すると
いう問題である。
First, the melting point of these alloys is relatively high or low as compared with the Sn-Pb-based alloy. Cu, a constituent material of
Such a problem is that heat is diffused into the surface portion of the Sn alloy plating layer and the solderability of the Sn alloy plating layer is deteriorated.

【0018】更には、例えば前記したコンデンサリード
の場合、アルミ線と溶接する際に、溶接部の温度は瞬間
的には2000℃近辺の温度になるため、当該溶接部の
近傍では、Sn合金めっき層内のZn,Bi,Inなど
の元素が瞬時にして気化し、その結果、溶接部にはブロ
ーホールが発生し、その溶接強度が低下するという問題
も発生する。しかも、溶接部では、基体表面からCuな
どが熱拡散してリード材の表面にCu−Sn系化合物層
などが形成されることにより、表面の変色とはんだ付け
性の劣化も起こり得る。
Furthermore, for example, in the case of the above-described capacitor lead, when welding with an aluminum wire, the temperature of the welded portion is instantaneously at around 2000 ° C., so the Sn alloy plating is performed near the welded portion. Elements such as Zn, Bi, and In in the layer are instantaneously vaporized, and as a result, a blowhole is generated in the welded portion, which causes a problem that the welding strength is reduced. In addition, in the welded portion, Cu and the like are thermally diffused from the surface of the base to form a Cu-Sn-based compound layer on the surface of the lead material, so that discoloration of the surface and deterioration of solderability may occur.

【0019】なお、Pbを含まないSn合金として例示
した前記した合金のうち、Sn−Ag系,Sn−In系
のものは上記の問題に加えて高価であるという問題があ
る。
Among the above-mentioned alloys exemplified as Sn alloys containing no Pb, Sn-Ag and Sn-In alloys have the problem that they are expensive in addition to the above-mentioned problems.

【0020】そして、Sn−Bi系のものは、耐熱性に
劣り、基体表面へのBiの熱拡散を起こしやすく、また
曲げ加工性にも劣るのでめっき層にクラッドが発生しや
すく、更には、はんだ付け後に形成された接合部ではそ
の接合強度が経時的に低下するという問題がある。また
Sn−Zn系のものは、表面酸化を起こしやすく、大気
中におけるはんだ濡れ性が悪いということに加えて、Z
nは熱拡散を起こしやすいので、Sn−Bi系のものと
同じように、やはりはんだ付け後の接合部の接合強度は
経時的に低下する。このように、PbフリーのSn合金
にも多くの課題がある。
The Sn-Bi-based alloy is inferior in heat resistance, easily causes thermal diffusion of Bi to the surface of the substrate, and is inferior in bending workability, so that cladding is easily generated in the plating layer. There is a problem that the joining strength of the joint formed after soldering decreases with time. In addition, the Sn—Zn-based alloy is liable to cause surface oxidation and has poor solder wettability in the air.
Since n tends to cause thermal diffusion, the bonding strength of the bonding portion after soldering also decreases with time, as in the case of the Sn-Bi-based one. Thus, the Pb-free Sn alloy also has many problems.

【0021】[0021]

【発明が解決しようとする課題】ところで最近、電気・
電子機器の小型化,軽量化,多機能化の進展に伴い、そ
れらに組み込まれる回路基板への半導体素子の実装密度
も高まっている。この高密度実装化は不可避的に実装基
板からの放熱量を増大させ、また電気・電子機器の放熱
量を増加させることになる。
However, recently, electricity and
2. Description of the Related Art As electronic devices have become smaller, lighter, and more multifunctional, the mounting density of semiconductor elements on circuit boards incorporated therein has increased. This high-density mounting inevitably increases the amount of heat radiation from the mounting substrate, and also increases the amount of heat radiation of electric / electronic devices.

【0022】そのため、前記したリード材料やコンタク
ト材料などに対しては、従来にもましてその耐熱性を高
めることが必要とされるようになっている。しかしなが
ら、最近では、前記したように、CuまたはCu合金の
基体にSnまたはSn合金のめっきを施した材料は、上
記した要求に充分対処し得ていないという指摘がなされ
ている。
For this reason, it is necessary to increase the heat resistance of the above-mentioned lead material, contact material and the like more than ever. However, recently, it has been pointed out that, as described above, a material obtained by plating a substrate of Cu or a Cu alloy with Sn or a Sn alloy cannot sufficiently satisfy the above-mentioned requirements.

【0023】すなわち、リード材料の場合、部品実装後
における部品リードとはんだとの接合部の高温エージン
グ、または部品リードと実装基板の電極との間でヒート
サイクル状態において接合信頼性が低下するという問題
である。換言すれば、最近の高密度実装基板が組み込ま
れている電子機器では、放熱量と前記機器の温度上昇が
大きいので、前記したSnまたはSn合金めっきを施し
たリード材料では、充分な接合信頼性が得られないとい
うケースが多発している。
That is, in the case of a lead material, there is a problem that high-temperature aging of a joint portion between a component lead and a solder after component mounting or a reduction in joint reliability between a component lead and an electrode of a mounting board in a heat cycle state. It is. In other words, in recent electronic devices incorporating a high-density mounting board, the amount of heat radiation and the temperature rise of the device are large, so that the lead material plated with Sn or Sn alloy has sufficient bonding reliability. There are many cases where it is not possible to obtain.

【0024】また、コンタクト材料の場合、高温環境下
で使用したときに、基体表面のCu成分と表面層のSn
成分との相互熱拡散による合金化やCu成分が表面層の
表層部に拡散して酸化することに基づく接触抵抗の上昇
が起こり、もって相手材との接続信頼性が低下するとい
う問題が指摘されている。
In the case of a contact material, when used in a high-temperature environment, the Cu component on the substrate surface and the Sn
It has been pointed out that alloying due to mutual thermal diffusion with the components and an increase in contact resistance due to oxidation and diffusion of the Cu component to the surface layer of the surface layer occur, thereby reducing the connection reliability with the partner material. ing.

【0025】本発明は、CuまたはCu合金を基体と
し、その表面にSnまたはSn合金めっきが施されてい
る従来の材料における上記した問題を解決し、Pbの悪
影響が排除されていることは勿論のこと、表面層はSn
より低融点であり、はんだ付け性に優れ、またウイスカ
ーの発生もなく、はんだ付け後に形成された接合部の接
合強度が高いと同時に、その接合強度の高温下における
経時的な低下も起こりづらいのでリード材料として好適
であり、また高温環境下で使用したときでも接触抵抗の
上昇が抑制され、相手材との間で接続信頼性の低下を招
くこともないのでコンタクト材料としても好適な電気・
電子部品用材料とその製造方法、およびその材料を用い
た電気・電子部品の提供を目的とする。
The present invention solves the above-mentioned problems in the conventional material having Cu or a Cu alloy as a substrate and the surface of which is plated with Sn or an Sn alloy, and of course eliminates the adverse effect of Pb. That the surface layer is Sn
It has a lower melting point, excellent solderability, no whiskers, and high joint strength of the joint formed after soldering, and at the same time, it is difficult for the joint strength to decrease over time at high temperatures. It is suitable as a lead material, and also suppresses an increase in contact resistance even when used in a high-temperature environment, and does not cause a decrease in connection reliability with a mating material.
An object of the present invention is to provide a material for an electronic component, a method for manufacturing the same, and an electric / electronic component using the material.

【0026】[0026]

【課題を解決するための手段】上記した目的を達成する
ために、本発明においては、少なくとも表面がCuまた
はCu合金から成る基体の前記表面に、NiまたはNi
合金層から成る中間層を介して、いずれもAg3Sn
(ε相)化合物を含有する厚み0.5〜20μmのSn
層またはSn合金相から成る表面層が形成されているこ
とを特徴とする電気・電子部品用材料が提供される。と
くに、前記表面層における前記Ag3Sn(ε相)化合
物の含有量が、Ag換算量にして0.5〜5重量%であ
り、前記表面層には、更にCuが0.1〜3重量%含有
されており、また、前記表面層が加熱処理またはリフロ
ー処理された層である電気・電子部品用材料が提供され
る。
In order to achieve the above-mentioned object, according to the present invention, Ni or Ni is added to the surface of a substrate having at least a surface made of Cu or a Cu alloy.
Through an intermediate layer composed of an alloy layer, all of them are Ag 3 Sn
(Ε phase) Sn containing compound and having a thickness of 0.5 to 20 μm
The present invention provides a material for electric / electronic parts, characterized in that a layer or a surface layer comprising a Sn alloy phase is formed. In particular, the content of the Ag 3 Sn (ε phase) compound in the surface layer is 0.5 to 5% by weight in terms of Ag, and the surface layer further contains 0.1 to 3% by weight of Cu. %, And wherein the surface layer is a layer subjected to a heat treatment or a reflow treatment.

【0027】また、本発明においては、上記材料を用い
たことを特徴とする電気・電子部品が提供される。
Further, the present invention provides an electric / electronic component characterized by using the above-mentioned material.

【0028】更に、本発明においては、Niめっき浴ま
たはNi合金めっき浴を用いて、少なくとも表面がCu
またはCu合金から成る基体に電気めっきを行い、つい
で、いずれもAgイオンを0.2〜10000ppm含有す
るSnめっき浴またはSn合金めっき浴を用いて電気め
っきを行うことを特徴とする電気・電子部品用材料の製
造方法が提供され、好ましくは、前記Snめっき浴また
は前記Sn合金めっき浴には、Cuイオンが0.2〜5
0ppm含有されており、また、前記2回目の電気めっき
を行ったのちの材料に、加熱処理またはリフロー処理を
施す電気・電子部品用材料の製造方法が提供される。
Further, in the present invention, at least the surface is made of Cu by using a Ni plating bath or a Ni alloy plating bath.
Alternatively, electroplating is performed on a substrate made of a Cu alloy, and then electroplating is performed using a Sn plating bath or a Sn alloy plating bath containing 0.2 to 10,000 ppm of Ag ions. A method for producing a material for use is provided, wherein preferably, the Sn plating bath or the Sn alloy plating bath contains 0.2 to 5 Cu ions.
The present invention provides a method for producing a material for electric / electronic parts, which contains 0 ppm, and is subjected to a heat treatment or a reflow treatment on the material after the second electroplating.

【0029】[0029]

【発明の実施の形態】図1は本発明の材料の基本構造例
Aを示す断面図である。この材料Aは、基体1の表面
に、後述する中間層2を介して、後述するSn層または
Sn合金層が表面層3として形成された層構造になって
いる。
FIG. 1 is a sectional view showing an example A of a basic structure of a material of the present invention. This material A has a layer structure in which a Sn layer or a Sn alloy layer described later is formed as a surface layer 3 on a surface of a base 1 via an intermediate layer 2 described later.

【0030】ここで、材料Aにおける基体1としては、
少なくともその表面がCuまたはCu合金で形成されて
いるものであれば何であってもよい。例えば、Cuまた
はCu合金材そのものや、炭素鋼,Fe−Ni系合金、
Fe−Ni−Co系合金,ステンレス鋼などのFe系材
料を芯材とし、その表面をCuまたはCu合金で被覆し
たものなどをあげることができる。後者の基体の場合、
目的とする部品の用途に求められる機械的な強度や導電
性との関係を勘案して芯材とその表面に形成するCuま
たはCu合金、とりわけCu合金の種類が適宜に選定さ
れる。
Here, as the substrate 1 of the material A,
Any material may be used as long as at least its surface is formed of Cu or a Cu alloy. For example, Cu or Cu alloy material itself, carbon steel, Fe-Ni alloy,
Examples thereof include a core material made of an Fe-based material such as an Fe-Ni-Co-based alloy and stainless steel, the surface of which is coated with Cu or a Cu alloy. In the latter case,
The type of the core material and Cu or a Cu alloy formed on the surface thereof, in particular, the type of the Cu alloy are appropriately selected in consideration of the relationship between mechanical strength and conductivity required for the intended use of the part.

【0031】また、基体1の形状も、部品としての用途
目的や後述する表面層形成方法に対応して、線状,板
状、条など適宜に選定される。
The shape of the base 1 is also appropriately selected, such as linear, plate, or strip, in accordance with the purpose of use as a part or the surface layer forming method described later.

【0032】材料Aは、上記した基体1の表面に中間層
2が形成され、更にその上に表面層3が形成された材料
である。
The material A is a material in which the intermediate layer 2 is formed on the surface of the above-described base 1, and the surface layer 3 is further formed thereon.

【0033】この表面層3は、Ag3Sn(ε相)化合
物を含有するSn層またはSn合金層で構成されてい
る。
The surface layer 3 is composed of a Sn layer or a Sn alloy layer containing an Ag 3 Sn (ε phase) compound.

【0034】上記したAg3Sn(ε相)化合物は、S
n層またはSn合金層内で非常に安定な状態にあり、少
なくとも室温付近の温度レベルでは表面層内を拡散移動
することはない。そしてこのAg3Sn(ε相)化合物
は、Sn層またはSn合金層のクリープ特性を含む耐熱
性を向上せしめ、また同時に、表面層3の主成分である
Snと基体表面の主成分であるCuや表面層の他の元素
との相互拡散速度を低下せしめて両者の合金化を抑制す
る機能を発揮するものと考えられる。
The above Ag 3 Sn (ε phase) compound is
It is in a very stable state in the n layer or the Sn alloy layer, and does not diffuse and move in the surface layer at least at a temperature level near room temperature. The Ag 3 Sn (ε phase) compound improves the heat resistance including the creep characteristics of the Sn layer or the Sn alloy layer, and at the same time, Sn as the main component of the surface layer 3 and Cu as the main component of the substrate surface. It is considered that the function of suppressing the alloying of both elements by lowering the mutual diffusion rate of the element and the surface layer with other elements is considered.

【0035】そのため、この材料Aをリード材料として
使用した場合、例えばプリント基板にはんだを用いて接
合したときに、Ag3Sn(ε相)化合物を含有しない
Sn層またはSn合金層で表面層が形成されているリー
ド材料の場合に比べてはんだ接合部における接合強度は
高くなり、また接合部における接合強度の経時低下は小
さくなって接合信頼性は向上する。
For this reason, when this material A is used as a lead material, for example, when it is joined to a printed circuit board using solder, the surface layer is made of a Sn layer or a Sn alloy layer containing no Ag 3 Sn (ε phase) compound. The joining strength at the solder joint is higher than that of the formed lead material, and the decrease in the joining strength at the joint with the lapse of time is small, and the joining reliability is improved.

【0036】また、この材料Aをコンタクト材料として
使用した場合、表面層3の耐熱性が向上しており、ま
た、基体表面から表面層の表層部に向かうCuの熱拡散
も抑制された状態になっているので、表面層3の表面酸
化も起こりづらくなって接触抵抗の上昇は抑制され、相
手材との接続信頼性の低下という問題も発生しにくくな
る。
When the material A is used as a contact material, the heat resistance of the surface layer 3 is improved, and the thermal diffusion of Cu from the surface of the base toward the surface layer of the surface layer is suppressed. As a result, the surface oxidation of the surface layer 3 is less likely to occur, and the increase in contact resistance is suppressed, and the problem of reduced connection reliability with the mating material is less likely to occur.

【0037】表面層3に含有されているAg3Sn(ε
相)化合物の上記した働きは、その含有量が、Ag換算
量にして0.5重量%以上から有効に発揮される。そし
て、含有量が増量すればするほど表面層3の耐熱性は向
上していくが、Sn−Ag系合金における共晶組成であ
るSn−3.5%AgのAg量に相当する含有量を超え
ると、表面層3を構成するSn層やSn合金層の液相線
は急激に上昇してしまう。そのため、Ag3Sn(ε
相)化合物の含有量は、表面層3がSnの融点(232
℃)を超えない程度の耐熱性を付与する含有量であるこ
とが好ましく、具体的には、Ag3Sn(ε相)化合物
の含有量の上限は、Ag換算量にして5重量%程度に設
定される。このときには、材料の曲げ加工性も良好であ
り、それほどコスト高にもならず、材料としては工業的
にバランスがとれているからである。
Ag 3 Sn (ε contained in the surface layer 3
The above function of the phase) compound is effectively exerted when its content is 0.5% by weight or more in terms of Ag. As the content increases, the heat resistance of the surface layer 3 improves, but the content corresponding to the Ag content of Sn-3.5% Ag, which is the eutectic composition in the Sn-Ag based alloy, is increased. If it exceeds, the liquidus of the Sn layer or Sn alloy layer constituting the surface layer 3 will rise sharply. Therefore, Ag 3 Sn (ε
The content of the (phase) compound is such that the surface layer 3 has a melting point of Sn (232
C)), the content is preferably such that the heat resistance is not exceeded. Specifically, the upper limit of the content of the Ag 3 Sn (ε phase) compound is about 5% by weight in terms of Ag. Is set. At this time, the bendability of the material is good, the cost is not so high, and the material is industrially balanced.

【0038】また、表面層3を構成するSn層またはS
n合金層には、更に、Cuを0.1〜3重量%含有せし
めることが好ましい。
The Sn layer or S layer constituting the surface layer 3
It is preferable that Cu is further contained in the n-alloy layer in an amount of 0.1 to 3% by weight.

【0039】そのような処置を施すと、例えば製造した
部品材料をプリント基板にはんだを用いて実装したとき
に、Cuを含有しないSn層またはSn合金層で表面層
が形成されている部品材料の場合に比べて、はんだ接合
部における接合強度は高くなり、その接合信頼性の向上
がもたらされる。
When such a treatment is performed, for example, when the manufactured component material is mounted on a printed circuit board using solder, the component material having a surface layer formed of a Sn layer or Sn alloy layer containing no Cu is used. Compared with the case, the joining strength at the solder joint is higher, and the joining reliability is improved.

【0040】また、表面層に高導電率のCuが含有され
ていることにより、この材料をコンタクト材料として用
いた場合には、このCuが相手材との接触抵抗を低くす
ることに寄与し、更にははんだ付けを行ったときに、は
んだ食われの減少とはんだ接合部の耐熱性の向上に寄与
して、接合信頼性の向上が実現する。また、この材料を
ICパッケージのリード材料として用いた場合には、は
んだ接合部の耐熱性は同様に向上して、高温環境下でも
実使用することが可能になる。
Further, since the surface layer contains Cu having a high conductivity, when this material is used as a contact material, the Cu contributes to lowering the contact resistance with the partner material, Furthermore, when soldering is performed, it contributes to the reduction of solder erosion and the improvement of the heat resistance of the solder joint, thereby improving the joint reliability. Further, when this material is used as a lead material for an IC package, the heat resistance of the solder joint is similarly improved, so that it can be actually used even in a high-temperature environment.

【0041】これは、SnまたはSn合金にCuが含有
されることにより、表面層3のクリープ特性を含む耐熱
特性や耐ウイスカー性が向上し、またその表面層3の主
成分であるSnと基体1の表面成分であるCuや表面層
の他の元素との相互拡散速度が低下して両者の合金化が
抑制されるため、はんだ接合部における接合強度の経時
的な低下は小さくなり、その結果、接合信頼性が向上し
た現象であると考えられる。
This is because, when Cu is contained in the Sn or Sn alloy, the heat resistance including the creep characteristic of the surface layer 3 and the whisker resistance are improved, and the main component of the surface layer 3, Sn and the substrate, is improved. Since the rate of interdiffusion with Cu, which is the surface component of 1, and other elements of the surface layer is reduced, and the alloying of the two is suppressed, the temporal decrease in the bonding strength at the soldered joint is reduced, and as a result, This is considered to be a phenomenon in which the bonding reliability is improved.

【0042】しかしながら、Cu含有量が0.1重量%
より少なくなると、上に列記した効果は発現しなくな
り、また3重量%より多くなると、表面層3の構成材料
の液相線が過度に高くなり、例えば、均一リフロー性の
低下をはじめ、表面層3ではCu酸化の進展に基づくは
んだ濡れ性の低下や耐食性の低下が起こりやすくなるの
でCu含有量は0.1〜3重量%に設定することが好ま
しい なお、上記した表面層3におけるAg3Sn(ε相)化
合物のAgとしての含有量やCuの含有量は、電子線マ
イクロアナライザのZAF補正法によって定量分析する
ことができ、Ag3SnやCu3Sn,Cu6Sn5の化合
物の存在はX線回折法によって知ることができる。
However, the Cu content is 0.1% by weight.
If the amount is smaller, the above-listed effects will not be exhibited. If the amount is more than 3% by weight, the liquidus of the constituent material of the surface layer 3 will be excessively high. In No. 3, the Cu content is preferably set to 0.1 to 3% by weight since the solder wettability and the corrosion resistance are likely to decrease due to the progress of Cu oxidation. The Ag 3 Sn in the surface layer 3 described above is preferable. The (ε phase) content of Ag as a compound and the content of Cu can be quantitatively analyzed by a ZAF correction method using an electron beam microanalyzer, and the presence of compounds of Ag 3 Sn, Cu 3 Sn, and Cu 6 Sn 5 can be determined. Can be known by X-ray diffraction.

【0043】この表面層3がSn合金層で形成される場
合、母相であるSn合金としては、前記したSn−Bi
系,Sn−In系,Sn−Zn系などを用いることがで
きる。その場合、Sn−Zn系は低価格ではあるが、Z
nの拡散速度は大きく、はんだ接合部における接合強度
の経時低下が大きくなるので高い接合信頼性が得にくい
ということや、また耐食性も劣るという点で難があり、
Sn−In系は高価であり、用途は限定されてしまうと
いう問題がある。このようなことから、Sn合金層の母
相であるSn合金としては、Sn−Bi系であることが
好ましい。
When the surface layer 3 is formed of a Sn alloy layer, the Sn alloy serving as the parent phase is the above-described Sn-Bi alloy.
System, Sn-In system, Sn-Zn system, or the like can be used. In that case, the Sn-Zn system is inexpensive,
The diffusion rate of n is large, and the temporal decrease in the bonding strength at the soldered joint becomes large, so that it is difficult to obtain high bonding reliability, and the corrosion resistance is also poor.
There is a problem that the Sn-In system is expensive and its use is limited. For this reason, it is preferable that the Sn alloy, which is the parent phase of the Sn alloy layer, is of the Sn-Bi type.

【0044】Sn−Bi系は経済性の点でも有利であ
る。このSn−Bi系の場合、Bi含有量が57重量%
の共晶点139℃まではBi含有量の増加に応じて液相
線温度は低下していく。しかしながら、このことは、同
時に耐熱性の低下も意味している。また、この合金で表
面層を形成した場合には、Bi含有量が5重量%程度を
超えはじめると曲げ加工性の悪化や割れなどが入りやす
くなり、更にBi含有量が多くなっていくと、はんだで
接合したときに、そのはんだ接合部の耐熱性は低下し、
接合部における接合強度の経時低下も起こって接合信頼
性が低くなる。
The Sn-Bi system is also advantageous in terms of economy. In the case of this Sn-Bi system, the Bi content is 57% by weight.
Up to 139 ° C., the liquidus temperature decreases as the Bi content increases. However, this also implies a decrease in heat resistance. When the surface layer is formed of this alloy, when the Bi content starts to exceed about 5% by weight, bending workability is deteriorated and cracks are easily formed. When joined by solder, the heat resistance of the solder joint decreases,
The bonding strength at the bonding portion also decreases with time, and the bonding reliability decreases.

【0045】このようなことからSn−Bi系で形成す
る場合には、その合金組成はSn−1〜5%Bi合金で
あることが好ましい。
For this reason, when the Sn-Bi-based alloy is formed, the alloy composition is preferably a Sn-1 to 5% Bi alloy.

【0046】この表面層3の厚みは、材料の使用分野と
必要とされる耐熱性、更には製造コストとの関係でも決
められる。例えば、ICパッケージのアウターリード部
の外装はんだ処理において、はんだによるフローまたは
リフロー処理による部品実装状態の確実性を実現し、ま
たはんだ接合部の接合信頼性を確保するためには、その
厚みは少なくとも5μmになっていることが必要であ
る。また、コンタクト材料の場合、そのリフロー処理品
においては、表面層の厚みが0.5μmより薄くなる
と、リフロー処理時に基体表面のCuや中間層2のNi
またはNi合金と表面層のSnとの相互拡散による合金
化が進んで、はんだ濡れ性の確保や接触抵抗を低水準に
確保することが困難になり、厚い場合には、均一リフロ
ー処理の実現や製造コストの点から表面層の厚みは1.
5〜2.0μm程度、また光沢めっき品においては製造
コストの点から表面層の厚みは2.0μm程度が好適で
ある。更に、アウターリードの外装はんだのような場合
には、表面層の厚みをあまり厚くしても、性能は飽和に
達し、徒に製造コストの上昇を招くので、その厚みの上
限は20μmに設定される。このようなことから、本発
明の材料における表面層の厚みは、0.5〜20μmに
設定される。
The thickness of the surface layer 3 is determined by the relationship between the field of use of the material, the required heat resistance, and the manufacturing cost. For example, in the outer soldering process of the outer lead portion of the IC package, in order to realize the reliability of the component mounting state by the flow or the reflow process by the solder or to secure the joining reliability of the soldered joint, the thickness is at least. It must be 5 μm. In the case of a contact material, in the reflow-processed product, if the thickness of the surface layer is smaller than 0.5 μm, Cu on the substrate surface or Ni of the intermediate layer 2 during the reflow process is reduced.
Alternatively, alloying by interdiffusion between the Ni alloy and Sn of the surface layer progresses, and it becomes difficult to secure solder wettability and contact resistance at a low level. In terms of manufacturing cost, the thickness of the surface layer is 1.
The thickness of the surface layer is preferably about 5 to 2.0 μm, and the thickness of the surface layer is preferably about 2.0 μm in the case of a bright plated product from the viewpoint of manufacturing cost. Furthermore, in the case of the outer lead outer solder, even if the thickness of the surface layer is too large, the performance reaches saturation and the production cost is increased, so the upper limit of the thickness is set to 20 μm. You. For this reason, the thickness of the surface layer in the material of the present invention is set to 0.5 to 20 μm.

【0047】上記した表面層3と基体1の間に介在する
中間層2は、Ni層またはNi合金層で形成されてい
る。
The intermediate layer 2 interposed between the surface layer 3 and the substrate 1 is formed of a Ni layer or a Ni alloy layer.

【0048】このNi層またはNi合金層から成る中間
層2は、基体1の表面が黄銅や丹銅のようなCu−Zn
系合金である場合に、この基体1の表面と表面層3との
密着性を確保をし、また、この中間層3が存在しない場
合には、基体1の表面が粗面であったり、表面に酸化物
層が介在して基体の表面にSn層またはSn合金層から
成る表面層を形成したのちにリフロー処理を施したとき
に観察される現象、すなわち、表面層が白く曇って鏡面
光沢が得られない現象、いわゆる“Snのはじき”現象
を防止する働きをする。
The intermediate layer 2 made of a Ni layer or a Ni alloy layer has a substrate 1 whose surface is made of Cu--Zn such as brass or copper.
In the case of a base alloy, the adhesion between the surface of the substrate 1 and the surface layer 3 is ensured. When the intermediate layer 3 is not present, the surface of the substrate 1 is rough, Is observed when a reflow process is performed after forming a surface layer made of a Sn layer or a Sn alloy layer on the surface of a substrate with an oxide layer interposed therebetween, that is, the surface layer becomes white and cloudy and the mirror gloss becomes low. It functions to prevent a phenomenon that cannot be obtained, that is, a so-called "Sn repelling" phenomenon.

【0049】更には、基体1の表面成分であるCuが表
面層3に拡散してSnと合金化することによって発現す
る現象、すなわち、表面の酸化・変色や、はんだ付性の
低下や、相手材との接触抵抗の上昇などの不都合の発生
を防止または抑制するためのバリアとしても機能する。
Further, Cu, which is a surface component of the substrate 1, diffuses into the surface layer 3 and becomes alloyed with Sn, ie, oxidization and discoloration of the surface, deterioration of solderability, deterioration of solderability, and the like. It also functions as a barrier for preventing or suppressing inconveniences such as an increase in contact resistance with the material.

【0050】この中間層2をNi合金で形成する場合、
Ni合金としては上記したバリア効果を発揮するものが
好ましく、例えば、Ni−Co系,Ni−P系,Ni−
B系などをあげることができるが、材料の生産性と製造
コストの問題や基体1と表面層との密着性確保の点から
いうと電気めっきが可能な合金であることが好ましい。
この点から考えると、Ni−P系は電気めっき時に合金
化するための電流密度は小さく、Ni−B系もそれほど
高くなく、またNi−Co系は電気めっきは可能である
が高価であるという点で難がある。しかしながら、無電
解めっきで表面層を形成することが有利であるような材
料の場合には、上記したNi−P系,Ni−B系を用い
ることが好適である。したがって、中間層2は、Ni単
体を電気めっきして形成することが工業的には好適であ
る。
When the intermediate layer 2 is formed of a Ni alloy,
As the Ni alloy, those exhibiting the above-described barrier effect are preferable. For example, Ni-Co, Ni-P, Ni-
B-based alloys and the like can be mentioned, but from the viewpoint of material productivity and manufacturing cost, and from the viewpoint of ensuring the adhesion between the substrate 1 and the surface layer, it is preferable to use an alloy which can be electroplated.
From this point of view, Ni-P-based alloys have a low current density for alloying during electroplating, Ni-B-based alloys are not so high, and Ni-Co-based alloys can be electroplated but are expensive. There is difficulty in point. However, in the case of a material in which it is advantageous to form the surface layer by electroless plating, it is preferable to use the above-mentioned Ni-P system and Ni-B system. Therefore, it is industrially suitable to form the intermediate layer 2 by electroplating Ni alone.

【0051】中間層2をNiまたはNi合金で形成した
場合、Niもまた表面層へ熱拡散してSnと合金化し、
Ni3Sn4をはじめとする化合物の層を形成する。しか
しながら、200℃以下の温度におけるその拡散速度は
Cuの場合に比べて小さく、しかも、仮に表面層3の表
層部にまで拡散したとしても酸化して表面変色を引き起
こすことはない。
When the intermediate layer 2 is formed of Ni or a Ni alloy, Ni is also thermally diffused to the surface layer and alloyed with Sn.
A layer of a compound such as Ni 3 Sn 4 is formed. However, its diffusion rate at a temperature of 200 ° C. or less is lower than that of Cu, and even if it diffuses to the surface layer of the surface layer 3, it does not oxidize and cause surface discoloration.

【0052】したがって、この層構造では、Niまたは
Ni合金から成る中間層2とSnまたはSn合金から成
る表面層3の界面にNi−Sn化合物の層が介在してい
る場合が多く、その介在物層の厚みは加熱処理やリフロ
ー処理などの熱履歴によって決まり、更には、基体表面
からのCuの拡散によりCu−Sn化合物の層が含まれ
ていることもある。
Therefore, in this layer structure, a Ni-Sn compound layer is often interposed at the interface between the intermediate layer 2 made of Ni or Ni alloy and the surface layer 3 made of Sn or Sn alloy. The thickness of the layer is determined by heat history such as a heat treatment or a reflow treatment, and further, a layer of a Cu—Sn compound may be included due to diffusion of Cu from the substrate surface.

【0053】このNiまたはNi合金から成る中間層2
の厚みが薄すぎると、前記したバリア効果が発揮されな
くなり、また厚すぎると、材料の曲げ加工性が低下して
割れの発生も多くなるだけではなく製造コストの上昇も
招くので、その厚みは0.1〜1μmに設定することが
好ましい。
The intermediate layer 2 made of Ni or Ni alloy
If the thickness is too thin, the barrier effect described above will not be exhibited.If the thickness is too large, not only the bending workability of the material will decrease and the occurrence of cracks will increase but also the production cost will increase. It is preferable to set the thickness to 0.1 to 1 μm.

【0054】図2は本発明の別の材料Bを示す断面図で
ある。
FIG. 2 is a sectional view showing another material B of the present invention.

【0055】この材料Bは、表面層3’が前記した材料
Aの場合と異なり、表面層がSn層やSn合金層単独で
構成されているのではなく、厚み方向に、次に説明する
ような各種の層が積層している層構造になっている材料
である。その層構造において、前記各種の層の界面は、
判然としている場合もあり、また界面が各層の成分の相
互拡散によって判然としていない場合もある。
Unlike the material A in which the surface layer 3 'is the material A described above, the material B does not consist of the Sn layer or the Sn alloy layer alone but in the thickness direction, as will be described below. It is a material having a layer structure in which various kinds of layers are laminated. In the layer structure, the interface between the various layers is
In some cases, the interface may not be apparent due to the interdiffusion of the components of each layer.

【0056】このような層構造としては、例えば次のよ
うなものをあげることができる。
Examples of such a layer structure include the following.

【0057】i)表面層3’の下層部3’bはAg3
n(ε相)化合物を含有しないSnまたはSn合金から
成り、上層部3’aはAg3Sn(ε相)化合物を含有
するSnまたはSn合金から成る層; ii)表面層3’の下層部3’bはAg3Sn(ε相)化
合物を含有するSnまたはSn合金から成り、上層部
3’aは、Ag3Sn(ε相)化合物を含有しないSn
またはSn合金から成る層; などである。
I) The lower layer 3'b of the surface layer 3 'is made of Ag 3 S
It consists n (epsilon phase) containing no compound Sn or Sn alloy, the upper portion 3'a is Ag 3 Sn (epsilon phase) layer of Sn or a Sn alloy containing compound; lower part of the ii) the surface layer 3 ' 3′b is made of Sn or a Sn alloy containing an Ag 3 Sn (ε phase) compound, and the upper layer portion 3′a is made of Sn not containing an Ag 3 Sn (ε phase) compound.
Or a layer made of a Sn alloy;

【0058】材料Bの場合、表面層3’が上記した層構
造i),ii)のいずれになっていても、表面層3’の全
体におけるAg3Sn(ε相)化合物の含有量は,Ag
換算量にして0.5〜5重量%であることが好ましい。
In the case of the material B, the content of the Ag 3 Sn (ε phase) compound in the entire surface layer 3 ′ is as follows, regardless of whether the surface layer 3 ′ has any of the above-mentioned layer structures i) and ii). Ag
Preferably, the amount is 0.5 to 5% by weight in terms of reduced amount.

【0059】表面層3’が層構造i),ii)になってい
ると、材料としての曲げ加工性は向上し、基体1との剥
離は起こりづらくなり、また製造コストを低減できると
いう点で有利である。
When the surface layer 3 ′ has the layer structures i) and ii), the bendability as a material is improved, peeling from the substrate 1 is less likely to occur, and the manufacturing cost can be reduced. It is advantageous.

【0060】更に、この材料Bの場合、加熱処理やリフ
ロー処理を施したり、またアルミ線に溶接したときに、
そのときの熱で上記した層構造が融合してAgや、例え
ばBiのような他の元素などが希釈された状態になるの
で、はんだ接合時にはその接合部の強度低下は抑制さ
れ、例えば断線防止という点で好適である。
Further, in the case of this material B, when heat treatment or reflow treatment is performed, or when the material B is welded to an aluminum wire,
The heat at that time causes the above-mentioned layer structure to be fused and Ag or another element such as Bi to be in a diluted state, so that a decrease in the strength of the joint at the time of soldering is suppressed, for example, to prevent disconnection. This is preferable in that respect.

【0061】とくに、前記したi)の層構造の場合は、
上記した効果が有効に発揮されるので好適である。その
場合、表面層3’の全体の厚みのうち、0.5〜5μm
程度の表層部にAg3Sn(ε相)化合物が含有されて
いることを好適とする。
In particular, in the case of the above-mentioned layer structure i),
This is preferable because the above-mentioned effects are effectively exhibited. In that case, of the total thickness of the surface layer 3 ′, 0.5 to 5 μm
It is preferable that the Ag 3 Sn (ε phase) compound is contained in the surface layer of the degree.

【0062】これらの材料は、いずれも電気めっき法で
容易に高品質に製造することができる。
All of these materials can be easily manufactured with high quality by electroplating.

【0063】材料Aを製造する場合には、例えば、ま
ず、Niめっき浴またはNi合金めっき浴を用いて電気
めっきを行い基体1に所望厚みのNiめっき層またはN
i合金めっき層2を形成する。
In the case of manufacturing the material A, for example, first, electroplating is performed using a Ni plating bath or a Ni alloy plating bath, and a Ni plating layer or N
An i-alloy plating layer 2 is formed.

【0064】なお、Niめっき浴またはNi合金めっき
浴としては、従来から公知の例えば硫酸ニッケルや塩化
ニッケル主体のもの、スルファミン酸ニッケル主体のも
のなどをあげることができる。
As the Ni plating bath or Ni alloy plating bath, conventionally known baths mainly containing nickel sulfate or nickel chloride, and those mainly containing nickel sulfamate can be used.

【0065】ついで、Agイオンを0.2〜10000p
pm含有するSnめっき浴、またはAgイオンを0.2〜
10000ppm含有するAg合金めっき浴を用いて電気
めっきを行い、上記したNiめっき層またはNi合金め
っき層の上に既に述べた表面層3を形成すればよい。
Then, Ag ions were added to 0.2 to 10000 p.
pm-containing Sn plating bath or 0.2 to 0.2% Ag ions
Electroplating may be performed using an Ag alloy plating bath containing 10,000 ppm, and the above-described surface layer 3 may be formed on the above-described Ni plating layer or Ni alloy plating layer.

【0066】このとき、Agの析出電位はSnのそれよ
りも貴であるので、めっき浴におけるAgイオンの含有
量が少ないにもかかわらず、基体表面に電析しためっき
層においては、Agが数%程度のAg3Sn共析Snめ
っき層にすることができる。このめっき層におけるAg
3Sn(ε相)化合物の生成量を前記した0.5〜5重量
%(Ag換算量)の範囲内におさめるためには、電流密
度や浴温などのめっき条件と浴種にもよるが、一般に、
用いるめっき浴におけるAg濃度を0.2〜10000p
pmにすることが必要になる。
At this time, the deposition potential of Ag is more noble than that of Sn, so that despite the small content of Ag ions in the plating bath, the plating layer deposited on the substrate surface has a small amount of Ag. % Of Ag 3 Sn eutectoid Sn plating layer. Ag in this plating layer
In order to keep the amount of 3 Sn (ε phase) compound formed within the above-mentioned range of 0.5 to 5% by weight (in terms of Ag), it depends on plating conditions such as current density and bath temperature and bath type. ,In general,
Ag concentration in the plating bath used is 0.2 to 10,000p
need to be pm.

【0067】このとき、めっき浴に更にCuイオンを含
有せしめると、このCuが基体表面に電折しためっき層
(Ag−Sn合金層)に共折し、Ag−Sn合金だけの
場合よりも耐熱性が一段と優れためっき層になる。この
めっき層におけるCu含有量を、前記したように、0.
1〜3重量%の範囲に制御するためには、用いるめっき
浴におけるCuイオンの濃度を0.2〜50ppmに制御す
ることが必要になる。
At this time, when the plating bath further contains Cu ions, the Cu is folded together with the electroplated plating layer (Ag-Sn alloy layer) on the substrate surface, and the heat resistance is higher than when only the Ag-Sn alloy is used. It becomes a plating layer with more excellent properties. As described above, the Cu content in this plating layer is set to be 0.
In order to control the concentration in the range of 1 to 3% by weight, it is necessary to control the concentration of Cu ions in the plating bath used to 0.2 to 50 ppm.

【0068】また、材料Bの前記したi)の層構造を製
造する場合には、既にNiめっき層またはNi合金めっ
き層が形成されている基体を、Agイオンを含有しない
Snめっき浴またはSn合金めっき浴に浸漬して電気め
っきを行って、基体の表面に、Ag3Sn(ε相)化合
物を含有しないSnめっき層またはSn合金めっき層を
形成する。ついで、Agイオンを含有するSnめっき浴
またはSn合金めっき浴を用いて電気めっきを行い、A
3Sn(ε相)化合物を含有するSnめっき層または
Sn合金めっき層を形成し、ここに、目的とする表面層
3’が得られる。
In the case of manufacturing the layer structure of the above-mentioned i) of the material B, the substrate on which the Ni plating layer or the Ni alloy plating layer has already been formed is replaced with an Ag plating-free Sn plating bath or Sn alloy bath. By immersing in a plating bath and performing electroplating, a Sn plating layer or a Sn alloy plating layer containing no Ag 3 Sn (ε phase) compound is formed on the surface of the substrate. Next, electroplating was performed using a Sn plating bath or a Sn alloy plating bath containing Ag ions, and A
A Sn plating layer or a Sn alloy plating layer containing a g 3 Sn (ε phase) compound is formed, and a desired surface layer 3 ′ is obtained here.

【0069】そして、全体の電気めっきが終了したのち
に、得られた材料に加熱処理やリフロー処理を施すと、
各めっき層間では合金の各成分が相互拡散して、より密
着性の高い表面層3’に転化する。
After completion of the entire electroplating, the obtained material is subjected to a heat treatment or a reflow treatment.
The components of the alloy are interdiffused between the plating layers and converted into a surface layer 3 'having higher adhesion.

【0070】ii)の層構造を製造する場合には、i)の
層構造の場合とは逆に、Agイオンを含有するSnめっ
き浴またはSn合金めっき浴で下層部3’bを形成し、
ついでその上に、Agイオンを含有しないSnめっき浴
またはSn合金めっき浴で上層部3’aを形成すればよ
い。そして、全体に加熱処理やリフロー処理を施して各
めっき層間で合金成分の相互拡散を行わせることによ
り、目的とする表面層3’を形成すればよい。
In the case of manufacturing the layer structure of ii), the lower layer portion 3'b is formed by a Sn plating bath or a Sn alloy plating bath containing Ag ions, contrary to the case of the layer structure of i).
Then, the upper layer portion 3'a may be formed thereon using a Sn plating bath containing no Ag ions or a Sn alloy plating bath. Then, the target surface layer 3 'may be formed by subjecting the entire surface to a heat treatment or a reflow treatment so that the alloy components are mutually diffused between the plating layers.

【0071】このようにして製造された材料A,Bに対
してリフロー処理を施すと、例えば表面層がSn層やS
n合金層で形成される場合に発生することもあるウイス
カーの存在を解消することができるだけではなく、表面
層3と基体1の表面間におけるSnとCuの拡散速度が
低下して、結局、はんだ接合部における接合信頼性を高
め、また相手材との接触抵抗の上昇を抑制することがで
きるので好適である。
When the materials A and B manufactured as described above are subjected to a reflow treatment, for example, the surface layer becomes an Sn layer or an S layer.
In addition to not only eliminating the presence of whiskers that may occur when the whiskers are formed with the n alloy layer, the diffusion rate of Sn and Cu between the surface layer 3 and the surface of the base 1 decreases, and eventually, the solder It is preferable because the joining reliability at the joining portion can be increased and the increase in contact resistance with the counterpart material can be suppressed.

【0072】この加熱処理またはリフロー処理は、通
常、例えばN2雰囲気のような非酸化性雰囲気やCOま
たはH2を含有する雰囲気のような還元性雰囲気の中で
行われる。材料の形状が線状または条であり、それに連
続的な処理を施す場合には、熱風吹き付け方式の加熱炉
を用いることが好適である。
This heat treatment or reflow treatment is usually performed in a non-oxidizing atmosphere such as an N 2 atmosphere or a reducing atmosphere such as an atmosphere containing CO or H 2 . When the material is in the shape of a line or a strip and is subjected to continuous processing, it is preferable to use a heating furnace of a hot-air blowing system.

【0073】[0073]

【実施例】実施例1〜20,比較例1〜7 表面が表1〜3で示した組成の合金で構成されている板
材に、アルカリカソード脱脂,10%硫酸による酸洗を
順次施したのち、中間層用のめっき浴、表面層用のめっ
き浴を収容するめっき槽に順次走行せしめて、表1〜3
で示しためっき層が表面層3として形成されている材料
A,材料Bをそれぞれ製造した。
Examples 1 to 20 and Comparative Examples 1 to 7 A sheet material whose surface is made of an alloy having the composition shown in Tables 1 to 3 was subjected to alkali cathode degreasing and pickling with 10% sulfuric acid in that order. , A plating bath containing an intermediate layer plating bath and a surface layer plating bath.
The material A and the material B in which the plating layer indicated by No. was formed as the surface layer 3 were manufactured.

【0074】なお、Niめっき浴としてはスルファミン
酸ニッケルめっき浴,Agめっき浴としてはダインシル
バーAG−PL3O(商品名、大和化成(株)製)を用
い、また、Sn合金めっき浴としてはIG0214(商
品名、ディップソール(株)製のSn−Ag合金めっき
浴),ソフトアロイLM(商品名、上村工業(株)製の
Sn−Bi合金めっき浴)をそれぞれ用いた。
The nickel plating bath was nickel sulfamate plating bath, the Ag plating bath was Dyne Silver AG-PL3O (trade name, manufactured by Daiwa Kasei Co., Ltd.), and the Sn alloy plating bath was IG0214 ( Trade name, Sn-Ag alloy plating bath manufactured by Dipsol Co., Ltd., and Soft Alloy LM (trade name, Sn-Bi alloy plating bath manufactured by Uemura Kogyo Co., Ltd.) were used, respectively.

【0075】得られた各材料の表面層の厚みは、アノー
ド溶解法を適用してそのときの溶解電位と溶解電気量か
ら算出し、その組成は電子線マイクロアナライザのZA
F補正法で定量分析した。以上の結果を表1〜3に示し
た。
The thickness of the surface layer of each of the obtained materials is calculated from the dissolution potential and the amount of dissolution electricity by applying the anodic dissolution method.
Quantitative analysis was performed using the F correction method. The above results are shown in Tables 1 to 3.

【0076】[0076]

【表1】 [Table 1]

【0077】[0077]

【表2】 [Table 2]

【0078】[0078]

【表3】 [Table 3]

【0079】各材料の表面を目視観察し、また各材料を
50℃の大気中で2500時間保持したのち顕微鏡観察
してウイスカーの有無を調べ、更には、各材料に90°
の折り曲げ試験を行ってそのときの曲げ加工性を評価し
た。
The surface of each material was visually observed, and after each material was kept in the air at 50 ° C. for 2500 hours, it was observed under a microscope to check for the presence of whiskers.
Was conducted to evaluate the bending workability at that time.

【0080】また、各材料の10個につき、Agプロー
ブを100g荷重で押し付けた状態で10mAを通電して
低温下における接触抵抗を測定した。ついで、各材料を
大気中において温度150℃で100時間保持する熱処
理を施したのちの接触抵抗を同様にして測定した。
Further, 10 mA was applied to 10 pieces of each material while the Ag probe was pressed with a load of 100 g, and the contact resistance at a low temperature was measured. Then, the contact resistance after subjecting each material to a heat treatment in which it was kept at 150 ° C. for 100 hours in the atmosphere was measured in the same manner.

【0081】以上の結果を一括して表4に示した。The above results are shown in Table 4 collectively.

【0082】[0082]

【表4】 [Table 4]

【0083】実施例21〜31,比較例8〜13 表面が表5,表6で示した組成の合金で構成されている
板材に、アルカリカソード脱脂,10%硫酸による酸洗
を順次施したのち、表5,6に示しためっき浴を収容す
るめっき槽を順次走行せしめて表5,表6で示しためっ
き層が表面層3として形成されている材料を製造した。
Examples 21 to 31 and Comparative Examples 8 to 13 A sheet material whose surface is made of an alloy having the composition shown in Tables 5 and 6 was subjected to alkali cathode degreasing and pickling with 10% sulfuric acid in that order. The plating baths containing the plating baths shown in Tables 5 and 6 were sequentially run to produce a material in which the plating layer shown in Tables 5 and 6 was formed as the surface layer 3.

【0084】各材料の表面層の厚みと組成を実施例1〜
20と同様にして測定した。
The thickness and composition of the surface layer of each material were determined in Examples 1 to
The measurement was performed in the same manner as in Example 20.

【0085】得られた材料を25mm角に切り出し、その
試片に、直径3mmの銅被覆鋼線をはんだで接合した。は
んだとしては、Sn−37%Pbの共晶はんだと、Sn
−3.5%Agの共晶はんだの2種類をそれぞれ用い
た。また、はんだ接合部の大きさは直径6mmと一定にし
た。
The obtained material was cut into a 25 mm square, and a copper coated steel wire having a diameter of 3 mm was joined to the test piece by soldering. As the solder, a eutectic solder of Sn-37% Pb,
Two types of -3.5% Ag eutectic solder were used. The size of the solder joint was constant at a diameter of 6 mm.

【0086】ついで、室温下において、各試料と銅被覆
鋼線とのプル強度(T0)を測定した。そして、はんだ
接合材料を大気中において温度150℃で500時間の
エージングを行って劣化促進処理を施し、そのときの各
試料と銅被覆鋼線とのプル強度(T1)を測定し、(T0
−T1)×100/T0を算出してはんだ接合部における
接合強度の劣化率(%)とした。
Next, the pull strength (T 0 ) between each sample and the copper-coated steel wire was measured at room temperature. Then, the solder bonding material is aged in air at a temperature of 150 ° C. for 500 hours to perform a deterioration accelerating treatment. At that time, a pull strength (T 1 ) between each sample and the copper-coated steel wire is measured, and (T 1 ) 0
−T 1 ) × 100 / T 0 was calculated to be the deterioration rate (%) of the joining strength at the solder joint.

【0087】以上の結果を一括して表5,表6に示し
た。
The above results are collectively shown in Tables 5 and 6.

【0088】[0088]

【表5】 [Table 5]

【0089】[0089]

【表6】 [Table 6]

【0090】実施例32〜36,比較例14〜18 直径0.5mmの銅被覆鋼線をカソード脱脂槽,酸洗槽,
めっき槽に順次走行せしめて表7,表8で示した表面層
を形成した。
Examples 32-36, Comparative Examples 14-18 A copper-coated steel wire having a diameter of 0.5 mm was placed in a cathode degreasing tank, a pickling tank,
The surface layers shown in Tables 7 and 8 were formed by sequentially running in a plating tank.

【0091】ついで、直径1.2mmのスルーホールの周
囲に外径3mmのCuパッドが形成されているプリント回
路基板の前記スルーホールに各リード線を挿入し、フラ
ックスを塗布したのち、温度250℃のディップ式はん
だ槽にプリント回路基板を3秒間浸漬してから引き上
げ、そのまま自然放冷した。
Next, each lead wire was inserted into the through hole of the printed circuit board having a Cu pad having an outer diameter of 3 mm formed around the through hole having a diameter of 1.2 mm, and after applying a flux, the temperature was increased to 250 ° C. The printed circuit board was immersed in the dipping type solder bath for 3 seconds, then pulled up, and allowed to cool naturally.

【0092】なお、はんだとしては、実施例21〜31
と同じ2種類のものを用いた。
The solders used in Examples 21 to 31 were used.
The same two types were used.

【0093】この材料におけるCuパッドと銅被覆鋼線
との接合強度の劣化率を実施例21〜31と同様に算出
した。その結果を表7,表8に示した。
The deterioration rate of the bonding strength between the Cu pad and the copper-coated steel wire in this material was calculated in the same manner as in Examples 21 to 31. The results are shown in Tables 7 and 8.

【0094】[0094]

【表7】 [Table 7]

【0095】[0095]

【表8】 [Table 8]

【0096】以上の結果から次のことが明らかである。The following is clear from the above results.

【0097】(1)表1〜4から明らかなように、本発
明の材料はいずれも耐熱性が優れていて、熱処理後にあ
っても接触抵抗の上昇が抑制されている。
(1) As is clear from Tables 1 to 4, the materials of the present invention are all excellent in heat resistance, and the increase in the contact resistance is suppressed even after the heat treatment.

【0098】例えば、表面層にAg3Sn(ε相)化合
物が含有されている含CuSnめっき層で構成されてい
る実施例2と表面層にはAg3Sn(ε相)化合物が含
有されていない比較例5を対比して明らかなように、両
者は同じようにNiの中間層を備えているにもかかわら
ず、前者は熱処理後における接触抵抗は低下している
が、後者の場合は接触抵抗は上昇している。これは、表
面層にAg3Sn(ε相)化合物を含有させたことの効
果を立証するものである。
[0098] For example, the Ag 3 Sn (ε phase) Example 2 and the surface layer is composed of free CuSn plating layer compound is contained in the surface layer are contained in Ag 3 Sn (ε phase) Compound As is clear from comparison with Comparative Example 5 in which the two layers were similarly provided with an intermediate layer of Ni, the former had a lower contact resistance after heat treatment, whereas the latter had a lower contact resistance. Resistance is rising. This proves the effect of including the Ag 3 Sn (ε phase) compound in the surface layer.

【0099】また、実施例3と実施例6を対比して明ら
かなように、表面層の厚みは同じであっても、実施例3
の場合のように表面層にCuを含有せしめると、接合強
度の劣化率が小さくなっている。
Further, as is apparent from comparison between the third embodiment and the sixth embodiment, even when the thickness of the surface layer is the same, the third embodiment is different from the third embodiment.
When Cu is contained in the surface layer as in the case (1), the deterioration rate of the bonding strength is reduced.

【0100】(2)各実施例と比較例1,4,6を対比
して明らかなように、中間層が介装されていない材料
は、いずれも表面状態が悪く、接触抵抗の測定ができな
い状態になっている。そして、比較例2のように中間層
が介装されていても、それがCuである場合には熱処理
後の接触抵抗が大幅に上昇している。
(2) As is clear from the comparison between the examples and the comparative examples 1, 4, and 6, any of the materials without the intermediate layer has a poor surface condition, and the contact resistance cannot be measured. It is in a state. Then, even when the intermediate layer is interposed as in Comparative Example 2, when the intermediate layer is Cu, the contact resistance after the heat treatment is significantly increased.

【0101】このようなことから、中間層を介装し、し
かもそれをNiで構成することの有用性が明らかであ
る。
From the above, it is apparent that the intermediate layer is interposed and that the intermediate layer is made of Ni.

【0102】(3)表5,表6,表7,表8から明らか
なように、基体表面にSn層とSn−Ag層から成る2
層構造のめっき層を表面層として形成した材料(実施例
25,26、27,35)も、接合強度の劣化率は小さ
くなっている。また、基体表面に、Sn層とAg層との
2層構造のめっき層を形成し、または更に加熱処理を施
すと(実施例26,27,28,31)、SnとAgが
相互拡散して1層の表面層となり、この場合も接合強度
の劣化率は小さくなっている。また、めっき時にCuを
含有せしめ、それにリフロー処理を施しても1層構造の
表面層が形成され、その場合の接合強度の劣化率も小さ
くなっている(実施例36)。
(3) As can be seen from Tables 5, 6, 7 and 8, the substrate composed of Sn layer and Sn-Ag layer
The materials (Examples 25, 26, 27, and 35) in which the plating layer having the layer structure is formed as the surface layer also have a small deterioration rate of the bonding strength. Further, when a plating layer having a two-layer structure of a Sn layer and an Ag layer is formed on the surface of the base or further subjected to a heat treatment (Examples 26, 27, 28 and 31), Sn and Ag mutually diffuse and diffuse. It becomes a single surface layer, and also in this case, the deterioration rate of the bonding strength is small. Further, even when Cu is contained during plating and reflow treatment is performed, a surface layer having a one-layer structure is formed, and the deterioration rate of the bonding strength in that case is also small (Example 36).

【0103】[0103]

【発明の効果】以上の説明で明らかなように、本発明の
材料は、Sn層またはSn合金層にPbを含まないので
環境に悪影響を及ぼすことはなく、また、はんだ付けし
たときの接合部における接合強度の劣化は小さく、耐熱
性に優れた材料になっている。したがって、この材料
は、各種の電気・電子部品用の材料とりわけ半導体装置
に用いるリード材料や、端子,コネクタ,スイッチなど
のコンタクト材料として、それを用いた部品もまたその
工業的価値は大である。
As is apparent from the above description, the material of the present invention does not adversely affect the environment because Pb is not contained in the Sn layer or the Sn alloy layer. The deterioration of the bonding strength is small, and the material is excellent in heat resistance. Therefore, this material is used as a material for various electric and electronic parts, especially as a lead material used for semiconductor devices, and as a contact material for terminals, connectors, switches and the like, and parts using the same have great industrial value. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の材料Aの層構造を示す断面図である。FIG. 1 is a sectional view showing a layer structure of a material A of the present invention.

【図2】本発明の別の材料Bの層構造を示す断面図であ
る。
FIG. 2 is a sectional view showing a layer structure of another material B of the present invention.

【符号の説明】[Explanation of symbols]

1 基体 2 中間層 3,3’ 表面層 3’a 上層部 3’b 下層部 DESCRIPTION OF SYMBOLS 1 Substrate 2 Intermediate layer 3, 3 'Surface layer 3'a Upper layer part 3'b Lower layer part

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも表面がCuまたはCu合金か
ら成る基体の前記表面に、NiまたはNi合金層から成
る中間層を介して、いずれもAg3Sn(ε相)化合物
を含有する厚み0.5〜20μmのSn層またはSn合
金層から成る表面層が形成されていることを特徴とする
電気・電子部品用材料。
1. A method of manufacturing a semiconductor device comprising: a substrate having at least a surface made of Cu or a Cu alloy; and a layer containing an Ag 3 Sn (ε phase) compound having a thickness of 0.5 through an intermediate layer made of a Ni or Ni alloy layer. A material for electric / electronic parts, wherein a surface layer made of a Sn layer or a Sn alloy layer having a thickness of about 20 μm is formed.
【請求項2】 前記表面層における前記Ag3Sn(ε
相)化合物の含有量が、Ag換算量にして0.5〜5重
量%である請求項1の電気・電子部品用材料。
2. The Ag 3 Sn (ε) in the surface layer
2. The material for electric / electronic parts according to claim 1, wherein the content of the phase) compound is 0.5 to 5% by weight in terms of Ag.
【請求項3】 前記表面層には、更にCuが0.1〜3
重量%含有されている請求項1または2の電気・電子部
品用材料。
3. The surface layer further contains 0.1 to 3 Cu.
The material for electric / electronic parts according to claim 1 or 2 which is contained by weight.
【請求項4】 前記表面層が加熱処理またはリフロー処
理された層である請求項1〜3のいずれかの電気・電子
部品用材料。
4. The electric / electronic component material according to claim 1, wherein said surface layer is a layer subjected to a heat treatment or a reflow treatment.
【請求項5】 請求項1〜4のいずれかの材料を用いた
ことを特徴とする電気・電子部品。
5. An electric / electronic component using the material according to claim 1.
【請求項6】 Niめっき浴またはNi合金めっき浴を
用いて、少なくとも表面がCuまたはCu合金から成る
基体に電気めっきを行い、ついで、いずれもAgイオン
を0.2〜10000ppm含有するSnめっき浴またはS
n合金めっき浴を用いて電気めっきを行うことを特徴と
する電気・電子部品用材料の製造方法。
6. A Ni plating bath or a Ni alloy plating bath, electroplating is performed on a substrate having at least a surface made of Cu or Cu alloy, and then a Sn plating bath containing 0.2 to 10,000 ppm of Ag ions. Or S
A method for producing a material for electric / electronic parts, wherein electroplating is performed using an n-alloy plating bath.
【請求項7】 前記Snめっき浴または前記Sn合金め
っき浴には、Cuイオンが0.2〜50ppm含有されてい
る請求項6の電気・電子部品用材料の製造方法。
7. The method for producing a material for electric / electronic parts according to claim 6, wherein said Sn plating bath or said Sn alloy plating bath contains 0.2 to 50 ppm of Cu ions.
【請求項8】 前記2回目の電気めっきを行ったのちの
材料に、加熱処理またはリフロー処理を施す請求項6の
電気・電子部品用材料の製造方法。
8. The method according to claim 6, wherein the material after the second electroplating is subjected to a heat treatment or a reflow treatment.
JP15505998A 1998-06-03 1998-06-03 Material for electrical and electronic parts, its production and electrical and electronic parts using the material Pending JPH11350189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15505998A JPH11350189A (en) 1998-06-03 1998-06-03 Material for electrical and electronic parts, its production and electrical and electronic parts using the material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15505998A JPH11350189A (en) 1998-06-03 1998-06-03 Material for electrical and electronic parts, its production and electrical and electronic parts using the material

Publications (1)

Publication Number Publication Date
JPH11350189A true JPH11350189A (en) 1999-12-21

Family

ID=15597779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15505998A Pending JPH11350189A (en) 1998-06-03 1998-06-03 Material for electrical and electronic parts, its production and electrical and electronic parts using the material

Country Status (1)

Country Link
JP (1) JPH11350189A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005002368A (en) * 2003-06-09 2005-01-06 Ishihara Chem Co Ltd Tin plating bath for preventing whisker
JP2005350774A (en) * 2005-06-13 2005-12-22 Dowa Mining Co Ltd Film, its production method and electric and electronic components
JP2006505691A (en) * 2002-11-07 2006-02-16 オウトクンプ オサケイティオ ユルキネン Method for forming good contact surface on cathode support bar and support bar
US7391116B2 (en) 2003-10-14 2008-06-24 Gbc Metals, Llc Fretting and whisker resistant coating system and method
WO2009123157A1 (en) * 2008-03-31 2009-10-08 古河電気工業株式会社 Connecting component metal material and manufacturing method thereof
JP2009263785A (en) * 2008-03-31 2009-11-12 Furukawa Electric Co Ltd:The Connecting component metal material and method of manufacturing the same
JP2009263786A (en) * 2008-03-31 2009-11-12 Furukawa Electric Co Ltd:The Connecting component metal material and method of manufacturing the same
WO2009142278A1 (en) * 2008-05-22 2009-11-26 矢崎総業株式会社 Aluminum cable crimp terminal
JP2010138452A (en) * 2008-12-11 2010-06-24 Mitsubishi Materials Corp Sn PLATING MATERIAL AND METHOD FOR PRODUCING THE SAME
JP2010280946A (en) * 2009-06-04 2010-12-16 Mitsubishi Shindoh Co Ltd Plated copper wire and method for manufacturing the same
JP2011176260A (en) * 2010-01-30 2011-09-08 Mitsubishi Shindoh Co Ltd Method of bonding led chip and leadframe
JP5138827B1 (en) * 2012-03-23 2013-02-06 Jx日鉱日石金属株式会社 Metal materials for electronic parts, connector terminals, connectors and electronic parts using the same
WO2014003144A1 (en) 2012-06-27 2014-01-03 Jx日鉱日石金属株式会社 Electronic component metal material and manufacturing method thereof, and connector terminal, connector and electronic component using said electronic component metal material
WO2014003145A1 (en) 2012-06-27 2014-01-03 Jx日鉱日石金属株式会社 Electronic component metal material and manufacturing method thereof, and connector terminal, connector and electronic component using said electronic component metal material
WO2014003147A1 (en) 2012-06-27 2014-01-03 Jx日鉱日石金属株式会社 Electronic component metal material and manufacturing method thereof, and connector terminal, connector and electronic component using said electronic component metal material
WO2014017238A1 (en) 2012-07-25 2014-01-30 Jx日鉱日石金属株式会社 Metal material for electronic components, method for producing same, connector terminal using same, connector and electronic component
WO2014045678A1 (en) * 2012-09-19 2014-03-27 Jx日鉱日石金属株式会社 Surface-treated plated material and method for producing same, and electronic component
JP2015045056A (en) * 2013-08-27 2015-03-12 Jx日鉱日石金属株式会社 Metallic material for electronic component, method for producing the same, and connector terminal, connector and electronic component using the same
JP2015045052A (en) * 2013-08-27 2015-03-12 Jx日鉱日石金属株式会社 Electronic-component metallic material and method for producing the same, and connector terminal, connector and electronic component using the same
US9576693B2 (en) 2011-09-20 2017-02-21 Jx Nippon Mining & Metals Corporation Metal material for electronic component and method for manufacturing the same
US9580783B2 (en) 2011-10-04 2017-02-28 Jx Nippon Mining & Metals Corporation Electronic component metal material and method for manufacturing the same
US9728878B2 (en) 2012-02-03 2017-08-08 Jx Nippon Mining & Metals Corporation Press-fit terminal and electronic component using the same
JP2020111796A (en) * 2019-01-11 2020-07-27 Jx金属株式会社 Surface-treatment metallic material, production method of surface-treatment metallic material, and electronic component

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006505691A (en) * 2002-11-07 2006-02-16 オウトクンプ オサケイティオ ユルキネン Method for forming good contact surface on cathode support bar and support bar
JP2005002368A (en) * 2003-06-09 2005-01-06 Ishihara Chem Co Ltd Tin plating bath for preventing whisker
US7808109B2 (en) 2003-10-14 2010-10-05 Gbc Metals, L.L.C. Fretting and whisker resistant coating system and method
US7391116B2 (en) 2003-10-14 2008-06-24 Gbc Metals, Llc Fretting and whisker resistant coating system and method
JP2005350774A (en) * 2005-06-13 2005-12-22 Dowa Mining Co Ltd Film, its production method and electric and electronic components
WO2009123157A1 (en) * 2008-03-31 2009-10-08 古河電気工業株式会社 Connecting component metal material and manufacturing method thereof
JP2009263785A (en) * 2008-03-31 2009-11-12 Furukawa Electric Co Ltd:The Connecting component metal material and method of manufacturing the same
JP2009263786A (en) * 2008-03-31 2009-11-12 Furukawa Electric Co Ltd:The Connecting component metal material and method of manufacturing the same
US8101285B2 (en) 2008-03-31 2012-01-24 The Furukawa Electric Co., Ltd. Metallic material for a connecting part and a method of producing the same
JP2009283288A (en) * 2008-05-22 2009-12-03 Yazaki Corp Crimp terminal for aluminum wire
WO2009142278A1 (en) * 2008-05-22 2009-11-26 矢崎総業株式会社 Aluminum cable crimp terminal
JP2010138452A (en) * 2008-12-11 2010-06-24 Mitsubishi Materials Corp Sn PLATING MATERIAL AND METHOD FOR PRODUCING THE SAME
JP2010280946A (en) * 2009-06-04 2010-12-16 Mitsubishi Shindoh Co Ltd Plated copper wire and method for manufacturing the same
JP2011176260A (en) * 2010-01-30 2011-09-08 Mitsubishi Shindoh Co Ltd Method of bonding led chip and leadframe
US9576693B2 (en) 2011-09-20 2017-02-21 Jx Nippon Mining & Metals Corporation Metal material for electronic component and method for manufacturing the same
US9580783B2 (en) 2011-10-04 2017-02-28 Jx Nippon Mining & Metals Corporation Electronic component metal material and method for manufacturing the same
US9728878B2 (en) 2012-02-03 2017-08-08 Jx Nippon Mining & Metals Corporation Press-fit terminal and electronic component using the same
CN104246015A (en) * 2012-03-23 2014-12-24 Jx日矿日石金属株式会社 Metallic material for electronic component, connector terminal obtained using same, connector, and electronic component
KR20140139021A (en) 2012-03-23 2014-12-04 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Metallic material for electronic component, connector terminal obtained using same, connector, and electronic component
JP5138827B1 (en) * 2012-03-23 2013-02-06 Jx日鉱日石金属株式会社 Metal materials for electronic parts, connector terminals, connectors and electronic parts using the same
WO2013140850A1 (en) 2012-03-23 2013-09-26 Jx日鉱日石金属株式会社 Metallic material for electronic component, connector terminal obtained using same, connector, and electronic component
US9330804B2 (en) 2012-03-23 2016-05-03 Jx Nippon Mining & Metals Corporation Metallic material for electronic components, and connector terminals, connectors and electronic components using same
EP2829637A4 (en) * 2012-03-23 2015-12-09 Jx Nippon Mining & Metals Corp Metallic material for electronic component, connector terminal obtained using same, connector, and electronic component
KR20150053263A (en) 2012-06-27 2015-05-15 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Electronic component metal material and manufacturing method thereof, and connector terminal, connector and electronic component using said electronic component metal material
JP2014029825A (en) * 2012-06-27 2014-02-13 Jx Nippon Mining & Metals Corp Electronic component metal material and method of manufacturing the same, connector terminal using the electronic component metal material, connector and electronic component
US10826203B2 (en) 2012-06-27 2020-11-03 Jx Nippon Mining & Metals Corporation Metallic material for electronic components and method for producing same, and connector terminals, connectors and electronic components using same
WO2014003145A1 (en) 2012-06-27 2014-01-03 Jx日鉱日石金属株式会社 Electronic component metal material and manufacturing method thereof, and connector terminal, connector and electronic component using said electronic component metal material
CN104379811A (en) * 2012-06-27 2015-02-25 Jx日矿日石金属株式会社 Electronic component metal material and manufacturing method thereof, and connector terminal, connector and electronic component using said electronic component metal material
CN104379810A (en) * 2012-06-27 2015-02-25 Jx日矿日石金属株式会社 Electronic component metal material and manufacturing method thereof, and connector terminal, connector and electronic component using said electronic component metal material
US10594066B2 (en) 2012-06-27 2020-03-17 Jx Nippon Mining & Metals Corporation Metallic material for electronic components and method for producing same, and connector terminals, connectors and electronic components using same
US10530084B2 (en) 2012-06-27 2020-01-07 Jx Nippon Mining & Metals Corporation Metallic material for electronic components and method for producing same, and connector terminals, connectors and electronic components using same
CN108790320A (en) * 2012-06-27 2018-11-13 Jx日矿日石金属株式会社 Electronic component-use metal material and its manufacturing method, bonder terminal, connector and electronic unit using it
EP2868772A4 (en) * 2012-06-27 2016-05-25 Jx Nippon Mining & Metals Corp Electronic component metal material and manufacturing method thereof, and connector terminal, connector and electronic component using said electronic component metal material
WO2014003144A1 (en) 2012-06-27 2014-01-03 Jx日鉱日石金属株式会社 Electronic component metal material and manufacturing method thereof, and connector terminal, connector and electronic component using said electronic component metal material
WO2014003147A1 (en) 2012-06-27 2014-01-03 Jx日鉱日石金属株式会社 Electronic component metal material and manufacturing method thereof, and connector terminal, connector and electronic component using said electronic component metal material
KR20150053264A (en) 2012-06-27 2015-05-15 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Electronic component metal material and manufacturing method thereof, and connector terminal, connector and electronic component using said electronic component metal material
KR20170017017A (en) 2012-06-27 2017-02-14 제이엑스금속주식회사 Electronic component metal material and manufacturing method thereof, and connector terminal, connector and electronic component using said electronic component metal material
JP2014029826A (en) * 2012-06-27 2014-02-13 Jx Nippon Mining & Metals Corp Electronic component metal material and method for manufacturing the same, connector terminal using the electronic component metal material, connector and electronic component
JP2014029007A (en) * 2012-06-27 2014-02-13 Jx Nippon Mining & Metals Corp Electronic component metal material and method of manufacturing the same, connector terminal using the same, connector and electronic component
EP2868773A4 (en) * 2012-06-27 2016-05-25 Jx Nippon Mining & Metals Corp Electronic component metal material and manufacturing method thereof, and connector terminal, connector and electronic component using said electronic component metal material
KR20150028344A (en) 2012-07-25 2015-03-13 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Metal material for electronic components, method for producing same, connector terminal using same, connector and electronic component
CN104471113B (en) * 2012-07-25 2016-08-24 Jx日矿日石金属株式会社 Electronic component-use metal material and manufacture method thereof, use its bonder terminal, adapter and electronic unit
CN104471113A (en) * 2012-07-25 2015-03-25 Jx日矿日石金属株式会社 Metal material for electronic components, method for producing same, connector terminal using same, connector and electronic component
WO2014017238A1 (en) 2012-07-25 2014-01-30 Jx日鉱日石金属株式会社 Metal material for electronic components, method for producing same, connector terminal using same, connector and electronic component
US10373730B2 (en) 2012-07-25 2019-08-06 Jx Nippon Mining & Metals Corporation Metallic material for electronic components and method for producing same, and connector terminals, connectors and electronic components using same
KR20150053804A (en) * 2012-09-19 2015-05-18 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Surface-treated plated material and method for producing same, and electronic component
CN104619883A (en) * 2012-09-19 2015-05-13 Jx日矿日石金属株式会社 Surface-treated plated material and method for producing same, and electronic component
JP2014077190A (en) * 2012-09-19 2014-05-01 Jx Nippon Mining & Metals Corp Surface treatment plating material and method for manufacturing the same, and electronic component
WO2014045678A1 (en) * 2012-09-19 2014-03-27 Jx日鉱日石金属株式会社 Surface-treated plated material and method for producing same, and electronic component
JP2015045052A (en) * 2013-08-27 2015-03-12 Jx日鉱日石金属株式会社 Electronic-component metallic material and method for producing the same, and connector terminal, connector and electronic component using the same
JP2015045056A (en) * 2013-08-27 2015-03-12 Jx日鉱日石金属株式会社 Metallic material for electronic component, method for producing the same, and connector terminal, connector and electronic component using the same
JP2020111796A (en) * 2019-01-11 2020-07-27 Jx金属株式会社 Surface-treatment metallic material, production method of surface-treatment metallic material, and electronic component

Similar Documents

Publication Publication Date Title
JPH11350188A (en) Material for electric and electronic parts, its production, and electric and electronic parts lising the same
JPH11350189A (en) Material for electrical and electronic parts, its production and electrical and electronic parts using the material
JP3880877B2 (en) Plated copper or copper alloy and method for producing the same
JP6050737B2 (en) Fretting resistance and whisker resistance coating apparatus and method
JPS59145553A (en) Composite structure and method of forming same
JP4940081B2 (en) Reflow Sn plating material and electronic component using the same
KR19980064003A (en) Lead Materials for Electronic Components, Leads and Semiconductor Devices Using the Same
JP4086949B2 (en) Metal coated member
JP5614507B2 (en) Sn-Cu lead-free solder alloy
JP2004179055A (en) Connector terminal, connector and manufacturing method of the same
JP4632380B2 (en) Plating film connection terminal member, connection terminal using the same, plating film material and multilayer plating material used therefor, and method for producing plating film connection terminal member
JP2010084228A (en) Lead frame material and semiconductor device using the same
JPH11350190A (en) Material for electric and electronic parts, its production, and electric and electronic parts using the same
JP2000054189A (en) MATERIAL FOR ELECTRIC AND ELECTRONIC PARTS USED BY BONDING WITH Sn-Bi-BASED SOLDER, ELECTRIC AND ELECTRONIC PARTS USING IT, ELECTRIC AND ELECTRONIC PARTS-MOUNTED SUBSTRATE, AND SOLDER BONDING, OR MOUNTING METHOD USING IT
JPH11343594A (en) Material for electrical and electronic parts, its production and electrical and electronic parts using the material
JP2000077593A (en) Lead frame for semiconductor
JPH1093004A (en) Electronic component and manufacture thereof
JP3779864B2 (en) Electronic component lead wire, method for manufacturing the same, and electronic component using the lead wire
JP2000030558A (en) Electric contact material and its manufacture
JP2942476B2 (en) Multi-layer plating lead wire and lead frame
JPH1084065A (en) Conductive material for electronic component
JP2537301B2 (en) Electronic component manufacturing method
JPH10284666A (en) Electronic component device
JP2006083410A (en) Method for manufacturing electronic part
JPS6153434B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050106

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20050909

RD03 Notification of appointment of power of attorney

Effective date: 20050916

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Effective date: 20061005

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD05 Notification of revocation of power of attorney

Effective date: 20061102

Free format text: JAPANESE INTERMEDIATE CODE: A7425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

RD03 Notification of appointment of power of attorney

Effective date: 20061113

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070306