JP4086949B2 - Metal coated member - Google Patents

Metal coated member Download PDF

Info

Publication number
JP4086949B2
JP4086949B2 JP02829998A JP2829998A JP4086949B2 JP 4086949 B2 JP4086949 B2 JP 4086949B2 JP 02829998 A JP02829998 A JP 02829998A JP 2829998 A JP2829998 A JP 2829998A JP 4086949 B2 JP4086949 B2 JP 4086949B2
Authority
JP
Japan
Prior art keywords
layer
alloy
plating
intermediate layer
solderability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02829998A
Other languages
Japanese (ja)
Other versions
JPH11229178A (en
Inventor
仁志 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP02829998A priority Critical patent/JP4086949B2/en
Publication of JPH11229178A publication Critical patent/JPH11229178A/en
Application granted granted Critical
Publication of JP4086949B2 publication Critical patent/JP4086949B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は金属被覆材に関し、更に詳しくは、長時間の加熱時においても酸化変色を起こしづらく、またはんだ付け性も優れていて、各種の電気・電子部品や機器用材料として有用な金属被覆材に関する。
【0002】
【従来の技術】
Cu,Feまたはそれらの合金を基体とし、その表面にSnまたははんだに代表されるSn合金から成る被覆層を形成した材料は、基体が備えている優れた導電性や機械的強度と被覆層が備えている優れたはんだ付け性や耐食性を併有しているので、コネクタ,端子などの接点材料、リードフレーム,リード線などの部品リード部、基板回路や配線ケーブル導体などの電子・電気部品の材料として多用されている。
【0003】
これらの材料は、基体の表面に、直接、SnまたはSn合金の電気めっきや溶融めっきを行ったり、またSnまたはSn合金の箔をクラッディングして製造されているのが通例である。そのとき、表面の被覆層と基体の表面の間にCuやNiを下地層として介装することもある。
ところで、これらの材料が電子・電機部品に使用される場合、外部からの加熱や使用時における自己発熱などにより、当該材料の温度は、一般に、100℃程度にまで上昇する。そして、最近では、部品の高集積化が進んでいるので自己発熱が増大し、また他の発熱源との近接化、更には良好な熱放散の困難化などの要因に基づいて、当該材料は120℃以上の温度に加熱される場合が多くなっている。
【0004】
しかしながら、使用温度が120℃以上になると、SnまたはSn合金の被覆層の下に存在するCuなどが熱拡散し、これが前記被覆層の表面に到達して酸化することによるはんだ付け性の低下や、また最上層を構成するSnまたはSn合金、更にはそこに盛られているはんだなどが熱拡散して全体が合金化することにより外観不良を招くなどの外に、例えば接触抵抗の増大など、材料特性の劣化が引き起こされる。
【0005】
また、Niを下地層とした材料の場合には、使用温度が120℃以上になると、被覆層とNi層の間でSn−Niの拡散層が生成して接触抵抗の増大を招く。このような問題を解決するために、SnまたはSn合金の被覆層の下にAgまたはAg合金から成る中間層を介在せしめた材料が開発されている(特開平2−301546号公報,特開平2−301573号公報を参照)。
【0006】
しかしながら、これらの材料の場合であっても、表面層がSnや通常のはんだで構成されている場合、上記した温度で長時間の加熱状態に曝されるとやはり酸化変色を起こし、はんだ付け性の低下などの問題が起こることもある。
【0007】
【発明が解決しようとする課題】
本発明は、表面層がSnまたはSn合金で構成されている従来の材料における上記した問題を解決し、120℃以上の温度で長時間加熱された場合であっても、酸化変色の発生が抑制され、またはんだ付け性の低下も起こしにくい金属被覆材の提供を目的とする。
【0008】
導電性基体の一部表面または全表面に少なくとも1層のAgまたはAg合金から成る中間層が形成され、
該中間層の表面に少なくとも1層のSn金属層またはSn合金層から成る表面層が形成され
さらに該表面層(3)最表層部(3 A )は、リフロー後でBi10重量%以下を含有するSn−Bi合金、又は、同じくリフロー後でBi10重量%以下でかつIn8重量%以下を含有するSn−Bi−In合金のいずれかで形成されていることを特徴とする金属被覆材。
【0009】
とくに、前記導電性基体と、前記AgまたはAg合金から成る中間層との間に、更にNi、Coまたはこれらの合金からなる合金からなる下地層が介装されている金属被覆部材を提供する。 更に、前記中間層と前記表面層の一部または全部を溶融・再凝固させたことを特徴とする金属被覆も提供する
【0010】
【発明の実施の形態】
以下、図面に基づいて本発明の金属被覆材を詳細に説明する。
まず、図1は本発明の金属被覆材の基本構成を示す断面図である。この材料A1は、導電性基体1の表面を被覆して後述する中間層2が形成され、更にこの中間層2を被覆して後述する表面層3が形成された層構造になっている。
【0011】
導電性基体1としては、はんだの溶融温度よりも高い耐熱温度を有し、また少なくともその表面が導電性を有する材料であれば何であってもよく、例えば、Cu,Fe,Ni,Al,およびこれらの合金,導電性樹脂,プリント基板などの材料をあげることができる。また、鋼材などで芯部を形成し、その表面をCu,Ni,Crなどで被覆した材料であってもよい。また、形状も線,条などどのような形状であってもよい。
【0012】
中間層2はAgまたはAg合金で構成されていて、基体1の表面を構成する金属や後述する下地層の構成金属が表面層3へ熱拡散して酸化変色やはんだ付け性の低下が引き起こされるという事態を防止するためのバリアとして機能する。
この中間層2は、1層であってもよいが、Ag単体から成る層やAg合金から成る層を適宜に組み合わせた複数の層を積層した層構造にすると、上記したバリア効果が向上して有効である。
【0013】
この中間層2の厚みが薄すぎると上記したバリア効果は減退し、また逆に厚すぎると、高価なAg素材の浪量になるだけではなく、クラックが発生したり、基体1との剥離なども起こり、また材料全体の加工性の低下を招くようにもなるので、中間層2の厚みは0.05〜10μm程度に設定することが好ましい。
この中間層2は、電気めっき,無電解めっき,真空蒸着,PVD法,CVD法など公知の成膜法で形成することができ、またクラッディング法によって形成してもよく、基体1の表面全体にまたは一部表面に形成してもよい。
【0014】
この中間層2を構成するAg合金としては、例えば、Ag,Ag−Sn,Ag−In,Ag−Cu,Ag−Zn,Ag−Pd,Ag−Se,Ag−Sbなどをあげることができるが、これらのうち、Ag,Ag−Sn,Ag−Inは、表面のSnへ拡散した場合でも、元々含有されている成分であるため、特性の変化が少なくなるという点で好適である。
【0015】
次にこの中間層2を被覆して形成される表面層3は、SnまたはSn合金で構成されている。この層は、他の部品を例えばはんだ付けするときの作用面として機能するため、はんだ付け性が優れていることは勿論のこと、長時間の加熱時にも酸化変色をしないことが望まれている。
この表面層3は、1層であってもよく、またSn単体から成る層やSn合金から成る層を適宜に組み合わせた複数の層を積層した層構造であってもよい。その場合、表面層3の最表層部3Aは、Sn−Bi合金,Sn−In合金,またはSn−Bi−In合金のいずれかで構成されていることが必要である。
【0016】
これらの合金は、いずれも、Sn単体や通常のはんだに比べて加熱時の酸化変色を起こしづらい材料であり、また、中間層2を構成するAgまたはAg合金よりも溶融温度が低いことは勿論のこと、この最表層部3Aの直下に位置する層がSn単体から成る場合であっても、そのSn単体よりも低融点であるため、はんだ付け性が良好であり、しかも長時間の加熱後においても酸化変色を起こさず良好なはんだ付け性を発揮するからである。
【0017】
なお、最表層部3AをSn−Bi合金で構成する場合、Bi含有量が多すぎるとはんだによる接合後に当該接合部の強度特性が経時的に劣化したり、また例えばAl線の溶接時にブローホールが発生しやすくなるので、その含有量はリフロー後で10重量%以下に規制することが好ましい。Sn−In合金の場合には、Inは高価であることを考え、また例えばAl線との溶接時におけるブローホールの発生を抑制するためには、その含有量はリフロー後で8重量%以下に規制することが好ましい。
【0018】
この表面層3の厚みは、後述するリフロー処理による表面層形成との関係で0.05〜20μmに設定することが好ましい。表面層3の厚みが0.05μmよりも薄い場合は、リフロー処理時に表面層3の構成金属が下層の方に熱拡散して当該表面層3は消失し、その結果、前記した表面層3の作用効果が発揮されなくなるからである。また20μmよりも厚くなると、リフロー処理時に表面層3の溶融金属が流れ出し、リフロー処理後の表面が平滑にならないことがあるからである。
【0019】
この表面層3も、中間層2の場合と同じように、各種の成膜法で容易に形成することができる。
図2は、本発明の別の金属被覆材A2を示す断面図である。この材料A2は、導電性基体1と中間層2の間に下地層4が介装された層構造のものである。
この下地層4は、基体1から熱拡散してくるCuなどの金属が中間層2へ達し、更に表面層3へ達することを抑制するためのバリアとして機能し、材料A1よりも表面層3の酸化変色を起こしづらく、またはんだ付け性も向上した材料である。
【0020】
この下地層4は、Ni,Co,またはそれらの合金で構成されていることが好ましく、また厚みは、バリア効果の点や、製造コストや加工性の点から0.1〜2μm程度であることが好ましい。
本発明の金属被覆材の場合、前記した各種の成膜法を適用して製造したままの材料であってもよいが、更にそれに対してリフロー処理を施して表層部3を一旦溶融したのち再凝固させたものであることが好ましい。
【0021】
その理由は、再凝固後に形成された表面層は平滑になってはんだ付け作業が行いやすく、また、BiとInの濃度が低いときに発生し得るウィスカーを防ぎ、表面層が薄い場合にリフロー処理によって拡散してくる中間層のAgが更にはんだ付け性を高めるように作用するからである。
このようなリフロー処理を行うに際しては、前記したように、表面層3の厚みは0.05〜20μmに設定される。
【0022】
【実施例】
実施例1,2
Alキルド鋼から成る鋼条材の表面に前処理を施したのち下記の条件でCuめっきを行って導電性基体1を製造した。
めっき浴の組成:硫酸銅五水和物250g/L,硫酸60g/L。
【0023】
めっき条件:浴温50℃,電流密度9A/dm2,めっき時間30秒。
鋼条材の表面が厚み1μmのCuめっき層で被覆されている導電性基体1が得られた。
次いで、この導電性基体1の表面に下記の条件でAgめっきを行って中間層2を形成した。
【0024】
めっき浴の組成:シアン化銀カリウム6g/L,シアン化カリウム80g/L。
めっき条件:浴温25℃,電流密度2A/dm2,めっき時間30秒。
導電性基体の表面は厚み0.6μmのAgめっき層(中間層2)で被覆された。
ついで、このAgめっき層の表面に下記の条件でSn−Bi合金めっきを行った。
【0025】
めっき浴の組成:PF−TIN450g/L,PF−BI50g/L,PF−AC ID150g/L,PF−0.5M30mL/L。(いずれも、石原薬品(株)製のめっき浴)
めっき条件:浴温40℃,電流密度10A/dm2,めっき時間25秒。
Agめっき層の上には、厚み2μmのSn−Bi合金めっき層が形成され、図1で示した層構造の材料A1が得られた。
【0026】
この材料を実施例1とする。また、この材料A1に対し、雰囲気温度650℃,処理時間3秒のリフロー処理を施した。得られた材料を実施例2とする。
実施例3,4
実施例1の場合と同様にしてAgめっき層(中間層2)までを形成した。ついで、このAgめっき層の上に、下記の条件でSnめっきを行った。
【0027】
めっき浴の組成:PF−TIN450g/L,PF−ACID150g/L,PF −0.5M30mL/L。
めっき条件:浴温40℃,電流密度10A/dm2,めっき時間20秒。
Agめっき層を被覆して厚み1.6μmのSnめっき層が形成された。
ついで、めっき時間が5秒であったことを除いては、実施例1の場合と同様にして、上記Snめっき層の上に厚み0.4μmのSn−Bi合金めっき層を形成した。
【0028】
得られた材料は、図1の材料A1における表層部3は、その最表層部3Aが厚み0.4μmのSn−Bi合金めっき層から成り、その下に厚み1.6μmのSnめっき層が存在する2層構造を有する材料になっている。
この材料を実施例3とする。また、この材料に対し実施例2の場合と同じ条件のリフロー処理を行い、得られた材料を実施例4とした。
【0029】
実施例5,6
実施例3におけるSn−Bi合金めっき層が、下記の条件による無電解めっきで形成されたSn−In合金めっき層であったことを除いては、実施例3と同じように、表面層が2層構造になっている材料を製造した。
めっき浴の組成:メタンスルホン酸第1すず80g/L,塩化インジウム10g/L,メタンスルホン酸40g/L,チオ尿素120g/L,次亜リン酸ナトリウム65g/L,ノニオン系界面活性剤10g/L,両性界面活性剤2g/L。
【0030】
めっき条件:浴温55℃,180秒間の浸漬。
Snめっき層の上には厚み0.4μmのSn−In合金無電解めっき層が形成された。
この材料を実施例5とする。また、この材料に実施例1の場合と同じようなリフロー処理を施し、得られた材料を実施例6とした。
【0031】
実施例7,8
実施例1において、鋼条材の表面に下記の条件でNiめっきを行ったことを除いては、実施例1と同じ層構造の材料を製造した。この材料は図2で示した下地層4を有する材料A2に相当する。
めっき浴の組成:スルファミン酸ニッケル400g/L,ホウ酸40g/L。
【0032】
めっき条件:浴温50℃,電流密度10A/dm2,めっき時間30秒。
鋼条材の表面に形成されたNiめっき層の厚みは1μmであった。この材料を実施例7とする。また、この材料に対し実施例1の場合と同じようにしてリフロー処理を施した。得られた材料を実施例8とする。
比較例1,2
実施例1のSn−Bi合金めっき層が、下記の条件で形成されたはんだめっき層であったことを除いては、実施例1と同じ層構造の材料を製造した。
【0033】
めっき浴の組成:IS−TIN570g/L,IS−LEAD15g/L,IS−ACID54g/L,519M50mL/L(いずれも石原薬品(株)製のめっき浴)。
めっき条件:浴温40℃,電流密度10A/dm2,めっき時間25秒。
Agめっき層の上に厚み2μmのはんだめっき層が形成されている材料が得られた。
【0034】
これを比較例1とする。また、この材料に対し実施例1の場合と同様の条件でリフロー処理を施した。得られた材料を比較例2とする。
比較例3,4
実施例1のSn−Bi合金めっき層がSn単体のめっき層(厚み1.6μm)であったことを除いては実施例1と同じ層構造の材料を製造した。なお、Snめっき層の形成は実施例3の場合と同じ条件で行った。
【0035】
この材料を比較例3とする。また、この材料に対し実施例1の場合と同じ条件でリフロー処理を施した。得られた材料を比較例4とする。
以上、12種類の材料につき、下記の仕様で加熱変色試験とはんだ付け性の評価を行った。
加熱変色試験:各材料を、温度120℃の大気中で加熱し、加熱時間と変色の関係を目視観察した。変色なしの場合:○,やや黄変色の場合:△,強く黄変または黒変の場合:×と評価した。
【0036】
はんだ付け性:温度240℃の溶融はんだ(千住金属工業(株)製のSn−Ag−Bi−Cu系Pbフリーはんだ、商品名エコソルダー121を使用)の中に、表1で示した時間の加熱処理を受けた各材料を5秒間浸漬したのち取り出し、外観を目視観察。なお、このときロジンフラックスを使用した。
【0037】
均一で良好な濡れの場合:○,やや不均一な濡れの場合:△,はじきがある場合:×と評価した。
以上の結果を表1に示した。
【0038】
【表1】

Figure 0004086949
【0039】
表1から次のことが明らかである。
(1)本発明の材料は、比較例の材料に比べると、長時間加熱された場合であっても、変色は起こりづらく、またはんだ付け性も優れている。これは、本発明の材料の場合、最表層部がSn−Bi合金、Sn−In合金で構成されていることの有効性を立証するものである。
【0040】
(2)また、実施例1と実施例2、実施例3と実施例4、実施例7と実施例8を対比して明らかなように、めっき層を形成したのちそれにリフロー処理を施すと、はんだ付け性が向上することがわかる。このようなことからリフロー処理は有効である。
(3)更に、実施例7,8と他の実施例を対比して明らかなように、導電性基体と中間層の間にNiめっき層を介装すると変色の発生を有効に抑制することができる。
【0041】
【発明の効果】
以上の説明で明らかなように、本発明の金属被覆材は、温度120℃近辺で長時間加熱されても酸化変色の発生は少なく、またはんだ付け性の低下が起こりづらい。これは、表面層をSnまたはSn合金で構成し、かつその最表層部を低融点のSn−Bi合金、Sn−In合金、Sn−Bi−In合金で形成したことによって得られる効果である。
【0042】
また、この表面層はPbを含まないはんだとの接合性も良好であるため、Pbフリーのはんだ使用を可能にし地球環境の保全にも資する。
【図面の簡単な説明】
【図1】本発明の材料A1の断面構造を示す断面図である。
【図2】本発明の別の材料A2の断面構造を示す断面図である。
【符号の説明】
1 導電性基体
2 中間層(AgまたはAg合金層)
3 表面層(SnまたはSn合金層)
3A 表面層3の最表層部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metal coating material, and more particularly, a metal coating material that is difficult to cause oxidative discoloration even when heated for a long time or has excellent solderability, and is useful as a material for various electric / electronic parts and equipment. About.
[0002]
[Prior art]
A material in which Cu, Fe or an alloy thereof is used as a base and a coating layer made of Sn or an Sn alloy typified by solder is formed on the surface of the base has excellent conductivity and mechanical strength and a coating layer provided in the base. Because it has both excellent solderability and corrosion resistance, it can be used for contact materials such as connectors and terminals, lead parts such as lead frames and lead wires, and electronic and electrical parts such as circuit boards and wiring cable conductors. Widely used as a material.
[0003]
These materials are usually manufactured by directly performing electroplating or hot dipping of Sn or Sn alloy on the surface of the substrate or cladding a foil of Sn or Sn alloy. At that time, Cu or Ni may be interposed as an underlayer between the surface coating layer and the surface of the substrate.
By the way, when these materials are used for electronic / electrical parts, the temperature of the materials generally rises to about 100 ° C. due to external heating or self-heating during use. And recently, the higher integration of components, the self-heating has increased, the proximity of other heat sources, and the difficulty of good heat dissipation, the material is In many cases, it is heated to a temperature of 120 ° C. or higher.
[0004]
However, when the operating temperature is 120 ° C. or higher, Cu or the like existing under the Sn or Sn alloy coating layer is thermally diffused, and this reaches the surface of the coating layer and oxidizes to reduce solderability. Besides, Sn or Sn alloy constituting the uppermost layer, and further, the solder deposited on the top layer is thermally diffused to cause the whole to be alloyed, resulting in poor appearance, for example, increased contact resistance, Deterioration of material properties is caused.
[0005]
In the case of a material using Ni as a base layer, when the operating temperature is 120 ° C. or higher, a Sn—Ni diffusion layer is generated between the coating layer and the Ni layer, resulting in an increase in contact resistance. In order to solve such a problem, materials have been developed in which an intermediate layer made of Ag or an Ag alloy is interposed under the Sn or Sn alloy coating layer (JP-A-2-301546 and JP-A-2). -3031573).
[0006]
However, even in the case of these materials, if the surface layer is composed of Sn or ordinary solder, it will also undergo oxidative discoloration when exposed to a prolonged heating state at the above-mentioned temperature, and solderability Problems such as lowering may occur.
[0007]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems in the conventional material whose surface layer is made of Sn or Sn alloy, and suppresses the occurrence of oxidation discoloration even when heated at a temperature of 120 ° C. or higher for a long time. Another object of the present invention is to provide a metal coating material that is less likely to cause deterioration of solderability.
[0008]
An intermediate layer made of at least one layer of Ag or an Ag alloy is formed on a part or all of the surface of the conductive substrate;
A surface layer comprising at least one Sn metal layer or Sn alloy layer is formed on the surface of the intermediate layer ;
Further outermost layer of the surface layer (3) (3 A), the content Sn-Bi alloy containing Bi10 wt% or less after reflow, or the same and at Bi10 wt% In8 wt% or less after reflow metallization material characterized by being formed in one of Sn-Bi-in alloy.
[0009]
In particular, said conductive substrate, between the intermediate layer made of the Ag or Ag alloy, further Ni, underlayer made of Co or an alloy made of these alloys to provide a metal coating member being interposed. Further provides metal coating member, wherein a part or all of the intermediate layer and the surface layer were melted and resolidified.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the metal coating material of this invention is demonstrated in detail based on drawing.
First, FIG. 1 is a cross-sectional view showing the basic structure of the metal coating material of the present invention. This material A1 has a layer structure in which the surface of the conductive substrate 1 is coated to form an intermediate layer 2 described later, and this intermediate layer 2 is further coated to form a surface layer 3 described later.
[0011]
The conductive substrate 1 may be any material as long as it has a heat resistant temperature higher than the melting temperature of the solder and at least the surface thereof has conductivity. For example, Cu, Fe, Ni, Al, and These alloys, conductive resins, printed circuit boards, and other materials can be used. Moreover, the core part may be formed with steel materials etc., and the material which coat | covered the surface with Cu, Ni, Cr etc. may be sufficient. Further, the shape may be any shape such as a line or a strip.
[0012]
The intermediate layer 2 is made of Ag or an Ag alloy, and the metal constituting the surface of the substrate 1 and the constituent metal of the underlayer described later are thermally diffused into the surface layer 3 to cause oxidation discoloration and a decrease in solderability. It functions as a barrier to prevent this situation.
The intermediate layer 2 may be a single layer. However, if the layer structure is formed by laminating a plurality of layers in which Ag layers or Ag alloy layers are appropriately combined, the barrier effect described above is improved. It is valid.
[0013]
If the thickness of the intermediate layer 2 is too thin, the above-described barrier effect is reduced. On the other hand, if the thickness is too thick, not only is a waste of expensive Ag material generated, but cracks are generated, peeling from the substrate 1, etc. In addition, the thickness of the intermediate layer 2 is preferably set to about 0.05 to 10 μm.
The intermediate layer 2 can be formed by a known film formation method such as electroplating, electroless plating, vacuum deposition, PVD method, CVD method, or may be formed by a cladding method, or the entire surface of the substrate 1. Or may be partially formed on the surface.
[0014]
Examples of the Ag alloy constituting the intermediate layer 2 include Ag, Ag—Sn, Ag—In, Ag—Cu, Ag—Zn, Ag—Pd, Ag—Se, and Ag—Sb. Of these, Ag, Ag-Sn, and Ag-In are preferable because they are components that are originally contained even when they diffuse into Sn on the surface, so that changes in characteristics are reduced.
[0015]
Next, the surface layer 3 formed by covering the intermediate layer 2 is made of Sn or Sn alloy. Since this layer functions as an action surface when soldering other parts, for example, it is desired that the layer not only has excellent solderability but also does not undergo oxidative discoloration even when heated for a long time. .
The surface layer 3 may be a single layer, or may have a layer structure in which a plurality of layers obtained by appropriately combining layers made of Sn alone or layers made of Sn alloy are laminated. In that case, the outermost layer portion 3A of the surface layer 3 needs to be composed of any one of a Sn—Bi alloy, a Sn—In alloy, and a Sn—Bi—In alloy.
[0016]
All of these alloys are materials that are less prone to oxidative discoloration during heating than Sn alone or ordinary solder, and of course have a lower melting temperature than Ag or Ag alloy constituting the intermediate layer 2. In addition, even when the layer located immediately below the outermost layer portion 3A is made of Sn alone, it has a lower melting point than that of Sn alone, so that the solderability is good and after long-time heating. This is because it exhibits good solderability without causing oxidation discoloration.
[0017]
When the outermost layer portion 3A is made of an Sn—Bi alloy, if the Bi content is too large, the strength characteristics of the joint portion deteriorates with time after joining with solder, or, for example, blowholes may occur during welding of Al wire. Therefore, the content is preferably regulated to 10% by weight or less after reflow. In the case of Sn—In alloy, it is considered that In is expensive, and for example, in order to suppress the generation of blowholes during welding with Al wire, the content thereof is 8% by weight or less after reflow. It is preferable to regulate.
[0018]
The thickness of the surface layer 3 is preferably set to 0.05 to 20 μm in relation to the formation of a surface layer by a reflow process described later. When the thickness of the surface layer 3 is less than 0.05 μm, the constituent metal of the surface layer 3 is thermally diffused toward the lower layer during the reflow process, and the surface layer 3 disappears. This is because the operational effect is not exhibited. Moreover, when it becomes thicker than 20 micrometers, it is because the molten metal of the surface layer 3 flows out at the time of a reflow process, and the surface after a reflow process may not become smooth.
[0019]
The surface layer 3 can also be easily formed by various film forming methods as in the case of the intermediate layer 2.
FIG. 2 is a cross-sectional view showing another metal coating material A2 of the present invention. This material A2 has a layer structure in which a base layer 4 is interposed between the conductive substrate 1 and the intermediate layer 2.
The underlayer 4 functions as a barrier for suppressing the metal such as Cu that is thermally diffused from the base body 1 from reaching the intermediate layer 2 and further reaching the surface layer 3. It is a material that does not easily undergo oxidative discoloration or has improved solderability.
[0020]
The underlayer 4 is preferably made of Ni, Co, or an alloy thereof, and the thickness is about 0.1 to 2 μm from the viewpoint of the barrier effect, manufacturing cost, and workability. Is preferred.
In the case of the metal coating material of the present invention, it may be a material that has been manufactured by applying the various film forming methods described above. It is preferable that it is solidified.
[0021]
The reason is that the surface layer formed after re-solidification is smooth and easy to solder, and whisker that can occur when the concentration of Bi and In is low is prevented. This is because Ag of the intermediate layer diffused by the above acts to further improve solderability.
In performing such a reflow process, as described above, the thickness of the surface layer 3 is set to 0.05 to 20 μm.
[0022]
【Example】
Examples 1 and 2
After pre-treating the surface of the steel strip made of Al killed steel, Cu plating was performed under the following conditions to produce a conductive substrate 1.
Plating bath composition: copper sulfate pentahydrate 250 g / L, sulfuric acid 60 g / L.
[0023]
Plating conditions: bath temperature 50 ° C., current density 9 A / dm 2 , plating time 30 seconds.
The electroconductive base | substrate 1 by which the surface of the steel strip was coat | covered with 1-micrometer-thick Cu plating layer was obtained.
Next, the intermediate layer 2 was formed by performing Ag plating on the surface of the conductive substrate 1 under the following conditions.
[0024]
Plating bath composition: silver potassium cyanide 6 g / L, potassium cyanide 80 g / L.
Plating conditions: bath temperature 25 ° C., current density 2 A / dm 2 , plating time 30 seconds.
The surface of the conductive substrate was covered with an Ag plating layer (intermediate layer 2) having a thickness of 0.6 μm.
Subsequently, Sn—Bi alloy plating was performed on the surface of the Ag plating layer under the following conditions.
[0025]
Composition of plating bath: PF-TIN 450 g / L, PF-BI 50 g / L, PF-AC ID 150 g / L, PF-0.5M 30 mL / L. (All are plating baths manufactured by Ishihara Pharmaceutical Co., Ltd.)
Plating conditions: bath temperature 40 ° C., current density 10 A / dm 2 , plating time 25 seconds.
An Sn—Bi alloy plating layer having a thickness of 2 μm was formed on the Ag plating layer, and the material A1 having the layer structure shown in FIG. 1 was obtained.
[0026]
This material is referred to as Example 1. The material A1 was subjected to a reflow treatment at an atmospheric temperature of 650 ° C. and a treatment time of 3 seconds. The resulting material is referred to as Example 2.
Examples 3 and 4
In the same manner as in Example 1, the layers up to the Ag plating layer (intermediate layer 2) were formed. Next, Sn plating was performed on the Ag plating layer under the following conditions.
[0027]
Composition of plating bath: PF-TIN 450 g / L, PF-ACID 150 g / L, PF-0.5 M 30 mL / L.
Plating conditions: bath temperature 40 ° C., current density 10 A / dm 2 , plating time 20 seconds.
An Sn plating layer having a thickness of 1.6 μm was formed by covering the Ag plating layer.
Subsequently, a Sn—Bi alloy plating layer having a thickness of 0.4 μm was formed on the Sn plating layer in the same manner as in Example 1 except that the plating time was 5 seconds.
[0028]
As for the obtained material, the surface layer part 3 in the material A1 of FIG. 1 has an outermost layer part 3A composed of a Sn—Bi alloy plating layer having a thickness of 0.4 μm, and a Sn plating layer having a thickness of 1.6 μm is present thereunder The material has a two-layer structure.
This material is referred to as Example 3. Moreover, the reflow process of the same conditions as the case of Example 2 was performed with respect to this material, and the obtained material was set to Example 4.
[0029]
Examples 5 and 6
As in Example 3, the surface layer was 2 except that the Sn—Bi alloy plating layer in Example 3 was an Sn—In alloy plating layer formed by electroless plating under the following conditions. A material having a layer structure was produced.
Plating bath composition: 80 g / L of methane sulfonic acid first tin 80 g / L, indium chloride 10 g / L, methane sulfonic acid 40 g / L, thiourea 120 g / L, sodium hypophosphite 65 g / L, nonionic surfactant 10 g / L L, amphoteric surfactant 2g / L.
[0030]
Plating conditions: bath temperature 55 ° C., immersion for 180 seconds.
An Sn—In alloy electroless plating layer having a thickness of 0.4 μm was formed on the Sn plating layer.
This material is referred to as Example 5. Further, this material was subjected to the same reflow treatment as in Example 1, and the obtained material was designated as Example 6.
[0031]
Examples 7 and 8
In Example 1, a material having the same layer structure as that of Example 1 was produced except that the surface of the steel strip was subjected to Ni plating under the following conditions. This material corresponds to the material A2 having the base layer 4 shown in FIG.
Composition of plating bath: 400 g / L nickel sulfamate, 40 g / L boric acid.
[0032]
Plating conditions: bath temperature 50 ° C., current density 10 A / dm 2 , plating time 30 seconds.
The thickness of the Ni plating layer formed on the surface of the steel strip was 1 μm. This material is referred to as Example 7. Further, this material was subjected to a reflow treatment in the same manner as in Example 1. The resulting material is referred to as Example 8.
Comparative Examples 1 and 2
A material having the same layer structure as that of Example 1 was manufactured except that the Sn—Bi alloy plating layer of Example 1 was a solder plating layer formed under the following conditions.
[0033]
Composition of plating bath: IS-TIN 570 g / L, IS-LEAD 15 g / L, IS-ACID 54 g / L, 519 M 50 mL / L (all are plating baths manufactured by Ishihara Pharmaceutical Co., Ltd.).
Plating conditions: bath temperature 40 ° C., current density 10 A / dm 2 , plating time 25 seconds.
A material in which a 2 μm thick solder plating layer was formed on the Ag plating layer was obtained.
[0034]
This is referred to as Comparative Example 1. Further, the material was subjected to a reflow process under the same conditions as in Example 1. The obtained material is referred to as Comparative Example 2.
Comparative Examples 3 and 4
A material having the same layer structure as that of Example 1 was manufactured except that the Sn—Bi alloy plating layer of Example 1 was a Sn simple plating layer (thickness 1.6 μm). The formation of the Sn plating layer was performed under the same conditions as in Example 3.
[0035]
This material is referred to as Comparative Example 3. Further, the material was subjected to a reflow process under the same conditions as in Example 1. The obtained material is referred to as Comparative Example 4.
As described above, the heat discoloration test and the solderability evaluation were performed on the 12 types of materials according to the following specifications.
Heat discoloration test: Each material was heated in the atmosphere at a temperature of 120 ° C., and the relationship between the heating time and the discoloration was visually observed. In the case of no discoloration: ○, in the case of slightly yellow discoloration: Δ, in the case of strong yellow discoloration or black discoloration: evaluated as ×
[0036]
Solderability: In the molten solder (SnjuAg-Bi-Cu-based Pb-free solder manufactured by Senju Metal Industry Co., Ltd., using the trade name Eco Solder 121) at a temperature of 240 ° C., the time shown in Table 1 Each material subjected to the heat treatment is immersed for 5 seconds and then taken out, and the appearance is visually observed. At this time, rosin flux was used.
[0037]
In the case of uniform and good wetting: ○, in the case of slightly uneven wetting: Δ, in the case of repelling: evaluated as ×.
The above results are shown in Table 1.
[0038]
[Table 1]
Figure 0004086949
[0039]
From Table 1, the following is clear.
(1) The material of the present invention is less likely to cause discoloration or excellent solderability even when heated for a long time as compared with the material of the comparative example. This proves the effectiveness of the outermost layer portion made of Sn—Bi alloy or Sn—In alloy in the case of the material of the present invention.
[0040]
(2) Further, as apparent from the comparison between Example 1 and Example 2, Example 3 and Example 4, Example 7 and Example 8, and after applying a reflow treatment to the plating layer, It can be seen that the solderability is improved. For this reason, the reflow process is effective.
(3) Further, as is clear by comparing Examples 7 and 8 with the other examples, when a Ni plating layer is interposed between the conductive substrate and the intermediate layer, the occurrence of discoloration can be effectively suppressed. it can.
[0041]
【The invention's effect】
As is apparent from the above description, the metal coating material of the present invention has little occurrence of oxidative discoloration even when heated at a temperature of around 120 ° C. for a long time, or it is difficult to cause a decrease in solderability. This is an effect obtained by forming the surface layer with Sn or an Sn alloy and forming the outermost layer portion with a low melting point Sn—Bi alloy, Sn—In alloy, or Sn—Bi—In alloy.
[0042]
In addition, since this surface layer has a good bondability with solder containing no Pb, it is possible to use Pb-free solder and contribute to the preservation of the global environment.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a cross-sectional structure of a material A1 of the present invention.
FIG. 2 is a cross-sectional view showing a cross-sectional structure of another material A2 of the present invention.
[Explanation of symbols]
1 Conductive substrate 2 Intermediate layer (Ag or Ag alloy layer)
3 Surface layer (Sn or Sn alloy layer)
3A The outermost layer of the surface layer 3

Claims (3)

導電性基体(1)の一部表面または全表面に少なくとも1層のAgまたはAg合金から成る中間層(2)が形成され、
該中間層(2)の表面に少なくとも1層のSn金属層またはSn合金層から成る表面層(3)が形成され
さらに該表面層(3)最表層部(3 A )は、リフロー後でBi10重量%以下を含有するSn−Bi合金、又は、同じくリフロー後でBi10重量%以下でかつIn8重量%以下を含有するSn−Bi−In合金のいずれかで形成されていることを特徴とする金属被覆材。
An intermediate layer (2) made of at least one layer of Ag or an Ag alloy is formed on a part or all of the surface of the conductive substrate (1) ,
A surface layer (3) comprising at least one Sn metal layer or Sn alloy layer is formed on the surface of the intermediate layer (2) ;
Further outermost layer of the surface layer (3) (3 A), the content Sn-Bi alloy containing Bi10 wt% or less after reflow, or the same and at Bi10 wt% In8 wt% or less after reflow metallization material characterized by being formed in one of Sn-Bi-in alloy.
前記導電性基体(1)、前記AgまたはAg合金から成る中間層(2)との間に、更にNi、Coまたはこれらの合金からなる下地層(4)が介装されていることを特徴とする請求項1記載の金属被覆材。An underlayer (4) made of Ni, Co or an alloy thereof is further interposed between the conductive substrate (1) and the intermediate layer (2) made of Ag or an Ag alloy. metal coating member according to claim 1,. 前記中間層(2)と前記表面層(3)の一部または全部を溶融・再凝固させたことを特徴とする請求項1または2記載の金属被覆材。Said intermediate layer (2) and said surface layer (3) according to claim 1 or 2, metallization material according part or all is characterized in that melted and re-solidified.
JP02829998A 1998-02-10 1998-02-10 Metal coated member Expired - Fee Related JP4086949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02829998A JP4086949B2 (en) 1998-02-10 1998-02-10 Metal coated member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02829998A JP4086949B2 (en) 1998-02-10 1998-02-10 Metal coated member

Publications (2)

Publication Number Publication Date
JPH11229178A JPH11229178A (en) 1999-08-24
JP4086949B2 true JP4086949B2 (en) 2008-05-14

Family

ID=12244747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02829998A Expired - Fee Related JP4086949B2 (en) 1998-02-10 1998-02-10 Metal coated member

Country Status (1)

Country Link
JP (1) JP4086949B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021048391A (en) * 2019-09-11 2021-03-25 株式会社新菱 Sn-Bi-In-BASED LOW MELTING-POINT JOINING MEMBER AND PRODUCTION METHOD THEREFOR, AND SEMICONDUCTOR ELECTRONIC CIRCUIT AND MOUNTING METHOD THEREFOR

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3350026B2 (en) 2000-08-01 2002-11-25 エフシーエム株式会社 Electronic component material, method of connecting electronic component material, ball grid array type electronic component, and method of connecting ball grid array type electronic component
JP2003013279A (en) * 2001-07-02 2003-01-15 Mitsubishi Shindoh Co Ltd METHOD FOR MANUFACTURING REFLOW Sn OR Sn ALLOY PLATED SHEET SUPERIOR IN MIGRATION RESISTANCE
DE10251658B4 (en) * 2002-11-01 2005-08-25 Atotech Deutschland Gmbh Method for connecting microstructured component layers suitable for the production of microstructure components and microstructured component
US7391116B2 (en) * 2003-10-14 2008-06-24 Gbc Metals, Llc Fretting and whisker resistant coating system and method
US7883738B2 (en) * 2007-04-18 2011-02-08 Enthone Inc. Metallic surface enhancement
JP4585022B2 (en) 2008-09-01 2010-11-24 株式会社日立製作所 Semiconductor device
JP5612355B2 (en) * 2009-07-15 2014-10-22 株式会社Kanzacc Plating structure and method of manufacturing electrical material
KR101197987B1 (en) * 2010-08-18 2012-11-05 삼성전기주식회사 Plating solution for forming tin alloy and method for forming tin alloy film using the same
KR101184796B1 (en) 2010-12-29 2012-09-20 와이엠티 주식회사 board structure and method for manufacturing the same
JP5086485B1 (en) 2011-09-20 2012-11-28 Jx日鉱日石金属株式会社 Metal material for electronic parts and method for producing the same
JP5284526B1 (en) * 2011-10-04 2013-09-11 Jx日鉱日石金属株式会社 Metal material for electronic parts and method for producing the same
JP5298233B2 (en) * 2011-10-04 2013-09-25 Jx日鉱日石金属株式会社 Metal material for electronic parts and method for producing the same
TWI493798B (en) 2012-02-03 2015-07-21 Jx Nippon Mining & Metals Corp Push-in terminals and electronic parts for their use
JP6050664B2 (en) 2012-06-27 2016-12-21 Jx金属株式会社 METAL MATERIAL FOR ELECTRONIC COMPONENT AND ITS MANUFACTURING METHOD, CONNECTOR TERMINAL USING THE SAME, CONNECTOR AND ELECTRONIC COMPONENT
JP6029435B2 (en) 2012-06-27 2016-11-24 Jx金属株式会社 METAL MATERIAL FOR ELECTRONIC COMPONENT AND ITS MANUFACTURING METHOD, CONNECTOR TERMINAL USING THE SAME, CONNECTOR AND ELECTRONIC COMPONENT
TWI485930B (en) * 2012-10-04 2015-05-21 Jx Nippon Mining & Metals Corp Metal material for electronic parts and manufacturing method thereof
TWI488733B (en) * 2012-10-04 2015-06-21 Jx Nippon Mining & Metals Corp Metal material for electronic parts and manufacturing method thereof
JP6327784B2 (en) * 2012-10-19 2018-05-23 Jx金属株式会社 Metal material for electronic parts and method for producing the same
JP5980746B2 (en) * 2013-08-27 2016-08-31 Jx金属株式会社 METAL MATERIAL FOR ELECTRONIC COMPONENT AND ITS MANUFACTURING METHOD, CONNECTOR TERMINAL USING THE SAME, CONNECTOR AND ELECTRONIC COMPONENT
CN113235086A (en) * 2021-05-11 2021-08-10 重庆工港致慧增材制造技术研究院有限公司 Surface repairing method for air valve for ship engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021048391A (en) * 2019-09-11 2021-03-25 株式会社新菱 Sn-Bi-In-BASED LOW MELTING-POINT JOINING MEMBER AND PRODUCTION METHOD THEREFOR, AND SEMICONDUCTOR ELECTRONIC CIRCUIT AND MOUNTING METHOD THEREFOR
JP7091405B2 (en) 2019-09-11 2022-06-27 株式会社新菱 Sn-Bi-In system low melting point bonding member and its manufacturing method, semiconductor electronic circuit and its mounting method

Also Published As

Publication number Publication date
JPH11229178A (en) 1999-08-24

Similar Documents

Publication Publication Date Title
JP4086949B2 (en) Metal coated member
US10640880B2 (en) Plated material and connecting terminal using same
JPH11350188A (en) Material for electric and electronic parts, its production, and electric and electronic parts lising the same
JP4940081B2 (en) Reflow Sn plating material and electronic component using the same
JPS59145553A (en) Composite structure and method of forming same
JPH11350189A (en) Material for electrical and electronic parts, its production and electrical and electronic parts using the material
JPH11222659A (en) Process for producing metal composite strip
WO2008072418A1 (en) Male terminal, and its manufacturing method
JP4305699B2 (en) Tin plating strip for electronic parts and its manufacturing method
JP2010084228A (en) Lead frame material and semiconductor device using the same
JP2670348B2 (en) Sn or Sn alloy coating material
US9520347B2 (en) Lead frame construct for lead-free solder connections
JP3283023B2 (en) Outer lead portion of lead frame material, semiconductor device using the same
JP6268408B2 (en) Plating material manufacturing method and plating material
JP2003082499A (en) Tin-copper intermetallic compound-dispersed tinned terminal
JPH11350190A (en) Material for electric and electronic parts, its production, and electric and electronic parts using the same
JP3779864B2 (en) Electronic component lead wire, method for manufacturing the same, and electronic component using the lead wire
JP7162341B2 (en) Method for manufacturing plated laminate and plated laminate
JP2942476B2 (en) Multi-layer plating lead wire and lead frame
JP3402228B2 (en) Semiconductor device having lead-free tin-based solder coating
JP2628749B2 (en) Sn or Sn alloy coating material with excellent heat resistance for electronic and electrical parts
JP5203011B2 (en) Commutator member for motor and motor
JP3767169B2 (en) Method for manufacturing solder coating material
JP4014739B2 (en) Reflow Sn plating material and terminal, connector, or lead member using the reflow Sn plating material
JP3827487B2 (en) Method for manufacturing long solder coating material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041101

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20050909

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060403

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070528

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees