JP6327784B2 - Metal material for electronic parts and method for producing the same - Google Patents

Metal material for electronic parts and method for producing the same Download PDF

Info

Publication number
JP6327784B2
JP6327784B2 JP2012232409A JP2012232409A JP6327784B2 JP 6327784 B2 JP6327784 B2 JP 6327784B2 JP 2012232409 A JP2012232409 A JP 2012232409A JP 2012232409 A JP2012232409 A JP 2012232409A JP 6327784 B2 JP6327784 B2 JP 6327784B2
Authority
JP
Japan
Prior art keywords
layer
surface treatment
metal material
less
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012232409A
Other languages
Japanese (ja)
Other versions
JP2014084480A (en
Inventor
澁谷 義孝
義孝 澁谷
篤志 児玉
篤志 児玉
深町 一彦
一彦 深町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2012232409A priority Critical patent/JP6327784B2/en
Publication of JP2014084480A publication Critical patent/JP2014084480A/en
Application granted granted Critical
Publication of JP6327784B2 publication Critical patent/JP6327784B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Description

本発明は、電子部品用金属材料及びその製造方法に関する。   The present invention relates to a metal material for electronic parts and a method for producing the same.

自動車用又は電子機器用接続部品であるコネクターには、黄銅やリン青銅の表面にNiやCuの下地めっき層を形成し、さらにその上に低接触抵抗及び高はんだ濡れ性の付与を目的としためっき層が形成されている。当該めっき層には、更に近年めっき材をプレス加工で成形したオス端子及びメス端子勘合時の挿入力の低減化も求められている。また、このようなめっき層には、比較的柔らかいものも含まれ、そのようなめっきの場合、めっき材が他の物体と接触するとめっきに傷がつき、粉が発生しやすいという欠点がある。   For connectors that are connecting parts for automobiles or electronic devices, an underplating layer of Ni or Cu is formed on the surface of brass or phosphor bronze, and the purpose is to provide low contact resistance and high solder wettability thereon. A plating layer is formed. In recent years, the plating layer is also required to have a reduced insertion force when mating a male terminal and a female terminal formed by pressing a plating material. In addition, such a plating layer includes a relatively soft layer. In the case of such plating, when the plating material comes into contact with another object, there is a defect that the plating is damaged and powder is easily generated.

これに対し、めっき材に0.01〜10mg/dm2の有機潤滑剤を施し、挿入力を下げる技術が知られている(特許文献1)。また、Sn合金めっき材に10Å以上100Å以下の油性保護膜を施し、プレス加工時にめっき層表面に傷を発生させるおそれを少なくするという技術も知られている(特許文献2)。 On the other hand, a technique is known in which an organic lubricant of 0.01 to 10 mg / dm 2 is applied to the plating material to reduce the insertion force (Patent Document 1). A technique is also known in which an oil-based protective film having a thickness of 10 to 100 mm is applied to a Sn alloy plating material to reduce the risk of causing scratches on the plating layer surface during press working (Patent Document 2).

更に、高温環境下で放置されるとめっきの金属が酸化され、接触抵抗が増加したり、めっき表面が変色するといった問題が生じる場合がある。このようなことから、めっき材最表面に存在する酸素原子(O)の存在形態をESCA(X線光電子分光装置)で分析した際に、酸素原子(O)の1s軌道の結合エネルギーのトップが531eV以上532eV以下にあり、めっき層の厚みを0.4μm以上2.0μm以下とすることで低接触抵抗、高はんだ濡れ性及び高耐熱性を有する技術も知られている(特許文献3)。   Furthermore, when left in a high temperature environment, the metal of the plating is oxidized, which may cause problems such as increased contact resistance and discoloration of the plating surface. For this reason, when the presence state of oxygen atoms (O) existing on the outermost surface of the plating material is analyzed by ESCA (X-ray photoelectron spectrometer), the top of the binding energy of the 1s orbit of oxygen atoms (O) is A technique having low contact resistance, high solder wettability, and high heat resistance is also known when the thickness is 531 eV or more and 532 eV or less and the thickness of the plating layer is 0.4 μm or more and 2.0 μm or less (Patent Document 3).

特開2003−183882号公報JP 2003-183882 A 特開2010−149261号公報JP 2010-149261 A 特開2010−202903号公報JP 2010-202903 A

しかしながら、特許文献1や特許文献2記載の技術の場合、有機潤滑剤や油性保護膜の種類によっては長時間加熱後に表面が変色して接触抵抗が高く、はんだ濡れ性も悪くなるという問題がある。
また、特許文献3の技術の場合、めっき材のプレス加工時に金属粉が多く発生し、プレスしためっき材に粉起因の打根が多く発生するという問題がある。
すなわち、本発明は上記の課題を解決するためになされたものであり、プレス加工時の粉発生を抑制し、低接触抵抗及び高はんだ濡れ性を有し、長時間加熱後もこれら特性を保持する電子部品用金属材料及びその製造方法を提供することを課題とする。
However, in the case of the techniques described in Patent Document 1 and Patent Document 2, depending on the type of the organic lubricant and the oil-based protective film, there is a problem that the surface is discolored after heating for a long time, resulting in high contact resistance and poor solder wettability. .
Further, in the case of the technique of Patent Document 3, there is a problem that a lot of metal powder is generated during the press working of the plating material, and a lot of roots caused by the powder are generated in the pressed plating material.
That is, the present invention has been made to solve the above problems, suppresses the generation of powder during press working, has low contact resistance and high solder wettability, and retains these characteristics even after prolonged heating. It is an object of the present invention to provide a metal material for electronic parts and a manufacturing method thereof.

本発明者らは、鋭意検討の結果、金属基材上にIn,Ag,Au,Pt,Pd,Ru,Rh,Os,Irまたはそれらの合金で形成されためっきを形成し、当該めっき上にP及びCを含む表面処理液により適切な表面処理を施して、P及びCの結合エネルギーのピーク、及び、P及びCの存在領域及び濃度を適切に制御した表面処理層を形成することで、プレス加工時の粉発生を抑制し、低接触抵抗及び高はんだ濡れ性を有し、長時間加熱後もこれら特性を保持する電子部品用金属材料を作製することができることを見出した。   As a result of intensive studies, the inventors of the present invention formed a plating formed of In, Ag, Au, Pt, Pd, Ru, Rh, Os, Ir, or an alloy thereof on a metal base material, and on the plating. By performing an appropriate surface treatment with a surface treatment liquid containing P and C, and forming a surface treatment layer in which the binding energy peaks of P and C, and the existence region and concentration of P and C are appropriately controlled, It has been found that a metal material for electronic parts that suppresses the generation of powder during pressing, has low contact resistance and high solder wettability, and retains these characteristics even after long-time heating can be produced.

以上の知見を基礎として完成した本発明は一側面において、金属基材、前記金属基材上に形成された下地層、前記下地層上に形成され、Ni,Cr,Mn,Fe,Co,Sn,Cuまたはそれらの元素を1種以上含む合金で形成されたB層、前記B層上に形成され、In,Ag,Au,Pt,Pd,Ru,Rh,Os,Irまたはそれらの元素を一種以上含む合金で形成されたA層、及び、前記A層上に形成された表面処理層を備え、XPS(X線光電子分光装置)のSurvey測定で前記表面処理層表面の元素分析を行ったとき、リン(P)の2S軌道の結合エネルギー(P2S)のピークが186〜192eVにあり、Pを0.5at%以上5.0at%未満含有し、カーボン(C)の1S軌道の結合エネルギー(C1S)のピークが284〜290eVにあり、Cを35at%以上80at%未満含有する電子部品用金属材料である。 The present invention completed on the basis of the above knowledge is, in one aspect, a metal substrate, an underlayer formed on the metal substrate , Ni, Cr, Mn, Fe, Co, Sn formed on the underlayer. , Cu or a B layer formed of an alloy containing one or more of these elements, formed on the B layer, In, Ag, Au, Pt, Pd, Ru, Rh, Os, Ir or one of these elements When the elemental analysis of the surface treatment layer surface is performed by Survey measurement of XPS (X-ray photoelectron spectrometer), which includes the A layer formed of the alloy including the above and the surface treatment layer formed on the A layer. , The peak of 2S orbital bond energy (P2S) of phosphorus (P) is in the range of 186 to 192 eV, P is contained at 0.5 at% or more and less than 5.0 at%, and the bond energy (C1S of 1S orbital of carbon (C) ) Peak It is a metal material for electronic components that is 284 to 290 eV and contains C at least 35 at% and less than 80 at%.

本発明に係る電子部品用金属材料は一実施形態において、XPSのDepth測定で前記表面処理層表面の元素分析を行ったとき、Cが前記表面処理層の表面から0.5nmまでの領域に35at%以上80at%未満存在し、且つ、Cを20at%以上含む領域が前記表面処理層の表面から15nm未満であり、酸素(O)を30at%以上含む領域が前記表面処理層の表面から15nm未満である。   In one embodiment, the metal material for an electronic component according to the present invention is such that when elemental analysis of the surface of the surface treatment layer is performed by XPS depth measurement, C is in a region of 0.5 nm from the surface of the surface treatment layer. %, And a region containing 20 at% or more of C is less than 15 nm from the surface of the surface treatment layer, and a region containing 30 at% or more of oxygen (O) is less than 15 nm from the surface of the surface treatment layer. It is.

本発明に係る電子部品用金属材料別の一実施形態において、XPSのSurvey測定で前記表面処理層表面の元素分析を行ったとき、Cを50at%以上80at%未満含有し、XPSのDepth測定で前記表面処理層表面の元素分析を行ったとき、Cが前記表面処理層の表面から0.5nmまでの領域に50at%以上80at%未満存在し、且つ、Cを20at%以上含む領域が前記表面処理層の表面から2nm以上15nm未満である。   In one embodiment of the metal material for electronic parts according to the present invention, when elemental analysis of the surface treatment layer surface is performed by XPS survey measurement, C is contained at 50 at% or more and less than 80 at%, and XPS depth measurement is performed. When elemental analysis is performed on the surface of the surface treatment layer, C is present in the region from the surface of the surface treatment layer to 0.5 nm from the surface of the surface treatment layer to 50 at% or more and less than 80 at%, and a region containing C at 20 at% or more It is 2 nm or more and less than 15 nm from the surface of the treatment layer.

本発明に係る電子部品用金属材料は更に別の一実施形態において、前記A層がIn,Ag,Au,Pt,Pd,Ru,Rh,Os,Irまたはそれらの元素の一種以上を合計で11質量%以上含む層である。   In still another embodiment of the metal material for electronic parts according to the present invention, the A layer contains 11 or more of In, Ag, Au, Pt, Pd, Ru, Rh, Os, Ir or a total of one or more of these elements. It is a layer containing at least mass%.

本発明に係る電子部品用金属材料は更に別の一実施形態において、前記A層がNi,Cr,Mn,Fe,Co,Sn,Cuから選択される元素を一種以上含む層である。   In still another embodiment of the metal material for electronic parts according to the present invention, the A layer is a layer containing one or more elements selected from Ni, Cr, Mn, Fe, Co, Sn, and Cu.

本発明に係る電子部品用金属材料は更に別の一実施形態において、前記A層がNi,Cr,Mn,Fe,Co,Sn,Cuから選択される元素の一種以上を合計で1質量%以上含む層である。   In still another embodiment of the metal material for electronic parts according to the present invention, the A layer contains at least 1% by mass in total of at least one element selected from Ni, Cr, Mn, Fe, Co, Sn, and Cu. It is a layer that contains.

本発明に係る電子部品用金属材料は更に別の一実施形態において、前記A層の厚さが0.0012μm以上である。   In still another embodiment of the metal material for electronic parts according to the present invention, the thickness of the A layer is 0.0012 μm or more.

本発明に係る電子部品用金属材料は更に別の一実施形態において、前記A層が2以上の層からなる。   In still another embodiment of the metal material for electronic parts according to the present invention, the A layer is composed of two or more layers.

本発明に係る電子部品用金属材料は更に別の一実施形態において、前記B層の合金の組成がNi,Cr,Mn,Fe,Co,Sn,Cuの合計で50質量%以上であり、さらにB,P,Sn,Znからなる群から選択された1種、もしくは2種以上を含む。   In another embodiment of the metal material for electronic parts according to the present invention, the composition of the alloy of the B layer is 50% by mass or more in total of Ni, Cr, Mn, Fe, Co, Sn, Cu, 1 type selected from the group which consists of B, P, Sn, Zn, or 2 types or more is included.

本発明に係る電子部品用金属材料は更に別の一実施形態において、前記B層が2以上の層からなる。   In still another embodiment of the metal material for electronic parts according to the present invention, the B layer is composed of two or more layers.

本発明は別の一側面において、前記金属基材の前記A層上に、リン及びカーボンを含有する表面処理液で表面処理を施す工程を含む本発明の電子部品用金属材料の製造方法である。   In another aspect, the present invention is the method for producing a metal material for an electronic component according to the present invention, comprising a step of performing a surface treatment with a surface treatment liquid containing phosphorus and carbon on the A layer of the metal substrate. .

本発明に係る電子部品用金属材料の製造方法は一実施形態において、前記表面処理液が、リン酸エステル系化合物及びメルカプトベンゾチアゾール系化合物を含有する。   In one embodiment of the method for producing a metal material for electronic parts according to the present invention, the surface treatment liquid contains a phosphate ester compound and a mercaptobenzothiazole compound.

本発明によれば、プレス加工時の粉発生を抑制し、低接触抵抗及び高はんだ濡れ性を有し、長時間加熱後もこれら特性を保持する電子部品用金属材料及びその製造方法を提供することができる。   According to the present invention, there are provided a metal material for electronic parts that suppresses the generation of powder during press working, has low contact resistance and high solder wettability, and retains these characteristics even after long-time heating, and a method for manufacturing the same. be able to.

本発明の実施形態に係る電子部品用金属材料の構成を示す模式図である。It is a schematic diagram which shows the structure of the metal material for electronic components which concerns on embodiment of this invention. 実施例1に係るXPS(X線光電子分光装置)のSurvey測定結果である。It is a Survey measurement result of XPS (X-ray photoelectron spectrometer) according to the first embodiment. 実施例1に係るXPS(X線光電子分光装置)のDepth測定である。It is a depth measurement of XPS (X-ray photoelectron spectrometer) according to the first embodiment. 実施例の粉発生試験に関する略図である。It is the schematic regarding the powder generation | occurrence | production test of an Example. 実施例の動摩擦係数測定に関する試験装置略図である。It is a test apparatus schematic regarding the dynamic friction coefficient measurement of an Example.

以下、本発明の実施形態に係る電子部品用金属材料について説明する。図1に示すように、本実施形態に係る電子部品用金属材料10は、金属基材11、及び、金属基材11上にそれぞれこの順で形成された下地層12、B層13、A層14及び表面処理層15を備えている。なお、下地層12及びB層13は、本発明において必須の構成要素ではない。   Hereinafter, the metal material for electronic components according to the embodiment of the present invention will be described. As shown in FIG. 1, a metal material 10 for an electronic component according to the present embodiment includes a metal base 11 and a base layer 12, a B layer 13, and an A layer formed on the metal base 11 in this order. 14 and the surface treatment layer 15. The underlayer 12 and the B layer 13 are not essential components in the present invention.

(金属基材)
金属基材11としては、特に限定されないが、例えばコネクター材料に用いる場合は、銅又は銅合金が好ましい。銅又は銅合金は、導電性が高い、展延性に富む、及び、ばね特性が良好という利点を有するためである。
(Metal base material)
Although it does not specifically limit as the metal base material 11, For example, when using for a connector material, copper or a copper alloy is preferable. This is because copper or a copper alloy has advantages of high conductivity, excellent spreadability, and good spring characteristics.

(下地層)
下地層12としては、特に限定されないが、例えば、Cr、Fe、Co、Ni、Cu及びZnからなる群より選択される1種類以上の金属で形成することができる。下地層12の厚みは、0.2〜5.0μmであることが好ましい。下地層12の厚みが0.2μm未満の場合には、金属基材成分がA14層やB層13に拡散し、接触抵抗が高くなり、且つ、はんだ濡れ性を悪くするおそれがある。一方、下地層12の厚みが5.0μm超え場合には特性上の問題はないが、コストが高くなるといった問題が生じる。
(Underlayer)
Although it does not specifically limit as the base layer 12, For example, it can form with 1 or more types of metals selected from the group which consists of Cr, Fe, Co, Ni, Cu, and Zn. The thickness of the underlayer 12 is preferably 0.2 to 5.0 μm. When the thickness of the underlayer 12 is less than 0.2 μm, the metal base material component diffuses into the A14 layer and the B layer 13, and there is a possibility that the contact resistance becomes high and the solder wettability is deteriorated. On the other hand, when the thickness of the underlayer 12 exceeds 5.0 μm, there is no problem in characteristics, but there is a problem that the cost is increased.

(B層)
B層13は、Ni,Cr,Mn,Fe,Sn,Co,Cuまたはそれらの合金で形成されている。Ni,Cr,Mn,Fe,Co,Cuまたはそれらの合金を用いてB層13を形成することで、硬いB層13形成により薄膜潤滑効果が向上して低挿抜性が向上し、B層13は金属基材11の構成金属がA14層に拡散するのを防止し、耐熱性試験や耐ガス腐食性試験後の接触抵抗増加及びはんだ濡れ性劣化を抑制するなど、耐久性が向上する。
(B layer)
The B layer 13 is made of Ni, Cr, Mn, Fe, Sn, Co, Cu or an alloy thereof. By forming the B layer 13 using Ni, Cr, Mn, Fe, Co, Cu, or an alloy thereof, the thin B lubrication effect is improved by the formation of the hard B layer 13 and the low insertion / removability is improved. Prevents the constituent metal of the metal substrate 11 from diffusing into the A14 layer, and improves durability, such as suppressing an increase in contact resistance and a deterioration in solder wettability after the heat resistance test and gas corrosion resistance test.

B層13の合金組成が、Ni,Cr,Mn,Fe,Co,Sn,Cuの合計で50質量%以上であり、さらにB,P,Sn,Znからなる群から選択された1種、もしくは2種以上を含んでもよい。B層13の合金組成がこのような構成となることで、B層13がより硬化して更に薄膜潤滑効果が向上して低挿抜性が向上し、B層13の合金化が基材11の構成金属がA14層に拡散するのを更に防止し、耐熱性試験や耐ガス腐食性試験後の接触抵抗増加及びはんだ濡れ性劣化を抑制するなど、耐久性が向上する。   The alloy composition of the B layer 13 is 50% by mass or more in total of Ni, Cr, Mn, Fe, Co, Sn, and Cu, and is further selected from the group consisting of B, P, Sn, and Zn, or Two or more kinds may be included. When the alloy composition of the B layer 13 has such a configuration, the B layer 13 is further cured to further improve the thin film lubrication effect, thereby improving the low insertion / extraction property. Durability is further improved by further preventing the constituent metals from diffusing into the A14 layer and suppressing increase in contact resistance and deterioration of solder wettability after the heat resistance test and gas corrosion resistance test.

B層13は、2以上の層で構成されていてもよい。具体的には、例えば、種々の金属又はその合金で形成された互いに異なる層が分かれて積層されて構成されていてもよい。また、前記互いに異なる層の一方から他方へ一部の元素が拡散している形態であってもよい。   The B layer 13 may be composed of two or more layers. Specifically, for example, different layers formed of various metals or alloys thereof may be divided and laminated. Further, a form in which some elements are diffused from one of the different layers to the other may be employed.

B層13の厚みは0.05μm以上であることが好ましい。B層13の厚みが0.05μm未満であると、硬いB層13による薄膜潤滑効果が低下して低挿抜性が悪くなり、金属基材11の構成金属がA14層に拡散しやすくなり、耐熱性試験や耐ガス腐食性試験後の接触抵抗増加及びはんだ濡れ性劣化しやすいなど、耐久性が悪くなる。   The thickness of the B layer 13 is preferably 0.05 μm or more. When the thickness of the B layer 13 is less than 0.05 μm, the thin film lubrication effect by the hard B layer 13 is lowered, the low insertion / removal property is deteriorated, and the constituent metal of the metal substrate 11 is easily diffused into the A14 layer. Durability deteriorates, such as increased contact resistance after solderability test and gas corrosion resistance test and solder wettability.

B層13のNi,Cr,Mn,Fe,Co,Cuの付着量が、0.03mg/cm2以上であるのが好ましい。ここで、付着量で定義する理由を説明する。例えば、B層13の厚みを蛍光X線膜厚計で測定する場合、A層14、B層13、及び基材11等と形成した合金層により、測定される厚みの値に誤差が生じる場合がある。一方、付着量で制御する場合、合金層の形成状況に左右されず、より正確な品質管理をすることができる。また付着量が0.03mg/cm2未満であると、硬い下層(C層)による薄膜潤滑効果が低下して低挿抜性が悪くなり、基材11の構成金属はA14層に拡散しやすくなり、耐熱性試験や耐ガス腐食性試験後の接触抵抗増加及びはんだ濡れ性劣化しやすいなど、耐久性が悪くなる。 The adhesion amount of Ni, Cr, Mn, Fe, Co, and Cu in the B layer 13 is preferably 0.03 mg / cm 2 or more. Here, the reason for defining the amount of adhesion will be described. For example, when the thickness of the B layer 13 is measured with a fluorescent X-ray film thickness meter, an error occurs in the measured thickness value due to the alloy layer formed with the A layer 14, the B layer 13, the base material 11, and the like. There is. On the other hand, when controlling by the adhesion amount, more accurate quality control can be performed regardless of the formation state of the alloy layer. Further, if the adhesion amount is less than 0.03 mg / cm 2 , the thin film lubrication effect by the hard lower layer (C layer) is lowered and the low insertion / removal property is deteriorated, and the constituent metal of the base material 11 is easily diffused into the A14 layer. Durability deteriorates, for example, contact resistance increases after heat resistance test and gas corrosion resistance test and solder wettability easily deteriorates.

(A層)
A層14は、In,Ag,Au,Pt,Pd,Ru,Rh,Os,Irまたはそれらの合金で形成されている。このような構成によれば、金属基材を酸化から良好に保護することができ、さらに、はんだ濡れ性を向上させることができる。
(A layer)
The A layer 14 is made of In, Ag, Au, Pt, Pd, Ru, Rh, Os, Ir, or an alloy thereof. According to such a configuration, the metal substrate can be well protected from oxidation, and solder wettability can be improved.

A層14は、2以上の層で構成されていてもよい。具体的には、例えば、種々の金属又はその合金で形成された互いに異なる層が分かれて積層されて構成されていてもよい。また、前記互いに異なる層の一方から他方へ一部の元素が拡散している形態であってもよい。   The A layer 14 may be composed of two or more layers. Specifically, for example, different layers formed of various metals or alloys thereof may be divided and laminated. Further, a form in which some elements are diffused from one of the different layers to the other may be employed.

A層14は、In,Ag,Au,Pt,Pd,Ru,Rh,Os,Irまたはそれらの元素の一種以上を合計で11質量%以上含む層であるのが好ましい。A層14は、Ni,Cr,Mn,Fe,Co,Sn,Cuから選択される元素を一種以上含む層であるのが好ましく、Ni,Cr,Mn,Fe,Co,Sn,Cuから選択される元素の一種以上を合計で1質量%以上含む層であるのがより好ましい。   The A layer 14 is preferably a layer containing 11% by mass or more of In, Ag, Au, Pt, Pd, Ru, Rh, Os, Ir, or one or more of these elements in total. The A layer 14 is preferably a layer containing at least one element selected from Ni, Cr, Mn, Fe, Co, Sn, and Cu, and is selected from Ni, Cr, Mn, Fe, Co, Sn, and Cu. It is more preferable that the layer contains at least 1% by mass of one or more elements.

A層14の厚みは0.0012μm以上であるのが好ましい。A層14の厚みが0.0012μm未満であると、充分な耐ガス腐食性が得られず、電子部品用金属材料を塩素ガス、亜硫酸ガス、硫化水素ガス等のガス腐食試験を行うと腐食して、ガス腐食試験前と比較して大きく接触抵抗が増加する。より充分な耐ガス腐食性が得られるためには、0.01μm以上の厚みが好ましい。また、厚みが大きくなると、凝着磨耗が大きくなり、挿抜力が大きくなる。より充分な低挿抜性を得るためには、3.0μm以下とするのが好ましく、1.0μm以下とするのが好ましく、0.2μm以下とするのが好ましく、0.1μm以下とするのがより好ましい。   The thickness of the A layer 14 is preferably 0.0012 μm or more. When the thickness of the A layer 14 is less than 0.0012 μm, sufficient gas corrosion resistance cannot be obtained, and the metal material for electronic parts is corroded when a gas corrosion test such as chlorine gas, sulfurous acid gas, hydrogen sulfide gas is performed. Thus, the contact resistance is greatly increased as compared to before the gas corrosion test. In order to obtain more sufficient gas corrosion resistance, a thickness of 0.01 μm or more is preferable. Further, when the thickness is increased, the adhesion wear is increased, and the insertion / extraction force is increased. In order to obtain more sufficient low insertion / extraction, it is preferably 3.0 μm or less, preferably 1.0 μm or less, preferably 0.2 μm or less, and 0.1 μm or less. More preferred.

A層14のIn,Ag,Au,Pt,Pd,Ru,Rh,Os,Irの付着量は、1μg/cm2以上であるのが好ましく、2μg/cm2以上であるのが好ましく,7μg/cm2以上であるのが好ましく、10μg/cm2以上であるのが好ましく、2000μg/cm2以下であるのが好ましく、1500μg/cm2以下であるのが好ましく、1000μg/cm2以下であるのが好ましく、500μg/cm2以下であるのが好ましく、300μg/cm2以下であるのが好ましく、150μg/cm2以下であるのが好ましく、75μg/cm2以下であるのがより好ましい。ここで、付着量で定義する理由を説明する。例えば、A層14の厚みを蛍光X線膜厚計で測定する場合、例えばA層14とその下のB層13との間に形成した合金層により、測定される厚みの値に誤差が生じる場合がある。一方、付着量で制御する場合、合金層の形成状況に左右されず、より正確な品質管理をすることができる。A層14の金属の付着量が1μg/cm2未満であると、充分な耐ガス腐食性が得られず、電子部品用金属材料を塩素ガス、亜硫酸ガス、硫化水素ガス等のガス腐食試験を行うと腐食して、ガス腐食試験前と比較して大きく接触抵抗が増加するおそれがある。より充分な耐ガス腐食性が得られるためには、2μg/cm2以上の付着量であるのが好ましく、7μg/cm2以上の付着量がより好ましく、10μg/cm2以上であるのがより好ましい。また付着量が多くなると、凝着磨耗が大きくなり、挿抜力が大きくなる。より充分な低挿抜性を得るためには、2000μg/cm2以下であるのが好ましく、1500μg/cm2以下であるのが好ましく、1000μg/cm2以下であるのが好ましく、500μg/cm2以下であるのが好ましく、300μg/cm2以下であるのが好ましく、150μg/cm2以下であるのが好ましく、75μg/cm2以下であるのがより好ましい。 The adhesion amount of In, Ag, Au, Pt, Pd, Ru, Rh, Os, and Ir on the A layer 14 is preferably 1 μg / cm 2 or more, preferably 2 μg / cm 2 or more, and 7 μg / cm 2. preferably at cm 2 or more, preferably at 10 [mu] g / cm 2 or more, preferably at 2000 [mu] g / cm 2 or less, preferably at 1500 [mu] g / cm 2 or less, the at 1000 [mu] g / cm 2 or less Is preferably 500 μg / cm 2 or less, preferably 300 μg / cm 2 or less, more preferably 150 μg / cm 2 or less, and even more preferably 75 μg / cm 2 or less. Here, the reason for defining the amount of adhesion will be described. For example, when the thickness of the A layer 14 is measured with a fluorescent X-ray film thickness meter, an error occurs in the measured thickness value due to, for example, an alloy layer formed between the A layer 14 and the B layer 13 therebelow. There is a case. On the other hand, when controlling by the adhesion amount, more accurate quality control can be performed regardless of the formation state of the alloy layer. If the adhesion amount of the metal of the A layer 14 is less than 1 μg / cm 2 , sufficient gas corrosion resistance cannot be obtained, and the metal material for electronic parts is subjected to a gas corrosion test such as chlorine gas, sulfurous acid gas, hydrogen sulfide gas. If it is carried out, it may corrode and the contact resistance may be greatly increased compared to before the gas corrosion test. For more sufficient gas corrosion resistance is obtained is preferably from 2 [mu] g / cm 2 or more deposition amount, more preferably 7 [mu] g / cm 2 or more deposition amount, more not less 10 [mu] g / cm 2 or more preferable. Moreover, when the amount of adhesion increases, the adhesion wear increases and the insertion / extraction force increases. To obtain a more satisfactory low insertion resistance is preferably at 2000 [mu] g / cm 2 or less, preferably at 1500 [mu] g / cm 2 or less, preferably at 1000 [mu] g / cm 2 or less, 500 [mu] g / cm 2 or less It is preferably 300 μg / cm 2 or less, more preferably 150 μg / cm 2 or less, and even more preferably 75 μg / cm 2 or less.

(表面処理層)
表面処理層15は、リン(P)及びカーボン(C)を含んでいる。表面処理層15がリンを含んでいないと、長時間加熱(155℃×16h×大気)によってめっきが変色して接触抵抗やはんだ濡れ性が悪くなるおそれがある。また、リンは耐熱性を改善させる効果がある。また、カーボンを含んでいないと、プレス加工時に粉発生が多く、挿入力も低下しないおそれがある。
(Surface treatment layer)
The surface treatment layer 15 contains phosphorus (P) and carbon (C). If the surface treatment layer 15 does not contain phosphorus, the plating may be discolored by heating for a long time (155 ° C. × 16 h × atmosphere) and contact resistance and solder wettability may be deteriorated. Moreover, phosphorus has the effect of improving heat resistance. Moreover, when carbon is not included, there is much possibility of powder generation at the time of press working, and there is a possibility that the insertion force does not decrease.

(表面処理層の定性分析)
本発明の実施形態に係る電子部品用金属材料10は、XPS(X線光電子分光装置)のSurvey測定で表面処理層15の元素存在分析を行ったとき、リン(P)の2S軌道の結合エネルギー(P2S)のピークが186〜192eVにあり、Pを0.5at%以上5.0at%未満含有し、カーボン(C)の1S軌道の結合エネルギー(C1S)のピークが284〜290eVにあり、Cを35at%以上80at%未満含有する。
プレス加工時の粉発生を抑制し、低接触抵抗及び高はんだ濡れ性を有し、長時間加熱後もこれら特性を保持するめっき材を得るためには、Pの2S軌道の結合エネルギー(P2S)のピークが186〜192eVにあることが必須であるが、このような範囲に結合エネルギー(P2S)のピークがあっても、Pが0.5at%未満であると、長時間加熱(155℃×16h×大気)によってめっきが変色して、接触抵抗が加熱前と比較して増加し、耐熱性が悪くなる。また、Pが5.0at以上存在すると、Pの低導電性により接触抵抗が高くなる。
さらに、プレス加工時の粉発生を抑制し、低接触抵抗及び高はんだ濡れ性を有し、長時間加熱後もこれら特性を保持するめっき材を得るためには、Cの1S軌道の結合エネルギー(C1S)のピークが284〜290eVにあることが必須であるが、このような範囲に結合エネルギー(C1S)のピークがあっても、Cが35at%未満であるとプレス加工時に粉が多く発生し、Cが80at%以上であると接触抵抗が高くなる。また、Cが50at%以上80at%未満であると、更にめっき材の特性が改善し、挿入力も低くなるため好ましい。
(Qualitative analysis of surface treatment layer)
The metal material 10 for an electronic component according to the embodiment of the present invention has a 2S orbital binding energy of phosphorus (P) when elemental presence analysis of the surface treatment layer 15 is performed by Survey measurement of XPS (X-ray photoelectron spectrometer). The peak of (P2S) is at 186 to 192 eV, P is contained at 0.5 at% or more and less than 5.0 at%, the 1S orbital bond energy (C1S) peak of carbon (C) is at 284 to 290 eV, and C 35 at% or more and less than 80 at%.
In order to obtain a plating material that suppresses the generation of powder during pressing, has low contact resistance and high solder wettability, and retains these characteristics even after long-time heating, the binding energy of P 2S orbitals (P2S) It is essential that the peak of 186 to 192 eV is present, but even if the peak of the binding energy (P2S) is in such a range, if P is less than 0.5 at%, it is heated for a long time (155 ° C. × 16h × atmosphere) discolors the plating, and the contact resistance increases compared to before heating, resulting in poor heat resistance. Further, when P is present at 5.0 at or more, the contact resistance is increased due to the low conductivity of P.
Furthermore, in order to obtain a plating material that suppresses the generation of powder during pressing, has low contact resistance and high solder wettability, and retains these characteristics even after prolonged heating, the binding energy of C 1S orbitals ( Although it is essential that the peak of C1S) is in the range of 284 to 290 eV, even if the peak of the binding energy (C1S) is in such a range, if C is less than 35 at%, a large amount of powder is generated during pressing. , C is 80 at% or more, the contact resistance increases. Moreover, it is preferable for C to be 50 at% or more and less than 80 at% since the properties of the plating material are further improved and the insertion force is reduced.

(表面処理層の層構造分析)
本発明の実施形態に係る電子部品用金属材料10は、XPSのDepth測定で表面処理層15の元素存在分析を行ったとき、Cが表面処理層15の表面から0.5nmまでの領域に35at%以上80at%未満存在し、且つ、Cを20at%以上含む領域が表面処理層15の表面から15nm未満であり、酸素(O)を30at%以上含む領域が表面処理層15の表面から15nm未満であるのが好ましい。
Cが表面処理層15の表面から0.5nmまでの領域に最表面に35at%未満で存在するとプレス加工時に粉が多く発生し、80at%以上で存在すると接触抵抗が高くなる。また、Cを20at%以上含む領域が表面処理層15の表面から15nm以上で存在する場合には長時間加熱(155℃×16h×大気)の接触抵抗が加熱前と比較して増加し、耐熱性が悪くなる。
さらに、Oを30at%以上含む領域が表面処理層15の表面から15nm以上で存在する場合には、接触抵抗が高く、長時間加熱(155℃×16h×大気)の接触抵抗が加熱前と比較して増加し、耐熱性も悪くなる。
また、Cが表面処理層15の表面から0.5nmまでの領域に50at%以上80at%未満存在し、且つ、Cを20at%以上含む領域が表面処理層14の表面から2nm以上15nm未満であると、更にめっき材の特性が改善し、挿入力も低くなるため好ましい。
(Layer structure analysis of surface treatment layer)
When the element presence analysis of the surface treatment layer 15 is performed by XPS Depth measurement, the metal material 10 for an electronic component according to the embodiment of the present invention has 35 atoms in a region from the surface of the surface treatment layer 15 to 0.5 nm. %, And a region containing 20 at% or more of C is less than 15 nm from the surface of the surface treatment layer 15, and a region containing 30 at% or more of oxygen (O) is less than 15 nm from the surface of the surface treatment layer 15. Is preferred.
If C is present in the region from the surface of the surface treatment layer 15 to 0.5 nm at the outermost surface at less than 35 at%, a large amount of powder is generated during pressing, and if it is present at 80 at% or more, the contact resistance is increased. Further, when a region containing 20 at% or more of C exists at 15 nm or more from the surface of the surface treatment layer 15, the contact resistance of long-time heating (155 ° C. × 16 h × atmosphere) increases compared to before heating, Sexuality gets worse.
Further, when the region containing O at 30 at% or more exists at 15 nm or more from the surface of the surface treatment layer 15, the contact resistance is high, and the contact resistance after long-time heating (155 ° C. × 16 h × atmosphere) is compared with that before heating. As a result, the heat resistance deteriorates.
Further, C is present in the region from the surface of the surface treatment layer 15 to 0.5 nm or more and less than 50 at% and less than 80 at%, and the region containing C at least 20 at% is from 2 nm to 15 nm from the surface of the surface treatment layer 14. Further, it is preferable because the characteristics of the plating material are further improved and the insertion force is reduced.

(電子部品用金属材料10の製造方法)
電子部品用金属材料10は、金属基材11の表面に、下地層12、B層13及びA層14を形成し、さらにA層14上に表面潤滑処理を順に施すことによって表面処理層15を形成することで得られる。なおA層形成後に必要応じてリフロー処理を施しても良い。また、表面潤滑処理は、リン及びカーボンを両方含有しており、具体的にはリン酸エステル系化合物及びメルカプトベンゾチアゾール系化合物を含有していることが好ましい。これらの濃度は、化合物の形態によって異なるが、例えば、ラウリル酸性リン酸モノエステルの場合には0.1〜3.0質量%、メルカプトベンゾチアゾールのナトリウム塩等の場合には0.010〜0.100質量%とする。リフロー処理条件としては、めっき厚により異なるが、230〜700℃で0.3〜120秒間行うのが適切である。リン酸エステル系化合物は、化合物中のリンがA層14の構成金属と反応してめっきの表面に保護膜を生成し、この保護膜が、めっきの変色防止として機能する。また、メルカプトベンゾチアゾール系化合物は、A層14の構成金属と反応してめっきの表面に保護膜を生成し、この保護膜が、めっきの粉発生を抑制し、更に挿入力を低下する効果がある。リン酸エステル系化合物としては、ラウリル酸性リン酸モノエステル、ラウリル酸性リン酸ジエステル等が挙げられる。メルカプトベンゾチアゾール系化合物としては、メルカプトベンゾチアゾール、メルカプトベンゾチアゾールのナトリウム塩等挙げられる。
(Method for producing metal material 10 for electronic parts)
The metal material 10 for electronic parts forms the base layer 12, the B layer 13, and the A layer 14 on the surface of the metal substrate 11, and further performs the surface lubrication treatment on the A layer 14 in order to form the surface treatment layer 15. It is obtained by forming. In addition, you may perform a reflow process as needed after A layer formation. Further, the surface lubrication treatment contains both phosphorus and carbon, and specifically, preferably contains a phosphate ester compound and a mercaptobenzothiazole compound. These concentrations vary depending on the form of the compound. For example, in the case of lauryl acid phosphate monoester, 0.1 to 3.0% by mass; in the case of mercaptobenzothiazole sodium salt, etc., 0.010 to 0 100% by mass. As reflow processing conditions, although it changes with plating thickness, it is appropriate to carry out at 230-700 degreeC for 0.3-120 second. In the phosphoric acid ester compound, phosphorus in the compound reacts with the constituent metal of the A layer 14 to form a protective film on the surface of the plating, and this protective film functions as a plating discoloration prevention. Further, the mercaptobenzothiazole compound reacts with the constituent metal of the A layer 14 to form a protective film on the surface of the plating, and this protective film has the effect of suppressing the generation of plating powder and further reducing the insertion force. is there. Examples of the phosphoric acid ester compound include lauryl acidic phosphoric acid monoester and lauryl acidic phosphoric acid diester. Examples of mercaptobenzothiazole compounds include mercaptobenzothiazole and mercaptobenzothiazole sodium salt.

(電子部品用金属材料の用途)
本発明の電子部品用金属材料の用途は特に限定しないが、例えば電子部品用金属材料を接点部分に用いたコネクタ端子、電子部品用金属材料を接点部分に用いたFFC端子またはFPC端子、電子部品用金属材料を外部接続用電極に用いた電子部品などが挙げられる。なお、端子については、圧着端子、はんだ付け端子、プレスフィット端子等、配線側との接合方法によらない。外部接続用電極には、タブに表面処理を施した接続部品や半導体のアンダーバンプメタル用に表面処理を施した材料などがある。
また、このように形成されたコネクタ端子を用いてコネクタを作製しても良く、FFC端子またはFPC端子を用いてFFCまたはFPCを作製しても良い。
コネクタはオス端子とメス端子の両方が本発明の電子部品用金属材料であっても良いし、オス端子またはメス端子の片方だけであっても良い。なおオス端子とメス端子の両方を本発明の電子部品用金属材料にすることで、更に低挿抜性が向上する。
(Use of metal materials for electronic parts)
The use of the metal material for electronic parts of the present invention is not particularly limited. For example, a connector terminal using the metal material for electronic parts as a contact part, an FFC terminal or FPC terminal using the metal material for electronic parts as a contact part, and an electronic part Electronic parts using metal materials for external connection as electrodes for external connection. In addition, about a terminal, it does not depend on the joining method with a wiring side, such as a crimp terminal, a solder terminal, and a press fit terminal. Examples of the external connection electrode include a connection component in which a surface treatment is performed on a tab and a material in which a surface treatment is applied to a semiconductor under bump metal.
Moreover, a connector may be produced using the connector terminal formed in this way, and an FFC or FPC may be produced using an FFC terminal or an FPC terminal.
In the connector, both the male terminal and the female terminal may be the metal material for electronic parts of the present invention, or only one of the male terminal and the female terminal. In addition, low insertion property is further improved by making both the male terminal and the female terminal into the metal material for electronic parts of the present invention.

以下、本発明の実施例を示すが、これらは本発明をより良く理解するために提供するものであり、本発明が限定されることを意図するものではない。   EXAMPLES Examples of the present invention will be described below, but these are provided for better understanding of the present invention and are not intended to limit the present invention.

金属基材として、厚み0.3mmの黄銅(C2680)を準備した。次に、金属基材の表面に電気めっきまたはスパッタリングによりを用いて所定の目標厚みとなるように、A層を形成した。その後、ホットプレート上で熱処理を施し、徐冷した。なお、下地層および/またはB層を設ける場合には、金属基材の表面に電気めっきまたはスパッタリングにより下地層および/またはB層を設けた後にA層を形成した。次に、A層上にラウリル酸性リン酸モノエステル(リン酸エステル系化合物)及びメルカプトベンゾチアゾールのナトリウム塩(メルカプトベンゾチアゾール系化合物)を含有した潤滑処理液を用いて電解処理により、潤滑処理を施した。より具体的には、上記金属基材に以下の工程を順に行った。
めっき材の作製手順:電解脱脂→水洗→酸洗→水洗→(必要により下地層→水洗→)(必要によりB層→(必要により水洗))→A層→(必要により水洗)→熱処理→徐冷→潤滑処理→湯洗→水洗
Brass (C2680) having a thickness of 0.3 mm was prepared as a metal substrate. Next, the A layer was formed on the surface of the metal base so as to have a predetermined target thickness by using electroplating or sputtering. Then, it heat-processed on the hotplate and annealed. In the case of providing the base layer and / or the B layer, the layer A was formed after the base layer and / or the B layer were provided on the surface of the metal substrate by electroplating or sputtering. Next, the lubricating treatment is carried out by electrolytic treatment using a lubricating treatment liquid containing lauryl acid phosphoric acid monoester (phosphate ester compound) and a sodium salt of mercaptobenzothiazole (mercaptobenzothiazole compound) on layer A. gave. More specifically, the following steps were sequentially performed on the metal substrate.
Plating material preparation procedure: electrolytic degreasing → water washing → pickling → water washing → (if necessary underlayer → water washing →) (if necessary B layer → (if necessary water washing)) → A layer → (if necessary water washing) → heat treatment → gradual Cold → Lubrication → Hot water → Water wash

このようにして、表面処理時のA層、B層のめっきの各元素の付着量及び厚み、熱処理条件及び潤滑処条件を種々変更して実施例1〜20及び比較例〜13をそれぞれ作製した。なお、実施例9には下地層として厚み0.5μmのZnめっき層を設けた。また、実施例11には下地層として厚み0.3μmのNiめっき層を設けた。 In this way, Examples 1 to 20 and Comparative Examples 2 to 13 were produced by changing the adhesion amount and thickness of each element of plating of the A layer and B layer during the surface treatment, heat treatment conditions, and lubrication conditions, respectively. did. In Example 9, a Zn plating layer having a thickness of 0.5 μm was provided as a base layer. In Example 11, a Ni plating layer having a thickness of 0.3 μm was provided as a base layer.

(めっき厚み)
続いて、作製した試料について、B層及びA層の厚みを、蛍光X線膜厚計(Seiko Instruments製 SEA5100、コリメータ0.1mmΦ)で測定した。なお、熱処理を行った実施例については、熱処理後のB層及びA層の厚みを測定した。なお、蛍光X線膜厚計でB層及びA層の厚みを測定することが困難な場合には、B層及びA層の断面を走査透過型電子顕微鏡(STEM)によるライン分析を行うことにより、B層及びA層を測定することもできる。
(Plating thickness)
Then, about the produced sample, the thickness of B layer and A layer was measured with the fluorescent X ray film thickness meter (SEA5100 made from Seiko Instruments, collimator 0.1mm (PHI)). In addition, about the Example which heat-processed, the thickness of the B layer and A layer after heat processing was measured. In addition, when it is difficult to measure the thickness of the B layer and the A layer with a fluorescent X-ray film thickness meter, the cross section of the B layer and the A layer is subjected to line analysis using a scanning transmission electron microscope (STEM). , B layer and A layer can also be measured.

(表面処理層の最表面定性分析及び層構造分析)
得られた試料の表面は、XPS分析によるSurvey測定にて定性分析を行った。定性分析濃度の分解能を0.1at%とした。また、Pの2S軌道の結合エネルギー(P2S)のピークやCの1S軌道の結合エネルギー(C1S)のピークの有無が分かりにくい場合には、分析の積算回数を必要に応じ増やして測定した。今回実施例では積算回数を10回にして測定した。
層構造は、XPS分析による深さ(Depth)プロファイルを測定し、Sn、O、Cuの濃度分析を行って表面処理層の層構造を決定した。XPSによる濃度検出は、指定元素の合計を100%として、各元素の濃度(at%)を分析した。また、XPS分析で厚み方向への距離(nm)は、XPS分析によるチャートの横軸の距離(SiO2換算での距離)に対応する。
XPS装置としては、アルバック・ファイ株式会社製5600MCを用い、到達真空度:2.1×10-9Torr、励起源:単色化AlKα、出力:210W、検出面積:800μmΦ、入射角:45度、取り出し角:45度、中和銃なしとし、以下のスパッタ条件で、測定した。
イオン種:Ar+
加速電圧:3kV
掃引領域:3mm×3mm
レート:2nm/min.(SiO2換算)
(External surface qualitative analysis and layer structure analysis of surface treatment layer)
The surface of the obtained sample was subjected to qualitative analysis by survey measurement by XPS analysis. The resolution of the qualitative analysis concentration was 0.1 at%. In addition, when it was difficult to determine the presence or absence of the peak of the binding energy (P2S) of the P 2S orbital or the peak of the binding energy (C1S) of the C 1S orbital, the number of analysis integrations was increased as necessary. In this example, the number of integration was set to 10 and the measurement was performed.
The layer structure was determined by measuring a depth profile by XPS analysis and analyzing the concentration of Sn, O, and Cu to determine the layer structure of the surface treatment layer. Concentration detection by XPS was performed by analyzing the concentration (at%) of each element with the total of designated elements as 100%. Further, the distance (nm) in the thickness direction in the XPS analysis corresponds to the distance on the horizontal axis of the chart (distance in terms of SiO 2 ) in the XPS analysis.
As an XPS apparatus, ULVAC-PHI Co., Ltd. 5600MC was used, ultimate vacuum: 2.1 × 10 −9 Torr, excitation source: monochromated AlKα, output: 210 W, detection area: 800 μmΦ, incident angle: 45 degrees, The take-off angle was 45 degrees, no neutralization gun was used, and the measurement was performed under the following sputtering conditions.
Ion species: Ar +
Acceleration voltage: 3 kV
Sweep area: 3mm x 3mm
Rate: 2 nm / min. (SiO 2 equivalent)

図2は、実施例1のXPS分析によるSurvey測定結果である。図2より、Pの2S軌道の結合エネルギー(P2S)のピークが186〜192eVにあり、Pが1at%存在することが分かる。また、Cの1S軌道の結合エネルギー(C1S軌道)のピークが284〜290eVにあり、Cが45at%存在することも分かる。
図3は、実施例1のXPS分析による深さ(Depth)プロファイルの測定結果である。図3より、カーボン(C)が最表面に50at%以上存在し、20at%以上のカーボン(C)が1.5nm存在することが分かる。
FIG. 2 is a survey measurement result by XPS analysis of Example 1. As can be seen from FIG. 2, the peak of P 2S orbital binding energy (P2S) is in the range of 186 to 192 eV, and P is present at 1 at%. It can also be seen that the peak of C 1S orbital binding energy (C1S orbital) is at 284 to 290 eV, and C is present at 45 at%.
FIG. 3 is a measurement result of a depth profile by XPS analysis of Example 1. FIG. 3 shows that carbon (C) is present at 50 at% or more on the outermost surface, and carbon (C) at 20 at% or more is present at 1.5 nm.

(評価)
各試料について以下の評価を行った。
A.粉発生試験
図4に示す方法で粉発生試験を行った。鉄板(スチールディスク)上にサンプルを貼り付け、サンプル上にBWF(ドイツ)社製の厚み3mmのBCフエルト(商品名)を巻きつけた4.8mmΦの鉄球(スチールボール)を置いた。この鉄球に30gの荷重を加え,鉄球を走査距離10mm、往復走査回数15回で粉発生試験した。試験後にパットに目視で粉が確認できた場合には粉が発生したとして評価結果を×にした。一方粉が確認できなかった場合には粉が発生しなかったとして評価結果を○にした。
B.接触抵抗
接触抵抗は大気加熱試験(155℃×16h)前後のサンプルを評価した。測定は、山崎精機製接点シミュレーターCRS−1を使用し、接点荷重50g、電流200mAの条件で4端子法にて測定した。なお目標とする特性は大気加熱前後で接触抵抗が変化せず、10mΩ以下である。
C.はんだ濡れ性
はんだ濡れ性はめっき後のサンプルを評価した。ソルダーチェッカ(レスカ社製SAT−5000)を使用し、フラックスとして市販のRMA級フラックスを用い、メニスコグラフ法にてはんだ濡れ時間を測定した。なお、はんだはSn−3Ag−0.5Cu(250℃)を用いた。目標とするはんだ濡れ時間は3秒以下である。
D.挿入力
挿入力は動摩擦係数を代替として評価した。測定装置として薪東科学株式会社製HEIDEN−14型を使用し、圧子荷重500g、走査距離100mm、走査速度50mm/minの条件で測定した。目標特性は、比較例23のNi(0.3μm)/Sn(1.0μm)と比較して動摩擦係数が20%以上の減少である。
各条件及び評価結果を表1〜8に示す。
(Evaluation)
The following evaluation was performed for each sample.
A. Powder Generation Test A powder generation test was performed by the method shown in FIG. A sample was affixed on an iron plate (steel disk), and a 4.8 mmφ iron ball (steel ball) wrapped with 3 mm thick BC felt (trade name) manufactured by BWF (Germany) was placed on the sample. A load of 30 g was applied to the iron ball, and the iron ball was subjected to a powder generation test at a scanning distance of 10 mm and a reciprocating scanning frequency of 15 times. When powder could be visually confirmed on the pad after the test, the evaluation result was marked as x because powder was generated. On the other hand, when powder was not able to be confirmed, the evaluation result was set as (circle) not having generated powder.
B. Contact resistance The contact resistance was evaluated for samples before and after the atmospheric heating test (155 ° C. × 16 h). The measurement was performed by a 4-terminal method using a contact simulator CRS-1 manufactured by Yamazaki Seiki under the conditions of a contact load of 50 g and a current of 200 mA. Note that the target characteristic is 10 mΩ or less with no change in contact resistance before and after atmospheric heating.
C. Solder wettability The solder wettability was evaluated on the sample after plating. A solder checker (SAT-5000 manufactured by Reska Co., Ltd.) was used, and a commercially available RMA grade flux was used as the flux, and the solder wetting time was measured by the meniscograph method. In addition, Sn-3Ag-0.5Cu (250 degreeC) was used for the solder. The target solder wetting time is 3 seconds or less.
D. Insertion force The insertion force was evaluated using the dynamic friction coefficient as an alternative. A HEIDEN-14 type manufactured by Pingtung Science Co., Ltd. was used as a measuring device, and measurement was performed under the conditions of an indenter load of 500 g, a scanning distance of 100 mm, and a scanning speed of 50 mm / min. The target characteristic is a reduction of the dynamic friction coefficient by 20% or more as compared with Ni (0.3 μm) / Sn (1.0 μm) of Comparative Example 23.
Each condition and evaluation result are shown in Tables 1-8.

表1〜8から明らかなように、次の条件を満たす各実施例の場合、粉発生試験で粉が発生せず、目標とする接触抵抗やはんだ濡れ性を有した。
・XPSのSurvey測定で、表面処理を施した金属基材最表面のP存在形態を分析した際に、Pの2S軌道の結合エネルギー(P2S)のピークが186〜192eVにあり、Pが0.5at%以上5.0at%未満であり、また表面処理を施した金属基材最表面のC存在形態を分析した際に、Cの1S軌道の結合エネルギー(C1S)のピークが284〜290eVにあり、Cが35at%以上80at%未満である。
・XPSのDepth測定で、Cが最表面に35at%以上80at%未満存在し、20at%以上のCの領域が最表から15nm未満であり、また最表面から30at%以上のOの領域が15nm未満である。
さらに、次の条件を満たす実施例7、8は目標とする低挿入力も得られた。
・XPSのSurvey測定で、Cが50at%以上80at%未満であり、XPSのDepth測定で、Cが最表面に50at%以上80at%未満存在し、20at%以上のCの領域が最表から2nm以上15nm未満である。
実施例1は実施例20よりも深さ(Depth)プロファイルで30at%以上の酸素領域が浅いため、大気加熱後の接触抵抗が加熱前と比較して更に増加しにくかった。
As is clear from Tables 1 to 8, in each Example satisfying the following conditions, no powder was generated in the powder generation test, and the target contact resistance and solder wettability were obtained.
When analyzing the presence of P on the outermost surface of the metal base material subjected to surface treatment by XPS survey measurement, the peak of P 2S orbital binding energy (P2S) is in the range of 186 to 192 eV, and P is 0.1. 5 at% or more and less than 5.0 at%, and when analyzing the C existence form on the outermost surface of the metal base material subjected to the surface treatment, there is a peak of C 1S orbital binding energy (C1S) at 284 to 290 eV , C is 35 at% or more and less than 80 at%.
In XPS depth measurement, C is present at 35 at% or more and less than 80 at% on the outermost surface, C region of 20 at% or more is less than 15 nm from the outermost surface, and O region of 30 at% or more from the outermost surface is 15 nm. Is less than.
Furthermore, the target low insertion force was obtained in Examples 7 and 8 that satisfy the following conditions.
In XPS survey measurement, C is 50 at% or more and less than 80 at%, and in XPS depth measurement, C is present on the outermost surface by 50 at% or more and less than 80 at%, and the region of C of 20 at% or more is 2 nm from the outermost surface. More than 15 nm.
In Example 1, the oxygen region of 30 at% or more was shallower than Example 20, and the contact resistance after heating in the atmosphere was less likely to increase compared to before heating.

urvey測定で、Pのat%が高かった比較例2は接触抵抗が高かった。
Survey測定で、Cのat%が低かった比較例3は粉発生試験で粉が発生した。
Survey測定で、Cのat%が高かった比較例4は大気加熱後の接触抵抗が加熱前と比較して増加した。
Survey測定で、Pの2S軌道の結合エネルギー(P2S)のピークが186〜192eVにない比較例5は、大気加熱後の接触抵抗が加熱前と比較して増加した。
Survey測定で、リンのat%が高かった比較例6は接触抵抗が高かった。
Survey測定で、カーボンのat%が低かった比較例7は粉発生試験で粉が発生した。
Survey測定で、カーボンのat%が高かった比較例8は大気加熱後の接触抵抗が加熱前と比較して増加した。
Survey測定で、カーボンのat%が低かった比較例9〜13は粉発生試験で粉が発生した。

In the survey measurement, Comparative Example 2 in which P at% was high had high contact resistance.
In the survey measurement, in Comparative Example 3 in which C at% was low, powder was generated in the powder generation test.
In the survey measurement, in Comparative Example 4 in which C at% was high, the contact resistance after atmospheric heating increased compared to that before heating.
In the survey measurement, in Comparative Example 5 in which the peak of the binding energy (P2S) of the 2S orbit of P is not in the range of 186 to 192 eV, the contact resistance after the atmospheric heating increased as compared with that before the heating.
In Survey measurement, Comparative Example 6 in which at% of phosphorus was high had high contact resistance.
In Comparative Example 7 in which the at% of carbon was low in the survey measurement, powder was generated in the powder generation test.
In the survey measurement, in Comparative Example 8 in which the carbon at% was high, the contact resistance after atmospheric heating increased compared with that before heating.
In the survey measurement, in Comparative Examples 9 to 13 in which the carbon at% was low, powder was generated in the powder generation test.

10 電子部品用金属材料
11 金属基材
12 下地層
13 B層
14 A層
15 表面処理層
DESCRIPTION OF SYMBOLS 10 Metal material 11 for electronic components Metal base material 12 Underlayer 13 B layer 14 A layer 15 Surface treatment layer

Claims (12)

金属基材、
前記金属基材上に形成された下地層、
前記下地層上に形成され、Ni,Cr,Mn,Fe,Co,Sn,Cuまたはそれらの元素を1種以上含む合金で形成されたB層、
前記B層上に形成され、In,Ag,Au,Pt,Pd,Ru,Rh,Os,Irまたはそれらの元素を一種以上含む合金で形成されたA層、及び、
前記A層上に形成された表面処理層を備え、
XPS(X線光電子分光装置)のSurvey測定で前記表面処理層表面の元素分析を行ったとき、
リン(P)の2S軌道の結合エネルギー(P2S)のピークが186〜192eVにあり、Pを0.5at%以上5.0at%未満含有し、
カーボン(C)の1S軌道の結合エネルギー(C1S)のピークが284〜290eVにあり、Cを35at%以上80at%未満含有する電子部品用金属材料。
Metal substrate,
An underlayer formed on the metal substrate;
B layer formed on the underlayer and formed of Ni, Cr, Mn, Fe, Co, Sn, Cu or an alloy containing one or more of these elements,
An A layer formed on the B layer, formed of In, Ag, Au, Pt, Pd, Ru, Rh, Os, Ir, or an alloy containing one or more of these elements; and
A surface treatment layer formed on the A layer;
When the elemental analysis of the surface treatment layer surface was performed by Survey measurement of XPS (X-ray photoelectron spectrometer),
The peak of the binding energy (P2S) of 2S orbitals of phosphorus (P) is 186 to 192 eV, P is contained at 0.5 at% or more and less than 5.0 at%,
A metal material for electronic parts having a peak of binding energy (C1S) of 1S orbital of carbon (C) at 284 to 290 eV and containing C at least 35 at% and less than 80 at%.
XPSのDepth測定で前記表面処理層表面の元素分析を行ったとき、
Cが前記表面処理層の表面から0.5nmまでの領域に35at%以上80at%未満存在し、且つ、Cを20at%以上含む領域が前記表面処理層の表面から15nm未満であり、
酸素(O)を30at%以上含む領域が前記表面処理層の表面から15nm未満である請求項1に記載の電子部品用金属材料。
When the elemental analysis of the surface treatment layer surface was performed by XPS depth measurement,
C is present in the region from 0.5 to 80 at% from the surface of the surface treatment layer to less than 15 atm, and the region containing C at least 20 at% is less than 15 nm from the surface of the surface treatment layer;
The metal material for an electronic component according to claim 1, wherein a region containing oxygen (O) of 30 at% or more is less than 15 nm from the surface of the surface treatment layer.
XPSのSurvey測定で前記表面処理層表面の元素分析を行ったとき、Cを50at%以上80at%未満含有し、
XPSのDepth測定で前記表面処理層表面の元素分析を行ったとき、Cが前記表面処理層の表面から0.5nmまでの領域に50at%以上80at%未満存在し、且つ、Cを20at%以上含む領域が前記表面処理層の表面から2nm以上15nm未満である請求項2に記載の電子部品用金属材料。
When elemental analysis of the surface treatment layer surface is performed by Survey measurement of XPS, C is contained at 50 at% or more and less than 80 at%,
When elemental analysis of the surface treatment layer surface was performed by XPS Depth measurement, C was present in the region from the surface of the surface treatment layer to 0.5 nm to 50 at% to less than 80 at%, and C was 20 at% or more. The metal material for electronic components according to claim 2, wherein a region to be included is 2 nm or more and less than 15 nm from the surface of the surface treatment layer.
前記A層がIn,Ag,Au,Pt,Pd,Ru,Rh,Os,Irまたはそれらの元素の一種以上を合計で11質量%以上含む層である請求項1〜3のいずれかに記載の電子部品用金属材料。   4. The layer according to claim 1, wherein the A layer is a layer containing 11% by mass or more in total of In, Ag, Au, Pt, Pd, Ru, Rh, Os, Ir, or one or more of these elements. Metal materials for electronic parts. 前記A層がNi,Cr,Mn,Fe,Co,Sn,Cuから選択される元素を一種以上含む層である請求項1〜4のいずれかに記載の電子部品用金属材料。   The metal material for electronic parts according to any one of claims 1 to 4, wherein the A layer is a layer containing one or more elements selected from Ni, Cr, Mn, Fe, Co, Sn, and Cu. 前記A層がNi,Cr,Mn,Fe,Co,Sn,Cuから選択される元素の一種以上を合計で1質量%以上含む層である請求項1〜のいずれかに記載の電子部品用金属材料。 Said layer A Ni, Cr, Mn, Fe, Co, Sn, electronic component according to any one of claims 1 to 5, which is a layer containing 1 wt% or more in total of one or more elements selected from Cu Metal material. 前記A層の厚さが0.0012μm以上である請求項1〜6のいずれかに記載の電子部品用金属材料。   The metal material for electronic components according to claim 1, wherein the thickness of the A layer is 0.0012 μm or more. 前記A層が2以上の層からなる請求項1〜7のいずれかに記載の電子部品用金属材料。   The metal material for electronic parts according to claim 1, wherein the A layer is composed of two or more layers. 前記B層の合金の組成がNi,Cr,Mn,Fe,Co,Sn,Cuの合計で50質量%以上であり、さらにB,P,Sn,Znからなる群から選択された1種、もしくは2種以上を含む請求項1〜8のいずれかに記載の電子部品用金属材料。 The alloy composition of the B layer is 50% by mass or more in total of Ni, Cr, Mn, Fe, Co, Sn, and Cu, and is further selected from the group consisting of B, P, Sn, and Zn, or the metal material for electronic component according to claim 1 comprising two or more. 前記B層が2以上の層からなる請求項1〜9のいずれかに記載の電子部品用金属材料。 The metal material for electronic components according to claim 1, wherein the B layer is composed of two or more layers. 前記金属基材の前記A層上に、リン及びカーボンを含有する表面処理液で表面処理を施す工程を含む請求項1〜10のいずれかに記載の電子部品用金属材料の製造方法。 The manufacturing method of the metal material for electronic components in any one of Claims 1-10 including the process of surface-treating with the surface treatment liquid containing phosphorus and carbon on the said A layer of the said metal base material. 前記表面処理液は、リン酸エステル系化合物及びメルカプトベンゾチアゾール系化合物を含有する請求項11に記載の電子部品用金属材料の製造方法。 The said surface treatment liquid is a manufacturing method of the metal material for electronic components of Claim 11 containing a phosphate ester type compound and a mercaptobenzothiazole type compound.
JP2012232409A 2012-10-19 2012-10-19 Metal material for electronic parts and method for producing the same Active JP6327784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012232409A JP6327784B2 (en) 2012-10-19 2012-10-19 Metal material for electronic parts and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012232409A JP6327784B2 (en) 2012-10-19 2012-10-19 Metal material for electronic parts and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014084480A JP2014084480A (en) 2014-05-12
JP6327784B2 true JP6327784B2 (en) 2018-05-23

Family

ID=50787846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012232409A Active JP6327784B2 (en) 2012-10-19 2012-10-19 Metal material for electronic parts and method for producing the same

Country Status (1)

Country Link
JP (1) JP6327784B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2717062B2 (en) * 1994-03-24 1998-02-18 日鉱金属株式会社 Sealing treatment method for gold plated material
JP2717063B2 (en) * 1994-03-24 1998-02-18 日鉱金属株式会社 Sealing treatment method for gold plated material
JP2717064B2 (en) * 1994-03-24 1998-02-18 日鉱金属株式会社 Sealing treatment method for gold plated material
JP3998731B2 (en) * 1994-08-10 2007-10-31 三菱伸銅株式会社 Manufacturing method of current-carrying member
JP2804452B2 (en) * 1995-03-24 1998-09-24 日鉱金属株式会社 Sealing treatment method for gold plated material
JPH09170096A (en) * 1995-12-19 1997-06-30 Nikko Kinzoku Kk Sealing treatment for gold plating material
JPH09249977A (en) * 1996-03-13 1997-09-22 Nikko Kinzoku Kk Surface treatment liquid for silver plated material and surface treatment using the same
JP3481392B2 (en) * 1996-06-13 2003-12-22 古河電気工業株式会社 Electronic component lead member and method of manufacturing the same
JP4086949B2 (en) * 1998-02-10 2008-05-14 古河電気工業株式会社 Metal coated member
JP2000313988A (en) * 1999-04-27 2000-11-14 Nippon Mining & Metals Co Ltd Gold for electronic parts or gold alloy plating material
JP2010196127A (en) * 2009-02-26 2010-09-09 Alps Electric Co Ltd Electric contact point

Also Published As

Publication number Publication date
JP2014084480A (en) 2014-05-12

Similar Documents

Publication Publication Date Title
JP5138827B1 (en) Metal materials for electronic parts, connector terminals, connectors and electronic parts using the same
KR101688290B1 (en) Metal material for electronic component
JP6050664B2 (en) METAL MATERIAL FOR ELECTRONIC COMPONENT AND ITS MANUFACTURING METHOD, CONNECTOR TERMINAL USING THE SAME, CONNECTOR AND ELECTRONIC COMPONENT
JP6740635B2 (en) Tin-plated copper terminal material, its manufacturing method, and wire terminal structure
CN104471113B (en) Electronic component-use metal material and manufacture method thereof, use its bonder terminal, adapter and electronic unit
WO2014003144A1 (en) Electronic component metal material and manufacturing method thereof, and connector terminal, connector and electronic component using said electronic component metal material
KR102095624B1 (en) Metal material for use in electronic component, and method for producing same
JP2013189703A (en) Metal material for electronic component and method for producing the same
CN104379811B (en) Electronic component-use metal material and manufacture method thereof, employ its bonder terminal, adapter and electronic unit
JP2014208904A (en) Electroconductive material superior in resistance to fretting corrosion for connection component
WO2014054189A1 (en) Metal material for use in electronic component, and method for producing same
JP2009099282A (en) Fitting type connector
JP5980746B2 (en) METAL MATERIAL FOR ELECTRONIC COMPONENT AND ITS MANUFACTURING METHOD, CONNECTOR TERMINAL USING THE SAME, CONNECTOR AND ELECTRONIC COMPONENT
JP5275504B1 (en) METAL MATERIAL FOR ELECTRONIC COMPONENT AND ITS MANUFACTURING METHOD, CONNECTOR TERMINAL USING THE SAME, CONNECTOR AND ELECTRONIC COMPONENT
JP2015045058A (en) Metallic material for electronic component and manufacturing method of the same, and connector terminal, connector, and electronic component using the same
JP5840373B2 (en) Method for producing Sn or Sn alloy plating material
JP6012564B2 (en) METAL MATERIAL FOR ELECTRONIC COMPONENT AND ITS MANUFACTURING METHOD, CONNECTOR TERMINAL USING THE SAME, CONNECTOR AND ELECTRONIC COMPONENT
JP2013091848A (en) Metal material for electronic parts and method for manufacturing the same
JP6327784B2 (en) Metal material for electronic parts and method for producing the same
JP2020158822A (en) Metal material and connection terminal
JP2015045053A (en) Metallic material for electronic component, method for producing the same, and connector terminal, connector and electronic component using the same
JP2015045047A (en) Metallic material for electronic component and manufacturing method of the same, and connector terminal, connector, and electronic component using the same
JP2015045044A (en) Metallic material for electronic component, method for producing the same,and connector terminal, connector and electronic component using the same
JP2015045054A (en) Metallic material for electronic component and manufacturing method of the same, and connector terminal, connector, and electronic component using the same
JP2015045051A (en) Metallic material for electronic component, method for producing the same, and connector terminal, connector and electronic component using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180417

R150 Certificate of patent or registration of utility model

Ref document number: 6327784

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250