JP2002226982A - Heat resistant film, its manufacturing method, and electrical and electronic parts - Google Patents

Heat resistant film, its manufacturing method, and electrical and electronic parts

Info

Publication number
JP2002226982A
JP2002226982A JP2001024031A JP2001024031A JP2002226982A JP 2002226982 A JP2002226982 A JP 2002226982A JP 2001024031 A JP2001024031 A JP 2001024031A JP 2001024031 A JP2001024031 A JP 2001024031A JP 2002226982 A JP2002226982 A JP 2002226982A
Authority
JP
Japan
Prior art keywords
layer
alloy layer
thickness
alloy
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001024031A
Other languages
Japanese (ja)
Inventor
Akira Sugawara
章 菅原
Hiroto Narueda
宏人 成枝
Taichi Ozaki
太一 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Olin Brass Japan Inc
Original Assignee
Olin Brass Japan Inc
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olin Brass Japan Inc, Dowa Mining Co Ltd filed Critical Olin Brass Japan Inc
Priority to JP2001024031A priority Critical patent/JP2002226982A/en
Priority to CN 200710108823 priority patent/CN101081554A/en
Priority to CNB2006101149269A priority patent/CN100528550C/en
Priority to CNB011433949A priority patent/CN1325696C/en
Publication of JP2002226982A publication Critical patent/JP2002226982A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Manufacturing Of Electrical Connectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a film having excellent heat resistance, formability and solderability, and used for coating the surface of a material, its manufacturing method, and further electrical and electronic parts coated with the film. SOLUTION: An Ni or Ni-alloy layer, a Cu layer and an Sn or Sn-alloy layer are applied to the surface of the material composed of copper alloy, etc., in the order named from the surface side. Then reflow treatment is applied at 300-900 deg.C for 1-300s. By this method, the heat resistant film having the following layers can be obtained: an Sn or Sn-alloy layer having a thickness X of 0.05-2 μm on the outermost surface side; an alloy layer containing an intermetallic compound composed essentially of Cu-Sn and having a thickness Y of 0.05-2 μm on the inner side; and further an Ni or Ni-alloy layer having a thickness Z of 0.01-1 μm on the inner side of the above layer ( where 0.2X<=Y<=5X and 0.05Y<=Z<=3Y are satisfied).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば自動車の電
気配線などに使用される多ピンコネクタの表面のよう
に、耐熱性と挿抜に際しての摩耗や摩擦係数を小さくす
ることの両立が要求される表面や、電気自動車の充電ソ
ケットのように挿抜回数が多く大電流を流すものや、モ
ーターのブラシのように回転体と接して耐摩耗性を要求
される表面や、バッテリー端子のように耐摩耗性・耐腐
食性が要求される表面や、更にプリント基板の接続等の
はんだ付け性が必要な電気電子部品の表面処理とその製
造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention requires both heat resistance and reduced wear and friction during insertion / removal, such as the surface of a multi-pin connector used for electric wiring of automobiles. Surfaces, such as charging sockets of electric vehicles, which have a large number of insertions and withdrawals and flow large currents; surfaces that require wear resistance by contacting rotating parts, such as motor brushes; and wear resistance, such as battery terminals TECHNICAL FIELD The present invention relates to a surface treatment of a surface that requires resistance and corrosion resistance, and a surface treatment of an electric / electronic component that further requires solderability such as connection of a printed circuit board, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】近年のエレクトロニクスの発達により、
電気配線は複雑化、高集積化が進み、それに伴いコネク
タの多ピン化も進んできている。また、外部からの熱や
ジュール熱による発熱等、熱環境もますます厳しくなっ
てきている。従来のSnめっきをしたコネクタでは抜き
差しに際し、摩擦力が大きくなり、コネクタの挿入が困
難になるという問題が生じてきている。更に、Snめっ
き材は熱影響により、素材や下地めっきからCuが拡散
し、Cu―Sn系化合物層やその酸化皮膜の形成によっ
て接触抵抗が増大するため耐熱性に劣り、また高湿度や
高温度による保管でも、拡散や酸化によるはんだ付け性
の低下が問題であった。多ピン化したSnめっき付き端
子の挿入力の低減策として、従来はSnめっきの下地に
硬質なNiめっき等を施したり、Cu−Sn拡散層を設
け、下地の硬さの向上や拡散バリア効果を狙った案が提
案されている。
2. Description of the Related Art With the recent development of electronics,
Electrical wiring has become more complicated and highly integrated, and as a result, the number of pins of connectors has been increased. In addition, the thermal environment, such as heat generated by external heat or Joule heat, is becoming increasingly severe. A conventional Sn-plated connector has a problem in that the frictional force increases when inserting and removing the connector, and it becomes difficult to insert the connector. Further, the Sn-plated material is inferior in heat resistance because Cu diffuses from the raw material and the underlying plating due to the heat effect, and the contact resistance increases due to the formation of the Cu—Sn-based compound layer and its oxide film, and high humidity and high temperature. However, there is a problem that the solderability is deteriorated due to diffusion and oxidation. Conventionally, as a measure to reduce the insertion force of the terminal with multi-pin Sn plating, a hard Ni plating or the like is provided on the base of the Sn plating, or a Cu-Sn diffusion layer is provided to improve the hardness of the base and a diffusion barrier effect. A plan aimed at is proposed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、Niめ
っき上にSnめっきを施した場合は、加熱試験後に生じ
るNi−Sn合金または更にその酸化物の接触抵抗が大
きく、耐熱性に劣っている。また、端子挿入時に、Sn
が掘り起こされNiがむき出しになると、加熱後にNi
の酸化物が接触抵抗を著しく悪化させる。更に、通常は
Ni下地めっきを1〜2μm程度施すため、端子成型時
の曲げ加工時にクラック等を生じやすい欠点もある。N
i下地めっきを0.5μm程度に薄くしたとしても、上
記接触抵抗の増大は解決できなかった。中間層にCu−
Sn拡散層を利用する際も、長期加熱により接触抵抗は
増大し、またはんだ付け性にも劣っている。また、製造
方法においても、表層にSnを残し、内側にCu−Sn
拡散層を設ける方法として熱拡散を利用する方法がある
が、拡散層の厚さの制御が難しく、また、制御したとし
ても、使用時の温度環境による拡散の進行を避けられ
ず、耐熱性に劣っている。Cu―Sn拡散層を形成させ
た後にSnめっきをする案は、極めて複雑な工程を必要
とし、コスト面および表面のSnめっきの密着性、成形
加工性に劣り現実的ではない。また、現在の電気自動車
では1日1回以上の充電を必要としており、充電用ソケ
ット部品の耐摩耗性の確保が必要である。その上に10
A以上の大電流が流れるため発熱が大きく、従来のSn
めっき等の方法では、めっきが剥離してしまう等の問題
も生じている。更に、プリント基板の接続用では、環境
対策としてPbフリーによる高温はんだへの移行や活性
度の小さいフラックスへの移行のために、従来のSnめ
っき材よりも更に優れたはんだ付け性の要求がある。具
体的には保管時の湿気や高温によっても、はんだ付け性
が低下せず優れていることが必要である。上記のような
問題に対し、従来の表面処理方法では対応しきれないこ
とが明らかになってきている。また本発明が提案する表
面処理において、SnまたはSn合金層、CuーSn合
金層あるいは更にCu層、そしてNiまたはNi合金層
の被覆やその被覆方法は従来から提案されているが、そ
の全てを含んだ最適な組み合わせやその最適な厚さは検
討されていなかった。
However, when Sn plating is performed on Ni plating, the contact resistance of the Ni-Sn alloy or its oxide generated after the heating test is large, and the heat resistance is poor. When the terminal is inserted, Sn
Is excavated and Ni is exposed.
Oxide significantly deteriorates the contact resistance. Further, since the Ni base plating is usually applied to a thickness of about 1 to 2 μm, there is a disadvantage that cracks and the like are apt to occur during bending at the time of forming the terminal. N
Even if the thickness of the i-underlayer plating was reduced to about 0.5 μm, the increase in the contact resistance could not be solved. Cu-
Even when the Sn diffusion layer is used, the contact resistance increases due to long-term heating, or the solderability is poor. Also in the manufacturing method, Sn is left on the surface layer and Cu-Sn
As a method of providing a diffusion layer, there is a method of utilizing thermal diffusion, but it is difficult to control the thickness of the diffusion layer, and even if it is controlled, diffusion of the diffusion due to a temperature environment at the time of use cannot be avoided, and heat resistance is reduced. Inferior. The scheme of performing Sn plating after forming the Cu—Sn diffusion layer requires an extremely complicated process, and is not realistic because of poor cost and surface Sn adhesion and moldability. In addition, current electric vehicles require charging at least once a day, and it is necessary to ensure wear resistance of the charging socket components. 10 on it
Since a large current of A or more flows, the heat generation is large, and the conventional Sn
In a method such as plating, there are also problems such as peeling of plating. Furthermore, in connection with printed circuit boards, there is a demand for solderability that is even better than conventional Sn-plated materials because of the transition to high-temperature solder due to Pb-free and the transition to flux with low activity as environmental measures. . Specifically, it is necessary that the solderability is excellent without being reduced even by the humidity or high temperature during storage. It has become clear that conventional surface treatment methods cannot cope with the above problems. Also, in the surface treatment proposed by the present invention, coating of Sn or Sn alloy layer, Cu-Sn alloy layer or further Cu layer, and Ni or Ni alloy layer and the coating method thereof have been conventionally proposed, but all of them have been proposed. The optimal combination and the optimal thickness were not considered.

【0004】[0004]

【課題を解決するための手段】本発明者らは上記課題を
達成するために鋭意研究した結果、最表面にSnまたは
Sn合金層、その内側にCu−Sn合金層(Cu
n、CuSn、CuSn等のCu−Sn金属間化
合物を含む合金層や下地のNiが熱拡散したCu−Sn
−Ni等の合金層等)を有し、場合によっては反応で残
ったCu層を有し、更にその内側にNiまたはNi合金
層を、所望の厚さに適正に形成させることにより、例え
ば多ピンコネクタや電気自動車の充電ソケット等に好適
な耐熱性と摩擦係数が小さくしかも耐摩耗性に優れ、更
にはんだ付け性に優れた表面を有する表面処理皮膜が得
られることを見出し、本発明を完成するに至った。
Means for Solving the Problems The present inventors have conducted intensive studies to achieve the above object, and as a result, have found that the Sn or Sn alloy layer is formed on the outermost surface, and the Cu-Sn alloy layer (Cu 3 S
n, Cu 4 Sn, Cu 6 Sn 5 or the like of the Cu-Sn intermetallic Cu-Sn which Ni alloy layer and underlying thermally diffused containing compound
An alloy layer such as -Ni, etc.), and possibly a Cu layer left by the reaction, and further, by appropriately forming a Ni or Ni alloy layer to a desired thickness inside the Cu layer, for example, Completed the present invention by finding that a surface treatment film having a surface having excellent heat resistance and a low coefficient of friction, excellent in abrasion resistance, and excellent in solderability, which is suitable for pin connectors and charging sockets of electric vehicles, etc., can be obtained. I came to.

【0005】すなわち本発明は、第1に、最表面に厚さ
Xが0.05〜2μmのSnまたはSn合金層、その内
側に厚さYが0.05〜2μmのCu−Snを主体とす
る金属間化合物を含む合金層、更にその内側に厚さZが
0.01〜1μmのNiまたはNi合金層が形成されて
なることを特徴とする耐熱性皮膜;第2に、0.2X≦
Y≦5X、且つ、0.05Y≦Z≦3Yである、第1記
載の耐熱性皮膜;第3に、前記金属間化合物を含む合金
層と前記NiまたはNi合金層との間に厚さが0.7μ
m以下のCu層を有する、第1または2記載の耐熱性皮
膜;第4に、前記耐熱性皮膜で被覆される素材の少なく
とも表面層がCuまたはCu合金である、第1〜3のい
ずれかに記載の耐熱性皮膜;第5に、素材表面上に、該
表面側から順にNiまたはNi合金層、Cu層、Snま
たはSn合金層を被覆した後に熱処理を施すことを特徴
とする、第1〜4のいずれかに記載の耐熱性皮膜の製造
方法;第6に、素材表面上に、該表面側から順にNiま
たはNi合金層、Cu層、SnまたはSn合金層を被覆
した後にリフロー処理を施すことを特徴とする、第1〜
4のいずれかに記載の耐熱性皮膜の製造方法;第7に、
表面粗さにおいて十点平均粗さが1.5μm以下で且つ
中心線平均粗さが0.15μm以下である素材表面上
に、該表面側から順にNiまたはNi合金層、Cu層、
SnまたはSn合金層を被覆した後に熱処理を施すこと
を特徴とする、第1〜4のいずれかに記載の耐熱性皮膜
の製造方法;第8に、表面粗さにおいて十点平均粗さが
1.5μm以下で且つ中心線平均粗さが0.15μm以
下である素材表面上に、該表面側から順にNiまたはN
i合金層、Cu層、SnまたはSn合金層を被覆した後
にリフロー処理を施すことを特徴とする、第1〜4のい
ずれかに記載の耐熱性皮膜の製造方法;第9に、前記N
iまたはNi合金層を被覆する前に予め前記素材表面上
にCuまたはCu合金層を被覆する、第5〜8のいずれ
かに記載の耐熱性皮膜の製造方法;第10に、素材表面
が第1〜4のいずれかに記載の耐熱性皮膜で被覆されて
なることを特徴とする電気電子部品、を提供するもので
ある。
That is, the present invention firstly comprises a Sn or Sn alloy layer having a thickness X of 0.05 to 2 μm on the outermost surface and a Cu—Sn having a thickness Y of 0.05 to 2 μm inside the layer. A heat-resistant coating comprising an alloy layer containing an intermetallic compound and a Ni or Ni alloy layer having a thickness Z of 0.01 to 1 μm formed inside the alloy layer;
3. The heat-resistant coating according to claim 1, wherein Y ≦ 5X and 0.05Y ≦ Z ≦ 3Y; third, a thickness between the alloy layer containing the intermetallic compound and the Ni or Ni alloy layer. 0.7μ
The heat-resistant film according to the first or second aspect, having a Cu layer of m or less; fourth, any one of the first to third aspects, wherein at least a surface layer of a material covered with the heat-resistant film is Cu or a Cu alloy. Fifthly, a heat treatment is performed after coating a Ni or Ni alloy layer, a Cu layer, a Sn or a Sn alloy layer on the surface of the material in order from the surface side, 6. A method for producing a heat-resistant coating according to any one of the above-described items 4 to 6; The first to first, characterized in that
4. The method for producing a heat-resistant film according to any one of 4.
On a material surface having a ten-point average roughness of 1.5 μm or less and a centerline average roughness of 0.15 μm or less in surface roughness, a Ni or Ni alloy layer, a Cu layer,
The method for producing a heat-resistant film according to any one of the first to fourth aspects, wherein a heat treatment is performed after coating the Sn or Sn alloy layer; Ni or N on the surface of the material having a thickness of 0.5 μm or less and a center line average roughness of 0.15 μm or less in order from the surface side.
The method for producing a heat-resistant film according to any one of the first to fourth aspects, wherein a reflow treatment is performed after covering the i-alloy layer, the Cu layer, the Sn or the Sn alloy layer;
The method for producing a heat-resistant film according to any one of claims 5 to 8, wherein a Cu or Cu alloy layer is previously coated on the surface of the material before coating with the i or Ni alloy layer; An electric / electronic component characterized by being coated with the heat-resistant film described in any one of (1) to (4).

【0006】[0006]

【発明の実施の形態】本発明の内容を具体的に説明す
る。また本発明の数値範囲の限定理由を述べる。まず、
最表面のSn層の厚さであるが、厚さが0.05μm未
満であると接触抵抗の安定性、はんだ付け性が低下す
る。特に、低荷重での接触抵抗が不安定になりやすく、
保管時の湿気や温度によるはんだ付け性の低下も生じ
る。また、H SやSOによる腐食や水分の存在下に
おけるNHガスによる腐食等耐食性低下が問題とな
る。Sn層の厚さが2μmを越えると、端子挿入時の掘
り起こし摩擦による挿入力抵抗の増大、疲労特性の低下
や、経済的にも不利になる等の問題を生じる。更にその
内側に形成すべき熱処理によって得られるCu−Sn拡
散層の厚さが厚くなりすぎ、加工時に割れるなどの成形
加工性の低下が認められる。したがって、Sn層の厚さ
は、0.05〜2μmの範囲とする。更に、好ましい範
囲としては、0.1〜1μmの範囲とする。ここで、S
n層の形成は、めっき、溶融浸漬、ショットピーニン
グ、クラッド等いずれの方法を用いても良いが、厚さの
制御やコスト面からめっきが望ましい。また、ここでい
うSn層の厚さは、熱処理等による拡散処理が完了した
後の最表面のSn層の厚さであり、Cu−Sn金属間化
合物層の外側(表面側)の部分である。ただし、拡散処
理の影響により、20wt%以下のSn以外の元素を含
んでも良い。Sn以外の元素を20wt%を超えて含有
すると、長期加熱後のはんだ付け性や接触抵抗に問題が
生じる場合がある。さらに、拡散処理前の最表面に被覆
するSnは、Sn−Cu、Sn−Ag、Sn−Bi、S
n−Zn、Sn−Pb等の合金めっきやSn−In等の
溶融浸漬でも構わない。ただし、内側にCu−Sn金属
間化合物を含む合金層を設ける拡散処理を行った際や長
期加熱により、Sn中のCu、Ag、Bi、Zn、P
b、In等が最表面に拡散し、酸化しても、はんだ付け
性や接触抵抗を低下させないことが重要である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The contents of the present invention will be specifically described.
You. The reason for limiting the numerical range of the present invention will be described. First,
The thickness of the Sn layer on the outermost surface is less than 0.05 μm.
If it is full, contact resistance stability and solderability will decrease.
You. In particular, the contact resistance at low loads tends to be unstable,
Reduced solderability due to humidity and temperature during storage
You. Also, H 2S and SO2Corrosion and in the presence of moisture
NH3Deterioration of corrosion resistance such as corrosion by gas is a problem
You. If the thickness of the Sn layer exceeds 2 μm,
Increased insertion force resistance due to raised friction, reduced fatigue properties
In addition, problems such as economic disadvantage arise. Furthermore
Cu-Sn expansion obtained by heat treatment to be formed inside
Molding such as when the thickness of the spattered layer becomes too thick and cracks during processing
A decrease in workability is observed. Therefore, the thickness of the Sn layer
Is in the range of 0.05 to 2 μm. In addition, the preferred range
The range is 0.1 to 1 μm. Where S
The formation of the n-layer is performed by plating, hot dipping,
Or any other method such as cladding.
Plating is desirable in terms of control and cost. Also here
The thickness of the Sn layer has been completed by the diffusion treatment by heat treatment or the like.
Is the thickness of the Sn layer on the outermost surface after Cu-Sn intermetallic
This is the outer (surface side) portion of the compound layer. However, the diffusion process
20% by weight or less elements other than Sn
It's fine. Contains elements other than Sn in excess of 20 wt%
Then, there is a problem in solderability and contact resistance after long-term heating.
May occur. In addition, coat the outermost surface before diffusion treatment
Sn is Sn-Cu, Sn-Ag, Sn-Bi, S
Alloy plating of n-Zn, Sn-Pb, etc.
Melt immersion may be used. However, Cu-Sn metal inside
When performing diffusion treatment to provide an alloy layer containing
Initial heating, Cu, Ag, Bi, Zn, P in Sn
b, In, etc. are diffused to the outermost surface and soldered even if oxidized
It is important that the properties and contact resistance are not reduced.

【0007】また、Sn被覆の下地として、厚さ0.0
5〜2μmのCu―Sn金属間化合物を含む合金層が必
要である。このCu−Sn金属間化合物を含む合金層
は、熱処理によって下地Cu被覆例えばCuめっきから
のCuの拡散を利用し、表面に被覆したSnと合金化す
ることを利用して形成させるのが好ましい。したがって
反応後に残るCuを含むものとする。ただし、Cuとし
て残るめっき厚さは0.7μm以下、更に0.3μm以
下が望ましい。余剰なCuは、長期加熱により拡散し、
Cu−Sn拡散層を成長させ、最表層部のSn厚さを減
少し、接触抵抗やはんだ付け性を低下させる。このよう
にして得られたCu―Sn金属間化合物を含む合金層
は、更にその内側(下地側)からのNiの拡散を効果的
に抑制し、表面にNi−Snの合金層やその酸化物の形
成を効果的に抑制する。これにより、長期加熱後の接触
抵抗の増大を抑制することができる。更に、硬質なCu
−Sn系金属間化合物を含む合金層は挿入力の低減効果
にも寄与する。このような効果を効率的に発現させるた
めには0.05μm以上、好ましくは0.1μm以上の
厚さが必要である。しかしながら、Cu−Sn金属間化
合物を含む合金層が厚すぎると、加工性が著しく低下す
る。また、拡散によって生じたCu−Sn拡散層は表面
粗さを増大するため、最表層部のSn被覆を調整して
も、外観の荒れや挿入力に悪影響を及ぼしやすい。した
がって、好ましいCu−Sn厚さは2μm以下、更に好
ましくは1μm以下とする。更にCu−Sn金属間化合
物を含む合金層の内側(下地)に、NiまたはNi合金
層の被覆を必要とする。このNiまたはNi合金層は、
素材に銅または銅合金を利用した際のCuの拡散を効果
的に抑制するばかりでなく、銅合金中の添加元素の拡散
を効果的に抑制し、接触抵抗やはんだ付け性、更には皮
膜の耐熱密着性の低下を効果的に防止する。例えば、黄
銅中のZn、りん青銅中のP等である。また、このNi
またはNi合金層は、その上のCu−Sn金属間化合物
を含む合金層と相まって、挿入力抵抗、耐熱性、耐食性
等を向上する効果がある。このNiまたはNi合金層
は、めっきによって形成される場合が多いが前述のSn
同様、いかなる方法でも良い。また、被覆するのはNi
でも良いし、Ni合金でも良い。電気めっきで行うNi
合金としては、Ni−Co、Ni−P等が挙げられる。
また、Cu−Sn拡散層を得る熱処理の際に、素材やC
uめっきと拡散し、Ni―Cu等の合金層が形成されて
も構わない。
[0007] Further, as a base of Sn coating, a thickness of 0.0
An alloy layer containing a Cu—Sn intermetallic compound of 5 to 2 μm is required. The alloy layer containing the Cu-Sn intermetallic compound is preferably formed by utilizing the diffusion of Cu from the underlying Cu coating, for example, Cu plating, by heat treatment and alloying with the Sn coated on the surface. Therefore, Cu remaining after the reaction is included. However, the plating thickness remaining as Cu is preferably 0.7 μm or less, more preferably 0.3 μm or less. Excess Cu is diffused by long-term heating,
By growing a Cu-Sn diffusion layer, the Sn thickness of the outermost layer is reduced, and the contact resistance and solderability are reduced. The alloy layer containing the Cu—Sn intermetallic compound thus obtained further effectively suppresses the diffusion of Ni from the inside (underlayer side), and has a Ni—Sn alloy layer or an oxide thereof on the surface. Formation is effectively suppressed. Thereby, an increase in contact resistance after long-term heating can be suppressed. Furthermore, hard Cu
The alloy layer containing the Sn-based intermetallic compound also contributes to the effect of reducing the insertion force. A thickness of 0.05 μm or more, and preferably 0.1 μm or more, is necessary for efficiently exhibiting such effects. However, if the alloy layer containing the Cu-Sn intermetallic compound is too thick, the workability is significantly reduced. In addition, since the Cu—Sn diffusion layer generated by diffusion increases the surface roughness, even if the Sn coating on the outermost layer is adjusted, the appearance is rough and the insertion force is likely to be adversely affected. Therefore, the preferred thickness of Cu-Sn is 2 μm or less, more preferably 1 μm or less. Further, the inside of the alloy layer containing the Cu-Sn intermetallic compound (base) needs to be coated with Ni or a Ni alloy layer. This Ni or Ni alloy layer is
In addition to effectively suppressing the diffusion of Cu when using copper or a copper alloy as the material, it also effectively suppresses the diffusion of additional elements in the copper alloy, and improves contact resistance, solderability, Effectively prevent reduction in heat adhesion. For example, Zn in brass and P in phosphor bronze. In addition, this Ni
Alternatively, the Ni alloy layer has an effect of improving insertion force resistance, heat resistance, corrosion resistance, and the like, in combination with an alloy layer containing a Cu-Sn intermetallic compound thereon. This Ni or Ni alloy layer is often formed by plating,
Similarly, any method may be used. The coating is made of Ni
However, a Ni alloy may be used. Ni by electroplating
Examples of the alloy include Ni-Co and Ni-P.
In addition, during the heat treatment for obtaining the Cu—Sn diffusion layer,
An alloy layer of Ni—Cu or the like may be formed by diffusing with u plating.

【0008】また、素材を鉄鋼材料やステンレス、アル
ミ合金等の銅、銅合金以外にも応用できる。この場合、
NiやNi合金皮膜の密着性向上のために、Cu下地め
っきを行うことができるが、この下地めっきからのCu
の拡散を効果的に抑制できるため、長期加熱時の接触抵
抗変化やはんだ付け性の劣化を効果的に抑制できる。一
般的には、電気電子部品は、その電気伝導性やばね性、
磁性等必要な特性等を考慮すると、素材は銅または銅合
金が好ましいが、前述のようにこの限りではない。素材
を銅または銅合金とした場合は下地側から、Niまたは
Ni合金、(Cu)、Cu−Sn金属間化合物を含む合
金、SnまたはSn合金の順、あるいはCuまたはCu
合金、NiまたはNi合金、(Cu)、Cu−Sn金属
間化合物を含む合金、SnまたはSn合金の層構造であ
ることが必要である。素材を銅合金とした場合は、強
度、弾性、電気伝導性、加工性、耐食性などの面から好
ましい添加元素の範囲としてZn:0.01〜50wt
%、Sn:0.1〜12wt%、Fe:0.01〜5w
t%、Ni:0.01〜30wt%、Co:0.01〜
5wt%、Ti:0.01〜5wt%、Mg:0.01
〜3wt%、Zr:0.01〜3wt%、Ca:0.0
1〜1wt%、Si:0.01〜5wt%、Mn:0.
01〜20wt%、Cd:0.01〜5wt%、Al:
0.01〜10wt%、Pb:0.01〜5wt%、B
i:0.01〜5wt%、Be:0.01〜3wt%、
Te:0.01〜1wt%、Y:0.01〜5wt%、
La:0.01〜5wt%、Cr:0.01〜5wt
%、Ce:0.01〜5wt%、Au:0.01〜5w
t%、Ag:0.01〜5wt%、P:0.005〜
0.5wt%のうち少なくとも1種以上の元素を含み、
その総量が0.01〜50wt%であることが望まし
い。なお、原料としてのリサイクル性を考慮すると銅合
金にNi、Snを含むことが望ましい。
Further, the material can be applied to materials other than iron and steel materials, copper such as stainless steel and aluminum alloy, and copper alloy. in this case,
In order to improve the adhesion of the Ni or Ni alloy film, Cu base plating can be performed.
Therefore, it is possible to effectively suppress the change in contact resistance and the deterioration in solderability during long-term heating because the diffusion of the solder can be effectively suppressed. In general, electrical and electronic components have their electrical conductivity, springiness,
Taking into account the required properties such as magnetism, the material is preferably copper or a copper alloy, but is not limited to this as described above. When the material is copper or a copper alloy, Ni or a Ni alloy, (Cu), an alloy containing a Cu-Sn intermetallic compound, Sn or a Sn alloy, or Cu or Cu from the base side
It is necessary to have a layer structure of an alloy, Ni or a Ni alloy, (Cu), an alloy containing a Cu-Sn intermetallic compound, or Sn or a Sn alloy. When the material is a copper alloy, Zn: 0.01 to 50 wt. Is preferred as a range of the additive element in terms of strength, elasticity, electric conductivity, workability, corrosion resistance and the like.
%, Sn: 0.1 to 12 wt%, Fe: 0.01 to 5 w
t%, Ni: 0.01 to 30 wt%, Co: 0.01 to
5 wt%, Ti: 0.01 to 5 wt%, Mg: 0.01
-3 wt%, Zr: 0.01-3 wt%, Ca: 0.0
1-1 wt%, Si: 0.01-5 wt%, Mn: 0.
01-20 wt%, Cd: 0.01-5 wt%, Al:
0.01 to 10 wt%, Pb: 0.01 to 5 wt%, B
i: 0.01 to 5 wt%, Be: 0.01 to 3 wt%,
Te: 0.01-1 wt%, Y: 0.01-5 wt%,
La: 0.01 to 5 wt%, Cr: 0.01 to 5 wt%
%, Ce: 0.01-5 wt%, Au: 0.01-5 w
t%, Ag: 0.01-5 wt%, P: 0.005-
Containing at least one element among 0.5 wt%,
It is desirable that the total amount is 0.01 to 50 wt%. In consideration of recyclability as a raw material, it is desirable that the copper alloy contains Ni and Sn.

【0009】次に各層の厚さとその限定理由について述
べる。最表面のSnまたはSn合金層の厚さ(X)、そ
の内側のCu−Snを主体とする金属間化合物を含む合
金層の厚さ(Y)、その内側のNiまたはNi合金層の
厚さ(Z)、それぞれの厚さの最適値については前述し
たとおりである。しかしながら、それぞれの表面処理に
相互作用があり、厚さの比率を限定した方が望ましいこ
とがわかった。具体的には、長期加熱による各元素の拡
散、酸化による電気性能劣化への対応、端子挿入時の掘
り起こし抵抗や凝着による挿入力増大への対応、摩耗や
腐食への対応等で、最適な膜厚比が得られることであ
る。膜厚比は以下であることが望ましい。 0.2X≦ Y ≦ 5X (1)式 0.05Y≦ Z ≦ 3Y (2)式 膜厚比が上限を越えた場合あるいは下限未満の場合は、
加熱後の接触抵抗、耐湿試験後のはんだ付け性、端子挿
入力抵抗、摩耗量、耐食性等のいずれかが低下し、全て
を満足できなくなる。したがって(1)式、(2)式を
満たす膜厚にすることが重要である。
Next, the thickness of each layer and the reason for the limitation will be described. The thickness of the outermost surface Sn or Sn alloy layer (X), the thickness of the inner alloy layer containing an intermetallic compound mainly composed of Cu-Sn (Y), the thickness of the Ni or Ni alloy layer inside thereof (Z) The optimum value of each thickness is as described above. However, it has been found that there is an interaction between the respective surface treatments and it is desirable to limit the thickness ratio. Specifically, it is suitable for the diffusion of each element by long-term heating, the response to electrical performance deterioration due to oxidation, the resistance to digging up at the time of terminal insertion, the increase of insertion force due to adhesion, the response to wear and corrosion, etc. That is, a film thickness ratio can be obtained. It is desirable that the film thickness ratio is as follows. 0.2X ≦ Y ≦ 5X (1) Equation 0.05Y ≦ Z ≦ 3Y (2) When the film thickness ratio exceeds the upper limit or is less than the lower limit,
Any one of contact resistance after heating, solderability after moisture resistance test, terminal insertion force resistance, abrasion amount, corrosion resistance, etc. is reduced, and all of them cannot be satisfied. Therefore, it is important to make the film thickness satisfying the expressions (1) and (2).

【0010】次に素材の表面粗さにおいて、JIS B
0601に準拠した測定方法によって、十点平均粗さ
が1.5μm以下で且つ中心線平均粗さが0.15μm
以下であることが好ましい。素材の表面粗さを限定する
ことにより、その素材上に被覆する各層の表面平滑度が
安定し、密着性や外観が向上する。まためっき行う場合
は、耐熱密着性や膜厚分布にも効果がある。素材の表面
粗さの規定は、特に、下地側から場合によってはCuま
たはCu合金を被覆し、更にNiまたはNi合金、C
u、SnまたはSn合金を被覆した表面と、その後に行
うリフロー等の熱処理後の外観や表面粗さの安定に寄与
する。リフロー後の表面粗さは、十点平均粗さが1.0
μm以下で且つ中心線平均粗さが0.1μm以下である
ことが好ましい。また、素材自体の酸化皮膜厚さは各層
を形成する上で重要である。特に前処理との関わりで、
めっき法で皮膜を形成する場合は、密着性、外観、拡散
時のボイド発生等に影響するので、素材の酸化皮膜は2
0nm以下、好ましくは12nm以下とするべきであ
る。これらにより、最表面に厚さが0.05〜2μmの
SnまたはSn合金層とその内側に厚さが0.05〜2
μmで且つ式(1)を満足するCu−Snを主体とする
金属間化合物を含む合金層または更にCuと、更にその
内側に厚さが0.01〜1μmで且つ式(2)を満足す
るNiまたはNi合金層で構成された耐熱性皮膜を効果
的に得ることができる。
Next, according to the surface roughness of the material, JIS B
According to a measuring method based on No. 0601, the ten-point average roughness is 1.5 μm or less and the center line average roughness is 0.15 μm.
The following is preferred. By limiting the surface roughness of the material, the surface smoothness of each layer coated on the material is stabilized, and the adhesion and appearance are improved. When plating is performed, it is also effective in heat resistance and film thickness distribution. The surface roughness of the material is specified, in particular, by coating Cu or Cu alloy from the underlayer side in some cases, furthermore, Ni or Ni alloy, C
It contributes to the surface coated with u, Sn or Sn alloy and the appearance and surface roughness after heat treatment such as reflow performed thereafter. The surface roughness after reflow has a ten-point average roughness of 1.0
It is preferable that the center line average roughness is 0.1 μm or less. The thickness of the oxide film of the material itself is important in forming each layer. Especially in relation to pre-processing,
When a film is formed by a plating method, the adhesiveness, appearance, generation of voids during diffusion, and the like are affected.
It should be 0 nm or less, preferably 12 nm or less. Thus, a Sn or Sn alloy layer having a thickness of 0.05 to 2 μm on the outermost surface and a thickness of 0.05 to 2
μm and an alloy layer containing an intermetallic compound mainly composed of Cu—Sn satisfying the formula (1) or further Cu, and furthermore, 0.01 to 1 μm in thickness inside and satisfying the formula (2) A heat-resistant coating composed of a Ni or Ni alloy layer can be effectively obtained.

【0011】次に製造方法に関して述べる。本発明の構
成を効果的に得る方法として以下に詳述する。まず、表
面粗さや酸化皮膜厚さを調整した素材を準備し、場合に
よってはCuを被覆する。素材が銅や銅合金である場合
には下地のCu被覆を省略できる。以下、被覆の望まし
い方法であるめっきを例として記述する。素材またはC
uめっきした素材にNiまたはNi合金をめっきする。
ただし、密着性を考慮し、脱脂、酸洗等の洗浄を充分に
行う必要がある。次にCuめっきを行う。ただし、この
Cuのめっき後の外観や密着性を向上するために、Ni
めっきとCuめっきとの工程間で酸洗を行うことが望ま
しい。そして、最表層にSnまたはSn合金めっきを行
う。このように、下地側から、Ni、Cu、Snの基本
構造をとることが重要である。次に、中間めっきのCu
と最表面のSnを拡散させ、Cu−Sn拡散層を得る。
この処理は、最表面のSnを溶融させるリフロー処理と
兼ねることが望ましい。具体的には、リフロー処理時の
ヒートパターンを適正にすることにより、所望の厚さの
SnとCu−Sn拡散層が得られる。ただし、中間のC
uめっきは、Cu―Sn拡散層を形成するための厚さで
あればよく、反応で残された余剰な厚さとしては必要な
い。具体的にはCuとして残る厚さは0.7μm以下、
更に0.3μm以下が望ましい。余剰なCuは、長期加
熱により拡散し、Cu−Sn拡散層を成長させ、最表層
部のSn厚さを減少し、接触抵抗やはんだ付け性を低下
させる。リフロー処理条件は、300〜900℃の温
度、1〜300秒間の条件が望ましい。300℃より低
い温度や900℃を越える温度では、リフローと拡散の
両方を同時に制御しにくい。特に良好な表面状態と酸化
抑制の面と、拡散層の厚さ制御や部分的に急激に拡散層
が成長する異常拡散の抑制面で温度因子は重要である。
雰囲気ガスはリフローの方法によって適宜選択可能であ
る。主なリフロー方式は、バーナー方式、熱風循環方
式、赤外線方式、ジュール熱方式があるが、いずれの方
式を用いてもよい。ただし、それらの方法によって加熱
時間が異なるが、1秒未満では充分な拡散層が得られ
ず、且つ300秒を超える時間では効果が飽和し、コス
ト的にも不利になる。
Next, the manufacturing method will be described. The method for effectively obtaining the configuration of the present invention will be described in detail below. First, a material whose surface roughness and oxide film thickness are adjusted is prepared, and if necessary, coated with Cu. When the material is copper or a copper alloy, the underlying Cu coating can be omitted. Hereinafter, plating, which is a desirable method of coating, will be described as an example. Material or C
Ni or Ni alloy is plated on the u-plated material.
However, it is necessary to sufficiently perform cleaning such as degreasing and pickling in consideration of adhesion. Next, Cu plating is performed. However, in order to improve the appearance and adhesion after plating of Cu, Ni
It is desirable to perform pickling between the steps of plating and Cu plating. Then, Sn or Sn alloy plating is performed on the outermost layer. Thus, it is important to take the basic structure of Ni, Cu, and Sn from the base side. Next, the intermediate plating Cu
Then, Sn on the outermost surface is diffused to obtain a Cu-Sn diffusion layer.
This treatment is desirably also used as a reflow treatment for melting Sn on the outermost surface. Specifically, a Sn and Cu-Sn diffusion layer having a desired thickness can be obtained by optimizing the heat pattern during the reflow treatment. However, the middle C
The u-plating only needs to have a thickness for forming the Cu—Sn diffusion layer, and is not necessary as an excess thickness left by the reaction. Specifically, the thickness remaining as Cu is 0.7 μm or less,
Further, the thickness is preferably 0.3 μm or less. Excess Cu diffuses due to long-term heating, grows a Cu—Sn diffusion layer, reduces the Sn thickness of the outermost layer, and lowers contact resistance and solderability. As the reflow treatment conditions, a temperature of 300 to 900 ° C. and a condition of 1 to 300 seconds are desirable. At a temperature lower than 300 ° C. or a temperature exceeding 900 ° C., it is difficult to simultaneously control both reflow and diffusion. The temperature factor is particularly important in terms of good surface condition and oxidation suppression, and in terms of controlling the thickness of the diffusion layer and suppressing abnormal diffusion in which the diffusion layer grows partly abruptly.
The atmosphere gas can be appropriately selected depending on the reflow method. The main reflow method includes a burner method, a hot air circulation method, an infrared method, and a Joule heat method, and any method may be used. However, the heating time differs depending on the method, but if it is less than 1 second, a sufficient diffusion layer cannot be obtained, and if it exceeds 300 seconds, the effect is saturated and the cost is disadvantageous.

【0012】また、Snのリフロー後の酸化皮膜厚さは
できるだけ薄い方が望ましいが、その厚さは30nm以
下が望ましい。表面の酸化皮膜厚さが30nmを越える
と接触抵抗が増加し、また極めて不安定となり電気性能
が劣化する。さらにはんだ付け性や酸化皮膜の密着性が
低下し、その後の加工で剥離する場合がある。更に好ま
しい酸化皮膜厚さは、20nm以下である。ここで、酸
化皮膜は、酸化錫が主体であるが、この酸化皮膜はSn
に添加した元素やCu−Sn拡散層中のCu、下地のN
iまたはNi合金元素が拡散したもの、あるいは素材の
銅基合金中に含まれる添加元素が拡散したものがSnと
共に複合酸化物を形成したものを含む。このような表面
に形成された酸化物は、下地のCu−Snの拡散層、N
iまたはNi合金層と相まって耐摩耗性やすべり性を向
上させる効果がある。しかしながら、表面酸化物は、接
触抵抗やはんだ付け性に悪影響を及ぼすため、薄く制御
した方が好ましい。以上によって構成された皮膜は、電
気部品のオス、メス端子に応用する場合において、オス
側、メス側のいずれかもしくはその両方に適用できる。
さらに、必要な部分のみに適用しても差し支えない。
The thickness of the oxide film after reflow of Sn is desirably as small as possible, but the thickness is desirably 30 nm or less. If the thickness of the oxide film on the surface exceeds 30 nm, the contact resistance increases and becomes extremely unstable, deteriorating the electrical performance. Further, the solderability and the adhesion of the oxide film may be deteriorated, and peeling may occur in subsequent processing. A more preferred oxide film thickness is 20 nm or less. Here, the oxide film is mainly composed of tin oxide.
Added to Cu, Cu in Cu-Sn diffusion layer, N
This includes those in which the i or Ni alloy element is diffused, or those in which the additive element contained in the copper-based alloy as the material is diffused forms a complex oxide with Sn. The oxide formed on such a surface is composed of an underlying Cu—Sn diffusion layer, N 2
In combination with the i or Ni alloy layer, there is an effect of improving wear resistance and slipperiness. However, since the surface oxide has an adverse effect on contact resistance and solderability, it is preferable to control the surface oxide thinly. When applied to the male and female terminals of an electric component, the coating configured as described above can be applied to either or both of the male and female sides.
Further, it may be applied to only necessary parts.

【0013】[0013]

【実施例】以下に本発明の実施例を記載する。EXAMPLES Examples of the present invention will be described below.

【0014】[実施例1] 表1にその厚さと構成を示す
表面処理材No.1〜16を準備した。ただし、各層の
形成手段はすべて電気めっきにて行った。具体的には、
Niはスルファミン酸ニッケル浴を、Cuは硫酸銅浴
を、Snは硫酸塩浴を用いた。また、Niめっきの前後
の工程で酸洗を行った。ただし、No.9、10、15
はNiを、No.11はNi、Cuを、No.12はC
uを、No.16はSnめっきを行わなかった(表1で
その皮膜厚さに棒線を引いている)。素材は、1 wt%
Ni、0.9 wt%Sn、0.05 wt%Pを含んだ銅合
金の板厚0.25mmの圧延材を用い、表面粗さは、十
点平均粗さが0.9μmで且つ中心線平均粗さが0.0
8μmであり、素材の酸化皮膜厚さは約7nmであっ
て、20nmよりも充分に小さい値であった。次にリフ
ロー条件を変化させ、450〜700℃、4〜20秒間
の連続リフロー処理を行い、リフロー処理と同時に拡散
層の形成も行った。リフロー後の最表面の酸化皮膜厚さ
は、AES、ESCAの測定結果から、No.1〜14
は約3〜8nm、No.15、16はいずれも約15n
mであって、いずれの試料も30nmよりも充分に小さ
い値であった。また表面粗さは、十点平均粗さが0.2
〜0.7μmで、且つ、中心線平均粗さが0.05〜
0.10μmであった。各層の厚さは、一層ずつ電解法
により表層側から溶解し、X線膜厚計と電解法により測
定した。更に、厚さが薄いものに対しては、オージェ電
子分光装置(AES)、光電子分光装置(ESCA)等
の分析装置を併用したり、断面を透過電子顕微鏡(TE
M)観察し、測定した。また、計算によって得られる目
標電着量との整合性も確認しながら各層の膜厚を測定し
た。そして膜厚として確認できなかった皮膜(Sn<
0.05μm、Cu−Sn<0.05μm、Cu<0.
05μm)についてはNDと表示した。
Example 1 Table 1 shows surface treatment materials No. 1 to 16 were prepared. However, all means for forming each layer were performed by electroplating. In particular,
Ni used a nickel sulfamate bath, Cu used a copper sulfate bath, and Sn used a sulfate bath. Also, pickling was performed before and after the Ni plating. However, no. 9, 10, 15
Is Ni, No. No. 11 represents Ni and Cu; 12 is C
u, No. No. 16 did not perform Sn plating (in Table 1, a bar is drawn for the film thickness). Material is 1 wt%
A rolled material of a copper alloy containing Ni, 0.9 wt% Sn, and 0.05 wt% P having a thickness of 0.25 mm is used. The surface roughness is a 10-point average roughness of 0.9 μm and a center line. Average roughness 0.0
The thickness of the oxide film of the material was about 7 nm, which was sufficiently smaller than 20 nm. Next, the reflow conditions were changed, a continuous reflow process was performed at 450 to 700 ° C. for 4 to 20 seconds, and a diffusion layer was formed simultaneously with the reflow process. The thickness of the oxide film on the outermost surface after the reflow was No. 1 from the measurement results of AES and ESCA. 1-14
Is about 3 to 8 nm; 15 and 16 are both about 15n
m, which was a value sufficiently smaller than 30 nm for each sample. In addition, the surface roughness has a ten-point average roughness of 0.2.
0.7 μm, and the center line average roughness is 0.05 to
It was 0.10 μm. The thickness of each layer was determined by dissolving one layer at a time from the surface side by an electrolytic method and measuring the thickness by an X-ray film thickness meter and an electrolytic method. Further, when the thickness is small, an analyzer such as an Auger electron spectrometer (AES) or a photoelectron spectrometer (ESCA) may be used in combination, or a cross section may be observed with a transmission electron microscope (TEE).
M) Observed and measured. The thickness of each layer was measured while confirming the consistency with the target amount of electrodeposition obtained by calculation. And the film (Sn <
0.05 μm, Cu-Sn <0.05 μm, Cu <0.
05 μm) is indicated as ND.

【0015】以上のようにして得られた試験材の摩擦係
数測定、成形加工性、はんだ付け試験、耐熱密着性、接
触抵抗、変色を調査した。摩擦係数の測定方法は、図1
に示すように、内側半径R=1mmの3つのインデント
を設けた表面処理板材を上側とし、これに15Nの荷重
をかけながら100mm/分の速度で、同じ表面処理を
施した下側板材の上を移動し、ロードセルで摩擦力を測
定し、摩擦係数を計算した。成形加工性は、90゜W曲
げ試験(JIS H 3110、R=0.2mm、圧延
方向および垂直方向)を行い、試料中央部の山表面を2
4倍の実体顕微鏡で観察して評価した。また、摩擦係数
測定のためにインデント加工した際のひび割れも24倍
の実体顕微鏡で観察した。両方の試験で割れが観察され
なかったものを○印、どちらかの加工で割れが観察され
たものを×印として評価した。はんだ付け性は、MIL
−STD−202F−208Eに準拠し、沸騰蒸気に1
時間暴露した後に、非活性フラックスを用いて試験し
た。試験結果は、95%以上濡れていれば○、95%未
満を×として評価した。耐熱密着性は、160℃、10
00時間加熱した後に90゜W曲げ試験(JIS H
3110、R=0.2mm、圧延方向および垂直方向)
を行った後に、テ−プによるピ−リングを行い評価し
た。ピーリングにより剥離が発生しなかったものを○
印、剥離が発生したものを×印とした。また同時に表面
の変色度合いを目視で観察し、加熱前に対し著しく変色
したものを×として評価した。接触抵抗の試験は、試料
を160℃、1000時間加熱した後に、低電流低電圧
測定装置を用い、4端子法により測定した。Au接触子
の最大加重を0.5Nとし、このときの抵抗値を測定し
た。以上の評価結果を表2に示す。
The test materials obtained as described above were measured for friction coefficient measurement, moldability, soldering test, heat resistance, contact resistance, and discoloration. Figure 1 shows the method of measuring the coefficient of friction.
As shown in the figure, a surface-treated plate material provided with three indents having an inner radius R = 1 mm is set as an upper side, and a lower surface plate material subjected to the same surface treatment is applied at a speed of 100 mm / min while applying a load of 15N. Was moved, the friction force was measured with a load cell, and the friction coefficient was calculated. The formability was determined by conducting a 90 ° W bending test (JIS H 3110, R = 0.2 mm, rolling direction and vertical direction),
It was observed and evaluated with a 4 × stereo microscope. In addition, cracks during indentation for friction coefficient measurement were also observed with a 24 × stereo microscope. Those in which cracks were not observed in both tests were evaluated as O, and those in which cracks were observed in either process were evaluated as X. Solderability is MIL
-Complies with STD-202F-208E, one for boiling steam
After a time exposure, they were tested with an inert flux. The test results were evaluated as ○ when 95% or more wet, and as X when less than 95% wet. 160 ° C, 10
After heating for 00 hours, 90 ° W bending test (JIS H
3110, R = 0.2 mm, rolling direction and vertical direction)
After performing the above, peeling was performed by tape and evaluated. If peeling did not occur due to peeling,
The mark and the one where peeling occurred were marked with x. At the same time, the degree of discoloration on the surface was visually observed, and those markedly discolored before heating were evaluated as x. The contact resistance test was performed by heating the sample at 160 ° C. for 1000 hours and then measuring the contact resistance by a four-terminal method using a low-current low-voltage measuring device. The maximum weight of the Au contact was 0.5 N, and the resistance value at this time was measured. Table 2 shows the evaluation results.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】表1および表2の結果から、本発明に係わ
るNo.1〜8の材料は、摩擦係数が小さく優れてお
り、且つ、成形加工性、はんだ付け性、加熱試験後の皮
膜密着性、接触抵抗、耐変色に優れている。したがっ
て、近時の多ピン用コネクタ、充電ソケット、プリント
基板の接続部品等の用途に極めて優れた特性を有すると
いえる。これに対し、Ni層の無いNo.9、10は摩
擦係数が大きく、且つ加熱後の接触抵抗や変色の点で劣
っている。No.11は、下地のNiめっきおよび中間
めっきのCuを行わず、素材のCuと表面のSnで拡散
層を形成させたものであるが、摩擦係数は小さいもの
の、はんだ付け性、加熱後の接触抵抗、変色の点で劣っ
ている。Cuの中間めっきを行わず、Cu−Sn拡散層
のないNo.12は、はんだ付け性、加熱後の接触抵
抗、変色の点で劣っている。Niが厚いNo.13は成
形加工性に劣り、Snが厚いNo.14は摩擦係数に劣
り、Ni層がなく且つCu―Sn拡散層が厚いNo.1
5は、成形加工性、はんだ付け性、加熱後の接触抵抗、
変色の点で劣っている。Snの無いNo.16は、はん
だ付け性、加熱後の接触抵抗、変色の点で劣っている。
From the results shown in Tables 1 and 2, No. 1 according to the present invention was obtained. The materials Nos. 1 to 8 have a small coefficient of friction and are excellent, and are excellent in moldability, solderability, film adhesion after a heat test, contact resistance, and discoloration resistance. Therefore, it can be said that it has extremely excellent characteristics for recent applications such as a multi-pin connector, a charging socket, and a connection component of a printed circuit board. On the other hand, in the case of No. Nos. 9 and 10 have large friction coefficients and are inferior in contact resistance and discoloration after heating. No. Reference numeral 11 denotes a material in which a diffusion layer is formed by using Cu as a material and Sn on a surface without performing Cu for Ni plating and intermediate plating, but has a small coefficient of friction, but has solderability and contact resistance after heating. Inferior in discoloration. No intermediate plating of Cu was performed, and No. No. 12 is inferior in solderability, contact resistance after heating, and discoloration. No. No. 13 is inferior in moldability and has a thick Sn. No. 14 is inferior in friction coefficient, has no Ni layer, and has a thick Cu—Sn diffusion layer. 1
5 is moldability, solderability, contact resistance after heating,
Inferior in discoloration. No. without Sn. No. 16 is inferior in solderability, contact resistance after heating, and discoloration.

【0019】[実施例2] 実施例1と同様に各層を電気
めっきで構成した。ただし、No.17、18、21は
素材を黄銅一種(板厚0.8mm)、No.19、2
0、22は素材をりん青銅(板厚0.2mm)とした。
また、それぞれの表面粗さは、十点平均粗さが1.0、
0.9μmで且つ中心線平均粗さが0.13、0.08
μmであり、素材の酸化皮膜厚さはいずれも約8nmで
あって、20nmよりも充分に薄い値であった。次に雰
囲気温度が350〜800℃、時間5〜20秒で連続的
にリフロー処理を行い、リフロー処理と同時にCu−S
n拡散を形成させ、上記試料を準備した。得られた試験
材の摩擦係数測定、成形加工性、はんだ付け試験、耐熱
密着性、接触抵抗、変色を実施例1と同様に調査した。
Example 2 As in Example 1, each layer was formed by electroplating. However, no. Nos. 17, 18, and 21 are made of a kind of brass (plate thickness 0.8 mm). 19, 2
Nos. 0 and 22 were made of phosphor bronze (plate thickness 0.2 mm).
In addition, each surface roughness has a ten-point average roughness of 1.0,
0.9 μm and center line average roughness 0.13, 0.08
μm, and the thickness of the oxide film of each material was about 8 nm, which was a value sufficiently smaller than 20 nm. Next, a reflow process is continuously performed at an atmosphere temperature of 350 to 800 ° C. for a time of 5 to 20 seconds, and Cu-S
The sample was prepared by forming n diffusion. The friction coefficient measurement, moldability, soldering test, heat resistance, contact resistance, and discoloration of the obtained test material were examined in the same manner as in Example 1.

【0020】[0020]

【表3】 [Table 3]

【0021】[0021]

【表4】 [Table 4]

【0022】表3、表4から明らかなように、本願発明
のNo.17〜20は摩擦係数が小さく優れており、且
つ、成形加工性、はんだ付け性、加熱試験後の皮膜密着
性、接触抵抗、耐変色に優れている。したがって、素材
を黄銅やリン青銅にしても本発明の効果は変わらないと
言える。これに対し、Ni層の無いNo.21、22は
摩擦係数が大きく、且つ加熱後の接触抵抗や変色の点で
劣っている。特にNo.22は、加熱後の皮膜の密着性
にも劣り、No.19、20との比較から本発明の効果
が極めて大きいことがわかる。
As is clear from Tables 3 and 4, the No. 1 of the present invention is the same as that shown in FIG. Nos. 17 to 20 have a small coefficient of friction and are excellent, and are excellent in moldability, solderability, film adhesion after a heat test, contact resistance, and discoloration resistance. Therefore, it can be said that the effect of the present invention does not change even if the material is brass or phosphor bronze. On the other hand, in the case of No. Nos. 21 and 22 have large friction coefficients and are inferior in contact resistance and discoloration after heating. In particular, no. No. 22 was inferior in adhesion of the film after heating. 19 and 20, it is understood that the effect of the present invention is extremely large.

【0023】[実施例3] 実施例1で使用した素材に実
施例1と同様に電気めっきによって各層を形成させた。
No.23、24、27は最表面のめっきをSn合金め
っきとし、No.23、27は下地をNiに、No.2
4は下地をNi合金めっきとした。No.25、26、
28は最表面のめっきをSnとし、No.25、26、
28共に下地をNi合金めっきとした。Sn合金めっき
としては、有機錯塩浴を用い、Sn−10wt%Znを
めっきした。Ni合金めっきとしては、ワット浴に亜リ
ン酸を添加し、Ni−5wt%Pをめっきした。実施例
1と同様にリフロー条件を適宜選んでリフローしたとこ
ろ、Sn−Zn合金めっきのZnが表面に拡散し、亜鉛
酸化物を中心とした酸化物を形成したが、接触抵抗に特
に大きな影響を与えなかった。また酸化皮膜厚さは約5
〜11nmであって、30nmより薄い値であった。な
お、No.23〜26はリフローの熱影響でCu−Sn
拡散層を生じたが、No.27、28はCu層が無いた
めに、Cu―Sn拡散層ではなくNi−Sn拡散層を生
じた。
Example 3 Each layer was formed on the raw material used in Example 1 by electroplating in the same manner as in Example 1.
No. In Nos. 23, 24 and 27, the plating on the outermost surface was made of Sn alloy plating. In Nos. 23 and 27, the base was made of Ni, 2
In No. 4, the base was made of Ni alloy plating. No. 25, 26,
In No. 28, the plating on the outermost surface is Sn. 25, 26,
In both cases, the base was made of Ni alloy plating. As the Sn alloy plating, Sn-10 wt% Zn was plated using an organic complex salt bath. As Ni alloy plating, phosphorous acid was added to a Watt bath, and Ni-5 wt% P was plated. When the reflow conditions were appropriately selected and reflowed in the same manner as in Example 1, Zn of the Sn—Zn alloy plating diffused to the surface to form an oxide centering on zinc oxide. Did not give. The oxide film thickness is about 5
1111 nm, a value thinner than 30 nm. In addition, No. 23 to 26 are Cu-Sn due to the heat effect of reflow.
A diffusion layer was formed. In Nos. 27 and 28, a Ni—Sn diffusion layer was formed instead of a Cu—Sn diffusion layer because there was no Cu layer.

【0024】[0024]

【表5】 [Table 5]

【0025】[0025]

【表6】 [Table 6]

【0026】表5、表6より明らかなように、本発明の
No.23〜26は摩擦係数が小さく優れており、且
つ、成形加工性、はんだ付け性、加熱試験後の皮膜密着
性、接触抵抗、耐変色に優れている。したがって、表面
のSn層をSn合金にしたり、Ni層をNi合金にして
も本発明の効果は変わらないと言える。これに対し、C
u−Sn中間層の無いNo.27は、はんだ付け性、加
熱後の接触抵抗に劣り、またNo.28は成形加工性、
はんだ付け性、加熱後の皮膜密着性、接触抵抗や変色の
点で劣っている。したがって、本発明の効果が極めて大
きいことがわかる。
As evident from Tables 5 and 6, the No. 1 of the present invention Nos. 23 to 26 have a small coefficient of friction and are excellent, and are excellent in moldability, solderability, film adhesion after a heat test, contact resistance, and discoloration resistance. Therefore, it can be said that the effect of the present invention does not change even if the Sn layer on the surface is made of a Sn alloy or the Ni layer is made of a Ni alloy. In contrast, C
No. having no u-Sn intermediate layer. No. 27 was inferior in solderability and contact resistance after heating. 28 is moldability,
Poor in solderability, film adhesion after heating, contact resistance and discoloration. Therefore, it is understood that the effect of the present invention is extremely large.

【0027】[0027]

【発明の効果】以上の実施例から明らかなように、本発
明に係る表面処理およびその製造方法、更にこれらによ
って得られた電気電子部品は、摩擦抵抗、成型加工性、
はんだ付け性に優れ、且つ、長期加熱後の密着性、接触
抵抗、耐変色等に優れることから、近時の自動車電装品
等の高密度化に対応できるコネクタ材ならびに耐摩耗性
やはんだ付け性等が要求されるプリント基板の接続用コ
ネクタ等、電気電子部品用材料として優れたものであ
る。
As is apparent from the above examples, the surface treatment and the method for producing the same according to the present invention, and the electric and electronic parts obtained by these methods have the following advantages:
It has excellent solderability and excellent adhesion, contact resistance, and discoloration resistance after long-term heating, making it a connector material that can respond to recent high-density automotive electrical components, as well as abrasion resistance and solderability. It is excellent as a material for electric and electronic parts, such as a connector for connecting a printed circuit board, which is required.

【図面の簡単な説明】[Brief description of the drawings]

【図1】摩擦係数の測定方法を示す図である。FIG. 1 is a diagram showing a method for measuring a coefficient of friction.

【符号の説明】 1 インデント付き上側試験片 2 下側試験片 3 重錘(15N) 4 水平台 5 プーリー 6 ロードセル[Description of Signs] 1 Upper specimen with indent 2 Lower specimen 3 Weight (15N) 4 Horizontal base 5 Pulley 6 Load cell

───────────────────────────────────────────────────── フロントページの続き (72)発明者 成枝 宏人 東京都千代田区丸の内1丁目8番2号 同 和鉱業株式会社内 (72)発明者 尾崎 太一 静岡県浜松市常盤町145の1 日本オーリ ンブラス株式会社内 Fターム(参考) 4K024 AA03 AA07 AA09 AB03 BA01 BB09 BC01 DB02 GA16 4K044 AA01 AB02 BA06 BA10 BB04 BC11 CA18 CA42 CA62 5E063 GA08 GA09 XA01  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroto Narue 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd. (72) Inventor Taichi Ozaki 145-1 Tokiwacho, Hamamatsu-shi, Shizuoka Japan F-term (reference) in Auri Brass, Inc. 4K024 AA03 AA07 AA09 AB03 BA01 BB09 BC01 DB02 GA16 4K044 AA01 AB02 BA06 BA10 BB04 BC11 CA18 CA42 CA62 5E063 GA08 GA09 XA01

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 最表面に厚さXが0.05〜2μmのS
nまたはSn合金層、その内側に厚さYが0.05〜2
μmのCu−Snを主体とする金属間化合物を含む合金
層、更にその内側に厚さZが0.01〜1μmのNiま
たはNi合金層が形成されてなることを特徴とする耐熱
性皮膜。
1. An S layer having a thickness X of 0.05 to 2 μm on the outermost surface.
n or Sn alloy layer, thickness Y of 0.05 to 2 inside
A heat-resistant film comprising an alloy layer containing an intermetallic compound mainly composed of Cu-Sn having a thickness of μm, and a Ni or Ni alloy layer having a thickness Z of 0.01 to 1 μm formed inside the alloy layer.
【請求項2】 0.2X≦Y≦5X、且つ、0.05Y
≦Z≦3Yである、請求項1記載の耐熱性皮膜。
2.X ≦ Y ≦ 5X and 0.05Y
The heat-resistant film according to claim 1, wherein ≤ Z ≤ 3Y.
【請求項3】 前記金属間化合物を含む合金層と前記N
iまたはNi合金層との間に厚さが0.7μm以下のC
u層を有する、請求項1または2記載の耐熱性皮膜。
3. An alloy layer containing the intermetallic compound and the N
C having a thickness of 0.7 μm or less between the i or Ni alloy layer
3. The heat-resistant coating according to claim 1, comprising a u layer.
【請求項4】 前記耐熱性皮膜で被覆される素材の少な
くとも表面層がCuまたはCu合金である、請求項1〜
3のいずれかに記載の耐熱性皮膜。
4. The method according to claim 1, wherein at least a surface layer of the material covered with the heat-resistant film is Cu or a Cu alloy.
3. The heat-resistant film according to any one of 3.
【請求項5】 素材表面上に、該表面側から順にNiま
たはNi合金層、Cu層、SnまたはSn合金層を被覆
した後に熱処理を施すことを特徴とする、請求項1〜4
のいずれかに記載の耐熱性皮膜の製造方法。
5. A heat treatment is performed after a Ni or Ni alloy layer, a Cu layer, a Sn or a Sn alloy layer is coated on the surface of the material in order from the surface side.
The method for producing a heat-resistant film according to any one of the above.
【請求項6】 素材表面上に、該表面側から順にNiま
たはNi合金層、Cu層、SnまたはSn合金層を被覆
した後にリフロー処理を施すことを特徴とする、請求項
1〜4のいずれかに記載の耐熱性皮膜の製造方法。
6. The method according to claim 1, wherein a reflow process is performed on the surface of the material in order from the surface side with a Ni or Ni alloy layer, a Cu layer, a Sn or a Sn alloy layer. The method for producing a heat-resistant film described in Crab.
【請求項7】 表面粗さにおいて十点平均粗さが1.5
μm以下で且つ中心線平均粗さが0.15μm以下であ
る素材表面上に、該表面側から順にNiまたはNi合金
層、Cu層、SnまたはSn合金層を被覆した後に熱処
理を施すことを特徴とする、請求項1〜4のいずれかに
記載の耐熱性皮膜の製造方法。
7. The ten-point average roughness of the surface roughness is 1.5.
μm or less and a center line average roughness of 0.15 μm or less, a Ni or Ni alloy layer, a Cu layer, a Sn or a Sn alloy layer are coated in this order from the surface side, and then heat-treated. The method for producing a heat-resistant film according to claim 1.
【請求項8】 表面粗さにおいて十点平均粗さが1.5
μm以下で且つ中心線平均粗さが0.15μm以下であ
る素材表面上に、該表面側から順にNiまたはNi合金
層、Cu層、SnまたはSn合金層を被覆した後にリフ
ロー処理を施すことを特徴とする、請求項1〜4のいず
れかに記載の耐熱性皮膜の製造方法。
8. The ten-point average roughness of the surface roughness is 1.5.
μm or less and a center line average roughness of 0.15 μm or less, on the surface of the material, Ni or Ni alloy layer, Cu layer, Sn or Sn alloy layer is coated in order from the surface side and then subjected to reflow treatment. The method for producing a heat-resistant film according to any one of claims 1 to 4, characterized in that:
【請求項9】 前記NiまたはNi合金層を被覆する前
に予め前記素材表面上にCuまたはCu合金層を被覆す
る、請求項5〜8のいずれかに記載の耐熱性皮膜の製造
方法。
9. The method according to claim 5, wherein a Cu or Cu alloy layer is previously coated on the surface of the material before the Ni or Ni alloy layer is coated.
【請求項10】 素材表面が請求項1〜4のいずれかに
記載の耐熱性皮膜で被覆されてなることを特徴とする電
気電子部品。
10. An electric / electronic component comprising a material surface coated with the heat-resistant film according to claim 1. Description:
JP2001024031A 2001-01-31 2001-01-31 Heat resistant film, its manufacturing method, and electrical and electronic parts Pending JP2002226982A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001024031A JP2002226982A (en) 2001-01-31 2001-01-31 Heat resistant film, its manufacturing method, and electrical and electronic parts
CN 200710108823 CN101081554A (en) 2001-01-31 2001-12-21 Heat resistant film, its manufacturing method, and electrical and electronic parts
CNB2006101149269A CN100528550C (en) 2001-01-31 2001-12-21 Heat resistant film, its manufacturing method, and electrical and electronic parts
CNB011433949A CN1325696C (en) 2001-01-31 2001-12-21 Heat-resistance protection film, its manufacture method and electric electronic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001024031A JP2002226982A (en) 2001-01-31 2001-01-31 Heat resistant film, its manufacturing method, and electrical and electronic parts

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005172578A Division JP4814552B2 (en) 2005-06-13 2005-06-13 Surface treatment method

Publications (1)

Publication Number Publication Date
JP2002226982A true JP2002226982A (en) 2002-08-14

Family

ID=18889233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001024031A Pending JP2002226982A (en) 2001-01-31 2001-01-31 Heat resistant film, its manufacturing method, and electrical and electronic parts

Country Status (2)

Country Link
JP (1) JP2002226982A (en)
CN (3) CN1325696C (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2381963A (en) * 2001-11-13 2003-05-14 Yazaki Corp Plated electrical terminal
JP2003213486A (en) * 2002-01-21 2003-07-30 Dowa Mining Co Ltd Sn-COVERED MEMBER, AND MANUFACTURING METHOD THEREOF
JP2003293187A (en) * 2002-03-29 2003-10-15 Dowa Mining Co Ltd Copper or copper alloy subjected to plating and method for manufacturing the same
JP2004068026A (en) * 2001-07-31 2004-03-04 Kobe Steel Ltd Conducting material for connecting parts and manufacturing method therefor
JP2004300524A (en) * 2003-03-31 2004-10-28 Dowa Mining Co Ltd Sn-COATED COPPER OR COPPER ALLOY MEMBER AND ITS MANUFACTURING METHOD
JP2005286240A (en) * 2004-03-30 2005-10-13 Dowa Mining Co Ltd Semiconductor device component and its manufacturing method, and semiconductor device using same
WO2006006534A1 (en) 2004-07-08 2006-01-19 Fujikura Ltd. Flexible printed wiring board terminal part or flexible flat cable terminal part
WO2006028189A1 (en) 2004-09-10 2006-03-16 Kabushiki Kaisha Kobe Seiko Sho Conductive material for connecting part and method for manufacturing the conductive material
JP2006118054A (en) * 2001-07-31 2006-05-11 Kobe Steel Ltd Electroconductive material for connecting terminal and method for producing the same
JP2006307336A (en) * 2005-03-29 2006-11-09 Nikko Kinzoku Kk Sn-PLATED STRIP OF Cu-Ni-Si-Zn-BASED ALLOY
JP2007002341A (en) * 2001-07-31 2007-01-11 Kobe Steel Ltd Electroconductive material plate for forming connecting parts and manufacturing method therefor
JP2007063624A (en) * 2005-08-31 2007-03-15 Nikko Kinzoku Kk Copper alloy tinned strip having excellent insertion/withdrawal property and heat resistance
JP2008088477A (en) * 2006-09-29 2008-04-17 Nikko Kinzoku Kk Reflow-sn-plated copper alloy material having excellent whisker resistance
WO2008075723A1 (en) * 2006-12-20 2008-06-26 Hitachi, Ltd. Metal strip, connector and metal strip manufacturing method
JP2008248332A (en) * 2007-03-30 2008-10-16 Nikko Kinzoku Kk Tin-plated strip and its production method
JP2009010301A (en) * 2007-06-29 2009-01-15 Furukawa Electric Co Ltd:The Printed wiring board and printed circuit board
JP2010090400A (en) * 2008-10-03 2010-04-22 Dowa Metaltech Kk Electroconductive material and method for manufacturing the same
JP2010202903A (en) * 2009-03-02 2010-09-16 Dowa Metaltech Kk Sn-COATED COPPER OR COPPER ALLOY, AND METHOD OF MANUFACTURING THE SAME
JP2010215979A (en) * 2009-03-17 2010-09-30 Dowa Metaltech Kk Sn-COATED COPPER OR COPPER ALLOY, AND MANUFACTURING METHOD THEREFOR
US7871710B2 (en) 2007-08-24 2011-01-18 Kobe Steel, Ltd. Conductive material for a connecting part
JP2011012320A (en) * 2009-07-03 2011-01-20 Furukawa Electric Co Ltd:The Metallic material for connector
US7999187B2 (en) 2008-03-24 2011-08-16 Fujikura Ltd. Plated flat conductor and flexible flat cable therewith
US8013428B2 (en) * 2004-09-28 2011-09-06 Lsi Corporation Whisker-free lead frames
JP2013231223A (en) * 2012-05-01 2013-11-14 Dowa Metaltech Kk Plated material and method for producing the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226982A (en) * 2001-01-31 2002-08-14 Dowa Mining Co Ltd Heat resistant film, its manufacturing method, and electrical and electronic parts
JP4986499B2 (en) * 2006-04-26 2012-07-25 Jx日鉱日石金属株式会社 Method for producing Cu-Ni-Si alloy tin plating strip
JP4402132B2 (en) * 2007-05-18 2010-01-20 日鉱金属株式会社 Reflow Sn plating material and electronic component using the same
DE102011006899A1 (en) 2011-04-06 2012-10-11 Tyco Electronics Amp Gmbh Process for the production of contact elements by mechanical application of material layer with high resolution and contact element
CN103834946B (en) * 2012-11-26 2016-03-30 华为技术有限公司 The preparation technology of coating, signal equipment and coating
CN103335942B (en) * 2013-07-08 2015-06-10 大连理工大学 Equipment and method used for measuring friction coefficient between plastic and metal mold
CN105984177B (en) * 2015-02-17 2019-01-22 西门子公司 Composite film coating, preparation method and electronic component
JP6081513B2 (en) * 2015-03-30 2017-02-15 株式会社神戸製鋼所 Copper alloy plate for heat dissipation parts
CN115233131A (en) * 2022-06-17 2022-10-25 武汉凌云光电科技有限责任公司 Method for laser cladding and polishing after immersion tin plating of nonferrous metal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135226A (en) * 1997-10-27 1999-05-21 Harness Syst Tech Res Ltd Manufacture of fitting type connecting terminal

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS595582A (en) * 1982-06-30 1984-01-12 田中貴金属工業株式会社 Contact piece material for commutator
JP2801793B2 (en) * 1991-04-30 1998-09-21 株式会社神戸製鋼所 Tin-plated copper alloy material and method for producing the same
US5780172A (en) * 1995-12-18 1998-07-14 Olin Corporation Tin coated electrical connector
US5916695A (en) * 1995-12-18 1999-06-29 Olin Corporation Tin coated electrical connector
JPH10134869A (en) * 1996-10-30 1998-05-22 Yazaki Corp Terminal material and terminal
JP3286560B2 (en) * 1997-04-28 2002-05-27 株式会社オートネットワーク技術研究所 Mating connection terminal
US6083633A (en) * 1997-06-16 2000-07-04 Olin Corporation Multi-layer diffusion barrier for a tin coated electrical connector
JP3701448B2 (en) * 1997-10-17 2005-09-28 株式会社オートネットワーク技術研究所 Mating type connection terminal
JP3465876B2 (en) * 1999-01-27 2003-11-10 同和鉱業株式会社 Wear-resistant copper or copper-based alloy, method for producing the same, and electric component comprising the wear-resistant copper or copper-based alloy
JP4218042B2 (en) * 1999-02-03 2009-02-04 Dowaホールディングス株式会社 Method for producing copper or copper base alloy
JP2002226982A (en) * 2001-01-31 2002-08-14 Dowa Mining Co Ltd Heat resistant film, its manufacturing method, and electrical and electronic parts

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135226A (en) * 1997-10-27 1999-05-21 Harness Syst Tech Res Ltd Manufacture of fitting type connecting terminal

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004068026A (en) * 2001-07-31 2004-03-04 Kobe Steel Ltd Conducting material for connecting parts and manufacturing method therefor
JP2007002341A (en) * 2001-07-31 2007-01-11 Kobe Steel Ltd Electroconductive material plate for forming connecting parts and manufacturing method therefor
JP2006118054A (en) * 2001-07-31 2006-05-11 Kobe Steel Ltd Electroconductive material for connecting terminal and method for producing the same
GB2381963B (en) * 2001-11-13 2003-11-12 Yazaki Corp Terminal
GB2381963A (en) * 2001-11-13 2003-05-14 Yazaki Corp Plated electrical terminal
JP2003213486A (en) * 2002-01-21 2003-07-30 Dowa Mining Co Ltd Sn-COVERED MEMBER, AND MANUFACTURING METHOD THEREOF
JP2003293187A (en) * 2002-03-29 2003-10-15 Dowa Mining Co Ltd Copper or copper alloy subjected to plating and method for manufacturing the same
JP2004300524A (en) * 2003-03-31 2004-10-28 Dowa Mining Co Ltd Sn-COATED COPPER OR COPPER ALLOY MEMBER AND ITS MANUFACTURING METHOD
JP2005286240A (en) * 2004-03-30 2005-10-13 Dowa Mining Co Ltd Semiconductor device component and its manufacturing method, and semiconductor device using same
EP1784064A1 (en) * 2004-07-08 2007-05-09 Fujikura, Ltd. Flexible printed wiring board terminal part or flexible flat cable terminal part
WO2006006534A1 (en) 2004-07-08 2006-01-19 Fujikura Ltd. Flexible printed wiring board terminal part or flexible flat cable terminal part
US8017876B2 (en) 2004-07-08 2011-09-13 Fujikura Ltd. Terminal portion of flexible print circuit board or flexible flat cable
EP1784064A4 (en) * 2004-07-08 2007-10-24 Fujikura Ltd Flexible printed wiring board terminal part or flexible flat cable terminal part
WO2006028189A1 (en) 2004-09-10 2006-03-16 Kabushiki Kaisha Kobe Seiko Sho Conductive material for connecting part and method for manufacturing the conductive material
US7820303B2 (en) 2004-09-10 2010-10-26 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Conductive material for connecting part and method for manufacturing the conductive material
US8445057B2 (en) 2004-09-10 2013-05-21 Kobe Steel, Ltd. Conductive material for connecting part and method for manufacturing the conductive material
US8013428B2 (en) * 2004-09-28 2011-09-06 Lsi Corporation Whisker-free lead frames
JP2006307336A (en) * 2005-03-29 2006-11-09 Nikko Kinzoku Kk Sn-PLATED STRIP OF Cu-Ni-Si-Zn-BASED ALLOY
JP2007063624A (en) * 2005-08-31 2007-03-15 Nikko Kinzoku Kk Copper alloy tinned strip having excellent insertion/withdrawal property and heat resistance
JP2008088477A (en) * 2006-09-29 2008-04-17 Nikko Kinzoku Kk Reflow-sn-plated copper alloy material having excellent whisker resistance
JP4740814B2 (en) * 2006-09-29 2011-08-03 Jx日鉱日石金属株式会社 Copper alloy reflow Sn plating material with excellent whisker resistance
WO2008075723A1 (en) * 2006-12-20 2008-06-26 Hitachi, Ltd. Metal strip, connector and metal strip manufacturing method
JP2008150690A (en) * 2006-12-20 2008-07-03 Hitachi Ltd Metal strip, connector, and method of manufacturing metal strip
JP2008248332A (en) * 2007-03-30 2008-10-16 Nikko Kinzoku Kk Tin-plated strip and its production method
JP2009010301A (en) * 2007-06-29 2009-01-15 Furukawa Electric Co Ltd:The Printed wiring board and printed circuit board
US7871710B2 (en) 2007-08-24 2011-01-18 Kobe Steel, Ltd. Conductive material for a connecting part
US7999187B2 (en) 2008-03-24 2011-08-16 Fujikura Ltd. Plated flat conductor and flexible flat cable therewith
JP2010090400A (en) * 2008-10-03 2010-04-22 Dowa Metaltech Kk Electroconductive material and method for manufacturing the same
JP2010202903A (en) * 2009-03-02 2010-09-16 Dowa Metaltech Kk Sn-COATED COPPER OR COPPER ALLOY, AND METHOD OF MANUFACTURING THE SAME
JP2010215979A (en) * 2009-03-17 2010-09-30 Dowa Metaltech Kk Sn-COATED COPPER OR COPPER ALLOY, AND MANUFACTURING METHOD THEREFOR
JP2011012320A (en) * 2009-07-03 2011-01-20 Furukawa Electric Co Ltd:The Metallic material for connector
JP2013231223A (en) * 2012-05-01 2013-11-14 Dowa Metaltech Kk Plated material and method for producing the same

Also Published As

Publication number Publication date
CN1325696C (en) 2007-07-11
CN100528550C (en) 2009-08-19
CN1940137A (en) 2007-04-04
CN101081554A (en) 2007-12-05
CN1368562A (en) 2002-09-11

Similar Documents

Publication Publication Date Title
JP2002226982A (en) Heat resistant film, its manufacturing method, and electrical and electronic parts
JP4814552B2 (en) Surface treatment method
JP3880877B2 (en) Plated copper or copper alloy and method for producing the same
JP5025387B2 (en) Conductive material for connecting parts and method for manufacturing the same
JP5384382B2 (en) Copper or copper alloy with Sn plating excellent in heat resistance and method for producing the same
JP5319101B2 (en) Sn plating material for electronic parts
JP5355935B2 (en) Metal materials for electrical and electronic parts
US8940404B2 (en) Tin-plated copper-alloy material for terminal and method for producing the same
US9616639B2 (en) Tin-plated copper-alloy material for terminal having excellent insertion/extraction performance
US6613451B1 (en) Metallic material
JP2000212720A (en) Wear resistant copper or copper base alloy, production thereof and electrical parts composed of wear resistant copper or copper base alloy
JP4522970B2 (en) Cu-Zn alloy heat resistant Sn plating strip with reduced whisker
JP2004300524A (en) Sn-COATED COPPER OR COPPER ALLOY MEMBER AND ITS MANUFACTURING METHOD
JP5325734B2 (en) Conductive member and manufacturing method thereof
JP5436391B2 (en) Film and electrical / electronic parts
TWI752184B (en) Corrosion-resistant terminal material, corrosion-resistant terminal, and wire termination structure
JP2006118054A (en) Electroconductive material for connecting terminal and method for producing the same
JP5027013B2 (en) Plated square wire material for connectors
JP7060514B2 (en) Conductive strip
JP5479766B2 (en) Metal square wire for connecting parts and manufacturing method thereof
JP2003082499A (en) Tin-copper intermetallic compound-dispersed tinned terminal
JP5226032B2 (en) Cu-Zn alloy heat resistant Sn plating strip with reduced whisker
JP2007002341A (en) Electroconductive material plate for forming connecting parts and manufacturing method therefor
JP7281970B2 (en) Electrical contact material and its manufacturing method, connector terminal, connector and electronic component
JP7281971B2 (en) Electrical contact material and its manufacturing method, connector terminal, connector and electronic component

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040220

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050613

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050726

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050826

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070813

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080131

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080215

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080215