JP2007063624A - Copper alloy tinned strip having excellent insertion/withdrawal property and heat resistance - Google Patents

Copper alloy tinned strip having excellent insertion/withdrawal property and heat resistance Download PDF

Info

Publication number
JP2007063624A
JP2007063624A JP2005251579A JP2005251579A JP2007063624A JP 2007063624 A JP2007063624 A JP 2007063624A JP 2005251579 A JP2005251579 A JP 2005251579A JP 2005251579 A JP2005251579 A JP 2005251579A JP 2007063624 A JP2007063624 A JP 2007063624A
Authority
JP
Japan
Prior art keywords
phase
plating
alloy
copper alloy
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005251579A
Other languages
Japanese (ja)
Inventor
Takatsugu Hatano
Masayuki Nagano
隆紹 波多野
真之 長野
Original Assignee
Nikko Kinzoku Kk
日鉱金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Kinzoku Kk, 日鉱金属株式会社 filed Critical Nikko Kinzoku Kk
Priority to JP2005251579A priority Critical patent/JP2007063624A/en
Publication of JP2007063624A publication Critical patent/JP2007063624A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper alloy tinned strip having excellent insertion/withdrawal properties and heat resistance. <P>SOLUTION: The copper alloy tinned strip having excellent insertion/withdrawal properties and heat resistance is obtained by subjecting the surface of a copper alloy strip of a Cu-Ni-Si based alloy, phosphor bronze, brass, red brass, titanium copper or the like to electroplating in order of substrate plating and Sn plating and thereafter performing reflow treatment thereto. When an Sn phase is dissolved away from the surface to the base metal in the copper alloy strip, and a Cu-Sn alloy phase is made to appear on the surface, the average roughness Ra of the Cu-Sn alloy phase is 0.05 to 0.3 μm. Regarding the thickness of the respective plating phase, (1) the average thickness of the Sn phase is 0.02 to 2.0 μm, the thickness of the Cu-Sn alloy phase is 0.1 to 2.0 μm and the thickness of the Cu phase is 0 to 2.0 μm, or, (2) the average thickness of the Sn phase is 0.02 to 2.0 μm, the thickness of the Cu-Sn alloy phase is 0.1 to 2.0 μm, and the thickness of the Ni phase is 0.1 to 2.0 μm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、コネクタ、端子、リレ−、スイッチ等の導電性ばね材として好適な、良好な挿抜性及び耐熱性を有する銅合金すずめっき条に関する。   The present invention relates to a copper alloy tin plating strip having good insertability and heat resistance suitable as a conductive spring material for connectors, terminals, relays, switches and the like.
コネクタ、端子、リレ−、スイッチ等の導電性ばね材には、Snめっきを施した銅合金が用いられる。銅合金のSnめっき条は、一般的に、連続めっきラインにおいて、脱脂及び酸洗の後、電気めっき法によりCu下地めっき相を形成し、次に電気めっき法によりSnめっき相を形成し、最後にリフロー処理を施しSnめっき相を溶融させる工程で製造される。
近年、電子・電気部品の回路数増大により、回路に電気信号を供給するコネクタの多極化が進んでいる。Snめっき材は、その軟らかさからコネクタの接点においてオスとメスを凝着させるガスタイト(気密)構造が採られるため、金めっき等で構成されるコネクタに比べ、コネクタの挿入力が高い。このためコネクタの多極化によるコネクタ挿入力の増大が問題となっている。
例えば、自動車の組み立てラインでは、コネクタを嵌合させる作業は、現在ほとんど人力で行われている。コネクタの挿入力が大きくなると、組み立てラインで作業者に負担がかかり、作業効率の低下に直結する。更に、作業者の健康を損なう可能性も指摘されている。このことから、Snめっき材の挿入力の低減が強く望まれている。
For conductive spring materials such as connectors, terminals, relays, and switches, a copper alloy with Sn plating is used. In general, the Sn plating strip of a copper alloy is formed in a continuous plating line after degreasing and pickling, forming a Cu undercoat phase by electroplating, and then forming an Sn plating phase by electroplating. It is manufactured in a process in which a reflow treatment is applied to melt the Sn plating phase.
In recent years, with the increase in the number of circuits of electronic / electrical components, the number of connectors for supplying electric signals to the circuits has been increasing. Since the Sn plating material adopts a gas tight (airtight) structure in which male and female are adhered to each other at the contact point of the connector due to its softness, the insertion force of the connector is higher than a connector constituted by gold plating or the like. For this reason, an increase in connector insertion force due to the increase in the number of connectors is a problem.
For example, in an automobile assembly line, the work of fitting a connector is currently almost done manually. When the insertion force of the connector is increased, a burden is imposed on the worker on the assembly line, which directly leads to a decrease in work efficiency. Furthermore, the possibility of damaging the health of workers has been pointed out. For this reason, reduction of the insertion force of Sn plating material is strongly desired.
一方、Snめっき材では、経時的に、母材や下地めっきの成分がSn相に拡散して合金相を形成することによりSn相が消失し、接触抵抗、半田付け性といった諸特性が劣化する。銅合金のCu下地Snめっきの場合、この合金相は主としてCu3Sn、Cu6Sn5等の金属間化合物である。特性の経時劣化は、高温ほど促進され、自動車のエンジン回り等では特に顕著になる。
このような状況の中で、米国の3大自動車メーカーにより設立された自動車部品の規格を決定しているUSCARにおいて、コネクタ材の耐熱性の要求が高まってきており、最も厳しい使用条件では、常時の使用温度が155℃、最高使用温度が175℃での耐熱性が要求されている。また、国内においても、特に自動車関連のコネクター材でやはり耐熱性の要求が高まってきており、150℃以下での耐熱性が求められてきている。
更に、コネクタメーカーの生産拠点の海外への移転により、素材がめっきされた後、長期間放置されてから使用されるケースがある。このため、長期間保存しても、めっき材の諸特性が劣化しない材料、すなわち耐時効性が高い材料が求められてきている。なお、めっき材の特性劣化は高温下で促進される。したがって高温下での特性劣化が少ない材料は長期間保存しても特性が劣化しない材料と言い換えることができる。したがってこの分野でも耐熱性の高いめっき材が求められていることになる。
On the other hand, in the Sn plating material, with time, the base material and the base plating components diffuse into the Sn phase to form an alloy phase, so that the Sn phase disappears and various characteristics such as contact resistance and solderability deteriorate. . In the case of Cu-based Sn plating of a copper alloy, this alloy phase is mainly an intermetallic compound such as Cu 3 Sn or Cu 6 Sn 5 . The deterioration of characteristics with time is accelerated as the temperature increases, and becomes particularly noticeable around an automobile engine.
Under such circumstances, the requirements for heat resistance of connector materials are increasing at USCAR, which is the standard for automotive parts established by three major automakers in the United States. Heat resistance is required at a use temperature of 155 ° C. and a maximum use temperature of 175 ° C. In Japan as well, there is an increasing demand for heat resistance especially for automobile-related connector materials, and heat resistance at 150 ° C. or lower has been demanded.
Furthermore, there is a case where the material is plated and then left for a long period of time due to the relocation of the connector manufacturer's production base to overseas. For this reason, there has been a demand for a material that does not deteriorate the properties of the plated material even when stored for a long period of time, that is, a material with high aging resistance. In addition, the characteristic deterioration of the plating material is promoted at a high temperature. Therefore, a material with little property deterioration at high temperatures can be rephrased as a material whose properties do not deteriorate even when stored for a long period of time. Therefore, a plating material having high heat resistance is also required in this field.
以上のように、Snめっき材においては、挿入力の低減及び耐熱性の改善が近年の課題になっている。コネクタの挿入力を低減するための有効な方法は、特許文献1〜3等で開示されている通り、Snめっき相を薄くすることである。しかし、Snめっき相を薄くすると、Sn相消失による特性劣化が早期に進行する。すなわち、単にSnめっきを薄くするだけでは、挿入力が低減する反面、耐熱性が劣化する。したがって、Sn相を薄くする場合には、Snめっきの耐熱性を改善する技術を適用することが必要となる。   As described above, in the Sn plated material, reduction of insertion force and improvement of heat resistance have become issues in recent years. An effective method for reducing the insertion force of the connector is to thin the Sn plating phase as disclosed in Patent Documents 1 to 3 and the like. However, when the Sn plating phase is thinned, characteristic deterioration due to disappearance of the Sn phase proceeds at an early stage. That is, simply thinning the Sn plating reduces the insertion force, but deteriorates the heat resistance. Therefore, when the Sn phase is thinned, it is necessary to apply a technique for improving the heat resistance of Sn plating.
Snめっきの耐熱性を改善する技術として、下地めっきによりSn中へのCu等の拡散を防止する技術が検討されている。例えば、特許文献4〜7等では、Cu/Niの二相下地めっきを施す技術が開示されている。このSnめっきをリフローすると、Sn/Cu−Sn合金/Ni/銅合金母材の構造となる。Ni相により母材CuのSn相中への拡散が抑制され、またCu−Sn合金相の存在によりNiのSn相中に拡散が抑制されるため、Sn相の消失が遅れる。
特開平10−265992号公報 特開平10−302864号公報 特開2000−164279号公報 特開平6−196349号公報 特開平11−135226号公報 特開2002−226982号公報 特開2003−293187号公報
As a technique for improving the heat resistance of Sn plating, a technique for preventing the diffusion of Cu or the like into Sn by base plating has been studied. For example, Patent Documents 4 to 7 disclose a technique for performing Cu / Ni two-phase base plating. When this Sn plating is reflowed, a structure of Sn / Cu—Sn alloy / Ni / copper alloy base material is obtained. Since the Ni phase suppresses the diffusion of the base material Cu into the Sn phase, and the presence of the Cu—Sn alloy phase suppresses the diffusion into the Sn phase of Ni, the Sn phase disappears.
JP-A-10-265992 JP-A-10-302864 JP 2000-164279 A JP-A-6-196349 JP-A-11-135226 JP 2002-226882 A JP 2003-293187 A
上述したように薄Snめっきと高耐熱下地めっきとを組み合わせることにより、Snめっき材の低挿入力化が図られてきたが、この手法も限界に近づいてきた。一方、低挿入力化への要求はますます高まっており、新たな視点からのめっき技術の開発が望まれるようになった。本発明の課題は、新たな手法により、Snめっき銅合金条の挿抜性及び耐熱性を改善することである。   As described above, by combining the thin Sn plating and the high heat-resistant base plating, the insertion force of the Sn plating material has been reduced, but this method has also approached the limit. On the other hand, the demand for lower insertion force has been increasing, and the development of plating technology from a new perspective has been desired. The subject of this invention is improving the insertion / extraction property and heat resistance of Sn plating copper alloy strip by a new method.
本発明者は、Snめっき銅合金条のリフロー処理後のCu−Sn合金相の粗さに着目し、その平均粗さと挿抜性及び耐熱性との関係を調査した。
図1はリフロー後のCu下地Snめっき材断面を模式的に示したものであり、Cu−Sn合金相の平均粗さが小さい場合(a)と大きい場合(b)を比較している。両者のめっき相全体の厚みは同じである。ここで、a1、b1はそれぞれのCu−Sn合金相の平均厚み、a2、b2はめっき表面からCu−Sn合金相に達するまでのSn相の厚みを示す。両者のCu−Sn合金相の平均厚さが同じ場合(a1=b1)、Cu−Sn合金相の平均粗さが小さいほど、表面からCu−Sn合金相に達するまでの厚みは大きくなる(a2>b2)。Snは柔らかい金属であるために、めっき表面に接触した接点を摺動させる場合には、Sn相は摺動の抵抗として作用する。そのため、Cu−Sn合金相に達するまでのSnの厚みが薄いほど挿抜力は低下する。したがってCu−Sn合金相の平均粗さが大きいほど、挿抜性は良好である。
図2は図1の(a)及び(b)を加熱した後の母材とめっき相の断面をそれぞれ模式的に示したものである。加熱すると母材である銅合金からCuが拡散し、Cu−Sn合金相は加熱前の平均粗さを保ちながら成長する。加熱によるCu−Sn拡散相の成長速度が同じ場合は、加熱により成長したCu−Sn合金相の厚みが等しく(a3=b3)、Cu−Sn合金相の平均粗さが小さいほど、Cu−Sn合金相が表面に達するまでの加熱時間が長い。Cu−Sn合金相が表面に達すると、表面に酸化銅が生成し、半田濡れ性の劣化や接触抵抗の増大が生じる。したがってCu−Sn合金相の平均粗さが小さいほど、耐熱性は良好である。
The inventor paid attention to the roughness of the Cu—Sn alloy phase after the reflow treatment of the Sn-plated copper alloy strip, and investigated the relationship between the average roughness and the insertability / heat resistance.
FIG. 1 schematically shows a cross section of a Cu-based Sn plating material after reflow, and the case where the average roughness of the Cu—Sn alloy phase is small (a) and the case where it is large (b) are compared. The thicknesses of both plating phases are the same. Here, a1 and b1 indicate the average thickness of each Cu—Sn alloy phase, and a2 and b2 indicate the thickness of the Sn phase from the plating surface until reaching the Cu—Sn alloy phase. When the average thickness of both Cu-Sn alloy phases is the same (a1 = b1), the smaller the average roughness of the Cu-Sn alloy phase, the larger the thickness from the surface to the Cu-Sn alloy phase (a2 > B2). Since Sn is a soft metal, the Sn phase acts as a sliding resistance when sliding the contact point in contact with the plating surface. Therefore, the insertion / extraction force decreases as the thickness of Sn until the Cu—Sn alloy phase is reached. Therefore, the greater the average roughness of the Cu—Sn alloy phase, the better the insertion / extraction.
FIG. 2 schematically shows cross sections of the base material and the plating phase after heating (a) and (b) of FIG. When heated, Cu diffuses from the base copper alloy, and the Cu—Sn alloy phase grows while maintaining the average roughness before heating. When the growth rate of the Cu—Sn diffusion phase by heating is the same, the Cu—Sn alloy phase grown by heating has the same thickness (a3 = b3), and the smaller the average roughness of the Cu—Sn alloy phase, the smaller the Cu—Sn alloy phase. The heating time until the alloy phase reaches the surface is long. When the Cu—Sn alloy phase reaches the surface, copper oxide is generated on the surface, and solder wettability is deteriorated and contact resistance is increased. Therefore, the smaller the average roughness of the Cu—Sn alloy phase, the better the heat resistance.
以上のように、Cu−Sn合金相の平均粗さが、大きくなると挿抜性が向上し、小さくなると耐熱性が向上する。本発明者は、この発見に基づき、良好な挿抜性と耐熱性が同時に得られる平均粗さの条件を見出した。すなわち本発明は、下記めっき条を提供する。
(1)銅合金条の表面に、Cu、Snの電気めっきを施し、その後、リフロー処理を施すことにより得られるCu−Sn合金相の平均粗さRaが0.05〜0.3μmであることを特徴とする、挿抜性及び耐熱性に優れる銅合金すずめっき条。
(2)表面から銅合金条母材にかけて、Sn相、Cu−Sn合金相、Cu相の各相でめっき皮膜が構成され、Sn相の平均厚みが0.02〜2.0μm、Cu−Sn合金相の厚みが0.1〜2.0μm、Cu相の厚みが0〜2.0μmであることを特徴とする上記(1)の挿抜性及び耐熱性に優れる銅合金すずめっき条。
(3)表面から銅合金条母材にかけて、Sn相、Cu−Sn合金相、Ni相の各相でめっき皮膜が構成され、Sn相の平均厚みが0.02〜2.0μm、Cu−Sn合金相の厚みが0.1〜2.0μm、Ni相の厚みが0.1〜2.0μmであることを特徴とする上記(1)の挿抜性及び耐熱性に優れる銅合金すずめっき条。
(4)該銅合金条は、1.0〜4.5質量%のNiを含有し、Niの質量%に対し1/6〜1/4のSiを含有し、更に必要に応じてZn、Sn、Mg、Co、Ag、Cr及びMnの群から選ばれた1種以上を合計で2.0質量%以下含有し、残部が銅及び不可避的不純物から構成されることを特徴とする上記(1)〜(3)いずれか1項記載の挿抜性及び耐熱性に優れる銅合金すずめっき条。
(5)該銅合金条は、1〜11質量%のSn及び0.01〜0.2質量%のPを含有し、更に必要に応じてZn、Ni、Co、Fe、Ag、及びMnの群から選ばれた1種以上を合計で2.0質量%以下含有し、残部が銅及び不可避的不純物から構成されることを特徴とする上記(1)〜(3)いずれか1項記載の挿抜性及び耐熱性に優れる銅合金すずめっき条。
(6)該銅合金条は、25〜40質量%のZnを含有し、更に必要に応じてNi、Cr、Co、Sn、Fe、Ag、及びMnの群から選ばれた1種以上を合計で2.0質量%以下含有し、残部が銅及び不可避的不純物から構成されることを特徴とする上記(1)〜(3)いずれか1項記載の挿抜性及び耐熱性に優れる銅合金すずめっき条。
(7)該銅合金条は、2〜22質量%のZnを含有し、更に必要に応じてNi、Cr、Co、Sn、Fe、Ag、及びMnの群から選ばれた1種以上を合計で2.0質量%以下含有し、残部が銅及び不可避的不純物から構成されることを特徴とする上記(1)〜(3)いずれか1項記載の挿抜性及び耐熱性に優れる銅合金すずめっき条。
(8)該銅合金条は、1.0〜5.0質量%のTiを含有し、更に必要に応じてZn、Ni、Co、P、Cr、Fe、Ag、及びMnの群から選ばれた1種以上を合計で2.0質量%以下含有し、残部が銅及び不可避的不純物から構成されることを特徴とする上記(1)〜(3)いずれか1項記載の挿抜性及び耐熱性に優れる銅合金すずめっき条。
As described above, when the average roughness of the Cu—Sn alloy phase is increased, the insertability is improved, and when it is decreased, the heat resistance is improved. Based on this discovery, the present inventor has found a condition of average roughness that can simultaneously provide good insertion / extraction and heat resistance. That is, the present invention provides the following plating strips.
(1) The average roughness Ra of the Cu—Sn alloy phase obtained by electroplating Cu and Sn on the surface of the copper alloy strip and then performing a reflow treatment is 0.05 to 0.3 μm. A copper alloy tin plating strip excellent in insertion / extraction and heat resistance.
(2) From the surface to the copper alloy strip base material, a plating film is composed of each of the Sn phase, the Cu—Sn alloy phase, and the Cu phase, and the average thickness of the Sn phase is 0.02 to 2.0 μm, Cu—Sn The copper alloy tin-plated strip having excellent insertability and heat resistance according to (1) above, wherein the alloy phase has a thickness of 0.1 to 2.0 μm and the Cu phase has a thickness of 0 to 2.0 μm.
(3) From the surface to the copper alloy strip base material, a plating film is composed of each phase of Sn phase, Cu—Sn alloy phase, and Ni phase, the average thickness of Sn phase is 0.02 to 2.0 μm, Cu—Sn The copper alloy tin plating strip excellent in insertion / extraction and heat resistance of (1) above, wherein the alloy phase has a thickness of 0.1 to 2.0 μm and the Ni phase has a thickness of 0.1 to 2.0 μm.
(4) The copper alloy strip contains 1.0 to 4.5% by mass of Ni, contains 1/6 to 1/4 of Si with respect to the mass% of Ni, and further contains Zn, if necessary. One or more selected from the group consisting of Sn, Mg, Co, Ag, Cr and Mn is contained in a total amount of 2.0% by mass or less, and the remainder is composed of copper and inevitable impurities ( 1) to (3) A copper alloy tin-plated strip excellent in insertion / removability and heat resistance according to any one of the items.
(5) The copper alloy strip contains 1 to 11% by mass of Sn and 0.01 to 0.2% by mass of P, and further contains Zn, Ni, Co, Fe, Ag, and Mn as required. One or more types selected from the group are contained in a total of 2.0% by mass or less, and the balance is composed of copper and unavoidable impurities, (1) to (3) above, Copper alloy tin-plated strip with excellent insertability and heat resistance.
(6) The copper alloy strip contains 25 to 40% by mass of Zn, and further includes at least one selected from the group of Ni, Cr, Co, Sn, Fe, Ag, and Mn as required. The copper alloy tin excellent in insertion / extraction and heat resistance according to any one of the above (1) to (3), wherein the content is 2.0% by mass or less, and the balance is composed of copper and inevitable impurities Plating strip.
(7) The copper alloy strip contains 2 to 22% by mass of Zn, and further includes at least one selected from the group of Ni, Cr, Co, Sn, Fe, Ag, and Mn as required. The copper alloy tin excellent in insertion / extraction and heat resistance according to any one of the above (1) to (3), wherein the content is 2.0% by mass or less, and the balance is composed of copper and inevitable impurities Plating strip.
(8) The copper alloy strip contains 1.0 to 5.0% by mass of Ti, and is further selected from the group of Zn, Ni, Co, P, Cr, Fe, Ag, and Mn as necessary. 1 or more in total and 2.0 mass% or less in total, The remainder is comprised from copper and an unavoidable impurity, The insertion / extraction property and heat resistance of any one of said (1)-(3) characterized by the above-mentioned Copper alloy tin plating strip with excellent properties.
本発明は、良好な挿抜性及び耐熱性を有するすずめっき銅合金条を提供する。   The present invention provides a tin-plated copper alloy strip having good insertability and heat resistance.
Cu−Sn合金相の平均粗さ
Cu−Sn合金相の平均粗さRaが、0.05μm以上になると挿抜性が向上し、0.3μm以下になると耐熱性が向上する。そこで、Cu−Sn合金相の平均粗さRaを0.05〜0.3μm、好ましくは0.10〜0.25μmとなるように制御する。
Average Roughness of Cu—Sn Alloy Phase When the average roughness Ra of the Cu—Sn alloy phase is 0.05 μm or more, insertability is improved, and when it is 0.3 μm or less, heat resistance is improved. Therefore, the average roughness Ra of the Cu—Sn alloy phase is controlled to be 0.05 to 0.3 μm, preferably 0.10 to 0.25 μm.
めっきの種類
本発明を適用できる下地めっき、Snめっきの仕様として、次のものが挙げられる。
(1)Cu下地リフローSnめっき
請求項2に該当するめっき構造であり、表面から母材にかけて、Sn相、Cu−Sn合金相、Cu相の各相でめっき皮膜が構成されることを特徴とする。Cu下地めっき、Snめっきの順に電気めっきを行い、リフロー処理を施すことにより、このめっき皮膜構造が得られる。
リフロー後のSn相の平均厚みは0.02〜2.0μmとする。Sn相が0.02μm未満になると半田濡れ性が低下し、2.0μmを超えると、挿入力が増大する。
リフロー後のCu−Sn合金相の厚みは0.1〜2.0μmとする。Cu−Sn合金相は硬質なため、0.1μm以上の厚さで存在すると、挿入力の低減に寄与する。一方、Cu−Sn合金相の厚さが2.0μmを超えると、加熱したときの接触抵抗の増大や半田濡れ性の劣化が顕著になる。すなわち、耐熱性が低下する。
電気めっきで形成したCu下地めっきは、リフロー時にCu−Sn合金(相)形成に消費され、その厚みがゼロになっても良い。一方、リフロー後のCu相の厚みが2.0μmを超えるめっき材では、リフロー後のCu−Sn合金相のRaが0.3μmを超える。これは、Cu下地めっきが厚くなるに従い、Cuの電着粒が局部的に粗大化するためと考えられる。そこで、リフロー後のCu相の厚みは2.0μm以下とする。
電気めっき時の各めっきの厚みを、Snめっきは0.4〜2.2μmの範囲、Cuめっきは0.1〜2.2μmの範囲で適宜調整し、その次に230〜600℃、3〜30秒間の範囲のなかの適当な条件でリフロー処理を行うことにより、上記めっき構造が得られる。
Types of plating The following are listed as specifications of the base plating and Sn plating to which the present invention can be applied.
(1) Cu underlayer reflow Sn plating A plating structure corresponding to claim 2, characterized in that a plating film is composed of Sn phase, Cu—Sn alloy phase, and Cu phase from the surface to the base material. To do. This plating film structure can be obtained by performing electroplating in the order of Cu base plating and Sn plating and performing reflow treatment.
The average thickness of the Sn phase after reflowing is 0.02 to 2.0 μm. When the Sn phase is less than 0.02 μm, the solder wettability is lowered, and when it exceeds 2.0 μm, the insertion force is increased.
The thickness of the Cu—Sn alloy phase after reflowing is 0.1 to 2.0 μm. Since the Cu—Sn alloy phase is hard, if it exists with a thickness of 0.1 μm or more, it contributes to a reduction in insertion force. On the other hand, when the thickness of the Cu—Sn alloy phase exceeds 2.0 μm, the contact resistance increases when heated and the solder wettability deteriorates. That is, heat resistance is reduced.
The Cu base plating formed by electroplating may be consumed to form a Cu—Sn alloy (phase) during reflow, and the thickness thereof may be zero. On the other hand, in the plated material in which the thickness of the Cu phase after reflow exceeds 2.0 μm, the Ra of the Cu—Sn alloy phase after reflow exceeds 0.3 μm. This is thought to be because the electrodeposited grains of Cu are locally coarsened as the thickness of the Cu undercoat increases. Therefore, the thickness of the Cu phase after reflowing is set to 2.0 μm or less.
The thickness of each plating at the time of electroplating is appropriately adjusted in the range of 0.4 to 2.2 μm for Sn plating and 0.1 to 2.2 μm for Cu plating, and then 230 to 600 ° C., 3 to The above-described plating structure can be obtained by performing a reflow process under an appropriate condition within a range of 30 seconds.
(2)Cu/Ni下地リフローSnめっき
請求項3に該当するめっき構造であり、表面から母材にかけて、Sn相、Cu−Sn合金相、Ni相の各相でめっき皮膜が構成されることを特徴とする。Ni下地めっき、Cu下地めっき、Snめっきの順に電気めっきを行い、リフロー処理を施すことにより、このめっき皮膜構造が得られる。このめっきに関する技術は、特許文献4、6及び7等に開示されている。
リフロー後のSn相の平均厚みは0.02〜2.0μmとする。Sn相が0.02μm未満になると半田濡れ性が低下し、2.0μmを超えると、挿入力が増大する。
リフロー後のCu−Sn合金相の厚みは0.1〜2.0μmとする。Cu−Sn合金相は硬質なため、0.1μm以上の厚さで存在すると、挿入力の低減に寄与する。一方、Cu−Sn合金相の厚さが2.0μmを超えると、Cu下地の場合と同様に耐熱性が低下する。
リフロー後のNi相の厚みは0.1〜2.0μmとする。Niの厚みが0.1μm未満ではめっきの耐食性や耐熱性が低下する。一方、リフロー後のNiの厚みが2.0μmを超えるめっき材では、リフロー後のCu−Sn合金相のRaが0.3μmを超え、耐熱性が低下する。これは、Ni下地めっきが厚くなるに従い、Ni相の表面粗さが増加するためである。
電気めっき時の各めっきの厚みを、Snめっきは0.4〜2.5μmの範囲、Cuめっきは0.1〜0.4μm、Niめっきは0.1〜2.0μmの範囲で適宜調整し、その次に230〜600℃、3〜30秒間の範囲のなかの適当な条件でリフロー処理を行うことにより、上記めっき構造が得られる。Cuめっき相はリフロー後にCu−Sn合金相へ完全に転換されてもよく、0.1μm以下の厚みで残存しても良い。
(2) Cu / Ni underlayer reflow Sn plating It is a plating structure corresponding to claim 3, and the plating film is composed of Sn phase, Cu-Sn alloy phase and Ni phase from the surface to the base material. Features. This plating film structure is obtained by performing electroplating in the order of Ni base plating, Cu base plating, and Sn plating, and performing reflow treatment. Techniques related to this plating are disclosed in Patent Documents 4, 6, and 7 and the like.
The average thickness of the Sn phase after reflowing is 0.02 to 2.0 μm. When the Sn phase is less than 0.02 μm, the solder wettability is lowered, and when it exceeds 2.0 μm, the insertion force is increased.
The thickness of the Cu—Sn alloy phase after reflowing is 0.1 to 2.0 μm. Since the Cu—Sn alloy phase is hard, if it exists with a thickness of 0.1 μm or more, it contributes to a reduction in insertion force. On the other hand, when the thickness of the Cu—Sn alloy phase exceeds 2.0 μm, the heat resistance decreases as in the case of the Cu base.
The thickness of the Ni phase after reflowing is 0.1 to 2.0 μm. If the thickness of Ni is less than 0.1 μm, the corrosion resistance and heat resistance of the plating deteriorate. On the other hand, in the plated material in which the thickness of Ni after reflow exceeds 2.0 μm, Ra of the Cu—Sn alloy phase after reflow exceeds 0.3 μm, and the heat resistance decreases. This is because the surface roughness of the Ni phase increases as the Ni base plating becomes thicker.
The thickness of each plating at the time of electroplating is appropriately adjusted within the range of 0.4 to 2.5 μm for Sn plating, 0.1 to 0.4 μm for Cu plating, and 0.1 to 2.0 μm for Ni plating. Then, the above-described plated structure is obtained by performing a reflow process under appropriate conditions in the range of 230 to 600 ° C. and 3 to 30 seconds. The Cu plating phase may be completely converted into a Cu—Sn alloy phase after reflow, or may remain in a thickness of 0.1 μm or less.
銅合金母材の種類
本発明を適用できる銅合金母材として、次のものが挙げられる。
(1)Cu−Ni−Si系合金
請求項4に該当する銅合金であり、コルソン合金と呼ばれる。時効処理を行うことによりCu中にNiとSiの化合物粒子が析出し、高い強度と導電率が得られる。実用合金として、C70250、C64725、C64760(CDA番号、以下同様)等がある。本発明の銅合金条がCu−Ni−Si系合金である場合について下記に説明する。
Niは1.0〜4.5質量%の範囲で添加する。Niが1.0未満であると充分な強度が得られない。Niが4.5質量%を超えると、鋳造や熱間圧延で割れが発生する。
Siの添加濃度(質量%)は、Niの添加濃度(質量%)の1/6〜1/4の範囲とする。Siがこの範囲から外れると、導電率が低下する。
強度、耐熱性等の特性を改善するために、更に必要に応じてZn、Sn、Mg、Co、Ag、Cr及びMnの群から選ばれた1種以上を添加することができる。ただし、添加量が増えると導電率が低下するため、合計添加量を2.0質量%以下とする。
Types of Copper Alloy Base Material Examples of the copper alloy base material to which the present invention can be applied include the following.
(1) Cu—Ni—Si-based alloy This is a copper alloy corresponding to claim 4 and is called a Corson alloy. By performing the aging treatment, Ni and Si compound particles are precipitated in Cu, and high strength and electrical conductivity are obtained. Practical alloys include C70250, C64725, C64760 (CDA number, the same applies hereinafter) and the like. The case where the copper alloy strip of the present invention is a Cu-Ni-Si alloy will be described below.
Ni is added in the range of 1.0 to 4.5 mass%. If Ni is less than 1.0, sufficient strength cannot be obtained. When Ni exceeds 4.5 mass%, a crack generate | occur | produces by casting or hot rolling.
The addition concentration (mass%) of Si is in the range of 1/6 to 1/4 of the addition concentration (mass%) of Ni. If Si deviates from this range, the conductivity decreases.
In order to improve properties such as strength and heat resistance, one or more selected from the group of Zn, Sn, Mg, Co, Ag, Cr and Mn can be added as necessary. However, since the electrical conductivity decreases as the amount added increases, the total amount added is 2.0% by mass or less.
(2)りん青銅
請求項5に該当し、実用合金としてC52400、C52100、C51910、C51020等がある。本発明の銅合金条がりん青銅である場合について下記に説明する。
Snは1〜11質量%の範囲で添加する。Snの添加量を増やすと強度が増加する反面、導電率が低下する。添加量が1.0質量%未満であると強度が不充分となり、11質量%を超えると導電率が不充分となる。
Pは脱酸等を目的とし0.01〜0.2質量%の範囲で添加する。添加量が0.01質量%未満であると酸素濃度が高くなり、鋳肌の劣化、介在物の増加等を招く。添加量が0.2質量%を超えると導電率が低下する。
強度、耐熱性等の特性を改善するために、更に必要に応じてZn、Ni、Co、Fe、Ag、及びMnの群から選ばれた1種以上を添加することができる。ただし、添加量が増えると導電率が低下するため、合計添加量を2.0質量%以下とする。
(2) Phosphor bronze Corresponding to claim 5, there are C52400, C52100, C51910, C51020, etc. as practical alloys. The case where the copper alloy strip of the present invention is phosphor bronze will be described below.
Sn is added in the range of 1 to 11% by mass. Increasing the amount of Sn added increases the strength but decreases the conductivity. If the addition amount is less than 1.0% by mass, the strength becomes insufficient, and if it exceeds 11% by mass, the conductivity becomes insufficient.
P is added in the range of 0.01 to 0.2% by mass for the purpose of deoxidation and the like. If the amount added is less than 0.01% by mass, the oxygen concentration increases, leading to deterioration of the casting surface, increase in inclusions, and the like. If the amount added exceeds 0.2% by mass, the electrical conductivity will decrease.
In order to improve properties such as strength and heat resistance, one or more selected from the group of Zn, Ni, Co, Fe, Ag, and Mn can be further added as necessary. However, since the electrical conductivity decreases as the amount added increases, the total amount added is 2.0% by mass or less.
(3)黄銅
請求項6に該当し、実用合金としてC26000、C26800等がある。本発明の銅合金条が黄銅である場合について下記に説明する。
Znは25〜40質量%の範囲で添加する。Znの添加量を増やすと強度が増加する反面、導電率が低下する。添加量が25質量%未満であると強度が不充分となり、40質量%を超えると導電率が不充分となる。
強度、耐熱性等の特性を改善するために、更に必要に応じてNi、Cr、Co、Sn、Fe、Ag、及びMnの群から選ばれた1種以上を添加することができる。ただし、添加量が増えると導電率が低下するため、合計添加量を2.0質量%以下とする。
(3) Brass Corresponding to claim 6 and practical alloys include C26000, C26800, and the like. The case where the copper alloy strip of the present invention is brass will be described below.
Zn is added in the range of 25 to 40% by mass. Increasing the amount of Zn added increases the strength but decreases the conductivity. If the amount added is less than 25% by mass, the strength will be insufficient, and if it exceeds 40% by mass, the electrical conductivity will be insufficient.
In order to improve properties such as strength and heat resistance, one or more selected from the group of Ni, Cr, Co, Sn, Fe, Ag, and Mn can be added as necessary. However, since the electrical conductivity decreases as the amount added increases, the total amount added is 2.0% by mass or less.
(4)丹銅
請求項7に該当し、実用合金としてC23000、C22000、C21000等がある。本発明の銅合金条が丹銅である場合について下記に説明する。
Znは2〜22質量%の範囲で添加する。Znの添加量を増やすと強度が増加する反面、導電率が低下する。添加量が2質量%未満であると強度が不充分となり、22質量%を超えると導電率が不充分となる。
強度、耐熱性等の特性を改善するために、更に必要に応じてNi、Cr、Co、Sn、Fe、Ag、及びMnの群から選ばれた1種以上を添加することができる。ただし、添加量が増えると導電率が低下するため、合計添加量を2.0質量%以下とする。
(4) Red copper Corresponds to claim 7, and practical alloys include C23000, C22000, C21000, and the like. The case where the copper alloy strip of the present invention is a brass is described below.
Zn is added in the range of 2 to 22% by mass. Increasing the amount of Zn added increases the strength but decreases the conductivity. If the addition amount is less than 2% by mass, the strength is insufficient, and if it exceeds 22% by mass, the conductivity is insufficient.
In order to improve properties such as strength and heat resistance, one or more selected from the group of Ni, Cr, Co, Sn, Fe, Ag, and Mn can be added as necessary. However, since the electrical conductivity decreases as the amount added increases, the total amount added is 2.0% by mass or less.
(5)チタン銅
請求項8に該当し、実用合金としてC19900等がある。時効処理を行うことによりTiとCuの化合物がCu中に析出し、非常に高い強度が得られる。本発明の銅合金条がチタン銅である場合について下記に説明する。
Tiは1.0〜5.0質量%の範囲で添加する。Tiが1.0未満であると充分な強度が得られない。Tiが5.0質量%を超えると、鋳造や熱間圧延で割れが発生する。
強度、耐熱性等の特性を改善するために、更に必要に応じてZn、Ni、Co、P、Cr、Fe、Ag、及びMnの群から選ばれた1種以上を添加することができる。ただし、添加量が増えると導電率が低下するため、合計添加量を2.0質量%以下とする。
(5) Titanium copper Corresponding to claim 8, C19900 and the like are practical alloys. By performing the aging treatment, a compound of Ti and Cu is precipitated in Cu, and a very high strength is obtained. The case where the copper alloy strip of the present invention is titanium copper will be described below.
Ti is added in the range of 1.0 to 5.0 mass%. If Ti is less than 1.0, sufficient strength cannot be obtained. If Ti exceeds 5.0% by mass, cracking occurs during casting or hot rolling.
In order to improve properties such as strength and heat resistance, one or more selected from the group of Zn, Ni, Co, P, Cr, Fe, Ag, and Mn can be added as necessary. However, since the electrical conductivity decreases as the amount added increases, the total amount added is 2.0% by mass or less.
Cu−Sn合金相の平均粗さの制御方法
Cuの電気めっきでは、Cuイオンを含む溶液中で、被めっき材を陰極として通電することにより、被めっき材表面にCuを還元析出させる。その際、Cu電着粒の大きさを制御することにより、Sn電気めっき後のリフロー処理で形成されるCu−Sn合金相の平均粗さを調整できる。このCu−Sn合金相の平均粗さがSnめっき銅合金条の挿抜性及び耐熱性に強い影響を及ぼす。
Cu電着粒が粗大になるとCu−Sn合金相表面が粗くなる。反対に、Cu電着粒が微細になるとCu−Sn合金相表面が平滑になる。Cu電着粒を小さくするためには、
(1)電流密度を大きくすること
(2)めっき浴液の撹拌速度を上げること
(3)めっき浴に適当な界面活性剤を加えること
(4)めっき浴の温度を下げること
(5)めっき浴の濃度を上げること
等が効果的である。
Control Method of Average Roughness of Cu—Sn Alloy Phase In Cu electroplating, Cu is reduced and deposited on the surface of the material to be plated by energizing the material to be plated as a cathode in a solution containing Cu ions. In that case, the average roughness of the Cu-Sn alloy phase formed by the reflow process after Sn electroplating can be adjusted by controlling the magnitude | size of Cu electrodeposition grain. The average roughness of the Cu—Sn alloy phase has a strong effect on the insertability and heat resistance of the Sn-plated copper alloy strip.
When Cu electrodeposited grains become coarse, the Cu-Sn alloy phase surface becomes rough. On the contrary, when the Cu electrodeposited grains become finer, the Cu-Sn alloy phase surface becomes smooth. In order to reduce Cu electrodeposition grains,
(1) Increasing the current density (2) Increasing the stirring speed of the plating bath solution (3) Adding an appropriate surfactant to the plating bath (4) Lowering the temperature of the plating bath (5) Plating bath It is effective to increase the concentration.
表1の5種類の銅合金(厚み0.25mm)に、Cu下地めっき又はCu/Ni下地めっきを施した後、リフローSnめっきを行った。Cu下地めっき材では、表2の条件でCuめっきを行った。Cu/Ni下地めっき材では、表2の条件でCuめっきを行った後、表3の条件でNiめっきを行った。Snめっきは表4の条件で行い、Snめっき後のリフロー処理では500℃で5秒加熱後、60℃の水中に投入した。Cu下地めっき、Cu/Ni下地めっきの場合とも、表2に示すようにCuの電気めっき条件をa〜dと変えることにより、Cu−Sn合金相の平均粗さを変化させた。   After five types of copper alloys (thickness: 0.25 mm) in Table 1 were subjected to Cu base plating or Cu / Ni base plating, reflow Sn plating was performed. For the Cu base plating material, Cu plating was performed under the conditions shown in Table 2. For the Cu / Ni base plating material, Cu plating was performed under the conditions in Table 2, and then Ni plating was performed under the conditions in Table 3. Sn plating was performed under the conditions shown in Table 4. In the reflow treatment after Sn plating, heating was performed at 500 ° C. for 5 seconds and then poured into water at 60 ° C. In the case of Cu undercoating and Cu / Ni undercoating, the average roughness of the Cu—Sn alloy phase was changed by changing the Cu electroplating conditions to a to d as shown in Table 2.
リフロー後の材料について、以下の評価を行った。
(1)めっき厚
Sn相、Cu−Sn合金相、Cu相、Ni相の各相の厚みを求めた。測定には主として電解式膜厚計を用い、蛍光X線膜厚計、断面からのSEM観察、表面からのGDS(グロー放電発光分光分析装置)分析等も必要に応じて用いた。Cu/Ni下地リフローSnめっきの測定を行う際には、特開2004−068026号公報に開示された測定技術も参考にした。
(2)平均粗さ
リフロー後に形成されるCu−Sn拡散相の平均粗さを求めた。Meltex社製エンストリップTL−105液に25℃で1分浸漬させ、Sn相を溶解除去し、Cu−Sn合金相を表面に現出させた後、Cu−Sn拡散相の平均粗さRaをELIONIX社製凹凸SEM(ERA−8000)により求めた。測定は圧延方向と平行に行った。5000倍の倍率のSEM画像を図3に、図3画像中の直線に沿って測定したCu−Sn合金相の表面粗さプロファイルを図4に示す。このプロファイルよりRaを計算した。
(3)接触抵抗に関する耐熱性
耐熱性の評価として、加熱前及び100、500、1000h加熱した後の接触抵抗を測定した。なお、Cu下地めっきは145℃で加熱し、Cu/Ni下地めっきは175℃で加熱した。接触抵抗は、山崎精機研究所製電気接点シュミレータCRS−113−Au型を用い、四端子法により、電圧200mV、電流10mA、摺動荷重0.49N、摺動速度1mm/min、摺動距離1mmで測定した。
The following evaluation was performed about the material after reflow.
(1) Plating thickness The thickness of each phase of Sn phase, Cu-Sn alloy phase, Cu phase, and Ni phase was determined. For the measurement, an electrolytic film thickness meter was mainly used, and a fluorescent X-ray film thickness meter, SEM observation from a cross section, GDS (glow discharge emission spectroscopy analyzer) analysis from the surface, and the like were used as needed. When measuring Cu / Ni foundation reflow Sn plating, the measurement technique disclosed in Japanese Patent Application Laid-Open No. 2004-0668026 was also referred to.
(2) Average roughness The average roughness of the Cu-Sn diffusion phase formed after reflow was determined. After immersion in Meltex Enstrip TL-105 solution at 25 ° C. for 1 minute, the Sn phase was dissolved and removed, and the Cu—Sn alloy phase appeared on the surface. Then, the average roughness Ra of the Cu—Sn diffusion phase was determined. It calculated | required by the uneven | corrugated SEM (ERA-8000) by ELIONIX. The measurement was performed in parallel with the rolling direction. FIG. 3 shows an SEM image at a magnification of 5000 times, and FIG. 4 shows a surface roughness profile of the Cu—Sn alloy phase measured along a straight line in the image of FIG. Ra was calculated from this profile.
(3) Heat resistance regarding contact resistance As evaluation of heat resistance, contact resistance before heating and after heating for 100, 500, and 1000 hours was measured. Note that the Cu undercoat was heated at 145 ° C., and the Cu / Ni undercoat was heated at 175 ° C. The contact resistance is an electric contact simulator CRS-113-Au type manufactured by Yamazaki Seiki Laboratories, and by a four-terminal method, a voltage of 200 mV, a current of 10 mA, a sliding load of 0.49 N, a sliding speed of 1 mm / min, and a sliding distance of 1 mm. Measured with
(4)挿抜性
コネクタ勘合時の挿入力は、動摩擦係数により評価した。図5に示すように、Snめっき材の板試料を試料台上に固定し、そのSnめっき面に接触子を荷重Wで押し付けた。次に、移動台を水平方向に移動させ、このとき接触子に作用する抵抗加重Fをロードセルにより測定した。そして、動摩擦係数μをμ=F/Wより算出した。
Wは4.9Nとし、接触子の摺動速度(試料台の移動速度)は50mm/minとした。摺動は板試料の圧延方向に対し平行な方向に行った。摺動距離は100mmとし、この間のFの平均値を求めた。
接触子は、上記板試料と同じSnめっき材を用い、図6のように作製した。すなわち、直径7mmのステンレス球を試料に押し付けて、板試料と接触する部分を半球状に成形した。
(4) Insertion / Removability The insertion force at the time of connector fitting was evaluated by the dynamic friction coefficient. As shown in FIG. 5, a plate sample of Sn plating material was fixed on a sample table, and a contact was pressed against the Sn plating surface with a load W. Next, the moving table was moved in the horizontal direction, and the resistance weight F acting on the contact at this time was measured with a load cell. The dynamic friction coefficient μ was calculated from μ = F / W.
W was 4.9 N, and the sliding speed of the contact (moving speed of the sample stage) was 50 mm / min. The sliding was performed in a direction parallel to the rolling direction of the plate sample. The sliding distance was 100 mm, and the average value of F during this period was obtained.
The contact was produced as shown in FIG. 6 using the same Sn plating material as the plate sample. That is, a stainless steel sphere having a diameter of 7 mm was pressed against the sample, and a portion in contact with the plate sample was formed into a hemisphere.
実施例1
銅合金A〜Eに対し、Cu下地めっき又はCu/Ni下地めっき後にリフローSnめっきを行った。Cu下地めっきは表2のa〜dの4条件で行った。
表5、6に各めっき厚み、平均粗さ、加熱前後の接触抵抗及び動摩擦係数を示す。表5はCu下地めっきの実施例、表6はCu/Ni下地めっきの実施例である。b、cの条件でCu下地めっきを施した場合、Cu−Sn合金相の平均粗さRaは0.05〜0.3μmを満たした。dの条件ではRaが本発明の上限値(0.3μm)を超え、aの条件ではRaが下限値(0.05μm)未満であった。
図7A〜Eは、それぞれ銅合金A〜EにCu下地を採用してSnめっきした場合のCu−Sn合金相の平均粗さに対する、動摩擦係数及び接触抵抗(145℃で1000h加熱後)の変化を示したものである。例えば、図7Aは、銅合金AにCu下地を採用した比較例1、発明例2、3及び比較例4の平均粗さに対する、動摩擦係数及び接触抵抗(145℃で1000h加熱後)の変化を示す。同様に、図8A〜Eは、それぞれ銅合金A〜EにCu/Ni下地を採用してSnめっきした場合のCu−Sn合金相の平均粗さに対する、動摩擦係数及び接触抵抗(145℃で1000h加熱後)の変化を示したものである。下地めっきの種類及び銅合金の種類によらず、Cu−Sn合金相の平均粗さが0.05μmより小さくなると動摩擦係数が急激に高くなった。反対に、Cu−Sn合金相の平均粗さが0.3μmより大きくなると加熱後の接触抵抗が急激に高くなった。Cu−Sn合金相の平均粗さが0.05〜0.3μmの範囲では、動摩擦係数、接触抵抗ともに低く、良好な挿抜性と耐熱性が得られている。
Example 1
The copper alloys A to E were subjected to reflow Sn plating after Cu undercoating or Cu / Ni undercoating. Cu underplating was performed under the four conditions a to d in Table 2.
Tables 5 and 6 show the plating thickness, average roughness, contact resistance before and after heating, and dynamic friction coefficient. Table 5 shows examples of Cu base plating, and Table 6 shows examples of Cu / Ni base plating. When Cu base plating was performed under the conditions of b and c, the average roughness Ra of the Cu—Sn alloy phase satisfied 0.05 to 0.3 μm. Under the condition d, Ra exceeded the upper limit (0.3 μm) of the present invention, and under the condition a, Ra was less than the lower limit (0.05 μm).
FIGS. 7A to E show changes in the dynamic friction coefficient and contact resistance (after heating at 145 ° C. for 1000 h) with respect to the average roughness of the Cu—Sn alloy phase when Sn plating is performed on copper alloys A to E, respectively. Is shown. For example, FIG. 7A shows changes in the dynamic friction coefficient and the contact resistance (after heating at 145 ° C. for 1000 h) with respect to the average roughness of Comparative Examples 1, Invention Examples 2, 3 and Comparative Example 4 in which a Cu base is used for the copper alloy A. Show. Similarly, FIGS. 8A to E show the dynamic friction coefficient and the contact resistance (1000 h at 145 ° C.) with respect to the average roughness of the Cu—Sn alloy phase in the case of Sn plating using a Cu / Ni base for the copper alloys A to E, respectively. The change after heating is shown. Regardless of the type of base plating and the type of copper alloy, the dynamic friction coefficient increased rapidly when the average roughness of the Cu—Sn alloy phase was smaller than 0.05 μm. On the other hand, when the average roughness of the Cu—Sn alloy phase was larger than 0.3 μm, the contact resistance after heating rapidly increased. When the average roughness of the Cu—Sn alloy phase is in the range of 0.05 to 0.3 μm, both the dynamic friction coefficient and the contact resistance are low, and good insertability and heat resistance are obtained.
実施例2
めっき各相の厚みが特性に及ぼす影響を、請求項2または3に関しての発明例と比較例とを対比することにより説明する。表7はCu/Ni下地めっきの場合について、Ni相、Cu−Sn合金相及びSn相の厚みの影響を示すデータである。銅合金A〜Eに対し、Ni下地めっき、bの条件のCu下地めっきを順に行った後、リフローSnめっきを施している。ただし、比較例45、53、61、69及び77はリフローでの加熱時間を長くしている。Sn相の厚みが2.0μmを超えた比較例44、52、60、68及び76の動摩擦係数は他の試料の動摩擦係数より高い。Cu−Sn合金相の厚みが2.0μmを超えた比較例45、53、61、69及び77とリフロー後のNi相の厚みが0.1μm未満である比較例47、55、63、71及び79の接触抵抗値は他の試料の接触抵抗値より高い傾向にある。リフロー後のNi相の厚みが2.0μmを超えた比較例48、56、64、72及び80ではCu−Sn合金相のRaが0.3μmを超えた。このため比較例48、56、64、72及び80の接触抵抗は他の試料より著しく高い。
次に、表8はCu下地めっきの場合について、Cu相、Cu−Sn合金相及びSn相の厚みの影響を示すデータである。銅合金A〜Eに対し、bの条件のCu下地めっきを行った後、リフローSnめっきを施している。ただし、比較例85、93、101、109及び117はリフローでの加熱時間を長くしている。Sn相の厚みが2.0μmを超えた比較例84、92、100、108及び116の動摩擦係数は他の試料の動摩擦係数より高い。Cu−Sn合金相の厚みが2.0μmを超えた比較例85、93、101、109及び117の接触抵抗値は他の試料の接触抵抗値より高い傾向にある。比較例88、96、104、112及び120では2.2μmより厚いCu下地めっきを施したため、リフロー後のCu相の厚みが2.0μmを超え、Cu−Sn合金相の平均粗さが0.3μmを超えた。このため比較例88、96、104、112及び120の接触抵抗値は他の試料の接触抵抗値より著しく高い。
Example 2
The influence of the thickness of each plating phase on the characteristics will be described by comparing the invention example and the comparative example with respect to claim 2 or 3. Table 7 is data showing the influence of the thickness of the Ni phase, Cu—Sn alloy phase and Sn phase in the case of Cu / Ni undercoat. Reflow Sn plating is performed on the copper alloys A to E after sequentially performing Ni base plating and Cu base plating under the conditions of b. However, in Comparative Examples 45, 53, 61, 69 and 77, the heating time for reflow is increased. The dynamic friction coefficients of Comparative Examples 44, 52, 60, 68 and 76 in which the thickness of the Sn phase exceeds 2.0 μm are higher than the dynamic friction coefficients of the other samples. Comparative Examples 45, 53, 61, 69 and 77 in which the thickness of the Cu-Sn alloy phase exceeded 2.0 μm and Comparative Examples 47, 55, 63, 71 and in which the thickness of the Ni phase after reflowing was less than 0.1 μm The contact resistance value of 79 tends to be higher than the contact resistance values of other samples. In Comparative Examples 48, 56, 64, 72, and 80 in which the thickness of the Ni phase after reflow exceeded 2.0 μm, the Ra of the Cu—Sn alloy phase exceeded 0.3 μm. For this reason, the contact resistances of Comparative Examples 48, 56, 64, 72, and 80 are significantly higher than those of other samples.
Next, Table 8 is data showing the influence of the thickness of the Cu phase, the Cu—Sn alloy phase, and the Sn phase in the case of Cu undercoat. The copper alloys A to E are subjected to reflow Sn plating after performing Cu underplating under the condition of b. However, in Comparative Examples 85, 93, 101, 109, and 117, the heating time for reflow is increased. The dynamic friction coefficients of Comparative Examples 84, 92, 100, 108 and 116 in which the thickness of the Sn phase exceeds 2.0 μm are higher than the dynamic friction coefficients of the other samples. The contact resistance values of Comparative Examples 85, 93, 101, 109 and 117 in which the thickness of the Cu—Sn alloy phase exceeds 2.0 μm tend to be higher than the contact resistance values of other samples. In Comparative Examples 88, 96, 104, 112, and 120, since the Cu base plating thicker than 2.2 μm was applied, the thickness of the Cu phase after reflow exceeded 2.0 μm, and the average roughness of the Cu—Sn alloy phase was 0.00. It exceeded 3 μm. For this reason, the contact resistance values of Comparative Examples 88, 96, 104, 112 and 120 are significantly higher than the contact resistance values of the other samples.
リフロー後のCu下地Snめっき材断面の模式図である。(a)はCu−Sn合金相の平均粗さが小さい場合であり、(b)は平均粗さが大きい場合を示す。It is a schematic diagram of the Cu base Sn plating material cross section after reflow. (A) is a case where the average roughness of a Cu-Sn alloy phase is small, (b) shows the case where an average roughness is large. 図1のめっき材の加熱後のCu下地Snめっき材断面の模式図である。(a)はCu−Sn合金相の平均粗さが小さい場合であり、(b)は平均粗さが大きい場合を示す。It is a schematic diagram of the Cu base Sn plating material cross section after the heating of the plating material of FIG. (A) is a case where the average roughness of a Cu-Sn alloy phase is small, (b) shows the case where an average roughness is large. Sn相を溶解除去して表面に現出したCu−Sn合金相のSEM像である。It is a SEM image of the Cu-Sn alloy phase which melted and removed Sn phase and appeared on the surface. 図3の直線に沿って測定したCu−Sn合金相の表面粗さプロファイルである。It is the surface roughness profile of the Cu-Sn alloy phase measured along the straight line of FIG. 動摩擦係数測定方法を示す概略図である。It is the schematic which shows a dynamic friction coefficient measuring method. 接触子先端の加工方法を示す概略図である。It is the schematic which shows the processing method of a contactor tip. 銅合金AにCu下地Snめっきした場合の平均粗さに対する、動摩擦係数及び加熱後の接触抵抗の変化を示す。The change of the dynamic friction coefficient and the contact resistance after a heating with respect to the average roughness at the time of Cu base Sn plating to the copper alloy A is shown. 銅合金BにCu下地Snめっきした場合の平均粗さに対する、動摩擦係数及び加熱後の接触抵抗の変化を示す。The change of the dynamic friction coefficient and the contact resistance after a heating with respect to the average roughness at the time of Cu base Sn plating to the copper alloy B is shown. 銅合金CにCu下地Snめっきした場合の平均粗さに対する、動摩擦係数及び加熱後の接触抵抗の変化を示す。The change of the dynamic friction coefficient and the contact resistance after a heating with respect to the average roughness at the time of carrying out Cu base Sn plating to the copper alloy C is shown. 銅合金DにCu下地Snめっきした場合の平均粗さに対する、動摩擦係数及び加熱後の接触抵抗の変化を示す。The change of the dynamic friction coefficient and the contact resistance after a heating with respect to the average roughness at the time of Cu base Sn plating to the copper alloy D is shown. 銅合金EにCu下地Snめっきした場合の平均粗さに対する、動摩擦係数及び加熱後の接触抵抗の変化を示す。The change of the dynamic friction coefficient and the contact resistance after a heating with respect to the average roughness at the time of Cu base Sn plating to the copper alloy E is shown. 銅合金AにCu/Ni下地Snめっきした場合の平均粗さに対する、動摩擦係数及び加熱後の接触抵抗の変化を示す。The change of the dynamic friction coefficient and the contact resistance after a heating with respect to the average roughness at the time of carrying out Cu / Ni base Sn plating to the copper alloy A is shown. 銅合金BにCu/Ni下地Snめっきした場合の平均粗さに対する、動摩擦係数及び加熱後の接触抵抗の変化を示す。The change of the dynamic friction coefficient and the contact resistance after a heating with respect to the average roughness at the time of carrying out Cu / Ni base Sn plating to the copper alloy B is shown. 銅合金CにCu/Ni下地Snめっきした場合の平均粗さに対する、動摩擦係数及び加熱後の接触抵抗の変化を示す。The change of the dynamic friction coefficient and the contact resistance after a heating with respect to the average roughness at the time of carrying out Cu / Ni base Sn plating to the copper alloy C is shown. 銅合金DにCu/Ni下地Snめっきした場合の平均粗さに対する、動摩擦係数及び加熱後の接触抵抗の変化を示す。The change of the dynamic friction coefficient and the contact resistance after a heating with respect to the average roughness at the time of carrying out Cu / Ni base Sn plating to the copper alloy D is shown. 銅合金EにCu/Ni下地Snめっきした場合の平均粗さに対する、動摩擦係数及び加熱後の接触抵抗の変化を示す。The change of the dynamic friction coefficient and the contact resistance after a heating with respect to the average roughness at the time of carrying out Cu / Ni base Sn plating to the copper alloy E is shown.

Claims (8)

  1. 銅合金条の表面に、下地めっき、Snめっきの順で電気めっきを施し、その後、リフロー処理を施しためっき条であり、Sn相を溶解除去し、Cu−Sn合金相を表面に現出させたときに、このCu−Sn合金相の平均粗さRaが0.05〜0.3μmであることを特徴とする、挿抜性及び耐熱性に優れる銅合金すずめっき条。   The surface of the copper alloy strip is electroplated in the order of base plating and Sn plating, and then reflow treatment. The Sn phase is dissolved and removed, and the Cu-Sn alloy phase appears on the surface. A copper alloy tin plating strip excellent in insertability and heat resistance, characterized in that the average roughness Ra of the Cu—Sn alloy phase is 0.05 to 0.3 μm.
  2. 表面から銅合金条母材にかけて、Sn相、Cu−Sn合金相、Cu相の各相でめっき皮膜が構成され、Sn相の平均厚みが0.02〜2.0μm、Cu−Sn合金相の厚みが0.1〜2.0μm、Cu相の厚みが0〜2.0μmであることを特徴とする請求項1の挿抜性及び耐熱性に優れる銅合金すずめっき条。   From the surface to the copper alloy strip base material, a plating film is composed of each phase of Sn phase, Cu—Sn alloy phase, and Cu phase. The average thickness of Sn phase is 0.02 to 2.0 μm, and the Cu—Sn alloy phase The copper alloy tin-plated strip excellent in insertion / removability and heat resistance according to claim 1, wherein the thickness is 0.1 to 2.0 μm and the thickness of the Cu phase is 0 to 2.0 μm.
  3. 表面から銅合金条母材にかけて、Sn相、Cu−Sn合金相、Ni相の各相でめっき皮膜が構成され、Sn相の平均厚みが0.02〜2.0μm、Cu−Sn合金相の厚みが0.1〜2.0μm、Ni相の厚みが0.1〜2.0μmであることを特徴とする請求項1の挿抜性及び耐熱性に優れる銅合金すずめっき条。   From the surface to the copper alloy strip base material, a plating film is composed of each of the Sn phase, the Cu—Sn alloy phase, and the Ni phase, the average thickness of the Sn phase is 0.02 to 2.0 μm, and the Cu—Sn alloy phase The copper alloy tin plating strip excellent in insertion / extraction and heat resistance according to claim 1, wherein the thickness is 0.1 to 2.0 μm and the thickness of the Ni phase is 0.1 to 2.0 μm.
  4. 該銅合金条は、1.0〜4.5質量%のNiを含有し、Niの質量%に対し1/6〜1/4のSiを含有し、更に必要に応じてZn、Sn、Mg、Co、Ag、Cr及びMnの群から選ばれた1種以上を合計で2.0質量%以下含有し、残部が銅及び不可避的不純物から構成されることを特徴とする請求項1〜3いずれか1項記載の挿抜性及び耐熱性に優れる銅合金すずめっき条。   The copper alloy strip contains 1.0 to 4.5% by mass of Ni, 1/6 to 1/4 of Si with respect to the mass% of Ni, and further Zn, Sn, Mg as necessary. One or more selected from the group consisting of Co, Ag, Cr, and Mn is contained in a total amount of 2.0% by mass or less, and the balance is composed of copper and inevitable impurities. A copper alloy tin-plated strip excellent in insertability and heat resistance according to any one of the above items.
  5. 該銅合金条は、1〜11質量%のSn及び0.01〜0.2質量%のPを含有し、更に必要に応じてZn、Ni、Co、Fe、Ag、及びMnの群から選ばれた1種以上を合計で2.0質量%以下含有し、残部が銅及び不可避的不純物から構成されることを特徴とする請求項1〜3いずれか1項記載の挿抜性及び耐熱性に優れる銅合金すずめっき条。   The copper alloy strip contains 1 to 11% by mass of Sn and 0.01 to 0.2% by mass of P, and further selected from the group of Zn, Ni, Co, Fe, Ag, and Mn as required. One or more of these are contained in a total of 2.0% by mass or less, and the balance is composed of copper and unavoidable impurities. Excellent copper alloy tin plating strip.
  6. 該銅合金条は、25〜40質量%のZnを含有し、更に必要に応じてNi、Cr、Co、Sn、Fe、Ag、及びMnの群から選ばれた1種以上を合計で2.0質量%以下含有し、残部が銅及び不可避的不純物から構成されることを特徴とする請求項1〜3いずれか1項記載の挿抜性及び耐熱性に優れる銅合金すずめっき条。   The copper alloy strip contains 25 to 40% by mass of Zn, and further contains at least one selected from the group consisting of Ni, Cr, Co, Sn, Fe, Ag, and Mn in a total amount of 2. The copper alloy tin-plated strip excellent in insertion / extraction and heat resistance according to any one of claims 1 to 3, wherein the copper alloy is contained in an amount of 0% by mass or less, and the balance is composed of copper and inevitable impurities.
  7. 該銅合金条は、2〜22質量%のZnを含有し、更に必要に応じてNi、Cr、Co、Sn、Fe、Ag、及びMnの群から選ばれた1種以上を合計で2.0質量%以下含有し、残部が銅及び不可避的不純物から構成されることを特徴とする請求項1〜3いずれか1項記載の挿抜性及び耐熱性に優れる銅合金すずめっき条。   The copper alloy strip contains 2 to 22% by mass of Zn, and further contains at least one selected from the group consisting of Ni, Cr, Co, Sn, Fe, Ag, and Mn as required. The copper alloy tin-plated strip excellent in insertion / extraction and heat resistance according to any one of claims 1 to 3, wherein the copper alloy is contained in an amount of 0% by mass or less, and the balance is composed of copper and inevitable impurities.
  8. 該銅合金条は、1.0〜5.0質量%のTiを含有し、更に必要に応じてZn、Ni、Co、P、Cr、Fe、Ag、及びMnの群から選ばれた1種以上を合計で2.0質量%以下含有し、残部が銅及び不可避的不純物から構成されることを特徴とする請求項1〜3いずれか1項記載の挿抜性及び耐熱性に優れる銅合金すずめっき条。   The copper alloy strip contains 1.0 to 5.0% by mass of Ti and, if necessary, one kind selected from the group of Zn, Ni, Co, P, Cr, Fe, Ag, and Mn. The copper alloy tin according to any one of claims 1 to 3, wherein the total content is 2.0% by mass or less, and the balance is composed of copper and inevitable impurities. Plating strip.
JP2005251579A 2005-08-31 2005-08-31 Copper alloy tinned strip having excellent insertion/withdrawal property and heat resistance Pending JP2007063624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005251579A JP2007063624A (en) 2005-08-31 2005-08-31 Copper alloy tinned strip having excellent insertion/withdrawal property and heat resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005251579A JP2007063624A (en) 2005-08-31 2005-08-31 Copper alloy tinned strip having excellent insertion/withdrawal property and heat resistance

Publications (1)

Publication Number Publication Date
JP2007063624A true JP2007063624A (en) 2007-03-15

Family

ID=37926153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005251579A Pending JP2007063624A (en) 2005-08-31 2005-08-31 Copper alloy tinned strip having excellent insertion/withdrawal property and heat resistance

Country Status (1)

Country Link
JP (1) JP2007063624A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008274364A (en) * 2007-05-01 2008-11-13 Kobe Steel Ltd Terminal for engaging type connector and manufacturing method therefor
JP2009052076A (en) * 2007-08-24 2009-03-12 Kobe Steel Ltd Conductive material for connecting component, and method for manufacturing the same
JP2009173989A (en) * 2008-01-23 2009-08-06 Nippon Mining & Metals Co Ltd Tinned strip of copper alloy having excellent wear resistance
WO2009123139A1 (en) * 2008-03-31 2009-10-08 日鉱金属株式会社 Tin-plated cu-ni-si alloy strip with excellent unsusceptibility to thermal tin deposit peeling
JP2009231065A (en) * 2008-03-24 2009-10-08 Fujikura Ltd Tin-system plated rectangular conductor and flexible flat cable
WO2009123144A1 (en) * 2008-03-31 2009-10-08 日鉱金属株式会社 Tinned copper alloy bar with excellent abrasion resistance, insertion properties, and heat resistance
JP2009249716A (en) * 2008-04-10 2009-10-29 Sumitomo Kinzoku Kozan Shindo Kk Tin-plated copper alloy material
JP2010150647A (en) * 2008-12-26 2010-07-08 Nippon Mining & Metals Co Ltd Copper alloy tinned strip having solder wettability and insertion/extraction performance
JP2010159481A (en) * 2008-12-12 2010-07-22 Nippon Mining & Metals Co Ltd Tinned material of copper alloy for printed board terminal
JP2010236068A (en) * 2009-03-31 2010-10-21 Nippon Mining & Metals Co Ltd Copper alloy tinning material for printed circuit board terminal
WO2010119489A1 (en) * 2009-04-14 2010-10-21 三菱伸銅株式会社 Conductive member and manufacturing method thereof
JP2010258016A (en) * 2009-04-21 2010-11-11 Mitsubishi Shindoh Co Ltd Metal core substrate, conductive member for metal plates, and method for manufacturing them
JP2011012320A (en) * 2009-07-03 2011-01-20 Furukawa Electric Co Ltd:The Metallic material for connector
WO2011019042A1 (en) * 2009-08-10 2011-02-17 古河電気工業株式会社 Copper alloy material for electrical/electronic components
WO2011065166A1 (en) 2009-11-30 2011-06-03 Jx日鉱日石金属株式会社 Reflow sn plated member
CN102234827A (en) * 2010-04-20 2011-11-09 Jx日矿日石金属株式会社 Tinned copper alloy bar with excellent solder wetability and plugging performance
KR101175092B1 (en) 2010-04-21 2012-08-21 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Cu ALLOY Sn-PLATED STRIP HAVING EXCELLENT SOLDER WETTABILITY AND INSERTABILITY/EXTRABILITY
WO2013024814A1 (en) 2011-08-12 2013-02-21 三菱マテリアル株式会社 Tin-plated copper alloy terminal member with outstanding insertion and removal characteristics
CN103227369A (en) * 2012-01-26 2013-07-31 三菱综合材料株式会社 Tin-plated copper-alloy material for terminal and method for producing the same
EP2682263A2 (en) 2012-07-02 2014-01-08 Mitsubishi Materials Corporation Tin-plated copper-alloy material for terminal and method for producing the same
WO2014045678A1 (en) * 2012-09-19 2014-03-27 Jx日鉱日石金属株式会社 Surface-treated plated material and method for producing same, and electronic component
EP2784190A1 (en) 2013-03-25 2014-10-01 Mitsubishi Materials Corporation Tin-plated copper-alloy material for terminal having excellent insertion/extraction performance
EP2843086A2 (en) 2013-08-26 2015-03-04 Mitsubishi Materials Corporation Tin-plated copper-alloy material for terminal having excellent insertion/extraction performance
WO2015133499A1 (en) * 2014-03-04 2015-09-11 Dowaメタルテック株式会社 Sn-PLATED ARTICLE AND METHOD FOR MANUFACTURING SAME
JP2016056422A (en) * 2014-09-11 2016-04-21 株式会社オートネットワーク技術研究所 Member for terminal and method for manufacturing the same, and terminal for connector
JP2017179564A (en) * 2016-03-31 2017-10-05 Jx金属株式会社 Titanium copper foil with plating layer
US10047448B2 (en) 2014-09-11 2018-08-14 Mitsubishi Materials Corporation Tin-plated copper-alloy terminal material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09320668A (en) * 1996-05-14 1997-12-12 Mitsubishi Shindoh Co Ltd Copper-alloy-plated thin plate and connector manufactured therefrom
JPH11140569A (en) * 1997-11-04 1999-05-25 Mitsubishi Shindoh Co Ltd Sn or sn alloy plated copper sheet alloy, and connector made of the sheet
JP2002226982A (en) * 2001-01-31 2002-08-14 Dowa Mining Co Ltd Heat resistant film, its manufacturing method, and electrical and electronic parts
JP2004068026A (en) * 2001-07-31 2004-03-04 Kobe Steel Ltd Conducting material for connecting parts and manufacturing method therefor
JP2005154819A (en) * 2003-11-25 2005-06-16 Kobe Steel Ltd Fitting type connection terminal
JP2005226097A (en) * 2004-02-10 2005-08-25 Kobe Steel Ltd Tinned copper alloy material for electrical/electronic component, and its production method
JP2006077307A (en) * 2004-09-10 2006-03-23 Kobe Steel Ltd Electrically conductive material for connecting parts and production method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09320668A (en) * 1996-05-14 1997-12-12 Mitsubishi Shindoh Co Ltd Copper-alloy-plated thin plate and connector manufactured therefrom
JPH11140569A (en) * 1997-11-04 1999-05-25 Mitsubishi Shindoh Co Ltd Sn or sn alloy plated copper sheet alloy, and connector made of the sheet
JP2002226982A (en) * 2001-01-31 2002-08-14 Dowa Mining Co Ltd Heat resistant film, its manufacturing method, and electrical and electronic parts
JP2004068026A (en) * 2001-07-31 2004-03-04 Kobe Steel Ltd Conducting material for connecting parts and manufacturing method therefor
JP2005154819A (en) * 2003-11-25 2005-06-16 Kobe Steel Ltd Fitting type connection terminal
JP2005226097A (en) * 2004-02-10 2005-08-25 Kobe Steel Ltd Tinned copper alloy material for electrical/electronic component, and its production method
JP2006077307A (en) * 2004-09-10 2006-03-23 Kobe Steel Ltd Electrically conductive material for connecting parts and production method therefor

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008274364A (en) * 2007-05-01 2008-11-13 Kobe Steel Ltd Terminal for engaging type connector and manufacturing method therefor
JP2009052076A (en) * 2007-08-24 2009-03-12 Kobe Steel Ltd Conductive material for connecting component, and method for manufacturing the same
JP2009173989A (en) * 2008-01-23 2009-08-06 Nippon Mining & Metals Co Ltd Tinned strip of copper alloy having excellent wear resistance
JP2009231065A (en) * 2008-03-24 2009-10-08 Fujikura Ltd Tin-system plated rectangular conductor and flexible flat cable
WO2009123139A1 (en) * 2008-03-31 2009-10-08 日鉱金属株式会社 Tin-plated cu-ni-si alloy strip with excellent unsusceptibility to thermal tin deposit peeling
KR101243454B1 (en) * 2008-03-31 2013-03-13 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Tinned copper alloy bar with excellent abrasion resistance, insertion properties, and heat resistance
WO2009123144A1 (en) * 2008-03-31 2009-10-08 日鉱金属株式会社 Tinned copper alloy bar with excellent abrasion resistance, insertion properties, and heat resistance
JPWO2009123144A1 (en) * 2008-03-31 2011-07-28 Jx日鉱日石金属株式会社 Copper alloy tin-plated strip with excellent wear resistance, insertability and heat resistance
JP2009249716A (en) * 2008-04-10 2009-10-29 Sumitomo Kinzoku Kozan Shindo Kk Tin-plated copper alloy material
JP2010159481A (en) * 2008-12-12 2010-07-22 Nippon Mining & Metals Co Ltd Tinned material of copper alloy for printed board terminal
JP4611419B2 (en) * 2008-12-26 2011-01-12 Jx日鉱日石金属株式会社 Copper alloy tin plating strip with excellent solder wettability and insertability
JP2010150647A (en) * 2008-12-26 2010-07-08 Nippon Mining & Metals Co Ltd Copper alloy tinned strip having solder wettability and insertion/extraction performance
JP2010236068A (en) * 2009-03-31 2010-10-21 Nippon Mining & Metals Co Ltd Copper alloy tinning material for printed circuit board terminal
WO2010119489A1 (en) * 2009-04-14 2010-10-21 三菱伸銅株式会社 Conductive member and manufacturing method thereof
JP2010258016A (en) * 2009-04-21 2010-11-11 Mitsubishi Shindoh Co Ltd Metal core substrate, conductive member for metal plates, and method for manufacturing them
JP2011012320A (en) * 2009-07-03 2011-01-20 Furukawa Electric Co Ltd:The Metallic material for connector
WO2011019042A1 (en) * 2009-08-10 2011-02-17 古河電気工業株式会社 Copper alloy material for electrical/electronic components
JP5144814B2 (en) * 2009-08-10 2013-02-13 古河電気工業株式会社 Copper alloy material for electrical and electronic parts
WO2011065166A1 (en) 2009-11-30 2011-06-03 Jx日鉱日石金属株式会社 Reflow sn plated member
US8865319B2 (en) 2009-11-30 2014-10-21 Jx Nippon Mining & Metals Corporation Reflow Sn plated material
CN102234827A (en) * 2010-04-20 2011-11-09 Jx日矿日石金属株式会社 Tinned copper alloy bar with excellent solder wetability and plugging performance
KR101175092B1 (en) 2010-04-21 2012-08-21 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Cu ALLOY Sn-PLATED STRIP HAVING EXCELLENT SOLDER WETTABILITY AND INSERTABILITY/EXTRABILITY
WO2013024814A1 (en) 2011-08-12 2013-02-21 三菱マテリアル株式会社 Tin-plated copper alloy terminal member with outstanding insertion and removal characteristics
US9616639B2 (en) 2011-08-12 2017-04-11 Mistubishi Materials Corporation Tin-plated copper-alloy material for terminal having excellent insertion/extraction performance
JP2013174006A (en) * 2011-08-12 2013-09-05 Mitsubishi Materials Corp Tin-plated copper alloy terminal material excellent in insertion-extraction property
KR20140051408A (en) 2011-08-12 2014-04-30 미쓰비시 마테리알 가부시키가이샤 Tin-plated copper alloy terminal member with outstanding insertion and removal characteristics
CN103732805A (en) * 2011-08-12 2014-04-16 三菱综合材料株式会社 Tin-plated copper alloy terminal member with outstanding insertion and removal characteristics
US8940404B2 (en) 2012-01-26 2015-01-27 Mitsubishi Materials Corporation Tin-plated copper-alloy material for terminal and method for producing the same
TWI570283B (en) * 2012-01-26 2017-02-11 Mitsubishi Materials Corp Metallic copper alloy terminal material with excellent plugability and manufacturing method thereof
CN103227369A (en) * 2012-01-26 2013-07-31 三菱综合材料株式会社 Tin-plated copper-alloy material for terminal and method for producing the same
EP2620275A2 (en) 2012-01-26 2013-07-31 Mitsubishi Materials Corporation Tin-plated copper-alloy material for terminal and method for producing the same
EP2682263A3 (en) * 2012-07-02 2016-10-26 Mitsubishi Materials Corporation Tin-plated copper-alloy material for terminal and method for producing the same
EP2682263A2 (en) 2012-07-02 2014-01-08 Mitsubishi Materials Corporation Tin-plated copper-alloy material for terminal and method for producing the same
JP2014077190A (en) * 2012-09-19 2014-05-01 Jx Nippon Mining & Metals Corp Surface treatment plating material and method for manufacturing the same, and electronic component
WO2014045678A1 (en) * 2012-09-19 2014-03-27 Jx日鉱日石金属株式会社 Surface-treated plated material and method for producing same, and electronic component
JP2014208878A (en) * 2013-03-25 2014-11-06 三菱マテリアル株式会社 Tin-plated copper alloy terminal material excellent in withdrawal property
EP2784190A1 (en) 2013-03-25 2014-10-01 Mitsubishi Materials Corporation Tin-plated copper-alloy material for terminal having excellent insertion/extraction performance
EP2843086A2 (en) 2013-08-26 2015-03-04 Mitsubishi Materials Corporation Tin-plated copper-alloy material for terminal having excellent insertion/extraction performance
JP2015180770A (en) * 2014-03-04 2015-10-15 Dowaメタルテック株式会社 Sn PLATED MATERIAL AND PRODUCTION METHOD THEREOF
WO2015133499A1 (en) * 2014-03-04 2015-09-11 Dowaメタルテック株式会社 Sn-PLATED ARTICLE AND METHOD FOR MANUFACTURING SAME
US10829862B2 (en) 2014-03-04 2020-11-10 Dowa Metaltech Co., Ltd. Tin-plated product and method for producing same
CN106068337A (en) * 2014-03-04 2016-11-02 同和金属技术有限公司 Sn coating material and manufacture method thereof
JP2016056422A (en) * 2014-09-11 2016-04-21 株式会社オートネットワーク技術研究所 Member for terminal and method for manufacturing the same, and terminal for connector
US10047448B2 (en) 2014-09-11 2018-08-14 Mitsubishi Materials Corporation Tin-plated copper-alloy terminal material
JP2017179564A (en) * 2016-03-31 2017-10-05 Jx金属株式会社 Titanium copper foil with plating layer

Similar Documents

Publication Publication Date Title
JP5284526B1 (en) Metal material for electronic parts and method for producing the same
TWI355426B (en)
US9449728B2 (en) Electroconductive material for connection component
KR101649847B1 (en) Electronic component metal material and manufacturing method thereof, and connector terminal, connector and electronic component using said electronic component metal material
JP4090302B2 (en) Conductive material plate for forming connecting parts
US7871710B2 (en) Conductive material for a connecting part
JP5427945B2 (en) METAL MATERIAL FOR ELECTRONIC COMPONENT AND ITS MANUFACTURING METHOD, CONNECTOR TERMINAL USING THE SAME, CONNECTOR AND ELECTRONIC COMPONENT
KR101162849B1 (en) Sn-plated copper or sn-plated copper alloy having excellent heat resistance and manufacturing method thereof
US9508462B2 (en) Sn-coated copper alloy strip having excellent heat resistance
JP4024244B2 (en) Conductive material for connecting parts and method for manufacturing the same
JP4402132B2 (en) Reflow Sn plating material and electronic component using the same
CA2879453C (en) Metallic material for electronic components, and connector terminals, connectors and electronic components using same
EP2351875B1 (en) Conductive member and method for producing the same
EP1281789A1 (en) A plated copper alloy material and process for production thereof
JP2008223143A (en) Plated material and method for preparation thereof, and electric and electronic parts using the same
JP4372835B1 (en) Conductive member and manufacturing method thereof
US20180301838A1 (en) Copper alloy sheet with sn coating layer for a fitting type connection terminal and a fitting type connection terminal
JP4850178B2 (en) Copper alloy Sn plating strip with excellent fatigue properties
KR101203438B1 (en) Tin-plated material for electronic part
JP5280957B2 (en) Conductive member and manufacturing method thereof
US6336979B1 (en) Wear resistant copper base alloy, method of preparing the same and electrical part using the same
KR102059693B1 (en) Tin-plated copper alloy terminal material with excellent insertion and discharge performance and method of manufacturing the same
JP5170881B2 (en) Copper alloy material for electrical and electronic equipment and method for producing the same
US8101285B2 (en) Metallic material for a connecting part and a method of producing the same
WO2013150690A1 (en) Plated member, plated terminal for connectors, method for producing plated member, and method for producing plated terminal for connectors

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070315

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090625

A131 Notification of reasons for refusal

Effective date: 20100323

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100520

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110426