JP2010159481A - Tinned material of copper alloy for printed board terminal - Google Patents

Tinned material of copper alloy for printed board terminal Download PDF

Info

Publication number
JP2010159481A
JP2010159481A JP2009083227A JP2009083227A JP2010159481A JP 2010159481 A JP2010159481 A JP 2010159481A JP 2009083227 A JP2009083227 A JP 2009083227A JP 2009083227 A JP2009083227 A JP 2009083227A JP 2010159481 A JP2010159481 A JP 2010159481A
Authority
JP
Japan
Prior art keywords
copper alloy
plating
phase
crystal grain
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009083227A
Other languages
Japanese (ja)
Other versions
JP5117436B2 (en
Inventor
Masayuki Nagano
真之 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Eneos Corp
Original Assignee
Nippon Mining and Metals Co Ltd
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd, Nippon Mining Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2009083227A priority Critical patent/JP5117436B2/en
Publication of JP2010159481A publication Critical patent/JP2010159481A/en
Application granted granted Critical
Publication of JP5117436B2 publication Critical patent/JP5117436B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tinned material of copper or a copper alloy (hereinafter expressed as copper alloy) which has settling properties suitable as a base material of a printed wiring board terminal, inserted in a through hole of a printed board and mounted through a reflow soldering process. <P>SOLUTION: In the tinned material, each plating phase of a Cu-phase having a thickness of 0-2.0 μm, a Cu-Sn alloy phase having a thickness of 0.1-1.5 μm, and a Sn-phase having a thickness of 0.1-1.5 μm is formed in this order on the surface of a copper alloy having an average crystal grain diameter of 1.5-6.0 μm. Following relation: (D<SB>x</SB>-D<SB>Y</SB>)≥1 (unit:μm) is established between the crystal grain diameter D<SB>x</SB>of the copper alloy and the crystal grain diameter D<SB>Y</SB>of the plating phase directly above the copper alloy. The tinned material of the copper alloy has settling properties suitable for printed board terminals. In the tinned material of the copper alloy, the total concentration of C and S in the plating phase directly above the copper alloy may be within the range of 0.02-0.2 mass% and the copper alloy may contain 2-22 mass% of Zn. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、プリント基板のスルーホールに挿入されリフロー工程を経て半田実装されるプリント基板端子の素材として好適な銅合金すずめっき材に関する。詳細には、プリント基板端子の素材として好適なへたり性を有し、かつ耐めっき剥離性に優れた銅合金すずめっき材に関する。   The present invention relates to a copper alloy tin plating material suitable as a material for a printed circuit board terminal to be inserted into a through hole of a printed circuit board and soldered through a reflow process. More specifically, the present invention relates to a copper alloy tin plating material that has suitable sagability as a material for printed circuit board terminals and is excellent in plating peeling resistance.

近年、電子・電気部品の小型化や回路数増大により、回路に電気信号を供給する基板端子の小型化や高密度実装が進んでおり、曲げ加工性の向上のため結晶粒径の小さな銅母材が求められるようになっている。また導電材料の場合、小型化、高密度実装により通電時のジュール熱による温度上昇問題が生じている。銅合金Snめっき条の耐熱性としては、特許文献1においてCu−Snめっき中間層の成分及び結晶粒径を規定している(同文献請求項4)。又、特許文献2でははんだ実装性に優れるプリント基板端子用素材としてZn−Sn系銅合金Snめっき材を得ており、特許文献3ではCu−Snめっき中間層の結晶粒径等を規定して曲げ加工性及び耐摩耗性に優れためっき条を得ており、特許文献4では半田付け性及び挿入性に優れためっき条を得ている。   In recent years, due to the downsizing of electronic and electrical components and the increase in the number of circuits, the miniaturization and high-density mounting of board terminals that supply electrical signals to circuits have progressed. Materials are being sought. In the case of a conductive material, there has been a problem of temperature rise due to Joule heat during energization due to miniaturization and high-density mounting. As the heat resistance of the copper alloy Sn plating strip, Patent Document 1 defines the components of the Cu—Sn plating intermediate layer and the crystal grain size (claim 4 of the same document). In Patent Document 2, a Zn-Sn based copper alloy Sn plating material is obtained as a printed circuit board terminal material excellent in solder mountability. In Patent Document 3, the crystal grain size of the Cu-Sn plating intermediate layer is specified. A plating strip excellent in bending workability and wear resistance is obtained. In Patent Document 4, a plating strip excellent in solderability and insertion property is obtained.

自動車の電子制御ユニットのなかにはプリント基板が内蔵されており、プリント基板にはオス端子(以下、基板端子)が装着されている。この基板端子は、一端にメス端子を有するワイヤーハーネスを介して、外部の電子機器等と接続されている。上記プリント基板端子は、プリント基板のスルーホールに挿入され、フラックス塗布、予熱、リフロー半田付け、冷却、洗浄の工程を経て、プリント基板に半田実装される。
基板端子をプリント基板のスルーホールに挿入する工程において、基板端子はスルーホールの中心に挿入されることが理想である(図1(a)参照)。しかし、実際上すべての基板端子がスルーホールの中心に挿入されるわけではなく、中には、基板端子がスルーホールの内周部に当り、やや変形して実装されるものもある(図1(b)参照)。基板端子が変形したまま半田実装されると、元の形に戻ろうとするため半田部内に内部応力が発生し、これが原因で半田部にクラックが発生するという実装トラブルが予測される。しかし、従来の黄銅(Cu−Zn系銅合金、C2600又はC2680)のSnめっき材を使用した基板端子の材料では塑性変形性が高いため上記トラブルは発生しにくかった。
A printed circuit board is built in an electronic control unit of an automobile, and a male terminal (hereinafter referred to as a substrate terminal) is mounted on the printed circuit board. The substrate terminal is connected to an external electronic device or the like via a wire harness having a female terminal at one end. The printed circuit board terminal is inserted into a through hole of the printed circuit board, and solder-mounted on the printed circuit board through the steps of flux application, preheating, reflow soldering, cooling, and cleaning.
In the step of inserting the board terminal into the through hole of the printed board, it is ideal that the board terminal is inserted into the center of the through hole (see FIG. 1A). However, practically not all board terminals are inserted into the center of the through-hole, and some board terminals hit the inner periphery of the through-hole and are mounted with some deformation (FIG. 1). (See (b)). When solder mounting is performed with the substrate terminals deformed, an internal stress is generated in the solder portion in order to return to the original shape, and a mounting trouble in which a crack occurs in the solder portion due to this is predicted. However, the substrate terminal material using the conventional Sn plating material of brass (Cu—Zn-based copper alloy, C2600 or C2680) has high plastic deformability, and thus the above-mentioned trouble is difficult to occur.

特開2003−293187号公報JP 2003-293187 A 特願2007−075466号明細書Japanese Patent Application No. 2007-075466 特願2007−270206号明細書Japanese Patent Application No. 2007-270206 Specification 特願2007−284016号明細書Japanese Patent Application No. 2007-284016

しかし、従来の黄銅Snめっき材ではなく、上記耐熱性、曲げ加工性、耐摩耗性等に優れ、Cu−Snめっき中間層の結晶粒径を調整しためっき材料で製造された基板端子の場合には、半田部にクラックが形成されて実装トラブルが多発している。そこで、基板端子が変形したときにも半田部にクラックが発生しないような、耐熱性、曲げ加工性、耐摩耗性等に優れて、かつ好適なへたり性を備えた基板端子用の銅合金すずめっき材を本発明の目的とした。   However, it is not a conventional brass Sn plating material, but is excellent in the above heat resistance, bending workability, wear resistance, etc., and in the case of a substrate terminal manufactured with a plating material in which the crystal grain size of the Cu-Sn plating intermediate layer is adjusted. In this case, cracks are formed in the solder part, and mounting troubles frequently occur. Therefore, a copper alloy for a substrate terminal having excellent heat resistance, bending workability, wear resistance, etc. that does not generate cracks in the solder portion even when the substrate terminal is deformed, and has suitable sagability. A tin plating material was an object of the present invention.

本発明者らは、銅合金すずめっき材の銅合金とその直上のめっき相の結晶粒径及び銅合金直上のめっき相中のC及びS濃度とへたり量の関係を調査した。その結果、銅合金の結晶粒径とその直上のめっき相の結晶粒径との差が大きいほど、へたり量が大きくなること、加えて、銅合金直上のめっき相中のC及びS濃度が高いほど、へたり量が大きくなることを見出した。すなわち本発明は、下記の発明に関する。
(1) 平均結晶粒径が1.5〜6.0μmである銅又は銅合金の表面にCu相、Cu−Sn合金相及びSn相の各めっき相がこの順に形成されているSnめっき材であって、Cu相の平均厚みが0〜2.0μm、Cu−Sn合金相の平均厚みが0.1〜1.5μm、Sn相の平均厚みが0.1〜1.5μmであり、銅又は銅合金の結晶粒径DXと銅又は銅合金直上のめっき相の結晶粒径DYとの間に、(DX−DY)≧1(単位:μm)が成り立つことを特徴とする、プリント基板端子用に好適なへたり性をもつ銅合金すずめっき材。
(2) 銅又は銅合金直上のめっき相中のC及びS濃度が合計0.02〜0.2質量%であることを特徴とする、上記(1)記載の銅合金すずめっき材。
(3) 銅合金が、2〜22質量%のZnを含有し、更に必要に応じてNi、Cr、Co、Sn、Fe、Ag、及びMnの群から選ばれた1種以上を合計で2.0質量%以下含有し、残部が銅及び不可避的不純物から構成されることを特徴とする上記(1)又は(2)記載の銅合金すずめっき材。
The present inventors investigated the relationship between the crystal grain size of the copper alloy of the copper alloy tin plating material and the plating phase immediately above the copper alloy, and the C and S concentrations in the plating phase immediately above the copper alloy and the amount of sag. As a result, the larger the difference between the crystal grain size of the copper alloy and the crystal grain size of the plating phase immediately above it, the larger the amount of sag, and in addition, the C and S concentrations in the plating phase directly above the copper alloy We found that the higher the amount, the greater the amount of sag. That is, the present invention relates to the following inventions.
(1) An Sn plating material in which Cu phase, Cu—Sn alloy phase and Sn phase plating phases are formed in this order on the surface of copper or copper alloy having an average crystal grain size of 1.5 to 6.0 μm. The average thickness of the Cu phase is 0 to 2.0 μm, the average thickness of the Cu—Sn alloy phase is 0.1 to 1.5 μm, the average thickness of the Sn phase is 0.1 to 1.5 μm, and copper or (D X −D Y ) ≧ 1 (unit: μm) is established between the crystal grain size D X of the copper alloy and the crystal grain size D Y of the plating phase immediately above the copper or copper alloy, Copper alloy tin plating material suitable for printed circuit board terminals.
(2) The copper alloy tin-plated material according to (1) above, wherein the C and S concentrations in the plating phase immediately above copper or a copper alloy are 0.02 to 0.2 mass% in total.
(3) The copper alloy contains 2 to 22% by mass of Zn, and further contains at least one selected from the group of Ni, Cr, Co, Sn, Fe, Ag, and Mn as required. The copper alloy tin-plated material according to the above (1) or (2), wherein the copper alloy tin plating material is contained in an amount of 0.0 mass% or less, and the balance is composed of copper and inevitable impurities.

本発明は、プリント基板のスルーホールに挿入されリフロー半田付け工程を経て実装されるプリント配線基板端子の素材として好適なへたり性を有し、耐めっき剥離性に優れた銅合金すずめっき材を提供できる。   The present invention provides a copper alloy tin plating material having a suitable sagability as a material of a printed wiring board terminal to be inserted through a through hole of a printed board and mounted through a reflow soldering process, and having excellent plating peeling resistance. Can be provided.

基板端子がプリント基板のスルーホールの中心に挿入された状態を示す概略図(a)及び、基板端子がスルーホールの内周部に当り、やや変形して実装された状態を示す概略図(b)である。Schematic diagram (a) showing a state in which the board terminal is inserted into the center of the through hole of the printed circuit board, and schematic diagram showing a state in which the board terminal hits the inner peripheral portion of the through hole and is slightly deformed and mounted (b) ). へたり量を測定する試験の説明図である。It is explanatory drawing of the test which measures the amount of sagging. 発明例1のSn及びCu濃度のプロファイルである。It is a profile of Sn and Cu concentration of Invention Example 1. 発明例1のC及びS濃度のプロファイルである。4 is a profile of C and S concentrations in Invention Example 1.

(1)銅合金の種類
本発明の銅又は銅合金(以下「銅合金」と総称する)として、例えばC23000、C22000、C21000等が挙げられる。
本発明の銅合金がCu−Zn系合金である場合、Znは2〜22質量%の範囲が好ましい。Znの添加量を増やすと強度が増加する反面、導電率が低下する。添加量が2質量%未満であると強度が不充分となり、22質量%を超えると導電率が不充分となる。
強度、耐熱性等の特性を改善するために、更に必要に応じてNi、Cr、Co、Sn、Fe、Ag、及びMnの群から選ばれた1種以上を添加することができる。ただし、添加量が増えると導電率が低下するため、合計添加量を2.0質量%以下とする。
本発明の銅合金の平均結晶粒径は、圧延方向に対して平行断面で1.5〜6.0μmとする。最終焼鈍後の平均結晶粒径を1.5μm未満とするために低温、短時間の焼鈍を行うと、通常は未再結晶が残ってしまう。結晶粒径が1.5μm未満で且つ未再結晶が残らないような結晶粒を得るための最終焼鈍を実施するには充分な時間をかけ、且つ温度管理を必要とするため、工業的に採用しにくく実用化が困難である。一方、平均結晶粒径が6.0μmを超えると、充分な強度が得られない。
(1) Types of copper alloy Examples of the copper or copper alloy of the present invention (hereinafter collectively referred to as “copper alloy”) include C23000, C22000, C21000, and the like.
When the copper alloy of the present invention is a Cu-Zn alloy, Zn is preferably in the range of 2 to 22% by mass. Increasing the amount of Zn added increases the strength but decreases the conductivity. If the addition amount is less than 2% by mass, the strength is insufficient, and if it exceeds 22% by mass, the conductivity is insufficient.
In order to improve properties such as strength and heat resistance, one or more selected from the group of Ni, Cr, Co, Sn, Fe, Ag, and Mn can be added as necessary. However, since the electrical conductivity decreases as the amount added increases, the total amount added is 2.0% by mass or less.
The average crystal grain size of the copper alloy of the present invention is 1.5 to 6.0 μm in a cross section parallel to the rolling direction. When annealing is performed at a low temperature for a short time in order to make the average crystal grain size after final annealing less than 1.5 μm, unrecrystallized materials usually remain. Adopted industrially because it takes enough time to perform final annealing to obtain crystal grains with a crystal grain size of less than 1.5 μm and no unrecrystallized residue, and temperature control is required. Difficult to put into practical use. On the other hand, if the average crystal grain size exceeds 6.0 μm, sufficient strength cannot be obtained.

(2)めっき
本発明の銅又は銅合金の表面から母材にかけて、Sn相、Cu−Sn合金相、Cu相の各相でめっき皮膜が構成される。Cu下地めっき、Snめっきの順に電気めっきを行い、リフロー処理を施すことにより、本発明のめっき皮膜構造が得られる。
リフロー後のSn相の平均厚みは0.1〜1.5μmとする。Sn相が0.1μm未満になるとめっき剥離の原因となり、1.5μmを超えると、挿入力が増大する。
リフロー後のCu−Sn合金相の平均厚みは0.1〜1.5μmとする。Cu−Sn合金相が0.1μm未満又は1.5μmを超えると、めっき剥離の原因となる。
リフロー後のCu相の平均厚みは0〜2.0μmとする。電気めっきで形成したCu下地めっきは、リフロー時にCu−Sn合金相形成に消費され、その厚みはゼロになっても良い。Cu相が2.0μmを超えるとめっき剥離の原因となる。
電気めっき時の各めっきの厚みを、Snめっきは0.4〜2.2μmの範囲、Cuめっきは0.1〜2.2μmの範囲で適宜調整し、その次に230〜600℃、3〜30秒間の範囲のなかの適当な条件でリフロー処理を行うことにより、上記めっき構造が得られる。
(2) Plating From the surface of the copper or copper alloy of the present invention to the base material, a plating film is composed of each phase of Sn phase, Cu—Sn alloy phase, and Cu phase. The plating film structure of the present invention can be obtained by performing electroplating in the order of Cu base plating and Sn plating and performing reflow treatment.
The average thickness of the Sn phase after reflowing is 0.1 to 1.5 μm. If the Sn phase is less than 0.1 μm, it causes plating peeling, and if it exceeds 1.5 μm, the insertion force increases.
The average thickness of the Cu—Sn alloy phase after reflowing is 0.1 to 1.5 μm. When the Cu—Sn alloy phase is less than 0.1 μm or exceeds 1.5 μm, it causes plating peeling.
The average thickness of the Cu phase after reflowing is set to 0 to 2.0 μm. The Cu base plating formed by electroplating is consumed for forming the Cu—Sn alloy phase during reflow, and its thickness may be zero. If the Cu phase exceeds 2.0 μm, it causes plating peeling.
The thickness of each plating at the time of electroplating is appropriately adjusted in the range of 0.4 to 2.2 μm for Sn plating and 0.1 to 2.2 μm for Cu plating, and then 230 to 600 ° C., 3 to The above-described plating structure can be obtained by performing a reflow process under an appropriate condition within a range of 30 seconds.

(3)結晶粒径
材料に外力が働くこと(本発明の場合、基板端子がスルーホールの内周部に当り、たわむこと)によって、材料内で転位が移動し、集積することで材料は変形する。一般的に、金属組織の結晶粒界の原子配列は、粒内と比較して不規則であるため、転位は結晶粒界に優先的に集積する。特に、粒界三重点のように、局所的に結晶粒界の面積が大きい場所に集積しやすい。
本発明は下記理論により制限されるものではないが、めっきの母材である銅合金の金属結晶とめっき相の金属結晶の結晶粒径が異なった場合、つまり、めっきの母材である銅合金の結晶粒径DXとその銅合金直上のめっき相の結晶粒径DYとの間に(DX−DY)≧1が成り立つとき、銅合金母材とその直上のめっき相との界面には粒界三重点のような粗大な結晶粒界が一面に形成される。その粗大な結晶粒界が形成された界面の面積は、銅合金やめっき相内に存在する粒界三重点より大きい。したがって、外力が加わったとき、界面の局所的な結晶粒界が粗大な部分に転位が集積し、プリント基板端子の素材として好適なへたり性が得られると考えられる。一方、(DX−DY)が1未満になると、界面には粗大な結晶粒界は形成されにくく、本発明の効果が得られない。
銅合金及び銅合金直上のめっき相の結晶粒径の制御方法を次に説明する。
(3) Crystal grain size When an external force acts on the material (in the case of the present invention, the substrate terminal hits the inner periphery of the through hole and bends), the dislocation moves within the material and accumulates, thereby deforming the material. To do. In general, since the atomic arrangement of the crystal grain boundary of the metal structure is irregular as compared with the inside of the grain, dislocations accumulate preferentially at the crystal grain boundary. In particular, it is easy to accumulate in a place where the area of the crystal grain boundary is locally large, such as a grain boundary triple point.
Although the present invention is not limited by the following theory, when the crystal grain size of the metal crystal of the copper alloy that is the plating base material and the metal crystal of the plating phase are different, that is, the copper alloy that is the base material of the plating When (D X -D Y ) ≧ 1 holds between the crystal grain size D X of the copper alloy and the crystal grain size D Y of the plating phase immediately above the copper alloy, the interface between the copper alloy base material and the plating phase immediately above A coarse grain boundary like a grain boundary triple point is formed on one side. The area of the interface where the coarse crystal grain boundary is formed is larger than the grain boundary triple point existing in the copper alloy or the plating phase. Therefore, when an external force is applied, it is considered that dislocations accumulate in a portion where the local crystal grain boundary at the interface is coarse, and a suitable sag is obtained as a material for a printed circuit board terminal. On the other hand, when (D X -D Y ) is less than 1, coarse crystal grain boundaries are hardly formed at the interface, and the effects of the present invention cannot be obtained.
The method for controlling the crystal grain size of the copper alloy and the plating phase immediately above the copper alloy will be described below.

(イ)銅合金の結晶粒径
本発明が適用できる銅合金は、溶解→鋳造→均質化焼鈍→熱間圧延→面削→冷間圧延→再結晶焼鈍→冷間圧延という工程を経て製造される。このとき、再結晶焼鈍の加熱温度又は加熱時間を調整することにより、銅合金の結晶粒径を制御できる。加熱温度が高いほど、加熱時間が長いほど、結晶粒径は粗大になる。反対に、加熱温度が低いほど、加熱時間が短いほど、結晶粒径は微細になる。
銅合金の結晶粒径は、好ましくは1.5〜6.0μmである。6.0μmを超えると所望の強度が得られない。一方、1.5μm未満の場合には曲げ加工性が劣る。
(A) Crystal grain size of copper alloy The copper alloy to which the present invention can be applied is manufactured through the steps of melting → casting → homogenization annealing → hot rolling → facing → cold rolling → recrystallization annealing → cold rolling. The At this time, the crystal grain size of the copper alloy can be controlled by adjusting the heating temperature or heating time of the recrystallization annealing. The higher the heating temperature and the longer the heating time, the coarser the crystal grain size. Conversely, the lower the heating temperature and the shorter the heating time, the finer the crystal grain size.
The crystal grain size of the copper alloy is preferably 1.5 to 6.0 μm. If it exceeds 6.0 μm, the desired strength cannot be obtained. On the other hand, when it is less than 1.5 μm, the bending workability is inferior.

(ロ)銅合金直上のめっき相の結晶粒径
電気めっきで形成したCu下地めっきは、リフロー時にCu−Sn合金相形成に消費されるため、銅合金直上のめっき相はCu−Sn合金相もしくはCu相となる。いずれの場合にしても、電気めっき時のCu電着粒の大きさを制御することにより、Cu−Sn合金相及びCu相の結晶粒径を調整できる。
めっき相の結晶粒径は、好ましくは0.5〜2.0μmである。2.0μmを超えると所望の強度が得られない。一方、0.5μm未満の場合には曲げ加工性が劣る。
銅合金直上のめっき相の結晶粒径を微細にするためには、Cu電着粒を小さくすればよく、
(a)電流密度を大きくすること、
(b)めっき浴の温度を下げること、
(c)めっき浴の濃度を上げること、
(d)めっき浴液の攪拌速度を上げること、
(e)めっき浴液に適当な界面活性剤を加えること、
等が効果的である。
(B) The crystal grain size of the plating phase immediately above the copper alloy The Cu base plating formed by electroplating is consumed for the formation of the Cu-Sn alloy phase during reflow, so the plating phase immediately above the copper alloy is the Cu-Sn alloy phase or It becomes a Cu phase. In any case, the crystal grain size of the Cu—Sn alloy phase and the Cu phase can be adjusted by controlling the size of the Cu electrodeposited grains during electroplating.
The crystal grain size of the plating phase is preferably 0.5 to 2.0 μm. If it exceeds 2.0 μm, the desired strength cannot be obtained. On the other hand, when it is less than 0.5 μm, the bending workability is inferior.
In order to make the crystal grain size of the plating phase just above the copper alloy fine, the Cu electrodeposited grains should be made small,
(A) increasing the current density;
(B) lowering the temperature of the plating bath;
(C) increasing the concentration of the plating bath;
(D) increasing the stirring speed of the plating bath solution;
(E) adding an appropriate surfactant to the plating bath;
Etc. are effective.

(4)銅合金直上のめっき相中のC及びS濃度
銅合金直上のめっき相中にC及びS不純物が含有されると、外力が加わったとき、転位がそれら不純物周辺に集積し、変形しやすくなる。
めっき母材である銅合金直上のめっき相に含まれるC及びS濃度の合計が0.02〜0.2質量%の範囲内であるとき、プリント基板端子の素材として好適なへたり性が得られる。0.02質量%未満であると、目的とする効果が得られず、0.2質量%を超えると、めっき剥離の原因となる。
リフローSnめっきは、銅母材のアルカリ電解脱脂→水洗→硫酸酸洗→水洗→下地めっき→水洗→Snめっき→水洗→リフロー処理の工程を経て、製造される。このとき、アルカリ電解脱脂及び酸洗による不純物除去条件を調整することにより、銅母材表面に付着した不純物由来のC及びSがめっき相中に混入され、銅合金直上のめっき相のC及びS濃度を制御できる。
(4) C and S concentrations in the plating phase immediately above the copper alloy If C and S impurities are contained in the plating phase immediately above the copper alloy, dislocations accumulate and deform around the impurities when an external force is applied. It becomes easy.
When the total of C and S concentrations contained in the plating phase immediately above the copper alloy, which is the plating base material, is in the range of 0.02 to 0.2% by mass, a suitable sag is obtained as a material for printed circuit board terminals. It is done. If it is less than 0.02% by mass, the intended effect cannot be obtained, and if it exceeds 0.2% by mass, it causes plating peeling.
The reflow Sn plating is manufactured through the steps of alkaline electrolytic degreasing of copper base material → water washing → sulfuric acid washing → water washing → undercoat plating → water washing → Sn plating → water washing → reflow treatment. At this time, by adjusting the impurity removal conditions by alkaline electrolytic degreasing and pickling, C and S derived from impurities adhering to the surface of the copper base material are mixed in the plating phase, and the C and S of the plating phase immediately above the copper alloy are mixed. Concentration can be controlled.

銅合金直上のめっき相のC及びS濃度を高くするためには、
(a)アルカリ電解脱脂の電流密度を下げること、
(b)脱脂剤の濃度を下げること、
(c)脱脂剤又は硫酸の濃度を下げること、
(d)アルカリ電解脱脂又は酸洗の時間を短くすること、
(e)アルカリ電解脱脂又は酸洗の温度を下げること、
等が効果的である。
In order to increase the C and S concentration of the plating phase directly above the copper alloy,
(A) lowering the current density of alkaline electrolytic degreasing,
(B) reducing the concentration of the degreasing agent;
(C) reducing the concentration of degreasing agent or sulfuric acid,
(D) shortening the alkaline electrolytic degreasing or pickling time;
(E) lowering the temperature of alkaline electrolytic degreasing or pickling,
Etc. are effective.

高周波溶解炉を用い、内径60mm、深さ200mmの黒鉛坩堝中で2kgの電気銅を溶解した。溶湯表面を木炭片で覆った後、ZnとNi、Cr、Co、Sn、Fe、Ag、及びMnの群から選ばれた1種を添加した。溶湯温度を1200℃に調整した後、溶湯を金型に鋳込み、幅60mm、厚み30mmのインゴットを製造した。インゴットを850℃で3時間加熱し、厚さ8mmまで熱間圧延を行った。熱間圧延板の表面の酸化スケールをグラインダーで研削後、板厚1mmまで冷間圧延、再結晶焼鈍、板厚0.64mmまで冷間圧延を行った。再結晶焼鈍では、材料を大気中、750℃で加熱し、加熱時間を調整することにより、結晶粒径を制御した。また、焼鈍で生成した酸化膜を除去するため、10質量%硫酸−1質量%過酸化水溶液における酸洗及び#1200エメリー紙による機械研磨を順次行った。このように作製した銅合金の成分を表1に示す。   Using a high-frequency melting furnace, 2 kg of electrolytic copper was melted in a graphite crucible having an inner diameter of 60 mm and a depth of 200 mm. After covering the molten metal surface with charcoal pieces, one selected from the group consisting of Zn and Ni, Cr, Co, Sn, Fe, Ag, and Mn was added. After adjusting the molten metal temperature to 1200 ° C., the molten metal was cast into a mold to produce an ingot having a width of 60 mm and a thickness of 30 mm. The ingot was heated at 850 ° C. for 3 hours and hot-rolled to a thickness of 8 mm. After grinding the oxide scale on the surface of the hot-rolled sheet with a grinder, cold rolling to a sheet thickness of 1 mm, recrystallization annealing, and cold rolling to a sheet thickness of 0.64 mm were performed. In the recrystallization annealing, the crystal grain size was controlled by heating the material at 750 ° C. in the atmosphere and adjusting the heating time. Moreover, in order to remove the oxide film produced | generated by annealing, the pickling in 10 mass% sulfuric acid-1 mass% peroxide aqueous solution and the mechanical polishing by # 1200 emery paper were performed in order. Table 1 shows the components of the copper alloy thus prepared.

次に、これら銅合金に対し、以下の手順でSnめっきを施した。
(1)アルカリ水溶液中で試料をカソードとして次の条件で電解脱脂を行った。脱脂剤:ユケン工業(株)製商標「パクナP105」。電流密度、脱脂剤濃度、温度、時間については下記表2参照。
(2)硫酸水溶液を用いて下記表2の条件で酸洗を行った。
(3)下記表3の条件でCu下地めっきを行った。また、電着時間を調整することによりめっき厚みを変化させた。
(4)次の条件でSnめっきを行った。めっき浴組成:酸化第1錫41g/L、フェノールスルホン酸268g/L、界面活性剤5g/L。めっき浴温度:50℃。電流密度9A/dm2。また、電着時間を調整することによりめっき厚みを変化させた。
(5)リフロー処理として、温度を550℃の加熱炉中に試料を5秒間挿入した後水冷した。
Next, Sn plating was performed on these copper alloys by the following procedure.
(1) Electrolytic degreasing was performed under the following conditions using a sample as a cathode in an alkaline aqueous solution. Degreasing agent: Trademark “Pakuna P105” manufactured by Yuken Industry Co., Ltd. See Table 2 below for current density, degreasing agent concentration, temperature, and time.
(2) Pickling was performed using the sulfuric acid aqueous solution under the conditions shown in Table 2 below.
(3) Cu base plating was performed under the conditions shown in Table 3 below. Moreover, the plating thickness was changed by adjusting the electrodeposition time.
(4) Sn plating was performed under the following conditions. Plating bath composition: stannous oxide 41 g / L, phenolsulfonic acid 268 g / L, surfactant 5 g / L. Plating bath temperature: 50 ° C. Current density 9 A / dm 2 . Moreover, the plating thickness was changed by adjusting the electrodeposition time.
(5) As a reflow treatment, the sample was inserted into a heating furnace having a temperature of 550 ° C. for 5 seconds and then cooled with water.

得られた銅合金すずめっき材に対し、以下の特性を評価した。
(イ)めっき厚み
Sn相、Cu−Sn合金相、Cu相の各相の厚みを求めた。測定には主として電解式膜厚計(電測社製CT−1)を用い、断面からのSEM観察、表面からのGDS(グロー放電発光分光分析装置)分析等も必要に応じて用いた。
(ロ)へたり量
銅合金すずめっき材を厚み0.64mm×幅0.64mm×長さ30mmの端子状にプレス加工した。アイコーエンジニアリング社製MODEL−1605Nを使用して、端子の一端をバイスで固定してばね長20mmとし、固定されてない端にナイフエッジを、変位量が1.0mmとなるまで押し当て、5秒保持した後、荷重を除去した。その後、試験前の端子末端位置から試験後の位置との差を測定し、へたり量を求めた(図2参照)。本発明における「プリント基板端子の素材として好適なへたり性」とは、上記試験でへたり量が、0.1mm以上となることを意味する。
The following characteristics were evaluated with respect to the obtained copper alloy tin plating material.
(A) Plating thickness The thickness of each phase of Sn phase, Cu-Sn alloy phase, and Cu phase was determined. For the measurement, an electrolytic film thickness meter (CT-1 manufactured by Denso Co., Ltd.) was mainly used, and SEM observation from the cross section, GDS (glow discharge emission spectroscopy analyzer) analysis from the surface, and the like were used as needed.
(B) Sag amount A copper alloy tin plating material was pressed into a terminal shape having a thickness of 0.64 mm, a width of 0.64 mm, and a length of 30 mm. Using MODEL-1605N manufactured by Aiko Engineering Co., Ltd., one end of the terminal is fixed with a vise to a spring length of 20 mm, and the knife edge is pressed to the unfixed end until the displacement becomes 1.0 mm for 5 seconds. After holding, the load was removed. Thereafter, the difference between the terminal end position before the test and the position after the test was measured to obtain the amount of sag (see FIG. 2). The “sagging property suitable as a material for printed circuit board terminals” in the present invention means that the amount of sagging in the above test is 0.1 mm or more.

(ハ)結晶粒径
めっき母材である銅合金の結晶粒径は、サンプルの圧延平行直角断面を機械研磨により、鏡面に仕上げ、10wt%塩化第二鉄水溶液に30秒浸漬させることによりエッチングを行い、金属組織を光学顕微鏡(倍率400倍)により観察し、JIS H 0501に規定された切断法により結晶粒径を求めた。
銅合金直上のめっき相の結晶粒径は、Cu−Sn合金相の場合、リフロー後の銅合金Snめっき材のめっき表面を、電解式膜厚計を用いて、Sn相を溶解除去し、めっき表面にCu−Sn合金相を露出させ、金属組織をELIONIX社製凹凸SEM(ERA−8000)により観察し、JIS H 0501に規定された切断法により結晶粒径を求めた。Cu相の場合、リフロー後の銅合金Snめっき材のめっき表面を、電解式膜厚計を用いて、Sn相及びCu−Sn合金相を溶解除去し、めっき表面にCu相を露出させて、同様に金属組織を観察して結晶粒径を求めた。
(C) Crystal grain size The crystal grain size of the copper alloy that is the plating base material is etched by mechanically polishing the rolled parallel perpendicular section of the sample to a mirror surface and immersing it in a 10 wt% ferric chloride aqueous solution for 30 seconds. The metal structure was observed with an optical microscope (magnification 400 times), and the crystal grain size was determined by the cutting method defined in JIS H 0501.
In the case of Cu-Sn alloy phase, the crystal grain size of the plating phase directly above the copper alloy is obtained by dissolving and removing the Sn phase on the plated surface of the copper alloy Sn plating material after reflow using an electrolytic film thickness meter. The Cu—Sn alloy phase was exposed on the surface, the metal structure was observed with an uneven SEM (ERA-8000) manufactured by ELIONIX, and the crystal grain size was determined by the cutting method defined in JIS H 0501. In the case of Cu phase, the electrolytic surface film thickness meter is used to dissolve and remove the Sn phase and Cu—Sn alloy phase, and the Cu phase is exposed on the plating surface. Similarly, the metal structure was observed to determine the crystal grain size.

(ニ)C及びS濃度
リフロー後の試料をアセトン中で超音波脱脂した後、GDS(グロー放電発光分光分析装置)により、Sn、Cu、Ni、C、Sの深さ方向の濃度プロファイルを求めた。測定条件は次の通りである。
・装置:JOBIN YBON社製JY5000RF−PSS型
・Current Method Program:CNBinteel−12aa−0。
・Mode:設定電力=40W。
・気圧:775Pa。
・電流値:40mA(700V)。
・フラッシュ時間:20s。
・予備加熱時間:2s。
・測定時間:分析時間=30s、サンプリング時間=0.020s/point。
濃度プロファイルデータより、Sn表面のSn、Cu、Ni濃度、銅合金直上のめっき相のC及びS濃度を求めた。
(D) C and S concentrations After the reflowed sample is ultrasonically degreased in acetone, the concentration profiles of Sn, Cu, Ni, C, and S in the depth direction are obtained by GDS (glow discharge emission spectroscopic analyzer). It was. The measurement conditions are as follows.
-Apparatus: JY5000RF-PSS type made by JOBIN YBON-Current Method Program: CNBintel-12aa-0.
Mode: Set power = 40W.
-Atmospheric pressure: 775 Pa.
-Current value: 40 mA (700 V).
-Flash time: 20 s.
-Preheating time: 2 s.
Measurement time: analysis time = 30 s, sampling time = 0.020 s / point.
From the concentration profile data, the Sn, Cu, Ni concentration on the Sn surface, and the C and S concentrations of the plating phase immediately above the copper alloy were determined.

GDSによる濃度プロファイルデータの代表的なものとして、下記発明例1のSn、Cu、C及びS濃度のプロファイルを図3及び4に示す。図3よりめっき母材の銅合金直上はCu―Sn合金相であり、Cu濃度とSn濃度それぞれの変曲点が一致する深さ1.7μmにその境界面が存在することが認められる。さらに、深さ0.5μmにSn相とCu−Sn合金相との境界面が存在することが認められる。したがって、深さ0.5〜1.7μmの範囲にCu−Sn合金相が存在し、図4より、この範囲内のC及びSのピークの高さを読み取り、その合計を銅合金直上のめっき相中のC及びS濃度とした。他の発明例及び比較例も同様にC及びS濃度を求めた。   3 and 4 show the Sn, Cu, C, and S concentration profiles of the following Invention Example 1 as typical GDS concentration profile data. From FIG. 3, it is recognized that the Cu—Sn alloy phase is just above the copper alloy of the plating base material, and the boundary surface exists at a depth of 1.7 μm where the inflection points of the Cu concentration and the Sn concentration coincide with each other. Furthermore, it is recognized that there is an interface between the Sn phase and the Cu—Sn alloy phase at a depth of 0.5 μm. Therefore, a Cu—Sn alloy phase exists in a depth range of 0.5 to 1.7 μm. From FIG. 4, the heights of the C and S peaks in this range are read, and the total is plated directly on the copper alloy. The C and S concentrations in the phase were taken. The C and S concentrations were similarly determined for other invention examples and comparative examples.

(ホ)めっき剥離性
幅10mmの短冊試験片を採取し、曲げ軸が圧延方向に対し平行となるように曲げ半径0.64mmの90°曲げを行った後、150℃の温度で、大気中1000時間まで加熱した。加熱後、加熱炉から取り出し、曲げ戻し、曲げ外周部にテープ(住友3M社製、メッキ用マスキングテープ、#851A)を貼り付けた後、引き剥がし、光学顕微鏡(倍率50倍)でめっき剥離の有無を観察した。評価において「○」はめっき剥離なし、「×」はめっき剥離ありを示す。
(E) Plating peelability A strip test piece having a width of 10 mm was sampled and subjected to 90 ° bending with a bending radius of 0.64 mm so that the bending axis was parallel to the rolling direction, and then at a temperature of 150 ° C. in the atmosphere. Heated up to 1000 hours. After heating, take out from the heating furnace, bend back, apply a tape (Sumitomo 3M, masking tape for plating, # 851A) to the outer periphery of the bend, peel off, and peel off with an optical microscope (50x magnification) The presence or absence was observed. In the evaluation, “◯” indicates that there is no plating peeling, and “×” indicates that there is plating peeling.

(ヘ)強度
JIS Z2241に準拠して、圧延平行方向での引張試験を行って引張強さ(TS)及び0.2%耐力(YS)を求めた。
(ト)導電率
JIS H0505に準拠して、ダブルブリッジによる体積抵抗率測定により導電率(EC;%IACS)を求めた。
(F) Strength Based on JIS Z2241, a tensile test in the rolling parallel direction was performed to determine tensile strength (TS) and 0.2% yield strength (YS).
(G) Electrical conductivity Based on JIS H0505, electrical conductivity (EC;% IACS) was determined by volume resistivity measurement using a double bridge.

実施例(結晶粒径、C、S濃度に関するへたり性及び耐めっき剥離性評価):
銅合金と銅合金直上のめっき相の結晶粒径の差及び銅合金直上のめっき相中のC、S濃度がへたり性に及ぼす影響を表4に示す。表4の実施例はすべて表1の銅合金aを使用した。
発明例1〜5及び比較例1〜3ではCuの厚みを0.3μm、Snの厚みを0.8μmとして電気めっきを行ったところ、リフロー後のSn相の厚みは約0.5μm、Cu−Sn合金相の厚みは約1.2μmとなり本発明の範囲内であった。Cu相は消失していたのでこれら実施例での銅合金上のめっき相はCu−Sn合金相である。
発明例1〜5では、(DX−DY)が1.0μm以上となり、へたり量は0.1mmを超え、プリント基板端子の素材として好適なへたり性を示した。さらに、発明例1及び2はC、S濃度の合計が0.02%以上となり、そのへたり量は発明例3及び4より大きかった。
発明例1及び比較例1では、Cuめっき条件を変化させている。比較例1の銅合金直上のめっき相であるCu−Sn合金相の結晶粒径DYが粗大であるため、(DX−DY)は1未満となり、へたり量は0.1mm未満となった。
発明例2と比較例2では、再結晶焼鈍時間を変化させている。比較例2は銅合金の結晶粒径DXが微細であるため、(DX−DY)は1未満となり、へたり量は0.1mm未満となった。
比較例3は、アルカリ電解脱脂及び硫酸酸洗が不十分であるため、CとSの合計濃度が0.2%を超え、めっき剥離が発生した。
Example (Evaluation of sag and plating peel resistance regarding crystal grain size, C, and S concentration):
Table 4 shows the difference in crystal grain size between the copper alloy and the plating phase immediately above the copper alloy and the influence of the C and S concentrations in the plating phase immediately above the copper alloy on the sagability. All the examples in Table 4 used the copper alloy a in Table 1.
In Invention Examples 1 to 5 and Comparative Examples 1 to 3, when electroplating was performed with a Cu thickness of 0.3 μm and a Sn thickness of 0.8 μm, the thickness of the Sn phase after reflow was about 0.5 μm, Cu— The thickness of the Sn alloy phase was about 1.2 μm and was within the scope of the present invention. Since the Cu phase has disappeared, the plating phase on the copper alloy in these examples is a Cu-Sn alloy phase.
In Invention Examples 1 to 5, (D X -D Y ) was 1.0 μm or more, and the amount of sag exceeded 0.1 mm, indicating that sag was suitable as a material for printed circuit board terminals. Inventive Examples 1 and 2 had a total C and S concentration of 0.02% or more, and the amount of sag was larger than Inventive Examples 3 and 4.
In Invention Example 1 and Comparative Example 1, the Cu plating conditions are changed. Since the crystal grain size D Y of the Cu-Sn alloy phase is a plating phase immediately above the copper alloy of Comparative Example 1 is coarse, (D X -D Y) becomes less than 1, the amount of sag is as less than 0.1mm became.
In Invention Example 2 and Comparative Example 2, the recrystallization annealing time is changed. In Comparative Example 2, since the crystal grain size D X of the copper alloy was fine, (D X -D Y ) was less than 1 and the amount of sag was less than 0.1 mm.
In Comparative Example 3, since alkaline electrolytic degreasing and sulfuric acid pickling were insufficient, the total concentration of C and S exceeded 0.2%, and plating peeling occurred.

実施例(めっき厚みに関するめっき剥離性評価):
めっき厚みがめっき剥離性に及ぼす影響を表5に示す。アルカリ電解脱脂および酸洗の条件は表2b、Cuめっき条件は表3bである。表5の実施例はすべて再結晶焼鈍時間30sで平均結晶粒径Dxが3.5μmの銅合金aを使用し、(DX−DY)が1以上の発明例1〜5と同程度であり、C、S濃度の合計が0.02〜0.2質量%であり、へたり量は0.1mmを超えるの発明例1〜5と同程度のものであった。
発明例6〜10は、リフロー後のSn厚みが0.1〜1.5μmの範囲内、リフロー後のCu−Sn合金相の厚みが0.1〜1.5μmの範囲内、リフロー後のCu相の厚みが0〜2.0μmの範囲内であった。めっき厚みが規定範囲内であったこれら合金はめっき剥離が発生しなかった。
比較例4はリフロー後のSn相の厚みが0.1μm未満であり、比較例5はリフロー後のCu−Sn合金相の厚みが1.5μmを超え、比較例6はリフロー後のCu相の厚みが2.0μmを超えた。めっき厚みが規定範囲外であったこれら合金はめっき剥離が発生した。
Example (Evaluation of Peeling Peeling on Plating Thickness):
Table 5 shows the influence of the plating thickness on the plating peelability. Table 2b shows the conditions for alkaline electrolytic degreasing and pickling, and Table 3b shows the conditions for Cu plating. All the examples in Table 5 use copper alloy a having a recrystallization annealing time of 30 s and an average crystal grain size D x of 3.5 μm, and (D X -D Y ) is about the same as that of Invention Examples 1 to 5 The sum of the C and S concentrations was 0.02 to 0.2% by mass, and the amount of sag was about the same as that of Invention Examples 1 to 5 exceeding 0.1 mm.
Inventive Examples 6 to 10 are such that the Sn thickness after reflow is in the range of 0.1 to 1.5 μm, the thickness of the Cu—Sn alloy phase after reflow is in the range of 0.1 to 1.5 μm, and the Cu after reflow The phase thickness was in the range of 0-2.0 μm. Plating peeling did not occur in these alloys whose plating thickness was within the specified range.
In Comparative Example 4, the thickness of the Sn phase after reflow is less than 0.1 μm, in Comparative Example 5, the thickness of the Cu—Sn alloy phase after reflow exceeds 1.5 μm, and in Comparative Example 6, the thickness of the Cu phase after reflow is The thickness exceeded 2.0 μm. Plating peeling occurred in these alloys whose plating thickness was outside the specified range.

実施例(成分濃度に関する強度及び導電率評価):
各成分濃度が強度と導電率に及ぼす影響を表6に示す。アルカリ電解脱脂および酸洗の条件は表2b、Cuめっき条件は表3bである。表6の実施例はすべて銅合金の平均結晶粒径が1.5〜6.0μmであり、Cu相、Cu−Sn合金相及びSn相のそれぞれの平均厚みは本発明の範囲内であり、(DX−DY)が1以上での発明例1〜5と同程度であり、C、S濃度の合計が0.02〜0.2質量%であり、へたり量は0.1mmを超えて発明例1〜5と同程度であった。
発明例11〜18は、Zn濃度が2〜22%の範囲内であり、Ni、Cr、Co、Sn、Fe、Ag、及びMnの群から選ばれた1種の濃度が2.0%以下であった。成分濃度が本発明の1態様で規定した範囲内であったこれら合金はTS及びYSが400MPa以上、ECが30%IACS以上であり、プリント基板用銅合金として充分な特性を示した。
比較例7はNi、Cr、Co、Sn、Fe、Ag、及びMnの群から選ばれた1種の濃度が2.0%を超え、比較例8はZn濃度が22%を超えた。これら合金はECが30%IACS未満であった。比較例9はZn濃度が2%未満であり、TS及びYSが400MPa未満であった。成分濃度が本発明の1態様で規定した範囲外であったこれら銅合金の特性はプリント基板用銅合金として不充分であった。
Example (strength and conductivity evaluation regarding component concentration):
Table 6 shows the influence of each component concentration on strength and conductivity. Table 2b shows the conditions for alkaline electrolytic degreasing and pickling, and Table 3b shows the conditions for Cu plating. In all the examples in Table 6, the average crystal grain size of the copper alloy is 1.5 to 6.0 μm, and the average thicknesses of the Cu phase, the Cu—Sn alloy phase, and the Sn phase are within the scope of the present invention. (D X -D Y ) is about the same as that of Invention Examples 1 to 5 with 1 or more, the total of C and S concentrations is 0.02 to 0.2% by mass, and the amount of sag is 0.1 mm. It was almost the same as Invention Examples 1-5.
In Invention Examples 11 to 18, the Zn concentration is in the range of 2 to 22%, and one concentration selected from the group of Ni, Cr, Co, Sn, Fe, Ag, and Mn is 2.0% or less. Met. These alloys, whose component concentrations were within the range defined in one embodiment of the present invention, had TS and YS of 400 MPa or more and EC of 30% IACS or more, and exhibited sufficient characteristics as a copper alloy for printed circuit boards.
In Comparative Example 7, one concentration selected from the group of Ni, Cr, Co, Sn, Fe, Ag, and Mn exceeded 2.0%, and in Comparative Example 8, the Zn concentration exceeded 22%. These alloys had an EC of less than 30% IACS. In Comparative Example 9, the Zn concentration was less than 2%, and TS and YS were less than 400 MPa. The properties of these copper alloys whose component concentrations were outside the range specified in one embodiment of the present invention were insufficient as printed circuit board copper alloys.

Claims (3)

平均結晶粒径が1.5〜6.0μmである銅又は銅合金の表面にCu相、Cu−Sn合金相及びSn相の各めっき相がこの順に形成されているSnめっき材であって、Cu相の平均厚みが0〜2.0μm、Cu−Sn合金相の平均厚みが0.1〜1.5μm、Sn相の平均厚みが0.1〜1.5μmであり、銅又は銅合金の結晶粒径DXと銅又は銅合金直上のめっき相の結晶粒径DYとの間に、(DX−DY)≧1(単位:μm)が成り立つことを特徴とする、プリント基板端子用に好適なへたり性をもつ銅合金すずめっき材。 An Sn plating material in which plating phases of Cu phase, Cu-Sn alloy phase and Sn phase are formed in this order on the surface of copper or copper alloy having an average crystal grain size of 1.5 to 6.0 μm, The average thickness of the Cu phase is 0 to 2.0 μm, the average thickness of the Cu—Sn alloy phase is 0.1 to 1.5 μm, the average thickness of the Sn phase is 0.1 to 1.5 μm, and the copper or copper alloy Printed circuit board terminals characterized in that (D X -D Y ) ≧ 1 (unit: μm) is established between the crystal grain size D X and the crystal grain size D Y of the plating phase immediately above the copper or copper alloy Copper alloy tin plating material suitable for use. 銅又は銅合金直上のめっき相中のC及びS濃度が合計0.02〜0.2質量%であることを特徴とする、請求項1記載の銅合金すずめっき材。   The copper alloy tin plating material according to claim 1, wherein the C and S concentrations in the plating phase immediately above copper or a copper alloy are 0.02 to 0.2 mass% in total. 銅合金が、2〜22質量%のZnを含有し、更に必要に応じてNi、Cr、Co、Sn、Fe、Ag、及びMnの群から選ばれた1種以上を合計で2.0質量%以下含有し、残部が銅及び不可避的不純物から構成されることを特徴とする請求項1〜2のいずれか1項記載の銅合金すずめっき材。   The copper alloy contains 2 to 22% by mass of Zn, and if necessary, one or more selected from the group of Ni, Cr, Co, Sn, Fe, Ag, and Mn is 2.0% in total. The copper alloy tin-plated material according to claim 1, wherein the copper alloy tin-plated material is contained in copper and inevitable impurities.
JP2009083227A 2008-12-12 2009-03-30 Copper alloy tin plating material for printed circuit board terminals Active JP5117436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009083227A JP5117436B2 (en) 2008-12-12 2009-03-30 Copper alloy tin plating material for printed circuit board terminals

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008317129 2008-12-12
JP2008317129 2008-12-12
JP2009083227A JP5117436B2 (en) 2008-12-12 2009-03-30 Copper alloy tin plating material for printed circuit board terminals

Publications (2)

Publication Number Publication Date
JP2010159481A true JP2010159481A (en) 2010-07-22
JP5117436B2 JP5117436B2 (en) 2013-01-16

Family

ID=42576861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009083227A Active JP5117436B2 (en) 2008-12-12 2009-03-30 Copper alloy tin plating material for printed circuit board terminals

Country Status (1)

Country Link
JP (1) JP5117436B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9362644B2 (en) 2014-01-31 2016-06-07 Japan Aviation Electronics Industry, Limited Connector pair with plated contacts

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6430124A (en) * 1987-07-24 1989-02-01 Nippon Mining Co Manufacture of contactor
JP2002298963A (en) * 2001-03-30 2002-10-11 Kobe Steel Ltd Sn PLATED COPPER ALLOY MATERIAL FOR FITTING CONNECTION TERMINAL AND FITTING CONNECTION TERMINAL
WO2007004581A1 (en) * 2005-06-30 2007-01-11 Nippon Mining & Metals Co., Ltd. Sn-PLATED COPPER ALLOY BAR HAVING EXCELLENT FATIGUE CHARACTERISTICS
JP2007046159A (en) * 2005-07-15 2007-02-22 Nikko Kinzoku Kk Cu-Zn-Sn ALLOY FOR ELECTRICAL AND ELECTRONIC EQUIPMENT
JP2007056365A (en) * 2005-07-27 2007-03-08 Mitsui Mining & Smelting Co Ltd Copper-zinc-tin alloy and manufacturing method therefor
JP2007063624A (en) * 2005-08-31 2007-03-15 Nikko Kinzoku Kk Copper alloy tinned strip having excellent insertion/withdrawal property and heat resistance
JP2007270266A (en) * 2006-03-31 2007-10-18 Dowa Holdings Co Ltd Sn-PLATED COPPER ALLOY MATERIAL AND ITS MANUFACTURING METHOD

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6430124A (en) * 1987-07-24 1989-02-01 Nippon Mining Co Manufacture of contactor
JP2002298963A (en) * 2001-03-30 2002-10-11 Kobe Steel Ltd Sn PLATED COPPER ALLOY MATERIAL FOR FITTING CONNECTION TERMINAL AND FITTING CONNECTION TERMINAL
WO2007004581A1 (en) * 2005-06-30 2007-01-11 Nippon Mining & Metals Co., Ltd. Sn-PLATED COPPER ALLOY BAR HAVING EXCELLENT FATIGUE CHARACTERISTICS
JP2007046159A (en) * 2005-07-15 2007-02-22 Nikko Kinzoku Kk Cu-Zn-Sn ALLOY FOR ELECTRICAL AND ELECTRONIC EQUIPMENT
JP2007056365A (en) * 2005-07-27 2007-03-08 Mitsui Mining & Smelting Co Ltd Copper-zinc-tin alloy and manufacturing method therefor
JP2007063624A (en) * 2005-08-31 2007-03-15 Nikko Kinzoku Kk Copper alloy tinned strip having excellent insertion/withdrawal property and heat resistance
JP2007270266A (en) * 2006-03-31 2007-10-18 Dowa Holdings Co Ltd Sn-PLATED COPPER ALLOY MATERIAL AND ITS MANUFACTURING METHOD

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9362644B2 (en) 2014-01-31 2016-06-07 Japan Aviation Electronics Industry, Limited Connector pair with plated contacts

Also Published As

Publication number Publication date
JP5117436B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
KR101056973B1 (en) Cu-Ni-Si alloy
KR101158113B1 (en) Copper alloy plate for electrical and electronic components
JP6052829B2 (en) Copper alloy material for electrical and electronic parts
JP4413992B2 (en) Copper alloy sheet for electrical and electronic parts
JP5373598B2 (en) PCB terminal
JP2007291458A (en) Cu-Ni-Si ALLOY-TINNED STRIP
JP4987028B2 (en) Copper alloy tin plating material for printed circuit board terminals
JP2007039804A (en) Copper alloy for electronic apparatus and method of producing the same
JP5132467B2 (en) Copper alloy and Sn-plated copper alloy material for electrical and electronic parts with excellent electrical conductivity and strength
JP5950499B2 (en) Copper alloy for electrical and electronic parts and copper alloy material with Sn plating
JP2006307336A (en) Sn-PLATED STRIP OF Cu-Ni-Si-Zn-BASED ALLOY
JP2018159104A (en) Copper alloy sheet having excellent strength and conductivity
JP5393739B2 (en) Cu-Ni-Si alloy tin plating strip
JP2006283107A (en) Cu-Ni-Si-BASED COPPER ALLOY AND ITS MANUFACTURING METHOD
JP4699252B2 (en) Titanium copper
KR101682801B1 (en) Fe-P BASED COPPER ALLOY SHEET EXCELLENT IN STRENGTH, HEAT RESISTANCE AND BENDING WORKABILITY
WO2011039875A1 (en) Tin-plated cu-ni-si-based alloy strip having excellent resistance to heat separation of the tin-plating
JP2007039789A (en) Cu-Ni-Si-Zn-Sn BASED ALLOY STRIP EXCELLENT IN THERMAL PEELING RESISTANCE OF TIN PLATING, AND TIN PLATED STRIP THEREOF
JP2007092173A (en) Cu-Ni-Si-Zn BASED ALLOY TINNED STRIP
KR100774225B1 (en) Cu-Ni-Si-Zn BASED ALLOY TIN PLATING BATH
JP4820228B2 (en) Cu-Zn-Sn alloy strips with excellent heat-resistant peelability for Sn plating and Sn plating strips thereof
JP5117436B2 (en) Copper alloy tin plating material for printed circuit board terminals
JP4642701B2 (en) Cu-Ni-Si alloy strips with excellent plating adhesion
JP2005298920A (en) Cu-Ni-Si-Mg BASED COPPER ALLOY STRIP
JP2004232049A (en) Cu PLATING TITANIUM COPPER

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100903

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121017

R150 Certificate of patent or registration of utility model

Ref document number: 5117436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250