JP4611419B2 - Copper alloy tin plating strip with excellent solder wettability and insertability - Google Patents
Copper alloy tin plating strip with excellent solder wettability and insertability Download PDFInfo
- Publication number
- JP4611419B2 JP4611419B2 JP2008333150A JP2008333150A JP4611419B2 JP 4611419 B2 JP4611419 B2 JP 4611419B2 JP 2008333150 A JP2008333150 A JP 2008333150A JP 2008333150 A JP2008333150 A JP 2008333150A JP 4611419 B2 JP4611419 B2 JP 4611419B2
- Authority
- JP
- Japan
- Prior art keywords
- phase
- plating
- thickness
- alloy
- alloy phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000007747 plating Methods 0.000 title claims description 181
- 229910000881 Cu alloy Inorganic materials 0.000 title claims description 26
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 title claims description 17
- 229910000679 solder Inorganic materials 0.000 title description 43
- 229910017755 Cu-Sn Inorganic materials 0.000 claims description 88
- 229910017927 Cu—Sn Inorganic materials 0.000 claims description 88
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 claims description 88
- 229910000905 alloy phase Inorganic materials 0.000 claims description 84
- 239000010949 copper Substances 0.000 claims description 68
- 239000000463 material Substances 0.000 claims description 30
- 238000009713 electroplating Methods 0.000 claims description 11
- 239000011135 tin Substances 0.000 description 121
- 238000003780 insertion Methods 0.000 description 25
- 230000037431 insertion Effects 0.000 description 25
- 230000000052 comparative effect Effects 0.000 description 22
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 20
- 238000000034 method Methods 0.000 description 17
- 229910052718 tin Inorganic materials 0.000 description 16
- 238000009792 diffusion process Methods 0.000 description 7
- 239000008151 electrolyte solution Substances 0.000 description 7
- 230000004907 flux Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 238000005096 rolling process Methods 0.000 description 6
- 238000001878 scanning electron micrograph Methods 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 238000007654 immersion Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000004070 electrodeposition Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 238000005476 soldering Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 230000003746 surface roughness Effects 0.000 description 4
- 239000004094 surface-active agent Substances 0.000 description 4
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000005501 phase interface Effects 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- 229910018054 Ni-Cu Inorganic materials 0.000 description 2
- 229910018481 Ni—Cu Inorganic materials 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 101100325969 Arabidopsis thaliana BHLH91 gene Proteins 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910002482 Cu–Ni Inorganic materials 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N EtOH Substances CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- PNVJTZOFSHSLTO-UHFFFAOYSA-N Fenthion Chemical compound COP(=S)(OC)OC1=CC=C(SC)C(C)=C1 PNVJTZOFSHSLTO-UHFFFAOYSA-N 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- 101150118471 PME3 gene Proteins 0.000 description 1
- 229910020888 Sn-Cu Inorganic materials 0.000 description 1
- 229910019204 Sn—Cu Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000005324 grain boundary diffusion Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- 238000009740 moulding (composite fabrication) Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000879 optical micrograph Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Electroplating Methods And Accessories (AREA)
Description
本発明は、コネクタ、端子、リレ−、スイッチ等の導電性ばね材として好適な、はんだ濡れ性、挿抜性に優れたすずめっき条に関する。 The present invention relates to a tin plating strip that is suitable as a conductive spring material for connectors, terminals, relays, switches and the like and excellent in solder wettability and insertion / extraction.
自動車用及び民生用のコネクタ、端子、リレ−、スイッチ等の電子部品用導電性ばね材には、Snの優れた耐食性、はんだ濡れ性、電気接続性という特性を生かし、Snめっきが施された銅又は銅合金条が使用されている。銅合金のSnめっき条は、一般的に、連続めっきラインにおいて、脱脂及び酸洗の後、電気めっき法によりCu下地めっき相を形成し、次に電気めっき法によりSnめっき相を形成し、最後にリフロー処理を施しSnめっき相を溶融させる工程で製造される。
近年、電子・電気部品の回路数増大により、回路に電気信号を供給するコネクタの多極化が進んでいる。Snめっき材は、その軟らかさからコネクタの接点においてオスとメスを凝着させるガスタイト構造が採られるため、金めっき等で構成されるコネクタに比べ、コネクタの挿入力が高い。このためコネクタの多極化によるコネクタ挿入力の増大が問題となっている。
例えば、自動車の組み立てラインでは、コネクタを嵌合させる作業は、現在ほとんど人力で行われている。コネクタの挿入力が大きくなると、組み立てラインで作業者に負担がかかり、作業効率の低下に直結する。さらに、作業者の健康を損なう可能性も指摘されている。このことから、Snめっき材の挿入力の低減が強く望まれている。
Conductive spring materials for electronic parts such as automobiles and consumer connectors, terminals, relays, switches, etc. were Sn plated, taking advantage of Sn's excellent corrosion resistance, solder wettability, and electrical connectivity. Copper or copper alloy strips are used. In general, the Sn plating strip of a copper alloy is formed in a continuous plating line after degreasing and pickling, forming a Cu undercoat phase by electroplating, and then forming an Sn plating phase by electroplating. It is manufactured in a process in which a reflow treatment is applied to melt the Sn plating phase.
In recent years, with the increase in the number of circuits of electronic / electrical components, the number of connectors for supplying electric signals to the circuits has been increasing. Since the Sn plating material adopts a gas tight structure in which male and female are adhered to each other at the contact point of the connector because of its softness, the insertion force of the connector is higher than that of a connector constituted by gold plating or the like. For this reason, an increase in connector insertion force due to the increase in the number of connectors is a problem.
For example, in an automobile assembly line, the work of fitting a connector is currently almost done manually. When the insertion force of the connector is increased, a burden is imposed on the worker on the assembly line, which directly leads to a decrease in work efficiency. Furthermore, it has been pointed out that it may impair the health of workers. For this reason, reduction of the insertion force of Sn plating material is strongly desired.
また、自動車の電子制御ユニットのなかにはプリント基板が内蔵されており、プリント基板にはオス端子(以下、基板端子とする)が実装されている。このオス端子は、一端にメス端子を有するワイヤーハーネスを介して、外部の電子機器等と接続されている。
プリント基板端子をプリント基板に実装する方法は、表面実装と、挿入実装とがある。挿入実装では、プリント基板端子は、プリント基板のスルーホールに挿入され、フラックス塗布、予熱、フローはんだ付け、冷却、洗浄の各工程を経て、プリント基板にはんだ実装される。
一方、表面実装の場合、回路基板上にはんだペーストをスクリーン印刷し、その位置に部品を乗せ、予熱、リフローはんだ付け、冷却、洗浄の各工程を経て、はんだ実装される。表面実装は挿入実装と比較して、実装の高密度化が可能であり、商品の小型化、高機能化の要求から、表面実装の比率が高まってきている。しかし、表面実装は挿入実装と比較して、接合に要するはんだの量が少ないため、素材に対するはんだ濡れ性の要求が厳しい。
以上のように、プリント基板に実装され、オス端子等として使用されるSnめっき材においては、挿入力の低減及びはんだ濡れ性の改善が近年の課題となっている。コネクタの挿入力を低減するための有効な方法は、下記特許文献1[0010]、特許文献2[0023]等に開示されている通り、Snめっき相を薄くすることである。更に、特許文献3では、薄いSnめっき相上のSn酸化膜の厚さを調整しており、特許文献4では、表面を粗化処理した母材上に薄いSn被覆層をめっきして低挿入力、低接触抵抗を維持するとともにはんだ付け性を付与している。
In addition, a printed circuit board is built in an electronic control unit of an automobile, and a male terminal (hereinafter referred to as a substrate terminal) is mounted on the printed circuit board. The male terminal is connected to an external electronic device or the like via a wire harness having a female terminal at one end.
Methods for mounting the printed circuit board terminals on the printed circuit board include surface mounting and insertion mounting. In the insertion mounting, the printed circuit board terminal is inserted into a through hole of the printed circuit board, and solder mounted on the printed circuit board through the steps of flux application, preheating, flow soldering, cooling, and cleaning.
On the other hand, in the case of surface mounting, solder paste is screen-printed on a circuit board, a component is placed on the position, and solder mounting is performed through preheating, reflow soldering, cooling, and cleaning processes. Surface mounting enables higher mounting density than insertion mounting, and the ratio of surface mounting is increasing due to demands for smaller products and higher functionality. However, since surface mounting requires less solder for joining than insertion mounting, the requirement for solder wettability with respect to the material is severe.
As described above, in an Sn plating material that is mounted on a printed circuit board and used as a male terminal or the like, reduction of insertion force and improvement of solder wettability are problems in recent years. An effective method for reducing the insertion force of the connector is to thin the Sn plating phase as disclosed in the following Patent Document 1 [0010], Patent Document 2 [0023] and the like. Further, in Patent Document 3, the thickness of the Sn oxide film on the thin Sn plating phase is adjusted, and in Patent Document 4, a thin Sn coating layer is plated on the base material whose surface is roughened and low insertion is performed. Maintains strength and low contact resistance while providing solderability.
上記の通り、近年、挿抜性に優れ、かつはんだ濡れ性にも優れたSnめっき条が求められている。しかし、従来技術の手法により単にSnめっきを薄くするだけでは、挿入力が低減する反面、はんだ濡れ性が劣化して好ましくない。又、薄いSnめっき相上のSn酸化膜の厚さは経時的に増大するため目的とする物性を維持することは困難であり、母材表面の粗化処理は設備及び費用がかかるため好ましくない。したがって、Sn相を薄くする場合に、上記従来技術の問題点が解決されたSnめっきのはんだ濡れ性を改善する技術を適用することが必要となる。
本発明の目的は、挿抜性に優れ、かつはんだ濡れ性にも優れたすずめっき条を提供することであり、特に、Cu下地めっき及びCu−Ni下地めっきに関して改善された挿抜性及びはんだ濡れ性を有するすずめっき条を提供することである。
As described above, in recent years, Sn plating strips that are excellent in insertion / extraction and solder wettability have been demanded. However, simply thinning the Sn plating by the conventional technique is not preferable because the insertion force is reduced but the solder wettability is deteriorated. Further, since the thickness of the Sn oxide film on the thin Sn plating phase increases with time, it is difficult to maintain the desired physical properties, and roughening the surface of the base material is not preferable because it requires equipment and cost. . Therefore, when the Sn phase is thinned, it is necessary to apply a technique for improving the solder wettability of Sn plating in which the above-mentioned problems of the prior art are solved.
An object of the present invention is to provide a tin plating strip excellent in insertion / removability and excellent in solder wettability, and particularly improved insertion / removability and solder wettability with respect to Cu undercoating and Cu-Ni undercoating. It is to provide a tin plating strip having the following.
本発明の銅合金すずめっき条は、銅合金条の表面に、Cuめっきを最後に行う下地めっき、Snめっきの順で電気めっきを施し、その後、リフロー処理を施して得られる。リフロー処理によりCuめっき及びSnめっきからCu−Sn合金相が形成される。Sn相を溶解除去して現出するCu−Sn合金相の表面は、均一に分散した粒子状のCu−Sn合金相で覆われている(図1参照)。本発明は、このCu−Sn合金相の成長(Cu−Sn拡散)を制御することの重要性に着目してなされた。
本発明者らは、銅合金すずめっき条の製造においてSnめっき工程でのCu下地めっきの条件及びリフロー条件を調整してCu−Sn合金相の表面を制御することにより、優れたはんだ濡れ性及び挿抜性を同時に達成できることを見出した。本発明は、この発見に基づきなされたものであり、以下の通りである。
The copper alloy tin-plated strip of the present invention is obtained by subjecting the surface of the copper alloy strip to electroplating in the order of the base plating to be finally subjected to Cu plating and Sn plating, and then to the reflow treatment. A Cu—Sn alloy phase is formed from Cu plating and Sn plating by reflow treatment. The surface of the Cu—Sn alloy phase that appears by dissolving and removing the Sn phase is covered with a uniformly dispersed particulate Cu—Sn alloy phase (see FIG. 1). The present invention has been made paying attention to the importance of controlling the growth of the Cu—Sn alloy phase (Cu—Sn diffusion).
The present inventors control the surface of the Cu-Sn alloy phase by adjusting the conditions of the Cu base plating and the reflow conditions in the Sn plating step in the production of the copper alloy tin plating strip, thereby improving the solder wettability and It was found that the insertion / removability can be achieved simultaneously. The present invention has been made based on this discovery, and is as follows.
(1) 銅合金条の表面に、Cuめっきを最後に行う下地めっき、Snめっきの順で電気めっきを施し、その後、リフロー処理を施しためっき条であり;
リフロー処理によりSnめっき相の下にCu−Sn合金相が形成され、めっき表面に対する垂直断面における、Sn相とCu−Sn合金相との界面で、JIS B0601で規定される粗さ曲線のための平均線より高い山の頭頂部とその直上のSnめっき最表面との高度差の平均値hが0.1〜0.3μmであり、
めっき表面において、最長径5.0μm以下、深さ0.1〜0.4μmのピンホールが500μm×500μm平方に20個以下であることを特徴とする銅合金すずめっき条。
(2) Sn相を溶解除去し、Cu−Sn合金相を表面に現出させたときに、Cu−Sn合金相表面のJIS B0601で規定される粗さ曲線要素の平均高さRcが0.27μm以下であり、粗さ曲線要素の平均長さRsmが4.0μm以上であることを特徴とする(1)の銅合金すずめっき条。
(3) 表面から母材にかけて、Sn相、Cu−Sn合金相、Cu相の各相でめっき皮膜が構成され、Sn相の厚みが0.2〜0.8μm、Cu−Sn合金相の厚みが0.6〜2.0μm、Cu相の厚みが0〜0.8μmであることを特徴とする(1)又は(2)記載の銅合金すずめっき条。
(4) 表面から母材にかけて、Sn相、Cu−Sn相、Ni相の各相でめっき皮膜が構成され、Sn相の厚みが0.2〜0.8μm、Cu−Sn合金相の厚みが0.6〜2.0μm、Ni相の厚みが0.1〜0.8μmであることを特徴とする(1)又は(2)記載の銅合金すずめっき条。
(1) A plating strip in which the surface of the copper alloy strip is subjected to electroplating in the order of the base plating to be finally subjected to Cu plating and Sn plating, and then subjected to reflow treatment;
The Cu—Sn alloy phase is formed under the Sn plating phase by the reflow treatment, and the roughness curve defined in JIS B0601 is defined at the interface between the Sn phase and the Cu—Sn alloy phase in the cross section perpendicular to the plating surface. The average value h of the height difference between the top of the mountain higher than the average line and the Sn plating outermost surface immediately above the top is 0.1 to 0.3 μm,
A copper alloy tin-plated strip characterized by having 20 or less pinholes having a longest diameter of 5.0 μm or less and a depth of 0.1 to 0.4 μm on a plating surface of 500 μm × 500 μm square.
(2) When the Sn phase is dissolved and removed, and the Cu—Sn alloy phase appears on the surface, the average height Rc of the roughness curve element defined by JIS B0601 on the surface of the Cu—Sn alloy phase is 0.00. The copper alloy tin-plated strip according to (1), wherein the copper alloy tin plating strip has a roughness curve element average length Rsm of not more than 27 μm and not less than 4.0 μm.
(3) From the surface to the base material, a plating film is composed of each of the Sn phase, the Cu—Sn alloy phase, and the Cu phase, the thickness of the Sn phase is 0.2 to 0.8 μm, and the thickness of the Cu—Sn alloy phase The copper alloy tin-plated strip according to (1) or (2), wherein 0.6 to 2.0 μm and the thickness of the Cu phase is 0 to 0.8 μm.
(4) From the surface to the base material, a plating film is composed of the Sn phase, Cu—Sn phase, and Ni phase, the thickness of the Sn phase is 0.2 to 0.8 μm, and the thickness of the Cu—Sn alloy phase is The copper alloy tin-plated strip according to (1) or (2), wherein the thickness is 0.6 to 2.0 μm and the thickness of the Ni phase is 0.1 to 0.8 μm.
(1)Snめっき最表面とCu−Sn合金相界面上の山の頭頂部との高度差h
本発明の銅合金すずめっき条は、Cu−Sn合金相表面の山部直上のSnめっきが薄いため優れた挿抜性を示す。具体的には、めっき表面に対する垂直断面における、Sn相とCu−Sn合金相との界面で、JIS B0601:2001で規定される粗さ曲線のための平均線より高い山の頭頂部とその直上のSnめっき最表面との高度差の平均値hが0.1〜0.3μmである。ここで、上記高度差hは下記の通り決定される。
試料断面水平方向幅15μmの範囲中に観察されるSn相とCu−Sn合金相との界面の幅15μmで、JIS B0601で規定される粗さ曲線のための平均線より高い山の頭頂部とそれぞれの直上のSnめっき最表面との高度差の平均値を高度差hnとする。山が10以上ある場合は、高い順に10個の山の頭頂部直上のSnめっき最表面との高度差を測定して平均する。この手順を圧延平行方向及び直角方向に各10断面行い、得られた高度差h1-20の平均値を高度差hとする。
上記高度差hが0.3μmよりも大きくなると、挿入力が増大する。0.1μmよりも小さくなると、加熱したときの接触抵抗の増大や、ピンホールの数が増大することで、はんだ濡れ性の劣化が顕著になる。
(1) Altitude difference h between the outermost surface of the Sn plating and the top of the peak on the Cu-Sn alloy phase interface h
The copper alloy tin plating strip of the present invention exhibits excellent insertability because the Sn plating just above the crest of the Cu—Sn alloy phase surface is thin. Specifically, at the interface between the Sn phase and the Cu—Sn alloy phase in the vertical cross section with respect to the plating surface, the top of the mountain that is higher than the average line for the roughness curve defined in JIS B0601: 2001 and directly above it. The average value h of the difference in height from the outermost surface of the Sn plating is 0.1 to 0.3 μm. Here, the altitude difference h is determined as follows.
The top of the mountain is higher than the average line for the roughness curve defined in JIS B0601, with a width of 15 μm at the interface between the Sn phase and the Cu—Sn alloy phase observed in the range of the horizontal width of the sample cross section of 15 μm. The average value of the height difference from the Sn plating outermost surface immediately above each is defined as height difference h n . When there are 10 or more peaks, the difference in height from the top surface of the Sn plating immediately above the top of the 10 peaks is measured and averaged. This procedure is performed for 10 cross sections each in the rolling parallel direction and the perpendicular direction, and the average value of the obtained height differences h 1-20 is defined as the height difference h.
When the altitude difference h is greater than 0.3 μm, the insertion force increases. If it becomes smaller than 0.1 μm, the contact resistance increases when heated, and the number of pinholes increases, so that the solder wettability deteriorates significantly.
(2)ピンホール
本発明のピンホールとは、Snめっき相を突き抜けて形成された孔を称する。図3に本発明で対象とするピンホールを含むすずめっき表面の光学顕微鏡写真を示す。右下の黒い直線は100μmを示す。従来技術ではSnめっきが薄いとピンホールができやすく、はんだ濡れ性が劣化するため、Snめっきの薄さには限界があった。即ち、リフロー時に溶融するSnの表面張力が大きいと、界面エネルギーの低い、小さいSn表面積となるため、Suめっき相にCu−Sn合金相まで届く孔が形成されてピンホールの数が多くなる。そして、Cu−Sn合金相界面に凹凸がある場合、上記のとおり、Snすずめっき表面のピンホールはCu−Sn合金相最表面の山を底部として形成されやすい。更に、ピンホール周囲では、Cu−Sn合金相の、格子拡散よりも拡散速度の速い粒界拡散が生じる。そのため、ピンホール底部周囲でもCu−Sn拡散相が表面に露出しやすく、結果的にはんだ濡れ性が劣化する。図4にピンホールを含むすずめっき表面のSEM像を示す。Sn相は白色で、Snピンホール周囲に現出したCu−Sn合金相は灰色で認識できる。これらの事情から、従来技術ではSnめっき厚みを薄くできず、優れた挿抜性を達成できなかった。
(2) Pinhole The pinhole of the present invention refers to a hole formed by penetrating the Sn plating phase. FIG. 3 shows an optical micrograph of the tin plating surface including the pinhole targeted in the present invention. The black line on the lower right indicates 100 μm. In the prior art, if the Sn plating is thin, pinholes are easily formed and the solder wettability is deteriorated. Therefore, there is a limit to the thinness of the Sn plating. That is, if the surface tension of Sn melted during reflow is large, the surface area of Sn is low and the surface energy is low, so that the holes reaching the Cu—Sn alloy phase are formed in the Su plating phase, and the number of pinholes is increased. And when there exists an unevenness | corrugation in a Cu-Sn alloy phase interface, as above-mentioned, the pinhole of Sn tin plating surface is easy to be formed by using the peak of the Cu-Sn alloy phase outermost surface as a bottom part. Further, around the pinhole, grain boundary diffusion of the Cu—Sn alloy phase occurs at a faster diffusion rate than lattice diffusion. Therefore, the Cu—Sn diffusion phase is easily exposed on the surface even around the bottom of the pinhole, and as a result, the solder wettability deteriorates. FIG. 4 shows an SEM image of the tin plating surface including pinholes. The Sn phase is white, and the Cu—Sn alloy phase that appears around the Sn pinhole can be recognized in gray. From these circumstances, the Sn plating thickness cannot be reduced by the conventional technique, and excellent insertability / removability cannot be achieved.
しかし、本発明の銅合金すずめっき条は、Snめっきが薄くても、Snめっき表面において、最長径5.0μm以下、深さ0.1〜0.4μmのピンホールが500μm×500μm平方に20個以下であるため優れたはんだ濡れ性を示す。ピンホールの個数が20個を超えると、はんだ濡れ性が劣化する。好ましくは10個以下である。
ここで、ピンホールの深さが0.1μm未満ではただの凹み(ピット)でしかなく、Cu−Sn合金相の露出は生じないためはんだ濡れ性に大きな影響を与えない。本発明のSn相とCu−Sn合金相との界面の山の頭頂部とその直上のSnめっき最表面との高度差の平均値hは0.1〜0.3μmであるので、Snめっき表面において最長径5.0μmを超える及び/又は深さ0.4μmを超えるピンホールは存在しない。ピンホールの深さ及び直径は、凹凸走査型電子顕微鏡(SEM)により容易に測定できる。図5にピンホールの拡大SEM画像を、図6に凹凸SEMにより測定された図5のピンホールの深さと大きさのプロファイルを示す。図5のピンホール直径は3.0μm、深さは0.30μmである。
However, even if Sn plating is thin, the copper alloy tin plating strip of the present invention has 20 μm × 500 μm square pinholes having a maximum diameter of 5.0 μm or less and a depth of 0.1 to 0.4 μm on the Sn plating surface. Excellent solder wettability because it is less than one piece. When the number of pinholes exceeds 20, the solder wettability deteriorates. Preferably it is 10 or less.
Here, when the depth of the pinhole is less than 0.1 μm, it is only a dent, and the exposure of the Cu—Sn alloy phase does not occur, so that the solder wettability is not greatly affected. Since the average value h of the height difference between the top of the crest of the interface between the Sn phase and the Cu—Sn alloy phase of the present invention and the Sn plating outermost surface immediately above is 0.1 to 0.3 μm, the Sn plating surface There is no pinhole exceeding the longest diameter of 5.0 μm and / or exceeding the depth of 0.4 μm. The depth and diameter of the pinhole can be easily measured with an uneven scanning electron microscope (SEM). FIG. 5 shows an enlarged SEM image of the pinhole, and FIG. 6 shows a profile of the depth and size of the pinhole of FIG. 5 measured by the concavo-convex SEM. The pinhole diameter in FIG. 5 is 3.0 μm and the depth is 0.30 μm.
(3)Cu−Sn合金相表面の平均高さRc(JIS B0601:2001)
上記のとおり、Snすずめっき表面のピンホールはCu−Sn合金相最表点の山を底部として形成されやすい。図2に図1の直線に沿って測定したCu−Sn合金相の表面粗さのプロファイルを示す。Cu−Sn合金相表面の粗さ曲線要素の平均高さRcが0.27μmを超えると、Cu−Sn合金相表面で大きな粒子状に成長した山の頂点とSnめっき最表面までの距離が短くなり、ピンホールの数が多くなる。平均高さRcが小さすぎると比較的柔らかいSn相が存在する谷部の深さが小さくなり、挿抜性に劣るため、好ましくは0.15μm以上である。
(3) Average height Rc of the Cu—Sn alloy phase surface (JIS B0601: 2001)
As described above, the pinhole on the Sn tin plating surface is likely to be formed with the peak of the Cu—Sn alloy phase outermost point as the bottom. FIG. 2 shows a profile of the surface roughness of the Cu—Sn alloy phase measured along the straight line of FIG. When the average height Rc of the roughness curve element on the surface of the Cu-Sn alloy phase exceeds 0.27 μm, the distance between the top of the mountain that has grown into a large particle shape on the surface of the Cu-Sn alloy phase and the outermost surface of the Sn plating is short This increases the number of pinholes. If the average height Rc is too small, the depth of the valley where the relatively soft Sn phase exists becomes small and the insertion / removability is inferior, so it is preferably 0.15 μm or more.
(4)Cu−Sn合金相表面の平均長さRsm(JIS B0601:2001)
めっき断面において、粒子状に形成されたCu−Sn合金相(拡散相)の表面からSnめっき最表面までの距離は、Cu−Sn合金相(拡散相)の個々の山の頂点において短くなる。従って、Cu−Sn合金相表面の粗さ曲線要素の平均長さRsmを4μm以上とすることで合金相の山の頂点の数が少なくなり、めっき表面にピンホールが形成される可能性も少なくなる。平均長さRsmが大きくなる場合とは、低温でリフロー処理を行いCu−Sn合金相表面の山の発達が徐々に起こる場合であり、低温での溶融Snの表面張力は大きいためリフロー処理後のピンホールの数が多くなる。従って、平均長さRsmは、好ましくは7.0μm以下である。
(4) Cu-Sn alloy phase surface average length Rsm (JIS B0601: 2001)
In the plating cross section, the distance from the surface of the Cu—Sn alloy phase (diffusion phase) formed in a particle shape to the outermost surface of the Sn plating becomes short at the apex of each peak of the Cu—Sn alloy phase (diffusion phase). Therefore, by setting the average length Rsm of the roughness curve element on the surface of the Cu—Sn alloy phase to 4 μm or more, the number of peaks of the alloy phase peaks is reduced, and the possibility of forming pinholes on the plating surface is reduced. Become. The case where the average length Rsm becomes large is the case where the reflow treatment is performed at a low temperature and the development of the ridges on the surface of the Cu—Sn alloy phase gradually occurs. The number of pinholes increases. Therefore, the average length Rsm is preferably 7.0 μm or less.
(5)本発明のすずめっき条の製造方法
本発明のすずめっき条は、銅合金条の表面に任意で他の下地めっきを行った後、Cu下地めっきを電気めっきで行って製造される。めっき前の銅合金条表面は、Snめっき後のリフロー処理においてCu−Sn相が不規則に成長することを回避するため、全ての方向における粗さ曲線要素の算術平均粗さRaが0.3μm未満であることが好ましい。
Cuの電気めっきでは、Cuイオンを含む溶液中で、被めっき材を陰極として通電することにより、被めっき材表面にCuを還元析出させる。その際、Cu電着粒の大きさを制御することにより、Sn電気めっき後のリフロー処理で形成されるCu−Sn合金相表面の平均高さRcを調整できる。
Cu電着粒が粗大になるとCu下地めっき表面が粗くなり、リフロー後に形成されるCu−Sn合金相表面が粗くなり、合金相表面の粗さ曲線要素の平均高さRcが大きくなる。反対に、Cu電着粒が微細になると、リフロー後のCu−Sn合金相表面が平滑になり、合金相表面のRcが小さくなる。Cu電着粒を小さくするためには、
・電流密度を大きくすること、
・めっき浴液の攪拌速度を上げること、
・めっき浴液に適当な界面活性剤を加えること、
・めっき浴の温度を下げること、
・めっき浴の濃度を上げること、
等が効果的である。
上記調整によりCu電着粒を小さくし、Cuめっき表面を平滑にすることは、従来、外観や表面平滑性が重要なCu最表面めっきにおいては行われていたが、Cu下地めっきについては、生産性の低下、コストアップなどの理由により、行われていなかった。特にSnめっきのCu下地めっきは、リフロー後にほとんどがCu−Sn相に変換されてしまうため、Cu電着粒を制御する必要は全く無かった。リフロー後のCu−Sn相表面を制御するためにCu電着粒を小さくする必要があることは本発明者により初めて発見された。
(5) Manufacturing method of tin-plated strip of the present invention The tin-plated strip of the present invention is manufactured by optionally performing other base plating on the surface of the copper alloy strip and then performing Cu base plating by electroplating. The surface of the copper alloy strip before plating has an arithmetic average roughness Ra of 0.3 μm for roughness curve elements in all directions in order to avoid irregular growth of the Cu—Sn phase in the reflow treatment after Sn plating. It is preferable that it is less than.
In the electroplating of Cu, Cu is reduced and deposited on the surface of the material to be plated by energizing the material to be plated as a cathode in a solution containing Cu ions. In that case, the average height Rc of the Cu-Sn alloy phase surface formed by the reflow process after Sn electroplating can be adjusted by controlling the size of the Cu electrodeposited grains.
When the Cu electrodeposited grains become coarse, the surface of the Cu base plating becomes rough, the surface of the Cu—Sn alloy phase formed after reflow becomes rough, and the average height Rc of the roughness curve element on the surface of the alloy phase increases. On the other hand, when Cu electrodeposited grains become fine, the Cu-Sn alloy phase surface after reflow becomes smooth, and Rc of the alloy phase surface becomes small. In order to reduce Cu electrodeposition grains,
・ Increasing current density,
-Increase the stirring speed of the plating bath solution,
Add an appropriate surfactant to the plating bath solution
-Lowering the temperature of the plating bath,
・ Increasing the concentration of the plating bath,
Etc. are effective.
Conventionally, Cu electrodeposition grains are reduced by the above adjustment and the surface of the Cu plating is made smooth in Cu outermost surface plating, where appearance and surface smoothness are important. It was not done for reasons such as a decrease in sex and an increase in cost. In particular, since the Cu underplating of Sn plating is mostly converted to a Cu—Sn phase after reflow, there is no need to control the Cu electrodeposition grains. It was discovered for the first time by the present inventor that it is necessary to reduce the Cu electrodeposited grains in order to control the Cu—Sn phase surface after reflow.
リフロー処理の条件によって、Cu−Sn合金相表面の粗さ曲線要素の平均長さRsm及びSnめっき表面のピンホール数は変化する。上記Rsmを長くするには、
・リフロー温度を下げること、
・リフロー時間(拡散時間)を長くすること、
・リフロー後の冷却速度を遅くすること、
等が効果的である。
リフロー時の温度は、450〜600℃が好ましい。450℃未満では溶融Snの表面張力が大きいため、表面のピンホールの数が多くなる。600℃を超えると、Cu−Sn合金相表面の粗さ曲線要素の平均長さが4μm未満となり、やはりピンホールの数が多くなる。
リフロー後の冷却速度は、リフロー温度及び時間に応じて変化するが、例えば水冷で、50〜300℃/secで冷却してもよい。
The average length Rsm of the roughness curve element on the surface of the Cu—Sn alloy phase and the number of pinholes on the surface of the Sn plating change depending on the conditions of the reflow treatment. To increase the Rsm,
・ Reducing the reflow temperature,
・ Longer reflow time (diffusion time),
・ Decelerate the cooling rate after reflow,
Etc. are effective.
The temperature during reflow is preferably 450 to 600 ° C. If the temperature is lower than 450 ° C., the surface tension of molten Sn is large, so the number of pinholes on the surface increases. When it exceeds 600 ° C., the average length of the roughness curve element on the surface of the Cu—Sn alloy phase becomes less than 4 μm, and the number of pinholes also increases.
Although the cooling rate after reflow changes according to reflow temperature and time, it may cool at 50-300 degreeC / sec, for example by water cooling.
(6)めっきの厚み
(6−1)Cu下地リフローSnめっき
表面から母材にかけて、Sn相、Cu−Sn合金相、Cu相の各相でめっき皮膜が構成されている。Cu下地めっき、Snめっきの順に電気めっきを行い、リフロー処理を施すことにより、このめっき皮膜構造が得られる。
リフロー後のSn相の平均厚みは0.2〜0.8μmが好ましい。Sn相が0.1μm未満になるとはんだ濡れ性が低下し、0.8μmを超えると、必要な挿入力が増大する。
リフロー後のCu−Sn合金相の厚みは0.6〜2.0μmが好ましい。Cu−Sn合金相は硬質であるため、Sn相との界面が本発明の構成である場合、0.6μm以上の厚さで存在すると、挿入力の低減に寄与する。一方、Cu−Sn合金相の厚さが2.0μmを超えると、曲げ性などの機械的特性が劣化する。
Cuめっき相はリフロー後にCu−Sn合金相へ完全に転換されてもよく、0.8μm以下の厚みで残存しても良い。
(6) Thickness of plating (6-1) Cu underlayer reflow Sn plating A plating film is composed of the Sn phase, the Cu-Sn alloy phase, and the Cu phase from the surface to the base material. This plating film structure can be obtained by performing electroplating in the order of Cu base plating and Sn plating and performing reflow treatment.
The average thickness of the Sn phase after reflow is preferably 0.2 to 0.8 μm. When the Sn phase is less than 0.1 μm, the solder wettability decreases, and when it exceeds 0.8 μm, the necessary insertion force increases.
The thickness of the Cu—Sn alloy phase after reflow is preferably 0.6 to 2.0 μm. Since the Cu—Sn alloy phase is hard, when the interface with the Sn phase has the structure of the present invention, the presence of a thickness of 0.6 μm or more contributes to a reduction in insertion force. On the other hand, when the thickness of the Cu—Sn alloy phase exceeds 2.0 μm, mechanical properties such as bendability deteriorate.
The Cu plating phase may be completely converted into a Cu—Sn alloy phase after reflow, or may remain with a thickness of 0.8 μm or less.
(6−2)Cu/Ni下地リフローSnめっき
表面から母材にかけて、Sn相、Cu−Sn合金相、Ni相の各相でめっき皮膜が構成される。Ni下地めっき、Cu下地めっき、Snめっきの順に電気めっきを行い、リフロー処理を施すことにより、このめっき皮膜構造が得られる。
リフロー後のSn相の平均厚みは0.2〜0.8μmが好ましい。Sn相が0.1μm未満になるとはんだ濡れ性が低下し、0.8μmを超えると、挿入力が増大する。
リフロー後のCu−Sn合金相の厚みは0.4〜2.0μmが好ましい。Cu−Sn合金相は硬質なため、0.4μm以上の厚さで存在すると、挿入力の低減に寄与する。一方、Cu−Sn合金相の厚さが2.0μmを超えると、曲げ性などの機械的特性が劣化する。
リフロー後のNi相の厚みは0.1〜0.8μmが好ましい。Niの厚みが0.1μm未満ではめっきの耐食性や耐熱性が低下する。一方、リフロー後のNiの厚みが0.8μmを超えるめっき材では、加熱した際にめっき相内部に発生する熱応力が高くなり、めっき剥離が促進される。
電気めっき時の各めっきの厚みを、Snめっきは0.6〜1.3μmの範囲、Cuめっきは0.1〜1.5μm、Niめっきは0.1〜0.8μmの範囲で適宜調整し、その次に上記と同様にリフロー処理を行うことにより、本発明のめっき構造が得られる。Cuめっき相はリフロー後にCu−Sn合金相へ完全に転換されてもよく、0.4μm以下の厚みで残存しても良い。
(6-2) Cu / Ni underlayer reflow Sn plating A plating film is composed of the Sn phase, the Cu-Sn alloy phase, and the Ni phase from the surface to the base material. This plating film structure is obtained by performing electroplating in the order of Ni base plating, Cu base plating, and Sn plating, and performing reflow treatment.
The average thickness of the Sn phase after reflow is preferably 0.2 to 0.8 μm. When the Sn phase is less than 0.1 μm, the solder wettability decreases, and when it exceeds 0.8 μm, the insertion force increases.
The thickness of the Cu—Sn alloy phase after reflow is preferably 0.4 to 2.0 μm. Since the Cu—Sn alloy phase is hard, if it exists in a thickness of 0.4 μm or more, it contributes to a reduction in insertion force. On the other hand, when the thickness of the Cu—Sn alloy phase exceeds 2.0 μm, mechanical properties such as bendability deteriorate.
The thickness of the Ni phase after reflow is preferably 0.1 to 0.8 μm. If the thickness of Ni is less than 0.1 μm, the corrosion resistance and heat resistance of the plating deteriorate. On the other hand, when the thickness of Ni after reflowing exceeds 0.8 μm, the thermal stress generated inside the plating phase when heated is increased, and the plating peeling is promoted.
The thickness of each plating during electroplating is adjusted as appropriate within the range of 0.6 to 1.3 μm for Sn plating, 0.1 to 1.5 μm for Cu plating, and 0.1 to 0.8 μm for Ni plating. Then, by performing a reflow process in the same manner as described above, the plating structure of the present invention can be obtained. The Cu plating phase may be completely converted into a Cu—Sn alloy phase after reflow, or may remain in a thickness of 0.4 μm or less.
(a)母材
組成Cu−35%Znの銅合金(厚み:0.32mm、引張強度540MPa、0.2%耐力510MPa、ヤング率103GPa、導電率26%IACS、ビッカース硬さ171Hv)を使用した。尚、上記ビッカース硬さは母材の圧延方向直角断面に対してJIS Z 2244に準拠して測定された値である。上記銅合金表面の粗さ曲線要素の算術平均粗さRaは0.05〜0.13μmであった。
(A) Base material A copper alloy having a composition Cu-35% Zn (thickness: 0.32 mm, tensile strength 540 MPa, 0.2% proof stress 510 MPa, Young's modulus 103 GPa, conductivity 26% IACS, Vickers hardness 171 Hv) was used. . The Vickers hardness is a value measured according to JIS Z 2244 with respect to a cross section perpendicular to the rolling direction of the base material. The arithmetic mean roughness Ra of the roughness curve element on the surface of the copper alloy was 0.05 to 0.13 μm.
(b)めっき処理
上記母材に、Cu下地めっき又はCu/Ni下地めっきを施した後、リフローSnめっきを行った。Cu下地めっきは、下記表1の条件で行った。
(B) Plating treatment After the above base material was subjected to Cu base plating or Cu / Ni base plating, reflow Sn plating was performed. Cu underplating was performed under the conditions shown in Table 1 below.
攪拌は全てプロペラ式攪拌装置で行った。めっき溶液全量は2Lで、使用した界面活性剤は第一工業製薬社製、商品名「EN25」:成分C9H6O(CH2CH2O)nH、製品濃度1.2容量%である。Cu/Ni下地めっきの場合は、下記条件でNiめっきを行った後、表1の条件でCuめっきを行った。
(Ni下地めっき条件)
・硫酸ニッケル:250g/L
・塩化ニッケル:45g/L
・ホウ酸:30g/L
・温度:50℃
・電流密度:5 A/dm2
・攪拌回転数:200rpm
All stirring was performed with a propeller type stirring device. The total amount of the plating solution was 2 L, and the surfactant used was a product name “EN25” manufactured by Daiichi Kogyo Seiyaku Co., Ltd .: Component C 9 H 6 O (CH 2 CH 2 O) n H, product concentration 1.2% by volume. is there. In the case of Cu / Ni base plating, after Ni plating was performed under the following conditions, Cu plating was performed under the conditions shown in Table 1.
(Ni base plating conditions)
・ Nickel sulfate: 250 g / L
・ Nickel chloride: 45g / L
・ Boric acid: 30 g / L
・ Temperature: 50 ℃
・ Current density: 5 A / dm 2
・ Agitation rotational speed: 200 rpm
上記のとおり下地めっきを行った材料にSnめっきを下記条件で行った。使用した界面活性剤は上記と同じである。
(Snめっき条件)
・メタンスルホン酸:80g/L
・メタンスルホン酸錫:250g/L
・界面活性剤:5g/L
・温度:50℃
・電流密度:8 A/dm2
・攪拌回転数:200rpm
Snめっき後に、リフロー処理として、炉内温度450〜600℃、雰囲気ガスを窒素(酸素1vol%以下)に調整した加熱炉中に5〜15秒間挿入し、その後水冷を行った。Sn、Cu、Niめっき厚みは、電着時間により調整した。下記実施例、比較例ではCu下地めっき、Ni−Cu下地めっき共、リフロー後にCuめっき相は残存しなかった。
Sn plating was performed on the material subjected to the base plating as described above under the following conditions. The surfactant used is the same as above.
(Sn plating conditions)
・ Methanesulfonic acid: 80 g / L
-Tin methanesulfonate: 250 g / L
・ Surfactant: 5g / L
・ Temperature: 50 ℃
・ Current density: 8 A / dm 2
・ Agitation rotational speed: 200 rpm
After the Sn plating, as a reflow process, the furnace was inserted in a furnace having a furnace temperature of 450 to 600 ° C. and an atmosphere gas adjusted to nitrogen (oxygen 1 vol% or less) for 5 to 15 seconds, and then water-cooled. Sn, Cu, Ni plating thickness was adjusted with electrodeposition time. In the following Examples and Comparative Examples, the Cu plating phase did not remain after reflowing in both the Cu base plating and the Ni—Cu base plating.
リフロー後の材料について、以下の評価を行った。
(1)めっき厚
(1−1)電解式膜厚計によるめっき厚測定
CT−1型電解式膜厚計(株式会社電測製)を用い、リフロー後の試料に対し、JIS H8501に従い、Snめっき相、Cu−Sn合金相、Cu/Ni下地めっき相の場合はNiめっき相の厚みを測定した。測定条件は下記の通りである。
電解液
・Snめっき相及びCu−Sn合金相:コクール社製電解液 R−50
・Niめっき相:コクール社製電解液 R−54
Cu下地Snめっきの場合、電解液R−50で電解を行うと、始めSnめっき相を電解してCu−Sn合金相の手前で電解がとまり、ここでの装置の表示値がSnめっき相厚となる。ついで再度電解をスタートさせて次に装置が止まるまでの間にCu−Sn合金相が電解され、終了時点での表示値がCu−Sn合金相の厚みに相当する。
Cu/Ni下地めっき相の場合のNiめっき相の厚みは、はじめに電解液R−50を使用して上記のようにSnめっき相及びCu−Sn合金相の厚みを測定した後、スポイトで電解液R−50を吸い取りだし、純水で入念に水洗いしてから電解液R−54に交換し、Niめっき相の厚みを測定する。
The following evaluation was performed about the material after reflow.
(1) Plating Thickness (1-1) Plating Thickness Measurement with Electrolytic Film Thickness Meter Using a CT-1 type electrolytic film thickness meter (manufactured by Denso Co., Ltd.), Sn after reflow according to JIS H8501 In the case of a plating phase, a Cu—Sn alloy phase, or a Cu / Ni base plating phase, the thickness of the Ni plating phase was measured. The measurement conditions are as follows.
Electrolytic solution / Sn plating phase and Cu-Sn alloy phase: Cocool's electrolytic solution R-50
-Ni plating phase: Electrolytic solution R-54 manufactured by Kocourt
In the case of Cu-based Sn plating, when electrolysis is performed with the electrolytic solution R-50, the Sn plating phase is first electrolyzed and the electrolysis stops before the Cu-Sn alloy phase, and the display value of the device here is the Sn plating phase thickness It becomes. The Cu—Sn alloy phase is then electrolyzed between the start of electrolysis and the next stop of the device, and the displayed value at the end time corresponds to the thickness of the Cu—Sn alloy phase.
In the case of the Cu / Ni base plating phase, the thickness of the Ni plating phase is determined by first measuring the thickness of the Sn plating phase and the Cu—Sn alloy phase as described above using the electrolytic solution R-50, and then using the dropper to prepare the electrolytic solution. The R-50 is sucked out, washed thoroughly with pure water and then replaced with the electrolytic solution R-54, and the thickness of the Ni plating phase is measured.
(1−2)めっき相断面観察によるCuめっき相厚の測定
上記電解式膜厚計では銅合金上のCuめっき厚を測定できないことから、めっき相の断面をSEMで観察することによりCuめっき相の厚さを求めた。
圧延方向に対して平行方向の断面が観察できるように試料を樹脂埋めし、観察面を機械研磨にて鏡面に仕上げた後、SEMにて倍率2000倍で反射電子像、母材成分とめっき成分の特性X線像を撮影する。反射電子像では各めっき相、例えばCu下地Snめっきの場合はめっき表相からSnめっき相、Cu−Sn合金相、Cuめっき相、母材の順に色調のコントラストがつく。また、特性X線像では、Snめっき相はSnのみ、Cu−Sn合金相はSnとCu、母材はその含有成分が検出されることから、Cuのみが検出されている相がCuめっき相であることがわかる。よって、特性X線像ではCuのみが検出されている相であり、かつ、他とは色調のコントラストが異なる相の厚みを反射電子像で測ることによりCuめっき相の厚みを求めることが出来る。厚みは反射電子像上で任意に5箇所の厚みを測定しその平均値をCuめっき相厚とする。
ただし、この方法では電解式膜厚法に比べ極狭い範囲の厚みしか求めることが出来ない。そこで、この観察を10断面行い、その平均値をCuめっき厚とした。
(1-2) Measurement of Cu plating phase thickness by observation of plating phase cross section The above electrolytic film thickness meter cannot measure the Cu plating thickness on a copper alloy. The thickness of was determined.
The sample is filled with resin so that a cross section parallel to the rolling direction can be observed, and the observation surface is finished to a mirror surface by mechanical polishing, and then a reflected electron image, a base material component and a plating component at a magnification of 2000 times by SEM A characteristic X-ray image is taken. In the reflected electron image, in the case of Cu plating Sn plating, for example, in the case of Cu underlayer Sn plating, the contrast of color tone is given in the order of the plating surface phase to the Sn plating phase, the Cu—Sn alloy phase, the Cu plating phase, and the base material. In the characteristic X-ray image, the Sn plating phase is only Sn, the Cu—Sn alloy phase is Sn and Cu, and the base material is detected for its contained components. Therefore, the phase in which only Cu is detected is the Cu plating phase. It can be seen that it is. Therefore, the thickness of the Cu plating phase can be obtained by measuring the thickness of a phase in which only Cu is detected in the characteristic X-ray image and having a different contrast of color tone from the other by a reflected electron image. The thickness is arbitrarily measured at five locations on the reflected electron image, and the average value is defined as the Cu plating phase thickness.
However, this method can determine only a very narrow thickness compared to the electrolytic film thickness method. Therefore, this observation was performed for 10 cross sections, and the average value was defined as the Cu plating thickness.
(2)ピンホールの個数、大きさ、深さ
ピンホールの個数は、めっき表面を金属顕微鏡(型式:PME3)を用いて、100倍で偏光フィルターを入れて2mm×2mm視野を観察した。そのほかに、SEMでの反射電子像の観察等も必要に応じて用いた。ピンホールの大きさと深さは、ELIONIX社製凹凸走査型電子顕微鏡SEM(ERA−8000)により求めた。図5に凹凸SEMで観察したピンホールの反射電子像の拡大写真を示し、図6にそのピンホールの深さと大きさのプロファイルとして凹凸SEMで得られたデータを示す。ピンホールの深さは、ピンホールの穴の最低部から、ピンホール周囲のめっき表面の最高山を結ぶ線までの深さ方向の距離とした。ピンホールの大きさは、ピンホールの深さの値に対して、めっき表面のピンホール周囲の最高部から深さ方向に5%深い位置間の水平距離とした。
(2) Number, size, and depth of pinholes The number of pinholes was determined by observing a 2 mm × 2 mm field of view with a polarizing filter at a magnification of 100 using a metal microscope (model: PME3). In addition, observation of reflected electron images with an SEM was used as necessary. The size and depth of the pinhole were determined by an uneven scanning electron microscope SEM (ERA-8000) manufactured by ELIONIX. FIG. 5 shows an enlarged photograph of the reflected electron image of the pinhole observed with the concavo-convex SEM, and FIG. 6 shows data obtained by the concavo-convex SEM as a profile of the depth and size of the pinhole. The depth of the pinhole was defined as the distance in the depth direction from the lowest part of the pinhole to the line connecting the highest peaks on the plating surface around the pinhole. The size of the pinhole was the horizontal distance between positions 5% deeper in the depth direction from the highest portion around the pinhole on the plating surface with respect to the depth value of the pinhole.
(3)Snめっき最表面とCu−Sn合金相表面の山の頭頂部との高度差h
リフロー後の試料を樹脂埋めし、めっき表面に対して垂直に切断して観察断面を機械研磨にて鏡面に仕上げた後、SEMにて倍率10000倍で反射電子像を撮影する。反射電子像では各めっき相、例えばCu下地Snめっきの場合はめっき表相からSnめっき相、Cu−Sn合金相、Cuめっき相、母材の順に色調のコントラストがつく。水平方向15μmの範囲の反射電子像中に観察される、Sn相とCu−Sn合金相との界面の山の最頂部の位置から表面までの距離をそれぞれ測定して、平均することで、Snめっき最表面とCu−Sn合金相表面の山の頭頂部との高度差を求めることが出来る。この手順を圧延平行方向及び直角方向に各10断面行い、その平均値をSnめっき最表面とCu−Sn合金相の最表点との高度差hとした。
(3) Altitude difference h between the top surface of the Sn plating and the top of the peak of the Cu—Sn alloy phase surface h
The sample after reflow is filled with resin, cut perpendicularly to the plating surface, and the observation cross section is finished to a mirror surface by mechanical polishing, and then a reflected electron image is taken with a SEM at a magnification of 10,000 times. In the reflected electron image, in the case of Cu plating Sn plating, for example, in the case of Cu underlayer Sn plating, the contrast of color tone is given in the order of the plating surface phase to the Sn plating phase, the Cu—Sn alloy phase, the Cu plating phase, and the base material. By measuring and averaging the distance from the top of the peak of the interface between the Sn phase and the Cu—Sn alloy phase to the surface, observed in the reflected electron image in the horizontal direction of 15 μm, Sn The height difference between the plating outermost surface and the top of the peak of the Cu—Sn alloy phase surface can be obtained. This procedure was performed for 10 cross sections each in the rolling parallel direction and the perpendicular direction, and the average value was defined as the altitude difference h between the outermost surface of the Sn plating and the outermost point of the Cu—Sn alloy phase.
(4)Cu−Sn合金相表面の粗さ曲線要素の平均高さRc及び平均長さRsm
リフロー後の試料を、Meltex社製エンストリップTL−105液中に25℃で1分浸漬し、Sn相を溶解除去し、Cu−Sn合金相を表面に現出させた。Cu−Sn合金相の平均粗さ曲線を、ELIONIX社製凹凸SEM(ERA−8000)により求めた。倍率3000倍で、圧延平行方向及び直角方向に各10ライン(1ライン40μm)測定し、その平均値からRc及びRsmを求めた。3000倍の倍率でのCu−Sn合金相表面のSEM画像の一例を図1に、図1の画像中の直線に沿って測定したCu−Sn合金相の表面粗さプロファイルを図2に示す。このプロファイルよりRc及びRsmを計算した。
(4) Average height Rc and average length Rsm of the Cu-Sn alloy phase surface roughness curve element
The sample after the reflow was immersed in Entex TL-105 liquid manufactured by Meltex at 25 ° C. for 1 minute to dissolve and remove the Sn phase, and the Cu—Sn alloy phase appeared on the surface. The average roughness curve of the Cu—Sn alloy phase was determined by an uneven SEM (ERA-8000) manufactured by ELIONIX. Ten lines (one line 40 μm) were measured in the rolling parallel direction and the perpendicular direction at a magnification of 3000 times, and Rc and Rsm were determined from the average values. An example of an SEM image of the surface of the Cu—Sn alloy phase at a magnification of 3000 times is shown in FIG. 1, and a surface roughness profile of the Cu—Sn alloy phase measured along a straight line in the image of FIG. 1 is shown in FIG. Rc and Rsm were calculated from this profile.
(5)挿抜性
図7に示すように、Snめっき材の板試料を試料台上に固定し、そのSnめっき面に接触子を荷重Wで押し付けた。次に、移動台を水平方向に移動させ、このとき接触子に作用する抵抗荷重Fをロードセルにより測定した。そして、動摩擦係数μをμ=F/Wより算出した。
Wは4.9Nとし、接触子の摺動速度(試料台の移動速度)は50mm/minとした。摺動は板試料の圧延方向に対し平行な方向に行った。摺動距離は100mmとし、この間のFの平均値を求めた。
接触子は、上記板試料と同じSnめっき材を用い、図8のように作製した。すなわち、直径7mmのステンレス球を試料に押し付けて、板試料と接触する部分を半球状に成形した。
(5) Insertability / Removability As shown in FIG. 7, a Sn-plated material plate sample was fixed on a sample table, and a contact was pressed against the Sn-plated surface with a load W. Next, the moving table was moved in the horizontal direction, and the resistance load F acting on the contact at this time was measured with a load cell. The dynamic friction coefficient μ was calculated from μ = F / W.
W was 4.9 N, and the sliding speed of the contact (moving speed of the sample stage) was 50 mm / min. The sliding was performed in a direction parallel to the rolling direction of the plate sample. The sliding distance was 100 mm, and the average value of F during this period was obtained.
The contact was produced as shown in FIG. 8 using the same Sn plating material as the plate sample. That is, a stainless steel sphere having a diameter of 7 mm was pressed against the sample, and a portion in contact with the plate sample was formed into a hemisphere.
(6)はんだ濡れ性
JIS−C0053のはんだ付け試験方法(平衡法)に準じ、リフロー後の材料と鉛フリーはんだとの濡れ性を評価した。試験はレスカ社製SAT−2000 ソルダーチェッカーを用い、下記条件で行った。得られた荷重/時間曲線より、浸漬開始から表面張力による浮力がゼロ(即ちはんだとサンプルの接触角が90°)になるまでの時間をはんだ濡れ時間(t2)(秒)として求めた。t2が3秒以下であると、通常の導電性ばね材として好適に使用できる。
試験条件の詳細は以下の通りである。
(フラックス塗布)
・フラックス:25%ロジン−エタノール
・フラックス温度:室温
・フラックス深さ:20mm
・フラックス浸漬時間:5秒
・たれ切り方法:ろ紙にエッジを5秒当ててフラックスを除去し、装置に固定して30秒保持。
(はんだ付け)
・はんだ組成:千住金属工業(株)製 Sn−3.0%Ag−0.5%Cu
・はんだ温度:260℃
・はんだ浸漬速さ:25±2.5mm/s
・はんだ浸漬深さ:2mm
・はんだ浸漬時間:10秒
(6) Solder wettability According to the soldering test method (equilibrium method) of JIS-C0053, the wettability between the material after reflow and lead-free solder was evaluated. The test was conducted under the following conditions using a SAT-2000 solder checker manufactured by Reska. From the obtained load / time curve, the time from the start of immersion until the buoyancy due to surface tension became zero (that is, the contact angle between the solder and the sample was 90 °) was determined as the solder wetting time (t 2 ) (seconds). When t 2 is 3 seconds or less, it can be suitably used as a normal conductive spring material.
Details of the test conditions are as follows.
(Flux application)
・ Flux: 25% rosin-ethanol ・ Flux temperature: Room temperature ・ Flux depth: 20 mm
・ Flux immersion time: 5 seconds ・ Drip-off method: The edge is applied to the filter paper for 5 seconds to remove the flux, and it is fixed to the apparatus and held for 30 seconds.
(Soldering)
Solder composition: Senju Metal Industry Co., Ltd. Sn-3.0% Ag-0.5% Cu
・ Solder temperature: 260 ℃
・ Solder immersion speed: 25 ± 2.5 mm / s
-Solder immersion depth: 2 mm
・ Solder immersion time: 10 seconds
表2、3に本発明の実施例及び比較例の結果を示す。下記実施例及び比較例において、比較例12及び24で上記表1の条件bを採用した以外は、全て条件aで行った。 Tables 2 and 3 show the results of Examples and Comparative Examples of the present invention. In the following examples and comparative examples, all were performed under the condition a except that the conditions b in Table 1 were adopted in the comparative examples 12 and 24.
Cu下地めっきに関する表2では、本発明例1〜6は、Snめっき最表面とCu−Sn合金相界面上の山の頭頂部との高度差hが0.1〜0.3μm範囲内であり、めっき表面のピンホール数が500μm平方に20個以下であり、本発明の範囲内である。そのため、優れたはんだ濡れ性及び挿抜性を示した。発明例6では、Cuめっき上がり及びSnめっき上がりの厚みが大きくして、リフロー処理を比較的高温、長時間に調整した例であり、Cu層は残存しているが本発明の範囲内となっている。
一方、比較例7で低温長時間のリフロー処理を行うと、低温溶融Snの表面張力が大きいため、ピンホールが増えてはんだ濡れ性に劣る。比較例8で高温短時間のリフロー処理を行うと、Sn−Cu相が急激に発達し表面上に山が多く発生するためRsmの値が小さくピンホール数が増大し、はんだ濡れ性に劣る。比較例9は、発明例5と同様にSnめっき厚みを0.6μmとして、リフロー後のSn相厚みを0.30μmと薄くしたが、hが0.1μm未満であるためピンホール数が増大し、はんだ濡れ性が悪い。比較例10は、Snめっき厚みを0.9μmと厚くしたためhが0.3μmを超え、ピンホールは生じなかったが挿抜性に劣る。比較例11は、Snめっき厚みを1.2μmと更に厚くしたため、hが0.3μm以上となり、ピンホールはほとんど生じなかったが挿抜性に非常に劣る。比較例12は、Cuめっき条件が適切でないためCu電着粒が粗く、Cu−Sn合金相の粗さ曲線の平均高さRcが大きくなり、ピンホール数が多くなりはんだ濡れ性に劣る。
In Table 2 regarding Cu undercoat, Examples 1 to 6 of the present invention have an altitude difference h between the top surface of the Sn plating and the top of the mountain on the Cu-Sn alloy phase interface in the range of 0.1 to 0.3 μm. The number of pinholes on the surface is 20 or less per 500 μm square, which is within the scope of the present invention. Therefore, it showed excellent solder wettability and insertability. Invention Example 6 is an example in which the thickness after Cu plating and Sn plating is increased and the reflow process is adjusted to a relatively high temperature for a long time, and the Cu layer remains, but is within the scope of the present invention. ing.
On the other hand, when the reflow treatment at low temperature and long time is performed in Comparative Example 7, the surface tension of the low temperature melted Sn is large, so that pinholes increase and the solder wettability is poor. When the reflow treatment at a high temperature for a short time is performed in Comparative Example 8, the Sn—Cu phase develops rapidly and many peaks are generated on the surface, so the value of Rsm is small and the number of pinholes is increased, resulting in poor solder wettability. In Comparative Example 9, the Sn plating thickness was set to 0.6 μm and the Sn phase thickness after reflow was reduced to 0.30 μm as in Invention Example 5, but the number of pinholes increased because h was less than 0.1 μm. The solder wettability is bad. In Comparative Example 10, since the Sn plating thickness was increased to 0.9 μm, h exceeded 0.3 μm and no pinhole was generated, but the insertability was poor. In Comparative Example 11, since the Sn plating thickness was further increased to 1.2 μm, h was 0.3 μm or more, and pinholes were hardly generated, but the insertability was very poor. In Comparative Example 12, since the Cu plating conditions are not appropriate, the Cu electrodeposited grains are coarse, the average height Rc of the roughness curve of the Cu—Sn alloy phase is large, the number of pinholes is large, and the solder wettability is poor.
Ni−Cu下地めっきに関する表3も同様に、本発明例13〜18は本発明の範囲内であり、優れたはんだ濡れ性及び挿抜性を示した。発明例18も発明例6と同様にめっき上がり厚みが大きいが、リフロー処理の調整により本発明の範囲内となっている。
一方、比較例19で低温長時間のリフロー処理を行うと、比較例7と同様にはんだ濡れ性に劣る。比較例20で高温短時間のリフロー処理を行っても、比較例8と同様にはんだ濡れ性に劣る。比較例21は比較例9と同様にはんだ濡れ性が悪い。比較例22は比較例10と同様に挿抜性に劣る。比較例23は、比較例11と同様にピンホールはほとんど生じなかったが、hが大きいため、挿抜性に劣る。比較例24は、比較例12と同様にはんだ濡れ性に劣る。
Similarly, Table 3 relating to the Ni—Cu base plating also includes Inventive Examples 13 to 18 within the scope of the present invention, and showed excellent solder wettability and insertability. Invention Example 18 has a large plating finish thickness as in Invention Example 6, but is within the scope of the present invention by adjusting the reflow treatment.
On the other hand, when the reflow treatment at low temperature and long time is performed in Comparative Example 19, the solder wettability is poor as in Comparative Example 7. Even if the reflow process at high temperature and short time is performed in Comparative Example 20, the solder wettability is poor as in Comparative Example 8. As in Comparative Example 9, Comparative Example 21 has poor solder wettability. Comparative Example 22 is inferior in insertion / removability similarly to Comparative Example 10. In Comparative Example 23, pinholes hardly occurred as in Comparative Example 11, but because h is large, the insertion / extraction properties are inferior. Comparative Example 24 is inferior in solder wettability like Comparative Example 12.
Claims (5)
リフロー処理によりSnめっき相の下にCu−Sn合金相が形成され、めっき表面に対する垂直断面における、Sn相とCu−Sn合金相との界面で、JIS B0601で規定される粗さ曲線のための平均線より高い山の頭頂部とその直上のSnめっき最表面との高度差の平均値hが0.1〜0.3μmであり、
めっき表面において、最長径5.0μm以下、深さ0.1〜0.4μmのピンホールが500μm×500μm平方に20個以下であり、
Sn相を溶解除去し、Cu−Sn合金相を表面に現出させたときに、Cu−Sn合金相表面のJIS B0601で規定される粗さ曲線要素の平均長さRsmが4.0〜7.0μmであることを特徴とする銅合金すずめっき条。 The surface of the copper alloy strip is a plating strip that has been subjected to electroplating in the order of the base plating to be subjected to Cu plating at the end and then Sn plating, and then subjected to reflow treatment;
The Cu—Sn alloy phase is formed under the Sn plating phase by the reflow treatment, and the roughness curve defined in JIS B0601 is defined at the interface between the Sn phase and the Cu—Sn alloy phase in the cross section perpendicular to the plating surface. The average value h of the height difference between the top of the mountain higher than the average line and the Sn plating outermost surface immediately above the top is 0.1 to 0.3 μm,
In the plating surface, maximum diameter 5.0μm or less state, and are more than 20 pinholes depth 0.1~0.4μm within 500 [mu] m × 500 [mu] m square,
When the Sn phase is dissolved and removed, and the Cu—Sn alloy phase appears on the surface, the average length Rsm of the roughness curve element defined by JIS B0601 on the surface of the Cu—Sn alloy phase is 4.0 to 7 copper alloy Suzumekkijo, wherein .0μm der Rukoto.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008333150A JP4611419B2 (en) | 2008-12-26 | 2008-12-26 | Copper alloy tin plating strip with excellent solder wettability and insertability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008333150A JP4611419B2 (en) | 2008-12-26 | 2008-12-26 | Copper alloy tin plating strip with excellent solder wettability and insertability |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010150647A JP2010150647A (en) | 2010-07-08 |
JP4611419B2 true JP4611419B2 (en) | 2011-01-12 |
Family
ID=42570038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008333150A Active JP4611419B2 (en) | 2008-12-26 | 2008-12-26 | Copper alloy tin plating strip with excellent solder wettability and insertability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4611419B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102642096A (en) * | 2011-02-18 | 2012-08-22 | 苏州宇邦新型材料有限公司 | Solder, tin-plated solder strip adopting solder and preparation methods of solder and tin-plated solder strip |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5587935B2 (en) * | 2012-03-30 | 2014-09-10 | Jx日鉱日石金属株式会社 | Sn plating material |
JP5984981B2 (en) * | 2015-02-24 | 2016-09-06 | Jx金属株式会社 | Sn plating material for electronic parts |
JP5984980B2 (en) * | 2015-02-24 | 2016-09-06 | Jx金属株式会社 | Sn plating material for electronic parts |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005154819A (en) * | 2003-11-25 | 2005-06-16 | Kobe Steel Ltd | Fitting type connection terminal |
JP2007063624A (en) * | 2005-08-31 | 2007-03-15 | Nikko Kinzoku Kk | Copper alloy tinned strip having excellent insertion/withdrawal property and heat resistance |
JP2007258156A (en) * | 2006-02-27 | 2007-10-04 | Kobe Steel Ltd | Conductive material for connection component |
JP2008196010A (en) * | 2007-02-13 | 2008-08-28 | Hitachi Cable Ltd | Plating material for connector terminal |
JP2008269999A (en) * | 2007-04-20 | 2008-11-06 | Kobe Steel Ltd | Terminal for coupling connector and its manufacturing method |
JP2008274364A (en) * | 2007-05-01 | 2008-11-13 | Kobe Steel Ltd | Terminal for engaging type connector and manufacturing method therefor |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4368931B2 (en) * | 2006-12-13 | 2009-11-18 | 日鉱富士電子株式会社 | Male terminal and manufacturing method thereof |
-
2008
- 2008-12-26 JP JP2008333150A patent/JP4611419B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005154819A (en) * | 2003-11-25 | 2005-06-16 | Kobe Steel Ltd | Fitting type connection terminal |
JP2007063624A (en) * | 2005-08-31 | 2007-03-15 | Nikko Kinzoku Kk | Copper alloy tinned strip having excellent insertion/withdrawal property and heat resistance |
JP2007258156A (en) * | 2006-02-27 | 2007-10-04 | Kobe Steel Ltd | Conductive material for connection component |
JP2008196010A (en) * | 2007-02-13 | 2008-08-28 | Hitachi Cable Ltd | Plating material for connector terminal |
JP2008269999A (en) * | 2007-04-20 | 2008-11-06 | Kobe Steel Ltd | Terminal for coupling connector and its manufacturing method |
JP2008274364A (en) * | 2007-05-01 | 2008-11-13 | Kobe Steel Ltd | Terminal for engaging type connector and manufacturing method therefor |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102642096A (en) * | 2011-02-18 | 2012-08-22 | 苏州宇邦新型材料有限公司 | Solder, tin-plated solder strip adopting solder and preparation methods of solder and tin-plated solder strip |
Also Published As
Publication number | Publication date |
---|---|
JP2010150647A (en) | 2010-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5319101B2 (en) | Sn plating material for electronic parts | |
JP5355935B2 (en) | Metal materials for electrical and electronic parts | |
WO2009123144A1 (en) | Tinned copper alloy bar with excellent abrasion resistance, insertion properties, and heat resistance | |
CN103732805B (en) | The excellent Tinplated copper alloy terminal material of plug property | |
CN103227369A (en) | Tin-plated copper-alloy material for terminal and method for producing the same | |
JP2003293187A (en) | Copper or copper alloy subjected to plating and method for manufacturing the same | |
TW201413068A (en) | Tin-plated copper alloy terminal member with outstanding insertion and removal characteristics and method of manufacturing the same | |
JP5522300B1 (en) | Tin-plated copper alloy terminal material excellent in insertion / extraction and manufacturing method thereof | |
KR20170055975A (en) | Tin-plated copper alloy terminal material and method for producing same | |
CN104752865A (en) | Tin-plated Copper-alloy Terminal Material | |
WO2007126011A1 (en) | TIN-PLATED Cu-Ni-Si ALLOY STRIP | |
JP4611419B2 (en) | Copper alloy tin plating strip with excellent solder wettability and insertability | |
JP5640922B2 (en) | Tin-plated copper alloy terminal material with excellent insertability | |
JP2015110829A (en) | Tin-plated copper-alloy terminal material | |
TWI479052B (en) | Tin plating materials | |
JP2007262458A (en) | WHISKER RESISTANT REFLOW Sn PLATING MATERIAL | |
JP5185759B2 (en) | Conductive material and manufacturing method thereof | |
TWI585244B (en) | Sn-plated materials for electronic parts | |
TWI589714B (en) | Sn plating material for electronic parts | |
KR101175092B1 (en) | Cu ALLOY Sn-PLATED STRIP HAVING EXCELLENT SOLDER WETTABILITY AND INSERTABILITY/EXTRABILITY | |
JP5419737B2 (en) | Tin-plated copper alloy sheet for mating type terminal and method for manufacturing the same | |
JP2015124434A (en) | Tin-plated copper-alloy terminal material | |
WO2012133378A1 (en) | Sn PLATING MATERIAL | |
TWI394631B (en) | Solder wetting, excellent plug-in copper alloy tin | |
CN102234827B (en) | Tinned copper alloy bar with excellent solder wetability and plugging performance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100615 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100809 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20100902 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20100903 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100928 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101013 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131022 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4611419 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |