JP5640922B2 - Tin-plated copper alloy terminal material with excellent insertability - Google Patents

Tin-plated copper alloy terminal material with excellent insertability Download PDF

Info

Publication number
JP5640922B2
JP5640922B2 JP2011189193A JP2011189193A JP5640922B2 JP 5640922 B2 JP5640922 B2 JP 5640922B2 JP 2011189193 A JP2011189193 A JP 2011189193A JP 2011189193 A JP2011189193 A JP 2011189193A JP 5640922 B2 JP5640922 B2 JP 5640922B2
Authority
JP
Japan
Prior art keywords
layer
less
thickness
plating layer
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011189193A
Other languages
Japanese (ja)
Other versions
JP2013049909A (en
Inventor
勇樹 谷ノ内
勇樹 谷ノ内
加藤 直樹
直樹 加藤
賢治 久保田
賢治 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2011189193A priority Critical patent/JP5640922B2/en
Publication of JP2013049909A publication Critical patent/JP2013049909A/en
Application granted granted Critical
Publication of JP5640922B2 publication Critical patent/JP5640922B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Manufacturing Of Electrical Connectors (AREA)

Description

本発明は、自動車や民生機器等の電気配線の接続に使用されるコネクタ用端子、特に多ピンコネクタ用の端子として有用な錫めっき銅合金端子材に関する。   TECHNICAL FIELD The present invention relates to a tin-plated copper alloy terminal material useful as a connector terminal used for connecting electrical wiring of automobiles, consumer devices, etc., particularly as a terminal for a multi-pin connector.

錫めっき銅合金端子材は、銅合金からなる基材の上にCuめっき及びSnめっきを施した後にリフロー処理することにより、表層のSn系表面層の下層にCuSn合金層が形成されたものであり、端子材として広く用いられている。
近年、例えば自動車おいては急速に電装化が進行し、これに伴い電気機器の回路数が増加するため、使用するコネクタの小型・多ピン化が顕著になっている。コネクタが多ピン化すると、単ピンあたりの挿入力は小さくても、コネクタを挿着する際にコネクタ全体では大きな力が必要となり、生産性の低下が懸念されている。そこで、錫めっき銅合金材の摩擦係数を小さくして単ピンあたりの挿入力を低減することが試みられている。
The tin-plated copper alloy terminal material is a material in which a CuSn alloy layer is formed under the Sn-based surface layer of the surface layer by performing reflow treatment after applying Cu plating and Sn plating on a copper alloy base material. Yes, it is widely used as a terminal material.
2. Description of the Related Art In recent years, for example, automobiles have rapidly become electrically equipped, and the number of circuits of electrical equipment increases accordingly. Therefore, miniaturization and increase in the number of pins of connectors used have become prominent. When the number of connectors is increased, even if the insertion force per single pin is small, a large force is required for the entire connector when the connector is inserted, and there is a concern that the productivity is lowered. Therefore, attempts have been made to reduce the insertion force per single pin by reducing the friction coefficient of the tin-plated copper alloy material.

例えば、基材を粗らして、CuSn合金層の表面露出度を規定したもの(特許文献1)があるが、接触抵抗が増大する、ハンダ濡れ性が低下するといった問題があった。また、CuSn合金層の平均粗さを規定したもの(特許文献2)もあるが、さらなる挿抜性向上のため例えば動摩擦係数を0.3以下にすることができないといった問題があった。   For example, there is a material (Patent Document 1) in which the substrate is roughened and the surface exposure degree of the CuSn alloy layer is defined (Patent Document 1), but there are problems that the contact resistance increases and the solder wettability decreases. Moreover, although there exists what prescribed | regulated the average roughness of a CuSn alloy layer (patent document 2), there existed a problem that a dynamic friction coefficient could not be 0.3 or less, for the further improvement of insertion / extraction, for example.

特開2007−100220号公報JP 2007-100220 A 特開2007−63624号公報JP 2007-63624 A

錫めっき銅合金端子材の摩擦係数を低減させるには、表層のSn層を薄くし、Snに比べ硬いCuSn合金層の一部を表層に露出させると摩擦係数を非常に小さくすることができる。しかしながら、表層にCuSn合金層が露出するとCu酸化物が表層に形成され、その結果接触抵抗の増大、はんだ濡れ性の低下を引き起こしてしまう。またCuSn合金層の平均粗さを制御しても動摩擦係数を0.3以下にまで低減することはできない問題があった。   In order to reduce the friction coefficient of the tin-plated copper alloy terminal material, the friction coefficient can be made very small by thinning the surface Sn layer and exposing a part of the CuSn alloy layer harder than Sn to the surface layer. However, when the CuSn alloy layer is exposed on the surface layer, Cu oxide is formed on the surface layer, resulting in an increase in contact resistance and a decrease in solder wettability. Further, there is a problem that even if the average roughness of the CuSn alloy layer is controlled, the dynamic friction coefficient cannot be reduced to 0.3 or less.

本発明は、前述の課題に鑑みてなされたものであって、優れた電気接続特性を発揮しながら動摩擦係数を0.3以下にまで低減して、挿抜性に優れた錫めっき銅合金端子材を提供することを目的とする。   The present invention has been made in view of the above-described problems, and has a tin-plated copper alloy terminal material that is excellent in insertion / removal by reducing the dynamic friction coefficient to 0.3 or less while exhibiting excellent electrical connection characteristics. The purpose is to provide.

本発明者らは鋭意研究した結果、表層のSn層が薄く、その表面にわずかに下層のCuSn層が露出していることは、動摩擦係数の低下に有利であるとの認識の下、Sn層が薄くなることによる電気接続特性の低下を抑制するためには、CuSn合金層の表面露出を限られた範囲に制御することが必要であり、そのためには、Sn層とその下層のCuSn層との界面の形状が重要であるとの知見に至った。つまり、動摩擦係数は、表面から数百nmの深さの範囲の構造が大きな影響を与えており、研究の結果、表層付近をSnとCuSnの複合構造とすると、硬いCuSn合金層の間にある軟らかいSnが潤滑剤の作用を果たし動摩擦係数が下がることを見出した。この場合、Sn層とCuSn層との界面の凹凸形状が尖鋭であることが重要であり、その界面形状として尖り度Rkuに着目した。また、好ましい尖り度Rkuを得るためには、Ni及びSiの存在が重要であることも見出した。これらの知見の下、以下の解決手段とした。   As a result of intensive studies, the present inventors have recognized that the fact that the surface Sn layer is thin and the lower CuSn layer is slightly exposed on the surface is advantageous in reducing the dynamic friction coefficient. In order to suppress the deterioration of the electrical connection characteristics due to thinning, it is necessary to control the surface exposure of the CuSn alloy layer to a limited range. For that purpose, the Sn layer and the CuSn layer below it are It came to the knowledge that the shape of the interface is important. In other words, the dynamic friction coefficient is greatly affected by the structure in the range of several hundreds of nanometers from the surface. As a result of research, if the surface layer has a composite structure of Sn and CuSn, it is between the hard CuSn alloy layers. It has been found that soft Sn acts as a lubricant to lower the dynamic friction coefficient. In this case, it is important that the concavo-convex shape of the interface between the Sn layer and the CuSn layer is sharp, and attention is paid to the sharpness Rku as the interface shape. It has also been found that the presence of Ni and Si is important for obtaining a preferable kurtosis Rku. Based on these findings, the following solutions were adopted.

すなわち、本発明の錫めっき銅合金端子材は、Cu合金からなる基材上の表面にSn系表面層が形成され、該Sn系表面層と前記基材との間にCuSn合金層が形成された錫めっき銅合金端子材であって、前記CuSn合金層は、CuSnを主成分とし、該CuSnのCuの一部がNi及びSiに置換した化合物を前記基材側界面付近に有する合金層であり、前記CuSn合金層の尖り度Rkuが3を超え、かつ前記Sn系表面層の平均厚みが0.2μm以上0.4μm以下であり、前記Sn系表面層の表面に露出する前記CuSn合金層の面積率が10〜40%であり、動摩擦係数が0.3以下であることを特徴とする。 That is, in the tin-plated copper alloy terminal material of the present invention, an Sn-based surface layer is formed on the surface of a substrate made of Cu alloy, and a CuSn alloy layer is formed between the Sn-based surface layer and the substrate. A tin-plated copper alloy terminal material, wherein the CuSn alloy layer is composed of Cu 6 Sn 5 as a main component, and a compound in which a part of Cu of the Cu 6 Sn 5 is substituted with Ni and Si is the base-side interface. The CuSn alloy layer has a kurtosis Rku of more than 3, and the Sn-based surface layer has an average thickness of 0.2 μm or more and 0.4 μm or less on the surface of the Sn-based surface layer. The exposed CuSn alloy layer has an area ratio of 10 to 40% and a dynamic friction coefficient of 0.3 or less.

CuSn合金層の尖り度Rkuが3を超え、かつSn系表面層の平均厚みを0.2μm以上0.4μm以下、Sn系表面層の表面におけるCuSn合金層の露出面積率を10〜40%とすることで動摩擦係数の0.3以下を実現することができ、この場合、CuSn合金層の下部に形成されるCuの一部がNi及びSiに置換した(Cu,Ni,Si)Sn合金の存在により、CuSn合金層の凹凸を尖鋭にしてRkuが3を超え、表面に露出する面積率を限られた範囲に抑制している。
CuSn合金層の尖り度Rkuが3以下ではCuSn間に存在するSnが少なく、動摩擦係数を0.3以下とすることができない。
The sharpness Rku of the CuSn alloy layer exceeds 3, the average thickness of the Sn-based surface layer is 0.2 μm or more and 0.4 μm or less, and the exposed area ratio of the CuSn alloy layer on the surface of the Sn-based surface layer is 10 to 40%. Thus, a coefficient of dynamic friction of 0.3 or less can be realized. In this case, a part of Cu formed under the CuSn alloy layer is replaced with Ni and Si (Cu, Ni, Si) 6 Sn 5 Due to the presence of the alloy, the unevenness of the CuSn alloy layer is sharpened, Rku exceeds 3, and the area ratio exposed on the surface is suppressed to a limited range.
When the kurtosis degree Rku of the CuSn alloy layer is 3 or less, Sn existing between CuSn is small, and the dynamic friction coefficient cannot be made 0.3 or less.

Sn系表面層の平均厚みが0.2μm以上0.4μm以下としたのは、0.2μm未満でははんだ濡れ性の低下、電気的接続信頼性の低下を招き、0.4μmを超えると表層をSnとCuSnの複合構造とすることができず、Snだけで占められるので動摩擦係数が増大するためである。
Sn系表面層の表面におけるCuSn合金層の露出面積率が10%未満では動摩擦係数を0.3以下とすることができず、40%を超えると、はんだ濡れ性等の電気接続特性が低下する。より好ましい面積率は、10〜30%である。
The average thickness of the Sn-based surface layer is set to 0.2 μm or more and 0.4 μm or less because when it is less than 0.2 μm, solder wettability and electrical connection reliability are deteriorated. This is because the composite structure of Sn and CuSn cannot be obtained, and the dynamic friction coefficient increases because it is occupied only by Sn.
If the exposed area ratio of the CuSn alloy layer on the surface of the Sn-based surface layer is less than 10%, the dynamic friction coefficient cannot be 0.3 or less, and if it exceeds 40%, the electrical connection characteristics such as solder wettability are deteriorated. . A more preferable area ratio is 10 to 30%.

本発明の錫めっき銅合金端子材において、前記基材が、0.5〜5質量%のNi及び0.1〜1.5質量%のSiを含有し、残部がCu及び不可避不純物から構成されるものであるとよい。
基材を0.5〜5質量%のNi及び0.1〜1.5質量%のSi含有と規定したのは、リフロー処理により形成されるCuSn系合金層の尖り度Rkuが3を超えるためには、リフロー時に基材よりNi及びSiが供給され、CuSn合金層中にNi及びSiが固溶することが必要なためである。Niが0.5質量%未満、Siが0.1質量%未満では、それぞれNi又はSiの効果が現れず、Niが5質量%を越えると鋳造や熱間圧延時に割れを生じるおそれがあり、Siが1.5質量%を超えると導電性が低下してしまうためである。この場合、CuSn合金層との界面側では、Ni及びSiがCuSn合金層に供給されるため、含有量が若干低下した状態となっている。
In the tin-plated copper alloy terminal material of the present invention, the base material contains 0.5 to 5% by mass of Ni and 0.1 to 1.5% by mass of Si, and the balance is composed of Cu and inevitable impurities. It should be good.
The reason why the base material is defined as containing 0.5 to 5% by mass of Ni and 0.1 to 1.5% by mass of Si is that the kurtosis degree Rku of the CuSn-based alloy layer formed by the reflow process exceeds 3. This is because Ni and Si are supplied from the base material at the time of reflow, and Ni and Si need to be dissolved in the CuSn alloy layer. If Ni is less than 0.5% by mass and Si is less than 0.1% by mass, the effect of Ni or Si does not appear, and if Ni exceeds 5% by mass, cracking may occur during casting or hot rolling. This is because when Si exceeds 1.5% by mass, the conductivity is lowered. In this case, since Ni and Si are supplied to the CuSn alloy layer on the interface side with the CuSn alloy layer, the content is slightly reduced.

本発明の錫めっき銅合金端子材において、前記基材が、更にZn、Sn、Fe、Mgの群から選ばれた1種以上を合計で5質量%以下含有してもよい。
Zn、Snは、強度、耐熱性向上のために添加するとよく、また、Fe、Mgは、応力緩和特性向上のために添加するとよいが、合計で5質量%を超えると導電率が低下するので好ましくない。
In the tin-plated copper alloy terminal material of the present invention, the base material may further contain a total of 5% by mass or less of one or more selected from the group consisting of Zn, Sn, Fe, and Mg.
Zn and Sn should be added to improve strength and heat resistance, and Fe and Mg should be added to improve stress relaxation characteristics. However, if the total exceeds 5% by mass, the conductivity will decrease. It is not preferable.

本発明の錫めっき銅合金端子材の製造方法は、Cu合金からなる基材上に、Cuめっき層及びSnめっき層をこの順で形成した後に、リフロー処理することにより、前記基材の上にCuSn合金層を介してSn系表面層を形成した錫めっき銅合金端子材を製造する方法であって、前記基材として、0.5〜5質量%のNi、0.1〜1.5質量%のSiを含有し、残部がCu及び不可避不純物から構成されるものを用い、前記Cuめっき層の厚みを0.15μm以上0.3μm未満とし、前記Snめっき層の厚みと前記Cuめっき層の厚みの合計が0.8μm以上1.1μm未満とし、前記リフロー処理を基材の表面温度が240〜360℃になるまで昇温後、当該温度に以下の(1)〜(3)に示す時間保持した後急冷することにより行うことを特徴とする銅合金端子材の製造方法。
(1)Snめっき層の厚みが0.7μm未満に対して、Cuめっき層の厚みが0.15μm以上0.25μm未満の場合は6〜9秒、Cuめっき層の厚みが0.25μm以上0.30μm未満の場合は6〜12秒
(2)Snめっき層の厚みが0.7μm以上0.9μm未満に対して、Cuめっき層の厚みが0.15μm以上0.20μm未満の場合は6〜9秒、Cuめっき層の厚みが0.20μm以上0.25μm未満の場合は6〜12秒、Cuめっき層の厚みが0.25μm以上0.30μm未満の場合は9〜12秒
(3)Snめっき層の厚みが0.9μm以上で、Cuめっき層の厚みが0.15μm以上0.25μm未満の場合は6〜12秒
The manufacturing method of the tin-plated copper alloy terminal material of the present invention comprises a Cu-plated layer and a Sn-plated layer formed in this order on a substrate made of a Cu alloy, and then reflow-treated on the substrate. A method for producing a tin-plated copper alloy terminal material in which a Sn-based surface layer is formed via a CuSn alloy layer, wherein the base material is 0.5 to 5 mass% Ni, 0.1 to 1.5 mass % of containing Si, used as the remaining portion is composed of Cu and unavoidable impurities, the thickness of the Cu plating layer is less than 0.3μm or 0.15 [mu] m, the Cu plating layer and the thickness of the Sn plating layer The total thickness of the substrate is 0.8 μm or more and less than 1.1 μm, and after the temperature of the reflow treatment is increased until the surface temperature of the base material becomes 240 to 360 ° C., the temperature is shown in the following (1) to (3) this carried out by rapidly cooling after the retention time Method for producing a copper alloy material for terminal according to claim.
(1) Whereas the thickness of the Sn plating layer is less than 0.7 μm, when the thickness of the Cu plating layer is 0.15 μm or more and less than 0.25 μm, the thickness is 6 to 9 seconds, and the thickness of the Cu plating layer is 0.25 μm or more and 0 .6-12 seconds for less than 30 μm
(2) When the thickness of the Sn plating layer is 0.7 μm or more and less than 0.9 μm, when the thickness of the Cu plating layer is 0.15 μm or more and less than 0.20 μm, the thickness of the Cu plating layer is 0 to 6-9 seconds. .6 to 12 seconds when the thickness is 20 μm or more and less than 0.25 μm, and 9 to 12 seconds when the thickness of the Cu plating layer is 0.25 μm or more and less than 0.30 μm
(3) 6-12 seconds when the thickness of the Sn plating layer is 0.9 μm or more and the thickness of the Cu plating layer is 0.15 μm or more and less than 0.25 μm

前述したように基材にNi及びSiを含有することにより、リフロー処理後のCuSn合金層の下部に(Cu,Ni,Si)Sn合金を介在させ、これによりCuSn合金層の凹凸が尖鋭になって尖り度Rkuが3を超えることができる。Cuめっき層の厚みが0.15μm未満では、基材から供給されるNi及びSiの影響が大きくなり、場所によりバラツキが大きく、安定した動摩擦係数、外観(光沢度)が得られなくなり、0.3μm以上では、基材からのNiがCuSn合金層に供給されにくいために、尖がり度Rkuが3を超えることが難しくなる。Snめっき層の厚みとCuめっき層の厚みの合計が0.8μm未満であると、リフロー後のSn系表面層が薄くなって電気接続特性が損なわれ、1.1μm以上であると、表面へのCuSn合金層の露出が少なくなって動摩擦係数を0.3以下にすることが難しい。リフロー処理においては、基材の表面温度が240〜360℃になるまで昇温後、当該温度に(1)〜(3)で示した6〜12秒間保持した後、急冷することが重要である。この場合、保持時間はCuめっき層及びSnめっき層のそれぞれの厚みに応じて6〜12秒の範囲で適切な時間があり、めっき厚が薄いほど保持時間は少なく、厚くなると長い保持時間が必要になる。240℃未満あるいは保持時間が短すぎる場合にはCuSn合金の成長が進まず所望の形状をしたCuSn合金層を得ることができず、360℃を超えあるいは保持時間が長すぎるとCuSn合金が成長し過ぎて表面への露出率が大きくなり過ぎ、またSn系表面層の酸化が進行して好ましくない。
また、前記基材として、更にZn、Sn、Fe、Mgの群から選ばれた1種以上を合計で5質量%以下含有するものを用いてもよい。
As described above, by containing Ni and Si in the base material, (Cu, Ni, Si) 6 Sn 5 alloy is interposed under the CuSn alloy layer after the reflow treatment, whereby the unevenness of the CuSn alloy layer is sharpened. Thus, the sharpness Rku can exceed 3. When the thickness of the Cu plating layer is less than 0.15 μm, the influence of Ni and Si supplied from the base material becomes large, the variation varies depending on the place, and a stable dynamic friction coefficient and appearance (glossiness) cannot be obtained. When the thickness is 3 μm or more, Ni from the base material is difficult to be supplied to the CuSn alloy layer, and thus it becomes difficult for the sharpness Rku to exceed 3. When the total thickness of the Sn plating layer and the Cu plating layer is less than 0.8 μm, the Sn-based surface layer after reflow is thinned and the electrical connection characteristics are impaired. It is difficult to reduce the coefficient of dynamic friction to 0.3 or less because the exposure of the CuSn alloy layer is reduced. In the reflow treatment, it is important that the temperature of the base material is raised until the surface temperature reaches 240 to 360 ° C., then held at the temperature for 6 to 12 seconds as indicated by (1) to (3), and then rapidly cooled. . In this case, the holding time is an appropriate time in the range of 6 to 12 seconds depending on the thickness of each of the Cu plating layer and the Sn plating layer. The thinner the plating thickness, the shorter the holding time. I need it. If the temperature is less than 240 ° C. or the holding time is too short, the growth of the CuSn alloy does not proceed, and a CuSn alloy layer having a desired shape cannot be obtained. If the temperature exceeds 360 ° C. or the holding time is too long, the CuSn alloy grows. Therefore, the exposure rate to the surface becomes too large, and the oxidation of the Sn-based surface layer proceeds, which is not preferable.
Moreover, you may use what further contains 1 mass or more chosen from the group of Zn, Sn, Fe, Mg as a said base material 5 mass% or less in total.

本発明によれば、動摩擦係数を低減したので、低接触抵抗、良好なはんだ濡れ性と低挿抜性を両立させることができ、小型端子に最適である。特に、自動車および電子部品等に使用される端子において、接合時の低い挿入力、安定した接触抵抗、良好なはんだ濡れ性を必要とする部位において優位性を持つ。   According to the present invention, since the dynamic friction coefficient is reduced, it is possible to achieve both low contact resistance, good solder wettability and low insertion / removability, and is optimal for a small terminal. In particular, terminals used in automobiles and electronic components have superiority in parts that require low insertion force, stable contact resistance, and good solder wettability during bonding.

実施例の銅合金端子材における断面の顕微鏡写真であり、縦方向を1.7倍に拡大して示している。It is the microscope picture of the cross section in the copper alloy terminal material of an Example, and has expanded and showed the vertical direction 1.7 times. 実施例の銅合金端子材における表面の顕微鏡写真である。It is a microscope picture of the surface in the copper alloy terminal material of an Example. 比較例の銅合金端子材における断面の顕微鏡写真であり、縦方向を1.7倍に拡大して示している。It is the microscope picture of the cross section in the copper alloy terminal material of a comparative example, and has expanded and showed the vertical direction 1.7 times. 比較例の銅合金端子材における表面の顕微鏡写真である。It is a microscope picture of the surface in the copper alloy terminal material of a comparative example. 導電部材の動摩擦係数を測定するための装置を概念的に示す正面図である。It is a front view which shows notionally the apparatus for measuring the dynamic friction coefficient of an electrically-conductive member.

本発明の一実施形態の錫めっき銅合金端子材を説明する。
本実施形態の錫めっき銅合金端子材は、銅合金からなる基材の上に、Sn系表面層が形成され、Sn系表面層と基材との間にCuSn合金層が形成されている。
基材は、Cu−Ni−Si系合金、Cu−Ni−Si−Zn系合金等、Ni及びSiを含有し、更に必要に応じてZn、Sn、Fe、Mgの群から選ばれた1種以上を合計で5質量%以下含有し、残部がCu及び不可避不純物から構成される銅合金である。Ni及びSiを必須成分としたのは、後述するリフロー処理により形成されるCuSn合金層の尖がり度を3を越えて形成するためには、リフロー時に基材よりNi及びSiが供給され、CuSn合金層中にNi及びSiが固溶することが必要なためである。基材中のNiの含有量としては0.5〜5質量%が、Siの含有量としては0.1〜1.5質量%が好ましい。Niが0.5質量%未満ではNiの効果、Siが0.1質量%未満ではSiの効果がそれぞれ現れず、Niが5質量%を越えると鋳造や熱間圧延時に割れを生じるおそれがあり、Siが1.5質量%を超えると導電性が低下するためである。
The tin plating copper alloy terminal material of one Embodiment of this invention is demonstrated.
In the tin-plated copper alloy terminal material of this embodiment, an Sn-based surface layer is formed on a base material made of a copper alloy, and a CuSn alloy layer is formed between the Sn-based surface layer and the base material.
The base material contains Ni and Si, such as a Cu—Ni—Si based alloy, a Cu—Ni—Si—Zn based alloy, and is further selected from the group of Zn, Sn, Fe, and Mg as required. The total is 5% by mass or less in total, and the balance is a copper alloy composed of Cu and inevitable impurities. The reason why Ni and Si are essential components is that Ni and Si are supplied from the base material during reflow in order to form a CuSn alloy layer formed by reflow processing described later with a sharpness exceeding 3; This is because Ni and Si need to be dissolved in the alloy layer. The Ni content in the substrate is preferably 0.5 to 5% by mass, and the Si content is preferably 0.1 to 1.5% by mass. If Ni is less than 0.5% by mass, the effect of Ni will not occur, and if Si is less than 0.1% by mass, the effect of Si will not appear. If Ni exceeds 5% by mass, cracking may occur during casting or hot rolling. This is because when Si exceeds 1.5% by mass, the conductivity is lowered.

また、Zn、Snは、強度、耐熱性向上させ、Fe、Mgは、応力緩和特性を向上させる。これらZn、Sn、Fe、Mgのいずれか1種以上を添加する場合は、その合計の含有量が5質量%を超えると導電性が低下するので好ましくない。特に、Zn、Sn、Fe、Mgの両方を含むことが好ましい。   Zn and Sn improve strength and heat resistance, and Fe and Mg improve stress relaxation characteristics. In the case of adding any one or more of these Zn, Sn, Fe, and Mg, if the total content exceeds 5% by mass, the conductivity decreases, which is not preferable. In particular, it is preferable to contain both Zn, Sn, Fe, and Mg.

CuSn合金層は、後述するように基材の上にCuめっき層とSnめっき層とを形成してリフロー処理することにより形成されたものであり、その大部分はCuSnであるが、基材との界面付近に、基材中のNi及びSiとCuの一部が置換した(Cu,Ni,Si)Sn合金が薄く形成される。また、このCuSn合金層とSn系表面層との界面は、凹凸状に形成され、尖がり度が3を超えて形成される。
JIS B0601で規定される尖がり度Rkuは、測定対象物表面の基準長さlrにおけるころがり円うねり曲線Z(x)の四乗平均を二乗平均平方根高さ(Rq)の四乗によって無次元したもので、次式で表わされる。表面の鋭さの尺度で高さ分布の広がりを特徴づけるものであり、Rkuが3以下のときは表面凹凸の高さ分布が潰れているような形状をしており、Rkuが3を超えるときは高さ分布が尖っていることを示す。
The CuSn alloy layer is formed by forming a Cu plating layer and a Sn plating layer on a base material and performing a reflow treatment as will be described later. Most of the CuSn alloy layer is Cu 6 Sn 5 , A thin (Cu, Ni, Si) 6 Sn 5 alloy in which a part of Ni and Si and Cu in the base material is substituted is formed near the interface with the base material. Further, the interface between the CuSn alloy layer and the Sn-based surface layer is formed in a concavo-convex shape and has a sharpness exceeding 3.
The kurtosis degree Rku defined in JIS B0601 is the dimensionless square root mean square height (Rq) of the mean square of the rolling circle waviness curve Z (x) at the reference length lr of the measurement object surface. It is represented by the following formula. It is characterized by the spread of the height distribution on a scale of surface sharpness. When Rku is 3 or less, the shape of the surface unevenness of the height distribution is crushed. When Rku exceeds 3, Indicates that the height distribution is sharp.

Sn系表面層は平均厚みが0.2μm以上0.4μm以下に形成される。その厚みが0.2μm未満でははんだ濡れ性の低下、電気的接続信頼性の低下を招き、0.4μmを超えると表層をSnとCuSnの複合構造とすることができず、Snだけで占められるので動摩擦係数が増大するためである。
そして、このSn系表面層の表面に、下層のCuSn合金層の一部が露出しており、その露出部分の面積率が10〜40%とされる。露出面積率が10%未満では動摩擦係数を0.3以下とすることができず、40%を超えると、はんだ濡れ性等の電気接続特性が低下する。
The Sn-based surface layer is formed with an average thickness of 0.2 μm to 0.4 μm. If the thickness is less than 0.2 μm, solder wettability and electrical connection reliability are reduced, and if it exceeds 0.4 μm, the surface layer cannot be made of a composite structure of Sn and CuSn, and is occupied only by Sn. This is because the dynamic friction coefficient increases.
A part of the lower CuSn alloy layer is exposed on the surface of the Sn-based surface layer, and the area ratio of the exposed portion is set to 10 to 40%. If the exposed area ratio is less than 10%, the dynamic friction coefficient cannot be 0.3 or less, and if it exceeds 40%, electrical connection characteristics such as solder wettability are deteriorated.

このような構造の端子材は、CuSn合金層とSn系表面層との界面が尖鋭な凹凸形状に形成されていることにより、Sn系表面層の表面から数百nmの深さの範囲で、硬いCuSn合金層の深い谷部に軟らかいSnが介在し、かつ表面においては、その硬いCuSn合金層の一部がSn系表面層にわずかに露出した状態とされ、谷部に介在する軟らかいSnが潤滑剤の作用を果たし、動摩擦係数0.3以下とされる。しかも、CuSn合金層の露出面積率は10〜40%の限られた範囲であるから、Sn系表面層の持つ優れた電気接続特性を損なうことはない。   The terminal material having such a structure has a sharp uneven shape at the interface between the CuSn alloy layer and the Sn-based surface layer. Soft Sn is present in the deep valley portion of the hard CuSn alloy layer, and on the surface, a part of the hard CuSn alloy layer is slightly exposed to the Sn-based surface layer, and the soft Sn interposed in the valley portion is present. It acts as a lubricant and has a dynamic friction coefficient of 0.3 or less. Moreover, since the exposed area ratio of the CuSn alloy layer is in a limited range of 10 to 40%, the excellent electrical connection characteristics of the Sn-based surface layer are not impaired.

次に、この端子材の製造方法について説明する。
基材として、Cu−Ni−Si系合金、Cu−Ni−Si−Zn系合金等、Ni及びSiを含有し、更に必要に応じてZn、Sn、Fe、Mgの群から選ばれた1種以上を合計で5質量%以下含有し、残部がCu及び不可避不純物から構成される銅合金からなる板材を用意する。この板材に脱脂、酸洗等の処理をすることによって表面を清浄にした後、Cuめっき、Snめっきをこの順序で施す。
Next, the manufacturing method of this terminal material is demonstrated.
As a base material, Cu-Ni-Si-based alloy, Cu-Ni-Si-Zn-based alloy, etc. contain Ni and Si, and if necessary, one kind selected from the group of Zn, Sn, Fe, Mg A plate material made of a copper alloy containing the above in total by 5% by mass or less and the balance of Cu and inevitable impurities is prepared. After the surface of the plate material is cleaned by degreasing, pickling, etc., Cu plating and Sn plating are performed in this order.

Cuめっきは一般的なCuめっき浴を用いればよく、例えば硫酸銅(CuSO)及び硫酸(HSO)を主成分とした硫酸銅浴等を用いることができる。めっき浴の温度は20〜50℃、電流密度は1〜20A/dmとされる。このCuめっきにより形成されるCuめっき層の膜厚は0.15μm以上0.3μm未満とされる。0.15μm未満では合金基材の影響が大きく、表層にまでCuSn合金層が成長して光沢度、はんだ濡れ性の低下を招き、0.3μm以上であると、リフロー時に基材よりNi及びSiが十分に供給されず、所望のCuSn合金層の凹凸形状を得られないためである。 For Cu plating, a general Cu plating bath may be used. For example, a copper sulfate bath mainly composed of copper sulfate (CuSO 4 ) and sulfuric acid (H 2 SO 4 ) may be used. The temperature of the plating bath is 20 to 50 ° C., and the current density is 1 to 20 A / dm 2 . The film thickness of the Cu plating layer formed by this Cu plating is 0.15 μm or more and less than 0.3 μm. If the thickness is less than 0.15 μm, the influence of the alloy base material is large, and the CuSn alloy layer grows to the surface layer, leading to a decrease in glossiness and solder wettability. Is not sufficiently supplied, and a desired uneven shape of the CuSn alloy layer cannot be obtained.

Snめっき層形成のためのめっき浴としては、一般的なSnめっき浴を用いればよく、例えば硫酸(HSO)と硫酸第一錫(SnSO)を主成分とした硫酸浴を用いることができる。めっき浴の温度は15〜35℃、電流密度は1〜30A/dmとされる。Snめっき層の厚みとCuめっき層の厚みの合計が0.8μm以上1.1μm未満とされる。合計の厚みが0.8μm未満であると、リフロー後のSn系表面層が薄くなって電気接続特性が損なわれ、1.1μm以上であると、表面へのCuSn合金層の露出が少なくなって動摩擦係数を0.3以下にすることが難しい。 As a plating bath for forming the Sn plating layer, a general Sn plating bath may be used. For example, a sulfuric acid bath mainly composed of sulfuric acid (H 2 SO 4 ) and stannous sulfate (SnSO 4 ) is used. Can do. The temperature of the plating bath is 15 to 35 ° C., and the current density is 1 to 30 A / dm 2 . The total thickness of the Sn plating layer and the Cu plating layer is 0.8 μm or more and less than 1.1 μm. When the total thickness is less than 0.8 μm, the Sn-based surface layer after reflow is thinned and the electrical connection characteristics are impaired, and when it is 1.1 μm or more, the exposure of the CuSn alloy layer to the surface is reduced. It is difficult to make the dynamic friction coefficient 0.3 or less.

リフロー処理条件としては、還元雰囲気中で基材の表面温度が240℃〜360℃となる条件で6〜12秒加熱し、急冷とされる。さらに望ましくは260〜300℃で6〜10秒加熱後急冷である。この場合、保持時間は後述の表2に示すようにCuめっき層及びSnめっき層のそれぞれの厚みに応じて6〜12秒の範囲で適切な時間があり、めっき厚が薄いほど保持時間は少なく、厚くなると長い保持時間が必要になる。240℃未満の温度、保持時間が表2に示す時間未満の加熱ではCuSn合金の成長が進まず所望の形状をしたCuSn合金層を得ることができず、360℃を超える温度、保持時間が表2に示す時間を超える加熱ではCuSn合金結晶が大きく成長してしまい所望の形状を得られず、またCuSn合金層が表層にまで達し、表面に残留するSn系表面層が少なくなり過ぎる(CuSn合金層の表面への露出率が大きくなり過ぎる)ためである。また、加熱条件が高いとSn系表面層の酸化が進行して好ましくない。   As reflow treatment conditions, the substrate is heated for 6 to 12 seconds in a reducing atmosphere under conditions where the surface temperature of the base material is 240 ° C. to 360 ° C., and then rapidly cooled. More preferably, it is rapid cooling after heating at 260 to 300 ° C. for 6 to 10 seconds. In this case, as shown in Table 2 described later, the holding time is an appropriate time in the range of 6 to 12 seconds depending on the thickness of each of the Cu plating layer and the Sn plating layer, and the holding time decreases as the plating thickness decreases. When it is thick, a long holding time is required. When the temperature is less than 240 ° C. and the holding time is less than the time shown in Table 2, the growth of the CuSn alloy does not progress, and a CuSn alloy layer having a desired shape cannot be obtained. When the heating exceeds the time shown in Fig. 2, the CuSn alloy crystal grows large and a desired shape cannot be obtained, and the CuSn alloy layer reaches the surface layer, and the Sn-based surface layer remaining on the surface becomes too small (CuSn alloy). This is because the exposure rate to the surface of the layer becomes too large). Moreover, when heating conditions are high, the oxidation of the Sn-based surface layer proceeds, which is not preferable.

板厚0.25mmの銅合金(Ni;0.5〜5.0質量%−Zn;0.1〜1.0質量%−Sn;0〜0.5質量%―Si;0.1〜1.5質量%−Fe;0〜0.03質量%−Mg;0〜0.005質量%)を基材とするものを主とし、Cuめっき、Snめっきを順に施した。この場合、Cuめっき及びSnめっきのめっき条件は実施例、比較例とも同じで、表1に示す通りとした。表1中、Dkはカソードの電流密度、ASDはA/dmの略である。 Copper alloy with a thickness of 0.25 mm (Ni: 0.5 to 5.0 mass% -Zn; 0.1 to 1.0 mass%-Sn; 0 to 0.5 mass% -Si; 0.1 to 1 0.5 mass% -Fe; 0-0.03 mass% -Mg; 0-0.005 mass%) as a base material, and Cu plating and Sn plating were performed in this order. In this case, the plating conditions for Cu plating and Sn plating were the same as in the examples and comparative examples, as shown in Table 1. In Table 1, Dk is an abbreviation of cathode current density and ASD is A / dm 2 .

めっき処理後、実施例、比較例ともリフロー処理として、還元雰囲気中で、基材表面温度が240〜360℃になるまで昇温後、めっき層厚みに応じて表2に示す範囲内の時間加熱後、水冷した。   After the plating treatment, both the examples and comparative examples were reflowed as a reflow treatment in a reducing atmosphere until the substrate surface temperature reached 240 to 360 ° C., and then heated for a time within the range shown in Table 2 according to the plating layer thickness. After that, it was cooled with water.

比較例として、基材のNi及びSi濃度や、Cuめっき層の厚み、Snめっき層の厚みを変量したものも作製した。
これら試料の条件を表3に示す。
As comparative examples, the Ni and Si concentrations of the substrate, the thickness of the Cu plating layer, and the thickness of the Sn plating layer were also varied.
Table 3 shows the conditions of these samples.

これらの試料について、リフロー後のSn系表面層の厚み、CuSn合金層の厚み、CuSn合金層の尖がり度Rku、CuSn合金層のSn系表面層上の露出面積率を測定するとともに、動摩擦係数、はんだ濡れ性、電気的信頼性を評価した。   For these samples, the thickness of the Sn-based surface layer after reflow, the thickness of the CuSn alloy layer, the sharpness Rku of the CuSn alloy layer, the exposed area ratio of the CuSn alloy layer on the Sn-based surface layer, and the dynamic friction coefficient The solder wettability and electrical reliability were evaluated.

リフロー後のSn系表面層及びCuSn合金層の厚みは、エスエスアイ・ナノテクノロジー株式会社製蛍光X線膜厚計(SFT9400)にて測定した。最初にリフロー後の試料の全Sn系表面層の厚みを測定した後、例えばレイボルド株式会社製のL80等の、純SnをエッチングしCuSn合金を腐食しない成分からなるめっき被膜剥離用のエッチング液に5分間浸漬することによりSn系表面層を除去し、その下層のCuSn合金層を露出させCuSn合金層の厚みを測定した後、(全Sn系表面層の厚み−CuSn合金層の厚み)をSn系表面層の厚みと定義した。   The thicknesses of the Sn-based surface layer and the CuSn alloy layer after reflow were measured with a fluorescent X-ray film thickness meter (SFT9400) manufactured by SSI Nanotechnology. First, after measuring the thickness of the entire Sn-based surface layer of the sample after reflowing, for example, L80 manufactured by Reybold Co., Ltd., an etching solution for removing the plating film made of a component that etches pure Sn and does not corrode the CuSn alloy After removing the Sn-based surface layer by immersing for 5 minutes, exposing the underlying CuSn alloy layer and measuring the thickness of the CuSn alloy layer, (total Sn-based surface layer thickness−CuSn alloy layer thickness) is Sn It was defined as the thickness of the system surface layer.

CuSn合金層の尖がり度Rkuは、Snめっき被膜剥離用のエッチング液に浸漬してSn系表面層を除去し、その下層のCuSn合金層を露出させた後、株式会社キーエンス製レーザ顕微鏡(VK−9700)を用い、対物レンズ150倍(測定視野94μm×70μm)の条件で、長手方向で5点、短手方向で5点、計10点測定したRkuの平均値より求めた。   The sharpness Rku of the CuSn alloy layer was immersed in an etching solution for removing the Sn plating film to remove the Sn-based surface layer, and the underlying CuSn alloy layer was exposed. -9700) and the average value of Rku measured at 10 points in total, 5 points in the longitudinal direction and 5 points in the short direction under the condition of 150 times the objective lens (measuring visual field 94 μm × 70 μm).

CuSn合金層の露出面積率は、表面酸化膜を除去後、100×100μmの領域を走査イオン顕微鏡により観察した。測定原理上、最表面から約20nmまでの深さ領域にCuSnが存在すると、白くイメージングされるので、画像処理ソフトを使用し、測定領域の全面積に対する白い領域の面積の比率をCuSn合金の露出面積率とみなした。 The exposed area ratio of the CuSn alloy layer was observed with a scanning ion microscope in a 100 × 100 μm region after removing the surface oxide film. On the measurement principle, if Cu 6 Sn 5 is present in the depth region from the outermost surface to about 20 nm, white imaging is performed. Therefore, using the image processing software, the ratio of the area of the white region to the total area of the measurement region is set to CuSn. The exposed area ratio of the alloy was considered.

動摩擦係数については、嵌合型のコネクタのオス端子とメス端子の接点部を模擬するように、各試料について板状のオス試験片と内径1.5mmの半球状としたメス試験片とを作成し、株式会社トリニティーラボ製の摩擦測定機(μV1000)を用い、両試験片間の摩擦力を測定して動摩擦係数を求めた。図5により説明すると、水平な台11上にオス試験片12を固定し、その上にメス試験片13の半球凸面を置いてめっき面同士を接触させ、メス試験片13に錘14によって4.9N(500gf)の荷重Pをかけてオス試験片12を押さえた状態とする。この荷重Pをかけた状態で、オス試験片12を摺動速度80mm/分で矢印で示す水平方向に10mm引っ張ったときの摩擦力Fをロードセル15によって測定した。その摩擦力Fの平均値Favと荷重Pより動摩擦係数(=Fav/P)を求めた。   For the dynamic friction coefficient, create a plate-shaped male test piece and a hemispherical female test piece with an inner diameter of 1.5 mm for each sample so as to simulate the contact part of the male terminal and female terminal of the fitting type connector. Then, using a friction measuring machine (μV1000) manufactured by Trinity Lab Co., Ltd., the frictional force between the two test pieces was measured to determine the dynamic friction coefficient. Referring to FIG. 5, the male test piece 12 is fixed on the horizontal base 11, the hemispherical convex surface of the female test piece 13 is placed on the male test piece 13, and the plated surfaces are brought into contact with each other. The load P of 9N (500 gf) is applied and the male test piece 12 is pressed. With this load P applied, the frictional force F when the male test piece 12 was pulled 10 mm in the horizontal direction indicated by the arrow at a sliding speed of 80 mm / min was measured by the load cell 15. A dynamic friction coefficient (= Fav / P) was obtained from the average value Fav of the friction force F and the load P.

はんだ濡れ性については、試験片を10mm幅に切り出し、ロジン系フラックスを用いてメニスコグラフ法にてゼロクロスタイムを測定した。(はんだ浴温230℃のSn−37%Pbはんだに浸漬させ、浸漬速度2mm/sec、浸漬深さ2mm、浸漬時間10secの条件にて測定した。)はんだゼロクロスタイムが3秒以下を○と評価し、3秒を超えた場合を×と評価した。
電気的信頼性を評価するため、大気中で150℃×500時間加熱し、接触抵抗を測定した。測定方法はJIS−C−5402に準拠し、4端子接触抵抗試験機(山崎精機研究所製:CRS−113−AU)により、摺動式(1mm)で0から50gまでの荷重変化−接触抵抗を測定し、荷重を50gとしたときの接触抵抗値で評価した。
これらの測定結果、評価結果を表4に示す。
About solder wettability, the test piece was cut out to 10 mm width, and the zero crossing time was measured by the meniscograph method using the rosin-type flux. (Measured under the conditions of immersion in Sn-37% Pb solder with a solder bath temperature of 230 ° C. and immersion speed of 2 mm / sec, immersion depth of 2 mm, and immersion time of 10 sec.) Evaluated as “Good” when the solder zero cross time is 3 seconds or less. The case of exceeding 3 seconds was evaluated as x.
In order to evaluate the electrical reliability, the contact resistance was measured by heating in the atmosphere at 150 ° C. for 500 hours. The measuring method is based on JIS-C-5402, 4 terminal contact resistance tester (manufactured by Yamazaki Seiki Laboratories: CRS-113-AU), sliding type (1mm) load change from 0 to 50g-contact resistance Was evaluated by the contact resistance value when the load was 50 g.
These measurement results and evaluation results are shown in Table 4.

この表4から明らかなように、実施例はいずれも動摩擦係数が0.3以下と小さく、はんだ濡れ性が良好で、接触抵抗も10mΩ以下を示した。これに対し比較例3,4,6,7は、Rkuが3未満のため動摩擦係数が0.3以上あり、比較例1、2、5は動摩擦係数が0.3以下だが、Sn系表面層が薄くCuSn露出面積率が40%を超えているためにはんだ濡れ性が悪く光沢度も低く、接触抵抗も10mΩを超え電気的信頼性が低下した。比較例3はRkuは3を超えているもののSn系表面層の厚みが0.4μmを超えているため、動摩擦係数が0.3以上ある。
図1及び図2は実施例1の試料の顕微鏡写真であり、図3及び図4は比較例4の顕微鏡写真である。これらの写真を比較してわかるように、実施例のものは、CuSn合金層の凹凸が尖鋭であり、Sn系表面層にCuSn合金層の一部が分散して露出している。比較例のものは、図3に示されるように、CuSn合金層の下部に比較的厚いCuSn層が認められ、その上にCuSn層が積層した構造とされており、CuSn合金層の凹凸も粗く緩やかで、表面への露出も少ない。
As apparent from Table 4, all the examples had a small coefficient of dynamic friction of 0.3 or less, good solder wettability, and a contact resistance of 10 mΩ or less. On the other hand, Comparative Examples 3, 4, 6, and 7 have a dynamic friction coefficient of 0.3 or more because Rku is less than 3, and Comparative Examples 1, 2, and 5 have a dynamic friction coefficient of 0.3 or less. However, since the exposed area ratio of Cu 6 Sn 5 exceeded 40%, the solder wettability was poor and the glossiness was low, and the contact resistance exceeded 10 mΩ, resulting in a decrease in electrical reliability. In Comparative Example 3, although Rku exceeds 3, the thickness of the Sn-based surface layer exceeds 0.4 μm, and thus the dynamic friction coefficient is 0.3 or more.
1 and 2 are photomicrographs of the sample of Example 1, and FIGS. 3 and 4 are photomicrographs of Comparative Example 4. As can be seen from comparison of these photographs, in the example, the unevenness of the CuSn alloy layer is sharp, and a part of the CuSn alloy layer is dispersedly exposed on the Sn-based surface layer. As shown in FIG. 3, the comparative example has a structure in which a relatively thick Cu 3 Sn layer is recognized below the CuSn alloy layer and a Cu 6 Sn 5 layer is laminated thereon. The unevenness of the layer is rough and gentle, and there is little exposure to the surface.

11 台
12 オス試験片
13 メス試験片
14 錘
15 ロードセル
11 units 12 Male test piece 13 Female test piece 14 Weight 15 Load cell

Claims (5)

Cu合金からなる基材上の表面にSn系表面層が形成され、該Sn系表面層と前記基材との間にCuSn合金層が形成された錫めっき銅合金端子材であって、前記CuSn合金層は、CuSnを主成分とし、該CuSnのCuの一部がNi及びSiに置換した化合物を前記基材側界面付近に有する合金層であり、前記CuSn合金層の尖がり度Rkuが3を越え、かつ前記Sn系表面層の平均厚みが0.2μm以上0.4μm以下であり、前記Sn系表面層の表面に露出する前記CuSn合金層の面積率が10〜40%であり、動摩擦係数が0.3以下であることを特徴とする銅合金端子材。 A tin-plated copper alloy terminal material in which a Sn-based surface layer is formed on the surface of a substrate made of a Cu alloy, and a CuSn alloy layer is formed between the Sn-based surface layer and the substrate, the CuSn The alloy layer is an alloy layer that has a compound in which Cu 6 Sn 5 is a main component and a part of Cu of the Cu 6 Sn 5 is substituted with Ni and Si in the vicinity of the interface on the substrate side, and the CuSn alloy layer The degree of sharpness Rku exceeds 3, the average thickness of the Sn-based surface layer is 0.2 μm or more and 0.4 μm or less, and the area ratio of the CuSn alloy layer exposed on the surface of the Sn-based surface layer is 10 to 10 A copper alloy terminal material having a coefficient of dynamic friction of 40% or less and 0.3 or less. 前記基材が、0.5〜5質量%のNi、0.1〜1.5質量%のSiを含有し、残部がCu及び不可避不純物から構成されるものであることを特徴とする請求項1記載の銅合金端子材。   The said base material contains 0.5-5 mass% Ni, 0.1-1.5 mass% Si, and the remainder is comprised from Cu and an unavoidable impurity. The copper alloy terminal material according to 1. 前記基材が、更にZn、Sn、Fe、Mgの群から選ばれた1種以上を合計で5質量%以下含有することを特徴とする請求項2記載の銅合金端子材。   3. The copper alloy terminal material according to claim 2, wherein the base material further contains one or more selected from the group consisting of Zn, Sn, Fe, and Mg in a total amount of 5 mass% or less. Cu合金からなる基材上に、Cuめっき層及びSnめっき層をこの順で形成した後に、リフロー処理することにより、前記基材の上にCuSn合金層を介してSn系表面層を形成した錫めっき銅合金端子材を製造する方法であって、前記基材として、0.5〜5質量%のNi、0.1〜1.5質量%のSiを含有し、残部がCu及び不可避不純物から構成されるものを用い、前記Cuめっき層の厚みを0.15μm以上0.3μm未満とし、前記Snめっき層の厚みと前記Cuめっき層の厚みの合計が0.8μm以上1.1μm未満とし、前記リフロー処理を基材の表面温度が240〜360℃になるまで昇温後、当該温度に以下の(1)〜(3)に示す時間保持した後急冷することにより行うことを特徴とする銅合金端子材の製造方法。
(1)Snめっき層の厚みが0.7μm未満に対して、Cuめっき層の厚みが0.15μm以上0.25μm未満の場合は6〜9秒、Cuめっき層の厚みが0.25μm以上0.30μm未満の場合は6〜12秒
(2)Snめっき層の厚みが0.7μm以上0.9μm未満に対して、Cuめっき層の厚みが0.15μm以上0.20μm未満の場合は6〜9秒、Cuめっき層の厚みが0.20μm以上0.25μm未満の場合は6〜12秒、Cuめっき層の厚みが0.25μm以上0.30μm未満の場合は9〜12秒
(3)Snめっき層の厚みが0.9μm以上で、Cuめっき層の厚みが0.15μm以上0.25μm未満の場合は6〜12秒
After forming a Cu plating layer and a Sn plating layer in this order on a substrate made of a Cu alloy, a tin-based surface layer is formed on the substrate via a CuSn alloy layer by reflow treatment. a method of manufacturing a plated copper alloy material for terminal, as the base material, 0.5 to 5 wt% of Ni, and containing 0.1 to 1.5 mass% of Si, the remaining portion is Cu and unavoidable impurities The thickness of the Cu plating layer is 0.15 μm or more and less than 0.3 μm, and the total thickness of the Sn plating layer and the Cu plating layer is 0.8 μm or more and less than 1.1 μm. The reflow treatment is performed by raising the temperature until the surface temperature of the substrate reaches 240 to 360 ° C., holding the temperature for the time indicated in the following (1) to (3), and then rapidly cooling the substrate. A method for producing a copper alloy terminal material.
(1) Whereas the thickness of the Sn plating layer is less than 0.7 μm, when the thickness of the Cu plating layer is 0.15 μm or more and less than 0.25 μm, the thickness is 6 to 9 seconds, and the thickness of the Cu plating layer is 0.25 μm or more and 0 .6-12 seconds for less than 30 μm
(2) When the thickness of the Sn plating layer is 0.7 μm or more and less than 0.9 μm, when the thickness of the Cu plating layer is 0.15 μm or more and less than 0.20 μm, the thickness of the Cu plating layer is 0 to 6-9 seconds. .6 to 12 seconds when the thickness is 20 μm or more and less than 0.25 μm, and 9 to 12 seconds when the thickness of the Cu plating layer is 0.25 μm or more and less than 0.30 μm
(3) 6-12 seconds when the thickness of the Sn plating layer is 0.9 μm or more and the thickness of the Cu plating layer is 0.15 μm or more and less than 0.25 μm
前記基材として、更にZn、Sn、Fe、Mgの群から選ばれた1種以上を合計で5質量%以下含有するものを用いることを特徴とする請求項4記載の銅合金端子材の製造方法。5. The copper alloy terminal material according to claim 4, wherein the base material further contains one or more selected from the group consisting of Zn, Sn, Fe, and Mg in a total amount of 5% by mass or less. Method.
JP2011189193A 2011-08-31 2011-08-31 Tin-plated copper alloy terminal material with excellent insertability Active JP5640922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011189193A JP5640922B2 (en) 2011-08-31 2011-08-31 Tin-plated copper alloy terminal material with excellent insertability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011189193A JP5640922B2 (en) 2011-08-31 2011-08-31 Tin-plated copper alloy terminal material with excellent insertability

Publications (2)

Publication Number Publication Date
JP2013049909A JP2013049909A (en) 2013-03-14
JP5640922B2 true JP5640922B2 (en) 2014-12-17

Family

ID=48012166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011189193A Active JP5640922B2 (en) 2011-08-31 2011-08-31 Tin-plated copper alloy terminal material with excellent insertability

Country Status (1)

Country Link
JP (1) JP5640922B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6221695B2 (en) * 2013-03-25 2017-11-01 三菱マテリアル株式会社 Tin-plated copper alloy terminal material with excellent insertability
JP5748019B1 (en) * 2014-08-27 2015-07-15 株式会社オートネットワーク技術研究所 Pin terminals and terminal materials
CN104701249B (en) * 2015-02-09 2017-08-22 大连理工大学 A kind of three-dimension packaging vertical through hole of intermetallic compound filling and preparation method thereof
CN104674335B (en) * 2015-02-09 2018-01-16 大连理工大学 The preparation method of intermetallic compound film
JP5984980B2 (en) 2015-02-24 2016-09-06 Jx金属株式会社 Sn plating material for electronic parts
CN112589460A (en) * 2020-12-10 2021-04-02 湖南艾林维尔电子有限公司 One-time stamping forming device for manufacturing copper-aluminum wiring terminal

Also Published As

Publication number Publication date
JP2013049909A (en) 2013-03-14

Similar Documents

Publication Publication Date Title
JP5263435B1 (en) Tin-plated copper alloy terminal material with excellent insertability
JP5278630B1 (en) Tin-plated copper alloy terminal material excellent in insertion / extraction and manufacturing method thereof
JP5522300B1 (en) Tin-plated copper alloy terminal material excellent in insertion / extraction and manufacturing method thereof
JP6221695B2 (en) Tin-plated copper alloy terminal material with excellent insertability
JP6160582B2 (en) Tin-plated copper alloy terminal material and manufacturing method thereof
KR20140004021A (en) Tin-plated copper alloy terminal member with outstanding insertion and removal characteristics and mathod of manufacturing the same
JP5640922B2 (en) Tin-plated copper alloy terminal material with excellent insertability
JP2015143385A (en) tin-plated copper alloy terminal material
JP2015063750A (en) Tin-plated copper alloy terminal material excellent in insertability/extractability
JP6423025B2 (en) Tin-plated copper terminal material excellent in insertion / removability and manufacturing method thereof
JP6201554B2 (en) Mating type connection terminal
JP2015110829A (en) Tin-plated copper-alloy terminal material
JP2015124434A (en) Tin-plated copper-alloy terminal material
JP6443092B2 (en) Tin-plated copper alloy terminal material
JP6217390B2 (en) Tin-plated copper alloy terminal material with excellent insertability
JP6011129B2 (en) Copper alloy terminal material excellent in insertion / removability and manufacturing method thereof
JP2016141835A (en) Tinned copper alloy terminal material
JP2016143542A (en) Tin plated copper alloy terminal material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141013

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5640922

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150