JP6217390B2 - Tin-plated copper alloy terminal material with excellent insertability - Google Patents

Tin-plated copper alloy terminal material with excellent insertability Download PDF

Info

Publication number
JP6217390B2
JP6217390B2 JP2013271704A JP2013271704A JP6217390B2 JP 6217390 B2 JP6217390 B2 JP 6217390B2 JP 2013271704 A JP2013271704 A JP 2013271704A JP 2013271704 A JP2013271704 A JP 2013271704A JP 6217390 B2 JP6217390 B2 JP 6217390B2
Authority
JP
Japan
Prior art keywords
layer
less
plating
alloy
alloy layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013271704A
Other languages
Japanese (ja)
Other versions
JP2015124433A (en
Inventor
雄基 井上
雄基 井上
加藤 直樹
直樹 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2013271704A priority Critical patent/JP6217390B2/en
Publication of JP2015124433A publication Critical patent/JP2015124433A/en
Application granted granted Critical
Publication of JP6217390B2 publication Critical patent/JP6217390B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、自動車や民生機器等の電気配線の接続に使用されるコネクタ用端子、特に多ピンコネクタ用の端子として有用な錫めっき銅合金端子材に関する。   TECHNICAL FIELD The present invention relates to a tin-plated copper alloy terminal material useful as a connector terminal used for connecting electrical wiring of automobiles, consumer devices, etc., particularly as a terminal for a multi-pin connector.

錫めっき銅合金端子材は、銅合金からなる基材の上にCuめっき及びSnめっきを施した後にリフロー処理することにより、表層のSn系表面層の下層にCuSn合金層が形成されたものであり、端子材として広く用いられている。
近年、例えば自動車においては急速に電装化が進行し、これに伴い電気機器の回路数が増加するため、使用するコネクタの小型・多ピン化が顕著になっている。コネクタが多ピン化すると、単ピンあたりの挿入力は小さくても、コネクタを挿着する際にコネクタ全体では大きな力が必要となり、生産性の低下が懸念されている。そこで、錫めっき銅合金材の摩擦係数を小さくして単ピンあたりの挿入力を低減することが試みられている。
The tin-plated copper alloy terminal material is a material in which a CuSn alloy layer is formed under the Sn-based surface layer of the surface layer by performing reflow treatment after applying Cu plating and Sn plating on a copper alloy base material. Yes, it is widely used as a terminal material.
2. Description of the Related Art In recent years, for example, automobiles have rapidly become electrically equipped, and the number of circuits of electrical equipment increases accordingly. Therefore, the size of the connector to be used and the increase in the number of pins have become remarkable. When the number of connectors is increased, even if the insertion force per single pin is small, a large force is required for the entire connector when the connector is inserted, and there is a concern that the productivity is lowered. Therefore, attempts have been made to reduce the insertion force per single pin by reducing the friction coefficient of the tin-plated copper alloy material.

例えば、Snめっき銅合金材の最表面に錫とは異なる結晶構造を持つ金属層を形成することで挿入力を低減させるもの(特許文献1)があるが、接触抵抗が増大する、ハンダ濡れ性が低下するといった問題があった。
特許文献2では、表面めっき層を、Snめっき層とAgまたはInを含むめっき層とをリフロー処理または熱拡散処理された層としている。
また、特許文献3では、Snめっき層の上にAgめっき層を形成して熱処理することにより、Sn−Ag合金層を形成することが示されている。
これらの特許文献2、3記載の技術は、いずれも熱処理しSn合金層としたものであり、表面全体が硬いSn合金層で覆われているため、オス、メス両端子に用いた場合には摩擦抵抗の低減効果があるが、片側の端子が汎用のSnめっき端子材の場合、アブレシブ摩耗が発生してしまう問題があった。
ここで、コネクタの挿入力Fは、メス端子がオス端子を圧し付ける力(接圧)をP、動摩擦係数をμとすると、通常オス端子は上下2方向からメス端子に挟まれるので、F=2×μ×P となる。このFを小さくするには、Pを小さくすることが有効だが、コネクタ嵌合時のオス・メス端子の電気的接続信頼性を確保するためにはいたずらに接圧を小さくすることができず、3N程度は必要とされる。多ピンコネクタでは、50ピン/コネクタを超えるものもあるが、コネクタ全体の挿入力は100N以下、できれば80N以下、あるいは70N以下が望ましいため、動摩擦係数μとしては、0.3以下が必要とされる。
For example, there is one that reduces the insertion force by forming a metal layer having a crystal structure different from tin on the outermost surface of the Sn-plated copper alloy material (Patent Document 1), but the contact resistance increases, solder wettability There has been a problem of lowering.
In Patent Document 2, the surface plating layer is a layer obtained by reflowing or thermally diffusing a Sn plating layer and a plating layer containing Ag or In.
Patent Document 3 discloses that an Sn-Ag alloy layer is formed by forming an Ag plating layer on the Sn plating layer and performing heat treatment.
These techniques described in Patent Documents 2 and 3 are all heat-treated to form an Sn alloy layer, and the entire surface is covered with a hard Sn alloy layer. Therefore, when used for both male and female terminals, Although there is an effect of reducing frictional resistance, there is a problem that abrasive wear occurs when the terminal on one side is a general-purpose Sn-plated terminal material.
Here, the insertion force F of the connector is such that the force (contact pressure) by which the female terminal presses the male terminal is P, and the dynamic friction coefficient is μ. 2 × μ × P. In order to reduce this F, it is effective to reduce P, but in order to ensure the electrical connection reliability of the male and female terminals when the connector is fitted, the contact pressure cannot be reduced unnecessarily. About 3N is required. Some multi-pin connectors exceed 50 pins / connector, but the insertion force of the entire connector is preferably 100 N or less, preferably 80 N or less, or 70 N or less, so that the dynamic friction coefficient μ is required to be 0.3 or less. The

特開平11−102739号公報Japanese Patent Laid-Open No. 11-102739 特開2007−177329号公報JP 2007-177329 A 特開2004−225070号公報Japanese Patent Laid-Open No. 2004-2225070

従来、表層の摩擦抵抗を下げたSnめっき材が開発されているが、その多くは同種のSnめっき材同士での摩擦抵抗の低減に有効である。しかし実際には、オス、メス端子を嵌合する接続端子の場合、両者に同じ材種を用いることが少なく、特にオス端子は、黄銅を基材とした汎用のSnめっき付き端子材が広く用いられている。そのため、メス端子のみに低挿入力端子材を用いても、挿入力低減の効果が小さいといった問題があった。   Conventionally, Sn plated materials with reduced surface frictional resistance have been developed, many of which are effective in reducing frictional resistance between the same kind of Sn plated materials. However, in reality, in the case of a connection terminal for fitting a male and female terminal, the same material type is rarely used for both, and in particular, a general-purpose Sn-plated terminal material based on brass is widely used for the male terminal. It has been. Therefore, even if a low insertion force terminal material is used only for the female terminal, there is a problem that the effect of reducing the insertion force is small.

本発明は、前述の課題に鑑みてなされたものであって、汎用のSnめっき端子材を用いた端子に対しても嵌合時の挿入力を低減することができる錫めっき銅合金端子材の提供を目的とする。   The present invention has been made in view of the above-described problems, and is a tin-plated copper alloy terminal material that can reduce the insertion force at the time of fitting even to a terminal using a general-purpose Sn-plated terminal material. For the purpose of provision.

発明者らは、端子材表層の摩擦抵抗を下げる手段として、CuSn合金層とSn系表面層との界面の形状を制御し、Sn系表面層の直下に急峻な凹凸形状のCuSn合金層を配置することで摩擦係数が小さくなることを見出した。但し、この低挿入力端子材を端子の一方にのみ用い、他方を汎用のSnめっき材とした場合、摩擦係数低減の効果が半減した。
いずれも最表面がSnめっきであるため、同種のSnどうしが接触することでSnの凝着が発生して摩擦係数低減の効果が半減する。特に、低挿入力端子材は、Sn系表面層の直下に硬いCuSn合金層が配置されているため、汎用のSnめっき端子材の軟らかいSnめっき層のSnが削れて凝着すると考えられる。
発明者らは鋭意研究した結果、最表面に薄くAg被覆層を形成することで、低挿入力端子材の摩擦係数低減効果を確保しつつ、さらにSnの凝着を抑制し、他方の端子に汎用材を用いても摩擦抵抗の低減が可能となることを見出した。
The inventors have controlled the shape of the interface between the CuSn alloy layer and the Sn-based surface layer as a means for lowering the frictional resistance of the surface layer of the terminal material, and placed a steep uneven CuSn alloy layer directly under the Sn-based surface layer. It has been found that the friction coefficient is reduced by doing so. However, when this low insertion force terminal material was used for only one of the terminals and the other was a general-purpose Sn plating material, the effect of reducing the friction coefficient was reduced by half.
In any case, since the outermost surface is Sn plating, Sn adhesion occurs when Sn of the same kind is in contact with each other, and the effect of reducing the friction coefficient is halved. In particular, since the low insertion force terminal material has a hard CuSn alloy layer disposed immediately below the Sn-based surface layer, it is considered that Sn of the soft Sn plating layer of the general-purpose Sn plating terminal material is scraped and adhered.
As a result of intensive research, the inventors have formed a thin Ag coating layer on the outermost surface, thereby ensuring the effect of reducing the friction coefficient of the low insertion force terminal material, and further suppressing the adhesion of Sn, and the other terminal. It was found that the frictional resistance can be reduced even by using a general-purpose material.

すなわち、本発明の錫めっき銅合金端子材は、Cu又はCu合金からなる基材上の表面にSn系表面層が形成され、該Sn系表面層と前記基材との間に、前記Sn系表面層から順にCuSn合金層/NiSn合金層/Ni又はNi合金層が形成された錫めっき銅合金端子材であって、前記CuSn合金層は、CuSnを主成分とし、該CuSnのCuの一部がNiに置換した化合物合金層であり、前記NiSn合金層は、NiSnを主成分とし、該NiSnのNiの一部がCuに置換した化合物合金層であり、前記CuSn合金層の局部山頂の平均間隔Sが0.8μm以上2.0μm以下であり、かつ前記Sn系表面層の平均厚みが0.2μm以上0.6μm以下であり、前記Sn系表面層の最表面に0.05μm以下の膜厚のAg被覆層が形成されてなり、表面の動摩擦係数が0.3以下であることを特徴とする。 That is, in the tin-plated copper alloy terminal material of the present invention, an Sn-based surface layer is formed on the surface of a base material made of Cu or Cu alloy, and the Sn-based surface layer is interposed between the Sn-based surface layer and the base material. A tin-plated copper alloy terminal material in which a CuSn alloy layer / NiSn alloy layer / Ni or Ni alloy layer is formed in order from the surface layer, wherein the CuSn alloy layer is mainly composed of Cu 6 Sn 5 , and the Cu 6 Sn 5 is a compound alloy layer partially replaced by Ni of Cu, the NiSn alloy layer is mainly composed of Ni 3 Sn 4, compound alloy layer a portion of Ni of the Ni 3 Sn 4 has been substituted with Cu The average distance S between the local peaks of the CuSn alloy layer is not less than 0.8 μm and not more than 2.0 μm, and the average thickness of the Sn-based surface layer is not less than 0.2 μm and not more than 0.6 μm, and the Sn-based 0.05μm or less on the outermost surface of the surface layer An Ag coating layer having a thickness of 5 mm is formed, and the dynamic friction coefficient of the surface is 0.3 or less.

CuSn合金層の局部山頂の平均間隔Sを0.8μm以上2.0μm以下、Sn系表面層の平均厚みを0.2μm以上0.6μm以下とし、Sn系表面層の最表面に0.05μm以下のAg被覆層を設けることで、汎用のSnめっき端子材に対しても動摩擦係数を0.3以下とすることができる。この場合、Cuの一部がNiに置換した(Cu,Ni)Sn層(CuSn合金層)およびNiの一部がCuに置換した(Ni,Cu)Sn層(NiSn合金層)の存在により、CuSn合金層の局部山頂の平均間隔Sが0.8以上2.0μm以下の急峻な凹凸形状となる。また、Sn系表面層の平均厚みが0.2μm以上0.6μm以下としたのは、0.2μm未満でははんだ濡れ性の低下、電気的接続信頼性の低下を招き、0.6μmを超えると、表層をSnとCuSn合金の複合構造とすることができず、Snだけで占められるので動摩擦係数が増大するためである。より好ましいSn系表面層の平均厚みは0.3μm以上0.5μm以下である。
Ag被覆層の膜厚が0.05μmを超えると、Sn系表面層とCuSn合金層との特殊な界面形状による摩擦係数低減効果とAg被覆層によるSn凝着抑制効果とを同時に得ることができず、Ag被覆層による凝着抑制効果のみであるため十分な摩擦係数低減効果が得られず、また、Ag被覆層を厚くするほどコスト高となる。このAg被覆層の膜厚は0.005μm以上とするのが好ましい。
ここで、表面の動摩擦係数は、本発明の錫めっき銅合金端子材同士の間ではもちろんのこと、最表面にSnめっき層を有する汎用のSnめっき端子材に対しても、0.3以下とされる。最表面にSnめっき層を有する汎用のSnめっき端子材とは、基材にCuめっき、Snめっきを施してリフロー処理することにより得られるが、CuSn合金層の局部山頂の平均間隔Sが0.8μm未満あるいは2.0μmを超え、平均厚み0.2μm以上3μm以下のSnめっき層を最表面に有するSnめっき端子材、あるいは、リフロー処理することなく、基材に厚み0.5μm以上3μm以下のSnめっき層を形成したSnめっき端子材をいう。
The average distance S between the local peaks of the CuSn alloy layer is 0.8 μm or more and 2.0 μm or less, the average thickness of the Sn system surface layer is 0.2 μm or more and 0.6 μm or less, and 0.05 μm or less on the outermost surface of the Sn system surface layer. By providing this Ag coating layer, the dynamic friction coefficient can be reduced to 0.3 or less even for a general-purpose Sn-plated terminal material. In this case, (Cu, Ni) 6 Sn 5 layer (CuSn alloy layer) in which a part of Cu is replaced with Ni and (Ni, Cu) 3 Sn 4 layer (NiSn alloy layer) in which a part of Ni is replaced with Cu Due to the presence of, an average interval S between the local peaks of the CuSn alloy layer becomes a steep uneven shape with a diameter of 0.8 to 2.0 μm. In addition, the average thickness of the Sn-based surface layer is set to 0.2 μm or more and 0.6 μm or less because if the thickness is less than 0.2 μm, the solder wettability and the electrical connection reliability are deteriorated. This is because the surface layer cannot be made of a composite structure of Sn and CuSn alloy and is occupied only by Sn, so that the dynamic friction coefficient increases. A more preferable average thickness of the Sn-based surface layer is 0.3 μm or more and 0.5 μm or less.
When the film thickness of the Ag coating layer exceeds 0.05 μm, it is possible to simultaneously obtain the friction coefficient reduction effect due to the special interface shape between the Sn-based surface layer and the CuSn alloy layer and the Sn adhesion suppression effect due to the Ag coating layer. In addition, since only the adhesion suppression effect by the Ag coating layer is obtained, a sufficient friction coefficient reduction effect cannot be obtained, and the thicker the Ag coating layer, the higher the cost. The thickness of the Ag coating layer is preferably 0.005 μm or more.
Here, the dynamic friction coefficient of the surface is 0.3 or less for the general-purpose Sn plating terminal material having the Sn plating layer on the outermost surface as well as between the tin plating copper alloy terminal materials of the present invention. Is done. A general-purpose Sn-plated terminal material having an Sn plating layer on the outermost surface is obtained by subjecting a base material to Cu plating and Sn plating and reflow treatment, and an average interval S between local peaks of a CuSn alloy layer is 0.00. Sn plating terminal material having an Sn plating layer with an average thickness of 0.2 μm or more and 3 μm or less on the outermost surface, or a thickness of 0.5 μm or more and 3 μm or less on the substrate without reflow treatment. The Sn plating terminal material which formed Sn plating layer is said.

本発明の錫めっき銅合金端子材において、前記CuSn合金層は、前記Cu6Sn5中にNiが1at%以上25at%以下含有されているとよい。
Ni含有量を1at%以上と規定したのは、1at%未満ではCuSnのCuの一部がNiに置換した化合物合金層が形成されず、急峻な凹凸形状とならないためであり、25at%以下と規定したのは、25at%を超えるとCuSn合金層の形状が微細になりすぎる傾向にあり、CuSn合金層が微細になりすぎると動摩擦係数を0.3以下にすることができない場合があるためである。
In the tin-plated copper alloy terminal material of the present invention, the CuSn alloy layer may contain 1 at% or more and 25 at% or less of Ni in the Cu 6 Sn 5 .
The reason why the Ni content is defined as 1 at% or more is that if it is less than 1 at%, a compound alloy layer in which a part of Cu of Cu 6 Sn 5 is substituted with Ni is not formed, and a steep uneven shape is not obtained. If the amount exceeds 25 at%, the shape of the CuSn alloy layer tends to be too fine, and if the CuSn alloy layer becomes too fine, the dynamic friction coefficient may not be 0.3 or less. Because there is.

本発明によれば、CuSn金属層とSn系表面層との界面の凹凸形状を制御した低挿入力端子材のSn系表面層の最表面に0.05μm以下の膜厚のAg被覆層を形成したことにより、汎用のSnめっき端子材との組み合わせで用いる場合でも、嵌合時の挿入力を低減することが可能となる。   According to the present invention, an Ag coating layer having a thickness of 0.05 μm or less is formed on the outermost surface of the Sn-based surface layer of the low insertion force terminal material in which the uneven shape of the interface between the CuSn metal layer and the Sn-based surface layer is controlled. As a result, even when used in combination with a general-purpose Sn-plated terminal material, the insertion force at the time of fitting can be reduced.

本発明の錫めっき銅合金端子材を模式的に示す断面図である。It is sectional drawing which shows typically the tin plating copper alloy terminal material of this invention. 本発明の端子材が適用される嵌合型接続端子の例を示す嵌合部の断面図である。It is sectional drawing of the fitting part which shows the example of the fitting type connection terminal to which the terminal material of this invention is applied. オス端子に用いられる端子材を模式的に示す断面図である。It is sectional drawing which shows typically the terminal material used for a male terminal. 動摩擦係数を測定するための装置を概念的に示す正面図である。It is a front view which shows notionally the apparatus for measuring a dynamic friction coefficient. 実施例6の銅合金端子材の断面のSTEM像である。It is a STEM image of the cross section of the copper alloy terminal material of Example 6. 図5の白線部分に沿うEDS分析図である。It is an EDS analysis figure along the white line part of FIG. 比較例7の銅合金端子材の断面のSTEM像である。It is a STEM image of the cross section of the copper alloy terminal material of the comparative example 7. 図7の白線部分に沿うEDS分析図である。It is an EDS analysis figure which follows the white line part of FIG. 動摩擦係数測定後の実施例2のオス端子試験片表面の顕微鏡写真である。It is a microscope picture of the male terminal test piece surface of Example 2 after a dynamic friction coefficient measurement. 動摩擦係数測定後の比較例1のオス端子試験片表面の顕微鏡写真である。It is a microscope picture of the male terminal test piece surface of the comparative example 1 after a dynamic friction coefficient measurement. 動摩擦係数測定後の比較例3のオス端子試験片表面の顕微鏡写真である。It is a microscope picture of the male terminal test piece surface of the comparative example 3 after a dynamic friction coefficient measurement.

本発明の実施形態の錫めっき銅合金端子材を説明する。
本実施形態の錫めっき銅合金端子材は、図1に模式的に示したように、Cu又はCu合金からなる基材5上の表面にSn系表面層6が形成され、Sn系表面層6と基材5との間に、CuSn合金層7/NiSn合金層8/Ni又はNi合金層9がSn系表面層6から順に形成され、Sn系表面層6の上に0.05μm以下のAg被覆層10が形成されており、表面の動摩擦係数が0.3以下である。
The tin plating copper alloy terminal material of embodiment of this invention is demonstrated.
In the tin-plated copper alloy terminal material of this embodiment, as schematically shown in FIG. 1, the Sn-based surface layer 6 is formed on the surface of the base material 5 made of Cu or Cu alloy. CuSn alloy layer 7 / NiSn alloy layer 8 / Ni or Ni alloy layer 9 are formed in order from the Sn-based surface layer 6 between the base material 5 and the base material 5, and 0.05 μm or less of Ag is formed on the Sn-based surface layer 6. The coating layer 10 is formed, and the dynamic friction coefficient of the surface is 0.3 or less.

基材は、Cu又はCu合金からなるものであれば、特に、その組成が限定されるものではない。
Ni又はNi合金層は、純Ni、Ni−CoやNi−W等のNi合金からなる層である。
CuSn合金層は、CuSnを主成分とし、CuSnのCuの一部がNiに置換した化合物合金層であり、NiSn合金層は、NiSnを主成分とし、NiSnのNiの一部がCuに置換した化合物合金層である。これら化合物層は、後述するように基材の上にNiめっき層、Cuめっき層、Snめっき層を順に形成してリフロー処理することにより形成されたものであり、Ni又はNi合金層の上に、NiSn合金層、CuSn合金層の順に形成される。
また、CuSn合金層とSn系表面層との界面は、急峻な凹凸状に形成され、CuSu合金層の局部山頂の平均間隔Sが0.8μm以上2.0μm以下とされる。局部山頂の平均間隔Sは、粗さ曲線から、その平均線の方向に基準長さだけ抜き取り、隣合う局部山頂間に対応する平均線の長さを求め、その基準長さの範囲内で求めた多数の局部山頂間の平均値である。Ag被覆層及びSn系表面層をエッチング液にて除去した後のCuSn合金層の表面を測定することにより、求められる。
また、Sn系表面層の平均厚みは0.2μm以上0.6μm以下であり、このSn系表面層の最表面に0.05μm以下、好ましくは0.005μm以上のAg被覆層が形成されている。
If a base material consists of Cu or Cu alloy, the composition in particular will not be limited.
The Ni or Ni alloy layer is a layer made of Ni alloy such as pure Ni, Ni—Co, or Ni—W.
The CuSn alloy layer is a compound alloy layer in which Cu 6 Sn 5 is the main component and a part of Cu in Cu 6 Sn 5 is substituted with Ni. The NiSn alloy layer is mainly composed of Ni 3 Sn 4 and Ni 3 This is a compound alloy layer in which a part of Ni in Sn 4 is replaced with Cu. These compound layers are formed by sequentially forming a Ni plating layer, a Cu plating layer, and a Sn plating layer on a base material, as will be described later, and performing a reflow treatment on the Ni or Ni alloy layer. The NiSn alloy layer and the CuSn alloy layer are formed in this order.
Further, the interface between the CuSn alloy layer and the Sn-based surface layer is formed in a steep uneven shape, and the average interval S between the local peaks of the CuSu alloy layer is 0.8 μm or more and 2.0 μm or less. The average interval S between the local peaks is extracted from the roughness curve by the reference length in the direction of the average line, the length of the average line corresponding to the adjacent local peaks is obtained, and is determined within the range of the reference length. It is the average between many local peaks. It can be determined by measuring the surface of the CuSn alloy layer after removing the Ag coating layer and the Sn-based surface layer with an etching solution.
Further, the average thickness of the Sn-based surface layer is 0.2 μm or more and 0.6 μm or less, and an Ag coating layer of 0.05 μm or less, preferably 0.005 μm or more is formed on the outermost surface of the Sn-based surface layer. .

このような構造の端子材は、Cuの一部がNiに置換した(Cu,Ni)Sn層(CuSn合金層)の下にNiの一部がCuに置換した(Ni,Cu)Sn層(NiSn合金層)が存在することにより、CuSn合金層の局部山頂の平均間隔Sが0.8μm以上2.0μm以下の急峻な凹凸形状となり、Sn系表面層の表面から数百nmの深さの範囲で、硬いCuSn合金層とSn系表面層との複合構造とされる。
この場合、Cu6Sn5中へのNi含有量は、1at%以上25at%以下とされる。Ni含有量を1at%以上と規定したのは、1at%未満ではCuSnのCuの一部がNiに置換した化合物合金層が形成されず、急峻な凹凸形状とならないためであり、25at%以下と規定したのは、25at%を超えるとCuSn合金層の形状が微細になりすぎる傾向にあり、CuSn合金層が微細になりすぎると動摩擦係数を0.3以下にすることができない場合があるためである。
一方、NiSn合金層中へのCuの含有量は、5at%以上20at%以下がよい。Cu含有量が少ない条件は、すなわちCuSn中に含有するNi量も少なくなることを意味し(NiSn中にCuが置換しない条件では、CuSn中へNiが置換することが少ない)、急峻な凹凸形状にならない。上限を設けたのは、事実上20%を超えるCuはNiSn中には入らないからである。
In the terminal material having such a structure, a part of Ni is substituted with Cu under a (Cu, Ni) 6 Sn 5 layer (CuSn alloy layer) in which a part of Cu is substituted with Ni (Ni, Cu) 3. Due to the presence of the Sn 4 layer (NiSn alloy layer), the average interval S between the local peaks of the CuSn alloy layer becomes a steep uneven shape of 0.8 μm or more and 2.0 μm or less, and several hundred nm from the surface of the Sn-based surface layer. In this depth range, a composite structure of a hard CuSn alloy layer and an Sn-based surface layer is obtained.
In this case, the Ni content in Cu 6 Sn 5 is 1 at% or more and 25 at% or less. The reason why the Ni content is defined as 1 at% or more is that if it is less than 1 at%, a compound alloy layer in which a part of Cu of Cu 6 Sn 5 is substituted with Ni is not formed, and a steep uneven shape is not obtained. If the amount exceeds 25 at%, the shape of the CuSn alloy layer tends to be too fine, and if the CuSn alloy layer becomes too fine, the dynamic friction coefficient may not be 0.3 or less. Because there is.
On the other hand, the content of Cu in the Ni 3 Sn 4 alloy layer is preferably 5 at% or more and 20 at% or less. The condition that the Cu content is low means that the amount of Ni contained in Cu 6 Sn 5 is also reduced (when Ni is not substituted in Ni 3 Sn 4 , Ni is substituted into Cu 6 Sn 5. Rarely) The reason why the upper limit is set is that Cu exceeding 20% does not actually enter Ni 3 Sn 4 .

Sn系表面層の平均厚みが0.2μm以上0.6μm以下としたのは、0.2μm未満でははんだ濡れ性の低下、電気的接続信頼性の低下を招き、0.6μmを超えると表層をSnとCuSn合金の複合構造とすることができず、Snだけで占められるので動摩擦係数が増大するためである。より好ましいSn系表面層の平均厚みは0.3μm以上0.5μm以下である。   The average thickness of the Sn-based surface layer is set to 0.2 μm or more and 0.6 μm or less because if it is less than 0.2 μm, solder wettability and electrical connection reliability are reduced. This is because a composite structure of Sn and a CuSn alloy cannot be formed and the dynamic friction coefficient increases because it is occupied only by Sn. A more preferable average thickness of the Sn-based surface layer is 0.3 μm or more and 0.5 μm or less.

Ag被覆層は、Agからなる被覆層であり、後述するように、リフロー処理した後のSn系表面層の上に形成され、膜厚が0.05μm以下とされる。0.05μmを超える膜厚では、Sn系表面層とCuSn合金層との特殊な界面形状による摩擦係数低減効果とAg被覆層によるSn凝着抑制効果とを同時に得ることができず、Ag被覆層による凝着抑制効果のみであるため十分な摩擦係数低減効果が得られず、また、Ag被覆層を厚くするほどコスト高となる。このAg被覆層の膜厚は0.005μm以上とするのが好ましい。   The Ag coating layer is a coating layer made of Ag, and is formed on the Sn-based surface layer after the reflow treatment as described later, and has a film thickness of 0.05 μm or less. When the film thickness exceeds 0.05 μm, the friction coefficient reduction effect due to the special interface shape between the Sn-based surface layer and the CuSn alloy layer and the Sn adhesion suppression effect due to the Ag coating layer cannot be obtained at the same time. The effect of reducing the friction coefficient is not obtained because of only the effect of suppressing adhesion due to, and the higher the Ag coating layer, the higher the cost. The thickness of the Ag coating layer is preferably 0.005 μm or more.

次に、この端子材の製造方法について説明する。
基材として、Cu又はCu−Ni−Si系等のCu合金からなる板材を用意する。この板材に脱脂、酸洗等の処理をすることによって表面を清浄にした後、下地Niめっき、Cuめっき、Snめっきをこの順序で施す。
下地Niめっきは一般的なNiめっき浴を用いればよく、例えば硫酸(HSO)と硫酸ニッケル(NiSO)を主成分とした硫酸浴を用いることができる。めっき浴の温度は20℃以上50℃以下、電流密度は1〜30A/dm以下とされる。この下地Niめっき層の膜厚は0.05μm以上1.0μm以下とされる。0.05μm未満では、(Cu,Ni)Sn合金に含有するNi含有量が少なくなり、急峻な凹凸形状のCuSn合金層が形成されなくなり、1.0μmを超えると曲げ加工等が困難となるためである。
Cuめっきは一般的なCuめっき浴を用いればよく、例えば硫酸銅(CuSO)及び硫酸(HSO)を主成分とした硫酸銅浴等を用いることができる。めっき浴の温度は20〜50℃、電流密度は1〜30A/dmとされる。このCuめっきにより形成されるCuめっき層の膜厚は0.05μm以上0.20μm以下とされる。0.05μm未満では、(Cu,Ni)Sn合金に含有するNi含有量が大きくなり、CuSn合金層の形状が微細になりすぎてしまい、0.20μmを超えると、(Cu,Ni)Sn合金に含有するNi含有量が少なくなり、急峻な凹凸形状のCuSn合金層が形成されなくなるためである。
Snめっき層形成のためのめっき浴としては、一般的なSnめっき浴を用いればよく、例えば硫酸(HSO)と硫酸第一錫(SnSO)を主成分とした硫酸浴を用いることができる。めっき浴の温度は15〜35℃、電流密度は1〜30A/dmとされる。このSnめっき層の膜厚は0.5μm以上1.0μm以下とされる。Snめっき層の厚みが0.5μm未満であると、リフロー後のSn系表面層が薄くなって電気接続特性が損なわれ、1.0μmを超えると、表層部をSnとCuSn合金の複合構造とすることができず、摩擦係数を0.3以下にすることが難しい。
Next, the manufacturing method of this terminal material is demonstrated.
As a base material, a plate material made of Cu or Cu alloy such as Cu-Ni-Si is prepared. After the surface of the plate material is cleaned by degreasing, pickling, etc., the base Ni plating, Cu plating, and Sn plating are applied in this order.
The base Ni plating may be a general Ni plating bath. For example, a sulfuric acid bath mainly composed of sulfuric acid (H 2 SO 4 ) and nickel sulfate (NiSO 4 ) may be used. The temperature of the plating bath is 20 ° C. or more and 50 ° C. or less, and the current density is 1 to 30 A / dm 2 or less. The thickness of the underlying Ni plating layer is 0.05 μm or more and 1.0 μm or less. If it is less than 0.05 μm, the Ni content contained in the (Cu, Ni) 6 Sn 5 alloy is reduced, and a steep uneven CuSn alloy layer is not formed. It is to become.
For Cu plating, a general Cu plating bath may be used. For example, a copper sulfate bath mainly composed of copper sulfate (CuSO 4 ) and sulfuric acid (H 2 SO 4 ) may be used. The temperature of the plating bath is 20 to 50 ° C., and the current density is 1 to 30 A / dm 2 . The film thickness of the Cu plating layer formed by this Cu plating is 0.05 μm or more and 0.20 μm or less. If it is less than 0.05 μm, the Ni content contained in the (Cu, Ni) 6 Sn 5 alloy becomes large, the shape of the CuSn alloy layer becomes too fine, and if it exceeds 0.20 μm, (Cu, Ni) This is because the Ni content in the 6 Sn 5 alloy is reduced, and a steep uneven CuSn alloy layer is not formed.
As a plating bath for forming the Sn plating layer, a general Sn plating bath may be used. For example, a sulfuric acid bath mainly composed of sulfuric acid (H 2 SO 4 ) and stannous sulfate (SnSO 4 ) is used. Can do. The temperature of the plating bath is 15 to 35 ° C., and the current density is 1 to 30 A / dm 2 . The film thickness of this Sn plating layer shall be 0.5 micrometer or more and 1.0 micrometer or less. When the thickness of the Sn plating layer is less than 0.5 μm, the Sn-based surface layer after reflow is thinned and the electrical connection characteristics are impaired. When the thickness exceeds 1.0 μm, the surface layer portion has a composite structure of Sn and CuSn alloy. It is difficult to make the friction coefficient 0.3 or less.

リフロー処理条件としては、還元雰囲気中で基材の表面温度が240℃以上360℃以下となる条件で1秒以上12秒以下の時間加熱し、急冷とされる。さらに望ましくは260℃以上300℃以下で5秒以上10秒以下の加熱後急冷である。この場合、保持時間は以下に示すようにCuめっき層及びSnめっき層のそれぞれの厚みに応じて1秒以上12秒以下の範囲で適切な時間があり、めっき厚が薄いほど保持時間は少なく、厚くなると長い保持時間が必要になる。
<基材温度を240℃以上360℃以下まで昇温後の保持時間>
(1)Snめっき層の厚みが0.5μm以上0.7μm未満に対して、Cuめっき層の厚みが0.05以上0.16μm未満の場合は1秒以上6秒以下、Cuめっき層の厚みが0.16μm以上0.20μ以下の場合は3秒以上9秒以下
(2)Snめっき層の厚みが0.7μm以上1.0μm以下に対して、Cuめっき層の厚みが0.05以上0.16μm未満の場合は3秒以上9秒以下、Cuめっき層の厚みが0.16μm以上0.20μ以下の場合は6秒以上12秒以下
240℃未満の温度、保持時間がこれら(1)(2)に示す時間未満の加熱ではSnの溶解が進まず、360℃を超える温度、保持時間が(1)(2)に示す時間を超える加熱ではCuSn合金層中の結晶が大きく成長してしまい所望の形状を得られず、またCuSn合金層が表層にまで達しSn系表面層が残留しなくなるためである。また、加熱条件が高いとSn系表面層の酸化が進行して好ましくない。
As reflow treatment conditions, the substrate is heated for 1 second to 12 seconds in a reducing atmosphere under the condition that the surface temperature of the base material is 240 ° C. or higher and 360 ° C. or lower, and then rapidly cooled. More preferably, it is rapid cooling after heating at 260 to 300 ° C. for 5 to 10 seconds. In this case, as shown below, the holding time has an appropriate time in the range of 1 second to 12 seconds depending on the thickness of each of the Cu plating layer and the Sn plating layer, and the holding time is less as the plating thickness is thinner, Longer holding times are required as the thickness increases.
<Holding time after raising substrate temperature to 240 ° C. or higher and 360 ° C. or lower>
(1) When the thickness of the Sn plating layer is 0.5 μm or more and less than 0.7 μm, when the thickness of the Cu plating layer is 0.05 or more and less than 0.16 μm, the thickness of the Cu plating layer is 1 second or more and 6 seconds or less. Is 0.16 μm or more and 0.20 μm or less, 3 seconds or more and 9 seconds or less. (2) The thickness of the Cu plating layer is 0.05 or more and 0 or less, whereas the thickness of the Sn plating layer is 0.7 μm or more and 1.0 μm or less. When the thickness is less than 16 μm, it is 3 seconds or more and 9 seconds or less. When the thickness of the Cu plating layer is 0.16 μm or more and 0.20 μm or less, the temperature is 6 seconds or more and 12 seconds or less. When the heating time is less than the time shown in 2), the dissolution of Sn does not proceed, and when the heating temperature exceeds 360 ° C. and the holding time exceeds the time shown in (1) and (2), crystals in the CuSn alloy layer grow greatly. The desired shape cannot be obtained, and the CuSn alloy layer Sn-based surface layer reaches the surface layer is because the longer remaining. Moreover, when heating conditions are high, the oxidation of the Sn-based surface layer proceeds, which is not preferable.

リフロー処理後の素材に脱脂、酸洗等の処理を行って、表面を洗浄した後、スパッタリング法やめっき法によってAg被覆層を形成する。その膜厚は前述したとおり0.05μm以下とされる。   A material such as degreasing and pickling is performed on the material after the reflow treatment to clean the surface, and then an Ag coating layer is formed by a sputtering method or a plating method. The film thickness is set to 0.05 μm or less as described above.

そして、この端子材は、例えば図2に示すような形状のメス端子2に成形される。
このメス端子2は、図2に示す例では、全体としては角筒状に形成され、その一方端の開口部15からオス端子1を嵌合することにより、このオス端子1を両側から挟持した状態に保持して接続される。メス端子2の内部には、嵌合されるオス端子1の一方の面に接触される弾性変形可能な接触片16が設けられるとともに、この接触片16に対向している側壁17に、オス端子1の他方の面に接触する半球状の凸部18がエンボス加工により内方に突出した状態に形成されている。接触片16にも、凸部18に対向するように山折り状の折り曲げ部19が設けられている。これら凸部18及び折り曲げ部19は、オス端子1を嵌合したときにオス端子1に向けて凸となるように突出しており、該オス端子1に対する摺動部11となる。
And this terminal material is shape | molded, for example in the female terminal 2 of a shape as shown in FIG.
In the example shown in FIG. 2, the female terminal 2 is formed in a rectangular tube shape as a whole, and the male terminal 1 is sandwiched from both sides by fitting the male terminal 1 from the opening 15 at one end thereof. It is connected in a state. Inside the female terminal 2, an elastically deformable contact piece 16 that is brought into contact with one surface of the fitted male terminal 1 is provided, and a male terminal is provided on the side wall 17 facing the contact piece 16. The hemispherical convex part 18 which contacts the other surface of 1 is formed in the state which protruded inward by embossing. The contact piece 16 is also provided with a mountain-folded bent portion 19 so as to face the convex portion 18. The protruding portion 18 and the bent portion 19 protrude so as to protrude toward the male terminal 1 when the male terminal 1 is fitted, and become the sliding portion 11 with respect to the male terminal 1.

なお、オス端子1に用いられる端子材は、図3に模式的に示すように、Cu合金からなる基材21上表面にSnめっき層22が形成され、Snめっき層22とCu合金基材21との間にCuSn合金層23が形成された、一般的なリフロー処理材から構成される。このオス端子1において、Snめっき層22を溶解除去して、CuSn合金層23を表面に現出させたときに測定されるCuSn合金層23の局部山頂の平均間隔Sは0.8μm未満あるいは2.0μmを超えており、かつSnめっき層22の平均厚みは0.2μm以上3μm以下である。
オス端子1は平板状に形成され、銅合金板にCuめっき及びSnめっきをこの順に施した後、リフロー処理することにより形成される。この場合、リフロー処理の加熱条件としては、一般には、240℃以上400℃以下の温度で1秒以上20秒以下の時間保持した後、急冷される。
なお、リフロー処理することなく、Cu合金からなる基材にSnめっきにより平均厚み0.5μm以上3μm以下のSnめっき層を形成した端子材をオス端子材としてもよい。
As shown schematically in FIG. 3, the terminal material used for the male terminal 1 has an Sn plating layer 22 formed on the upper surface of a base material 21 made of a Cu alloy, and the Sn plating layer 22 and the Cu alloy base material 21. And a general reflow treatment material in which a CuSn alloy layer 23 is formed. In this male terminal 1, the average interval S between the local peaks of the CuSn alloy layer 23 measured when the Sn plating layer 22 is dissolved and removed and the CuSn alloy layer 23 appears on the surface is less than 0.8 μm or 2 The average thickness of the Sn plating layer 22 is not less than 0.2 μm and not more than 3 μm.
The male terminal 1 is formed in a flat plate shape, and is formed by subjecting a copper alloy plate to Cu plating and Sn plating in this order, and then reflow treatment. In this case, as a heating condition for the reflow treatment, in general, it is rapidly cooled after being held at a temperature of 240 ° C. or higher and 400 ° C. or lower for a time of 1 second or longer and 20 seconds or shorter.
In addition, it is good also considering the terminal material which formed Sn plating layer with an average thickness of 0.5 micrometer or more and 3 micrometers or less by Sn plating to the base material which consists of Cu alloy, without performing reflow processing as a male terminal material.

このようなメス端子材及びオス端子材を用いて形成したコネクタは、メス端子2の開口部15から接触片16と側壁17との間にオス端子1を挿入すると、接触片16は二点鎖線で示す位置から実線で示す位置に弾性変形し、その折り曲げ部19と凸部18との間にオス端子1を挟持した状態に保持する。
前述したように、メス端子2は、CuSn合金層とSn系表面層との界面がCuSn合金層の局部山頂の平均間隔Sを0.8μm以上2.0μm以下とする急峻な凹凸形状に形成され、かつSn系表面層の平均厚みが0.1μm以上0.6μm以下、Sn系表面層の最表面に0.05μm以下の膜厚のAg被覆層が形成されているので、メス端子2の凸部18及び折り曲げ部19の表面にSnが凝着することが抑制され、CuSn合金層とSn系表面層との界面が急峻な凹凸形状に形成されていることによる動摩擦係数の低減効果が有効に発揮され、オス端子1が通常のリフロー処理によるSn系表面層のものであっても、動摩擦係数を0.3以下にすることができる。
When the male terminal 1 is inserted between the contact piece 16 and the side wall 17 from the opening 15 of the female terminal 2 in the connector formed using such female terminal material and male terminal material, the contact piece 16 becomes a two-dot chain line. Is elastically deformed from the position indicated by the solid line to the position indicated by the solid line, and the male terminal 1 is held between the bent part 19 and the convex part 18.
As described above, in the female terminal 2, the interface between the CuSn alloy layer and the Sn-based surface layer is formed in a steep concavo-convex shape in which the average interval S between the local peaks of the CuSn alloy layer is 0.8 μm or more and 2.0 μm or less. In addition, since the average thickness of the Sn-based surface layer is 0.1 μm or more and 0.6 μm or less, and the Ag coating layer having a thickness of 0.05 μm or less is formed on the outermost surface of the Sn-based surface layer, The adhesion of Sn to the surface of the part 18 and the bent part 19 is suppressed, and the effect of reducing the dynamic friction coefficient due to the steep uneven shape of the interface between the CuSn alloy layer and the Sn-based surface layer is effective. Even if the male terminal 1 is of an Sn-based surface layer by a normal reflow process, the dynamic friction coefficient can be reduced to 0.3 or less.

板厚0.25mmの無酸素銅板を基材とし、下地Niめっき、Cuめっき、Snめっきを順に施した。この場合、Cuめっき及びSnめっきのめっき条件は実施例、比較例とも同じである。めっき処理後、実施例、比較例ともリフロー処理して、還元雰囲気中で、基材表面温度が240℃以上360℃以下の温度になるまで昇温し、1秒以上12秒以下の時間保持した後、水冷した。リフロー処理後、スパッタリング法によってAg被覆層を形成した。
比較例として、下地Niめっきの厚さ、Cuめっきの厚さ、Snめっきの厚さを変量したもの、Ag被覆層を形成しなかったものも作製した。
この場合、各めっきの条件は表1に示す通りとした。表1中、Dkはカソードの電流密度、ASDはA/dmの略である。
各めっき層の厚さ、リフロー条件は、表2に示す通りとした。
An oxygen-free copper plate having a plate thickness of 0.25 mm was used as a base material, and base Ni plating, Cu plating, and Sn plating were sequentially applied. In this case, the plating conditions for Cu plating and Sn plating are the same in both the examples and the comparative examples. After the plating treatment, both the examples and the comparative examples were subjected to reflow treatment, and the substrate surface temperature was raised to a temperature of 240 ° C. or higher and 360 ° C. or lower in a reducing atmosphere, and held for 1 second or longer and 12 seconds or shorter. After that, it was cooled with water. After the reflow treatment, an Ag coating layer was formed by a sputtering method.
As comparative examples, the thickness of the base Ni plating, the thickness of the Cu plating, the thickness of the Sn plating, and the case where the Ag coating layer was not formed were also prepared.
In this case, the conditions of each plating were as shown in Table 1. In Table 1, Dk is an abbreviation of cathode current density and ASD is A / dm 2 .
The thickness of each plating layer and the reflow conditions were as shown in Table 2.

これらの試料について、リフロー後のSn系表面層の厚み、CuSn合金層の厚み、(Cu,Ni)Sn中のNi含有量、(Ni,Cu)Sn層の有無、CuSn合金層の局部山頂の平均間隔S,Ag被覆層の厚み、動摩擦係数、はんだ濡れ性を評価した。
Ag被覆層の厚み、リフロー後のSn系表面層及びCuSn合金層の厚みは、エスアイアイ・ナノテクノロジー株式会社製蛍光X線膜厚計(SFT9400)にて測定した。リフロー後のSn系表面層及びCuSn合金層の厚みは、Ag被覆層を形成する前の試料について、最初にリフロー後の試料の全Sn系表面層の厚みを測定した後、例えばレイボルド株式会社製のL80等の、純SnをエッチングしCuSn合金を腐食しない成分からなるめっき被膜剥離用のエッチング液に5分間浸漬することによりSn系表面層を除去し、その下層のCuSn合金層を露出させ純Sn換算におけるCuSn合金層の厚みを測定した後、(全Sn系表面層の厚み−純Sn換算におけるCuSn合金層の厚み)をSn系表面層の厚みと定義した。
(Cu,Ni)Sn層中のNi含有量、(Ni,Cu)Sn層の有無は、断面STEM像及びEDS線分析により求めた。
CuSn合金層の局部山頂の平均間隔Sは、Snめっき被膜剥離用のエッチング液に浸漬してSn系表面層を除去し、その下層のCuSn合金層を露出させた後、株式会社キーエンス製レーザ顕微鏡(VK−X200)を用い、対物レンズ150倍(測定視野96μm×72μm)の条件で、長手方向で5点、短手方向で5点、計10点測定したSの平均値より求めた。
For these samples, the thickness of the Sn-based surface layer after reflow, the thickness of the CuSn alloy layer, the Ni content in (Cu, Ni) 6 Sn 5 , the presence or absence of the (Ni, Cu) 3 Sn 4 layer, the CuSn alloy layer The average interval S of the local summits, the thickness of the Ag coating layer, the dynamic friction coefficient, and the solder wettability were evaluated.
The thickness of the Ag coating layer, the Sn-based surface layer after reflowing, and the thickness of the CuSn alloy layer were measured with a fluorescent X-ray film thickness meter (SFT9400) manufactured by SII Nanotechnology. The thickness of the Sn-based surface layer and the CuSn alloy layer after the reflow is measured with respect to the sample before forming the Ag coating layer, after first measuring the thickness of all the Sn-based surface layers of the sample after the reflow, The Sn-based surface layer is removed by immersing in an etching solution for removing the plating film composed of a component that does not corrode CuSn alloy by etching pure Sn, such as L80, and the underlying CuSn alloy layer is exposed to be pure. After measuring the thickness of the CuSn alloy layer in terms of Sn, (thickness of all Sn-based surface layer−thickness of CuSn alloy layer in terms of pure Sn) was defined as the thickness of the Sn-based surface layer.
The Ni content in the (Cu, Ni) 6 Sn 5 layer and the presence or absence of the (Ni, Cu) 3 Sn 4 layer were determined by a cross-sectional STEM image and EDS line analysis.
The average distance S between the local peaks of the CuSn alloy layer is immersed in an etching solution for removing the Sn plating film to remove the Sn-based surface layer, and the underlying CuSn alloy layer is exposed. Using (VK-X200), it was obtained from the average value of S measured at 10 points in total, 5 points in the longitudinal direction and 5 points in the short direction, under the condition of 150 times the objective lens (measuring field of view 96 μm × 72 μm).

動摩擦係数については、嵌合型のコネクタのオス端子とメス端子の接点部を模擬するように、各試料について板状のオス端子試験片と内径1.5mmの半球状としたメス試験片とを作成し、株式会社トリニティーラボ製の摩擦測定機(μV1000)を用い、両試験片間の摩擦力を測定して動摩擦係数を求めた。図4により説明すると、水平な台31上にオス端子試験片32を固定し、その上にメス試験片33の半球凸面を置いてめっき面同士を接触させ、メス試験片33に錘34によって500gfの荷重Pをかけてオス端子試験片32を押さえた状態とする。この荷重Pをかけた状態で、オス端子試験片32を摺動速度80mm/分で矢印により示した水平方向に10mm引っ張ったときの摩擦力Fをロードセル35によって測定した。その摩擦力Fの平均値Favと荷重Pより動摩擦係数(=Fav/P)を求めた。表2には、荷重を4.9N(500gf)としたときの動摩擦係数を記載した。
オス端子試験片として、板厚0.25mmの銅合金(C2600、Cu:70室量%−Zn:30質量%)を基材とし、Cuめっき、Snめっきを順に施し、リフロー処理した。このオス端子材のリフロー条件としては、基材温度270℃、保持時間6秒とし、リフロー後のSnめっき層の厚みは0.6μm、CuSn合金層の厚みは0.5μmとした。このCuSn合金層の局部山頂の平均間隔Sは2.1μmとした。
For the dynamic friction coefficient, a plate-shaped male terminal test piece and a hemispherical female test piece having an inner diameter of 1.5 mm were used for each sample so as to simulate the contact portion of the male terminal and female terminal of the fitting type connector. The friction coefficient between the two test pieces was measured by using a friction measuring machine (μV1000) manufactured by Trinity Lab Co., Ltd. to obtain a dynamic friction coefficient. Referring to FIG. 4, a male terminal test piece 32 is fixed on a horizontal base 31, a hemispherical convex surface of a female test piece 33 is placed thereon, and the plating surfaces are brought into contact with each other. The load P is applied and the male terminal test piece 32 is pressed. With this load P applied, the frictional force F when the male terminal test piece 32 was pulled 10 mm in the horizontal direction indicated by the arrow at a sliding speed of 80 mm / min was measured by the load cell 35. A dynamic friction coefficient (= Fav / P) was obtained from the average value Fav of the friction force F and the load P. Table 2 shows the dynamic friction coefficient when the load is 4.9 N (500 gf).
As a male terminal test piece, a copper alloy (C2600, Cu: 70% by volume-Zn: 30% by mass) having a plate thickness of 0.25 mm was used as a base material, and Cu plating and Sn plating were performed in this order and reflow treatment was performed. The reflow conditions for this male terminal material were a substrate temperature of 270 ° C. and a holding time of 6 seconds, the thickness of the Sn plating layer after reflow was 0.6 μm, and the thickness of the CuSn alloy layer was 0.5 μm. The average distance S between the local peaks of the CuSn alloy layer was 2.1 μm.

はんだ濡れ性については、試験片を10mm幅に切り出し、活性フラックスを用いてメニスコグラフ法にてゼロクロスタイムを測定した。(はんだ浴温230℃のSn−3%Ag−0.5%Cuはんだに浸漬させ、浸漬速度2mm/sec、浸漬深さ1mm、浸漬時間10secの条件にて測定した。)はんだゼロクロスタイムが3秒以下を○と評価し、3秒を超えた場合を×と評価した。
また、電気的信頼性を評価するため、大気中で150℃×500時間加熱し、接触抵抗を測定した。測定方法はJIS−C―5402に準拠し、4端子接触抵抗試験機(山崎精機研究所製:CRS―113−AU)により、摺動式(1mm)で0から50gまでの荷重変化−接触抵抗を測定し、荷重を50gとしたときの接触抵抗値で評価した。
これらの測定結果、評価結果を表2に示す。
About solder wettability, the test piece was cut out to 10 mm width, and the zero crossing time was measured by the meniscograph method using the active flux. (Measured under the condition of immersion in Sn-3% Ag-0.5% Cu solder with a solder bath temperature of 230 ° C. and immersion rate of 2 mm / sec, immersion depth of 1 mm, and immersion time of 10 sec.) The case of less than 2 seconds was evaluated as ◯, and the case of exceeding 3 seconds was evaluated as ×.
Moreover, in order to evaluate electrical reliability, it heated at 150 degreeC * 500 hours in air | atmosphere, and contact resistance was measured. The measuring method is based on JIS-C-5402, 4 terminal contact resistance tester (manufactured by Yamazaki Seiki Laboratories: CRS-113-AU), sliding type (1mm) load change from 0 to 50g-contact resistance Was evaluated by the contact resistance value when the load was 50 g.
These measurement results and evaluation results are shown in Table 2.

この表2から明らかなように、実施例はいずれも動摩擦係数が0.3以下と小さく、はんだ濡れ性が良好で、接触抵抗も10mΩ以下を示した。特に実施例1から8及び10から19のNiめっき厚みが0.1μm以上あるものは、全て4mΩ以下の低い接触抵抗を示した。
これに対して、各比較例は以下のような不具合が認められた。比較例1、3はいずれもAg被覆層がないので、動摩擦係数が大きい。比較例2は、(Ni,Cu)Sn層が無く、Ag被覆層を形成するだけでは低減効果はあるものの大きな効果は得られない。比較例4は、Ag被覆層の膜厚が大きいため、CuSn合金層による動摩擦係数の低減効果を十分に得られず動摩擦係数が0.3を超えている。比較例5はCuめっき厚が薄すぎるためCuSn合金層の局部山頂の平均間隔S が下限を下回ってしまい動摩擦係数が0.3を超えている。比較例6,8,9はCuSn合金層が大きく成長しすぎてしまい、表面に残留するSn系表面層が少なくなり過ぎるため、はんだ濡れ性が悪くなる。動摩擦係数が0.3を超えている比較例7は、Cuめっき厚が厚すぎるため、(Ni,Cu)Sn層が無く、CuSn中にNiを含有していないため大きな効果が得られない。
図5,6は実施例6の断面STEM像とEDS線分析結果であり、図7,8は比較例7の断面STEM像とEDS線分析結果である。図5及び図6の(i)が基板、(ii)がNi層、(iii)が(Ni,Cu)Sn層、(iv)が(Cu,Ni)Sn層である。図7及び図8では、(i´)がNi層、(ii´)がCuSn層、(iii´)がCuSn層である。
これらの写真を比較してわかるように、実施例のものは、図6に示されるようにCuSn中にNiが含有されていること及びNi層とCuSn層との界面にCuを含むNiSn層が形成されていることがわかる。実施例の端子材におけるNiSn層中のCu含有量は、5〜20at%の範囲内と想定される。例えば実施例2では11at%であった。
比較例のものは、図8に示されるようにNiSn層が形成されず、CuSn中にもNiを含有していないことがわかる。
図9は実施例2の動摩擦係数測定後のオス端子試験片の摺動面の顕微鏡写真であり、図10は比較例1の顕微鏡写真であり、図11は比較例7の顕微鏡写真である。これらの写真を比較してわかるように、実施例のものは、Snの凝着が抑制され摺動面が滑らかなのに対し、比較例はSnの凝着のため摺動面が粗い。メス側の局部山頂の平均間隔Sが大きい比較例7は、Ag被覆層があってもSnの凝着が発生し摺動面が粗くなっている。
As is apparent from Table 2, all the examples had a small coefficient of dynamic friction of 0.3 or less, good solder wettability, and a contact resistance of 10 mΩ or less. Particularly, Examples 1 to 8 and 10 to 19 having Ni plating thicknesses of 0.1 μm or more all exhibited low contact resistance of 4 mΩ or less.
On the other hand, the following problems were recognized in each comparative example. Since Comparative Examples 1 and 3 do not have an Ag coating layer, the dynamic friction coefficient is large. In Comparative Example 2, there is no (Ni, Cu) 3 Sn 4 layer, and only by forming an Ag coating layer, although there is a reduction effect, a great effect cannot be obtained. In Comparative Example 4, since the film thickness of the Ag coating layer is large, the effect of reducing the dynamic friction coefficient by the CuSn alloy layer cannot be sufficiently obtained, and the dynamic friction coefficient exceeds 0.3. In Comparative Example 5, since the Cu plating thickness is too thin, the average interval S 1 between the local peaks of the CuSn alloy layer falls below the lower limit, and the dynamic friction coefficient exceeds 0.3. In Comparative Examples 6, 8, and 9, the CuSn alloy layer grows too much, and the Sn-based surface layer remaining on the surface becomes too small, so that the solder wettability is deteriorated. In Comparative Example 7 in which the dynamic friction coefficient exceeds 0.3, since the Cu plating thickness is too thick, there is no (Ni, Cu) 3 Sn 4 layer, and Ni is not contained in Cu 6 Sn 5. Cannot be obtained.
5 and 6 show the cross-sectional STEM image and EDS line analysis result of Example 6, and FIGS. 7 and 8 show the cross-sectional STEM image and EDS line analysis result of Comparative Example 7, respectively. 5 and 6, (i) is a substrate, (ii) is a Ni layer, (iii) is a (Ni, Cu) 3 Sn 4 layer, and (iv) is a (Cu, Ni) 6 Sn 5 layer. 7 and 8, (i ′) is a Ni layer, (ii ′) is a Cu 3 Sn layer, and (iii ′) is a Cu 6 Sn 5 layer.
As can be seen from the comparison of these photographs, the example is that Ni is contained in Cu 6 Sn 5 as shown in FIG. 6 and at the interface between the Ni layer and the Cu 6 Sn 5 layer. It can be seen that a Ni 3 Sn 4 layer containing Cu is formed. The Cu content in the Ni 3 Sn 4 layer in the terminal material of the example is assumed to be in the range of 5 to 20 at%. For example, in Example 2, it was 11 at%.
In the comparative example, as shown in FIG. 8, the Ni 3 Sn 4 layer is not formed, and it is understood that Ni is not contained in Cu 6 Sn 5 .
9 is a micrograph of the sliding surface of the male terminal test piece after measurement of the dynamic friction coefficient of Example 2, FIG. 10 is a micrograph of Comparative Example 1, and FIG. 11 is a micrograph of Comparative Example 7. As can be seen from comparison of these photographs, in the example, Sn adhesion was suppressed and the sliding surface was smooth, whereas in the comparative example, the sliding surface was rough due to Sn adhesion. In Comparative Example 7, in which the average interval S between the local peaks on the female side is large, Sn adhesion occurs and the sliding surface is rough even if there is an Ag coating layer.

1 オス端子
2 メス端子
5 基材
6 Sn系表面層
7 CuSn合金層
8 NiSn合金層
9 Ni又はNi合金層
10 Ag被覆層
11 摺動部
15 開口部
16 接触片
17 側壁
18 凸部
19 折り曲げ部
21 基材
22 Snめっき層
23 CuSn合金層
31 台
32 オス端子試験片
33 メス試験片
34 錘
35 ロードセル
DESCRIPTION OF SYMBOLS 1 Male terminal 2 Female terminal 5 Base material 6 Sn type | system | group surface layer 7 CuSn alloy layer 8 NiSn alloy layer 9 Ni or Ni alloy layer 10 Ag coating layer 11 Sliding part 15 Opening part 16 Contact piece 17 Side wall 18 Convex part 19 Bending part 21 Substrate 22 Sn plating layer 23 CuSn alloy layer 31 units 32 Male terminal test piece 33 Female test piece 34 Weight 35 Load cell

Claims (2)

Cu又はCu合金からなる基材上の表面にSn系表面層が形成され、該Sn系表面層と前記基材との間に、前記Sn系表面層から順にCuSn合金層/NiSn合金層/Ni又はNi合金層が形成された錫めっき銅合金端子材であって、前記CuSn合金層は、CuSnを主成分とし、該CuSnのCuの一部がNiに置換した化合物合金層であり、前記NiSn合金層は、NiSnを主成分とし、該NiSnのNiの一部がCuに置換した化合物合金層であり、前記CuSn合金層の局部山頂の平均間隔Sが0.8μm以上2.0μm以下であり、かつ前記Sn系表面層の平均厚みが0.2μm以上0.6μm以下であり、前記Sn系表面層の最表面に0.05μm以下の膜厚のAg被覆層が形成されてなり、表面の動摩擦係数が0.3以下であることを特徴とする錫めっき銅合金端子材。 An Sn-based surface layer is formed on the surface of the base material made of Cu or Cu alloy, and the Cu-based alloy layer / NiSn alloy layer / Ni are arranged in this order from the Sn-based surface layer between the Sn-based surface layer and the base material. Alternatively, a tin-plated copper alloy terminal material on which a Ni alloy layer is formed, wherein the CuSn alloy layer has Cu 6 Sn 5 as a main component, and a part of Cu in the Cu 6 Sn 5 is substituted with Ni. The NiSn alloy layer is a compound alloy layer containing Ni 3 Sn 4 as a main component, and a part of Ni in the Ni 3 Sn 4 is replaced with Cu, and an average interval between local peaks of the CuSn alloy layer S is 0.8 μm or more and 2.0 μm or less, and the average thickness of the Sn-based surface layer is 0.2 μm or more and 0.6 μm or less, and the film thickness is 0.05 μm or less on the outermost surface of the Sn-based surface layer. An Ag coating layer of the surface is formed, A tin-plated copper alloy terminal material having a dynamic friction coefficient of 0.3 or less. 前記CuSn合金層は、前記Cu6Sn5中にNiが1at%以上25at%以下含有されていることを特徴とする請求項1記載の錫めっき銅合金端子材。


2. The tin-plated copper alloy terminal material according to claim 1, wherein the CuSn alloy layer contains 1 at% or more and 25 at% or less of Ni in the Cu 6 Sn 5 .


JP2013271704A 2013-12-27 2013-12-27 Tin-plated copper alloy terminal material with excellent insertability Active JP6217390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013271704A JP6217390B2 (en) 2013-12-27 2013-12-27 Tin-plated copper alloy terminal material with excellent insertability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013271704A JP6217390B2 (en) 2013-12-27 2013-12-27 Tin-plated copper alloy terminal material with excellent insertability

Publications (2)

Publication Number Publication Date
JP2015124433A JP2015124433A (en) 2015-07-06
JP6217390B2 true JP6217390B2 (en) 2017-10-25

Family

ID=53535365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013271704A Active JP6217390B2 (en) 2013-12-27 2013-12-27 Tin-plated copper alloy terminal material with excellent insertability

Country Status (1)

Country Link
JP (1) JP6217390B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7135963B2 (en) 2019-03-26 2022-09-13 株式会社オートネットワーク技術研究所 Metal material and connection terminal pair

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5280957B2 (en) * 2009-07-28 2013-09-04 三菱伸銅株式会社 Conductive member and manufacturing method thereof

Also Published As

Publication number Publication date
JP2015124433A (en) 2015-07-06

Similar Documents

Publication Publication Date Title
JP5263435B1 (en) Tin-plated copper alloy terminal material with excellent insertability
JP6221695B2 (en) Tin-plated copper alloy terminal material with excellent insertability
JP5278630B1 (en) Tin-plated copper alloy terminal material excellent in insertion / extraction and manufacturing method thereof
KR102355331B1 (en) Tin-plated copper alloy terminal material and method for producing same
JP2015143385A (en) tin-plated copper alloy terminal material
JP5522300B1 (en) Tin-plated copper alloy terminal material excellent in insertion / extraction and manufacturing method thereof
JP2015063750A (en) Tin-plated copper alloy terminal material excellent in insertability/extractability
TW201413068A (en) Tin-plated copper alloy terminal member with outstanding insertion and removal characteristics and method of manufacturing the same
JP2015110829A (en) Tin-plated copper-alloy terminal material
JP6201554B2 (en) Mating type connection terminal
JP5640922B2 (en) Tin-plated copper alloy terminal material with excellent insertability
JP2015124434A (en) Tin-plated copper-alloy terminal material
JP6443092B2 (en) Tin-plated copper alloy terminal material
JP6217390B2 (en) Tin-plated copper alloy terminal material with excellent insertability
JP5419737B2 (en) Tin-plated copper alloy sheet for mating type terminal and method for manufacturing the same
JP2016141835A (en) Tinned copper alloy terminal material
JP6011129B2 (en) Copper alloy terminal material excellent in insertion / removability and manufacturing method thereof
JP2016143542A (en) Tin plated copper alloy terminal material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170911

R150 Certificate of patent or registration of utility model

Ref document number: 6217390

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150