JP5419737B2 - Tin-plated copper alloy sheet for mating type terminal and method for manufacturing the same - Google Patents

Tin-plated copper alloy sheet for mating type terminal and method for manufacturing the same Download PDF

Info

Publication number
JP5419737B2
JP5419737B2 JP2010019761A JP2010019761A JP5419737B2 JP 5419737 B2 JP5419737 B2 JP 5419737B2 JP 2010019761 A JP2010019761 A JP 2010019761A JP 2010019761 A JP2010019761 A JP 2010019761A JP 5419737 B2 JP5419737 B2 JP 5419737B2
Authority
JP
Japan
Prior art keywords
coating layer
plating
layer
graphite particles
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010019761A
Other languages
Japanese (ja)
Other versions
JP2011157588A (en
Inventor
浩一 平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2010019761A priority Critical patent/JP5419737B2/en
Publication of JP2011157588A publication Critical patent/JP2011157588A/en
Application granted granted Critical
Publication of JP5419737B2 publication Critical patent/JP5419737B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Description

本発明は、低摩擦係数で嵌合型接続端子用として適する錫めっき付き銅合金板材、及びその製造方法に関する。   The present invention relates to a tin-plated copper alloy sheet suitable for fitting type connection terminals with a low friction coefficient, and a method for producing the same.

従来より、雄端子と雌端子の嵌合によって電気的接触を得る車載用等の嵌合型端子として、錫めっき付き銅合金板材を打抜き加工して端子に成形したものが汎用的に用いられている。
錫めっき付き銅合金板材で成形した嵌合型端子では、雄端子と雌端子を嵌合する際、錫同士の凝着が起こり、それをせん断する抵抗が非常に高いため、特に多極化した場合に挿入力が大きくなる。また、嵌合した接点部が熱膨張、振動によってずれた際に、表面の錫が削られ、酸化摩耗粉が接点部に堆積し、接触抵抗値を増大するといった微摺動摩耗現象が生じる。近年、特に車載用の嵌合型端子に対して、挿入力低減及び微摺動摩耗現象の低減の要求が強くなっている。
Conventionally, as a fitting type terminal for in-vehicle use or the like that obtains electrical contact by fitting a male terminal and a female terminal, a copper alloy plate material with tin plating is punched and formed into a terminal, which is generally used. Yes.
When fitting male and female terminals with a mating terminal formed from a tin-plated copper alloy plate, tin adheres to each other and the resistance to shearing is very high. Insertion force increases. Moreover, when the fitted contact portion is displaced due to thermal expansion and vibration, tin on the surface is scraped, oxidized wear powder accumulates on the contact portion, and a fine sliding wear phenomenon occurs in which the contact resistance value increases. In recent years, there has been a strong demand for reducing the insertion force and the fine sliding wear phenomenon, particularly for in-vehicle fitting type terminals.

特許文献1には、銅合金板材の表面にCuめっき及びSnめっきを行った後、リフロー処理を施して、CuめっきとSnめっきからCu−Sn合金層を形成し、Cu−Sn合金被覆層及びSn被覆層からなる表面めっき層を形成することが記載されている。
特許文献2〜4には、銅合金板材の表面にNiめっき、Cuめっき及びSnめっきを行った後、リフロー処理を施して、CuめっきとSnめっきからCu−Sn合金層を形成し、Ni被覆層、Cu−Sn合金被覆層及びSn被覆層からなる表面めっき層を形成することが記載され、このうち特許文献3,4には、Ni被覆層とCu−Sn合金被覆層の間にCu被覆層を残留させて、4層からなる表面めっき層を形成することも記載されている。
しかし、これらの技術において嵌合型端子の挿入力の一層の低減を図ろうとすると、最表面のSn被覆層を薄くして錫同士の凝着を極力少なくする必要があり、接触抵抗の経時変化の低減との両立が困難となる。また、特許文献1〜4では、微摺動摩耗現象による接触抵抗の増大は考慮されていない。
In Patent Document 1, after Cu plating and Sn plating are performed on the surface of a copper alloy plate material, a reflow treatment is performed to form a Cu-Sn alloy layer from Cu plating and Sn plating, and a Cu-Sn alloy coating layer and It describes that a surface plating layer comprising a Sn coating layer is formed.
In Patent Documents 2 to 4, Ni plating, Cu plating, and Sn plating are performed on the surface of a copper alloy sheet, and then reflow treatment is performed to form a Cu-Sn alloy layer from Cu plating and Sn plating. Forming a surface plating layer comprising a layer, a Cu—Sn alloy coating layer, and a Sn coating layer, among which, Patent Documents 3 and 4 describe a Cu coating between a Ni coating layer and a Cu—Sn alloy coating layer. It is also described that a surface plating layer consisting of four layers is formed by leaving the layer.
However, in order to further reduce the insertion force of the mating type terminal in these technologies, it is necessary to make the outermost Sn coating layer thin so as to reduce the adhesion between tins as much as possible. It is difficult to achieve both reductions. In Patent Documents 1 to 4, an increase in contact resistance due to the fine sliding wear phenomenon is not considered.

特許文献5〜7は、特許文献1〜4と同様に、銅合金板材の表面にCuめっき及びSnめっきを行った後、又はNiめっき、Cuめっき及びSnめっきを行った後、リフロー処理を施して、Cu−Sn合金被覆層及びSn被覆層からなる表面めっき層、又はNi被覆層、Cu−Sn合金被覆層及びSn被覆層からなる表面めっき層を形成するのであるが、意図的に表面を粗面化した銅合金板材を用い、部分的に(粗さ曲線の山頂部で)Cu−Sn合金被覆層が表面に露出するか、Sn被覆層の厚さが極めて薄くなるようにし、これにより嵌合型端子の挿入力低減を可能とした錫めっき付き銅合金板材が提案されている。また、特許文献5〜7には、Cu−Sn合金被覆層及びSn被覆層からなる表面めっき層の場合、銅合金板材とCu−Sn合金層の間に、Ni被覆層、Cu−Sn合金被覆層及びSn被覆層からなる表面めっき層の場合、Ni被覆層とCu−Sn合金被覆層の間に、それぞれCu被覆層を残留させてもよいことが記載されている。特許文献5,6には、微摺動摩耗現象を抑えて低接触抵抗を維持できることも記載されている。
特許文献5〜7の技術によれば、嵌合型端子の挿入力低減と接触抵抗の経時変化の低減を両立させることができるが、接圧が大きい端子に対しては低挿入力効果が小さくなる。
In Patent Documents 5 to 7, as in Patent Documents 1 to 4, after performing Cu plating and Sn plating on the surface of the copper alloy plate material, or after performing Ni plating, Cu plating and Sn plating, reflow treatment is performed. Then, a surface plating layer composed of a Cu-Sn alloy coating layer and a Sn coating layer or a surface plating layer composed of a Ni coating layer, a Cu-Sn alloy coating layer and a Sn coating layer is formed. Using a roughened copper alloy sheet, the Cu-Sn alloy coating layer is partially exposed (at the peak of the roughness curve) on the surface, or the thickness of the Sn coating layer is made extremely thin. A tin-plated copper alloy sheet material capable of reducing the insertion force of the fitting type terminal has been proposed. In Patent Documents 5 to 7, in the case of a surface plating layer comprising a Cu—Sn alloy coating layer and a Sn coating layer, a Ni coating layer and a Cu—Sn alloy coating are provided between the copper alloy plate material and the Cu—Sn alloy layer. In the case of a surface plating layer comprising a layer and a Sn coating layer, it is described that the Cu coating layer may be left between the Ni coating layer and the Cu—Sn alloy coating layer. Patent Documents 5 and 6 also describe that a low contact resistance can be maintained by suppressing the fine sliding wear phenomenon.
According to the techniques of Patent Documents 5 to 7, it is possible to achieve both reduction of the insertion force of the fitting type terminal and reduction of the temporal change of the contact resistance, but the low insertion force effect is small for a terminal having a large contact pressure. Become.

一方、銅合金板材の表面に炭素粒子が分散したSnめっき層を形成することにより、嵌合型端子の挿入力低減、及び接触抵抗の経時変化低減を可能とした錫めっき付き銅合金板材が提案されている(特許文献8参照)。しかし、この板材を製造するには、黒鉛粒子を分散させた特殊なSnめっき浴が必要であり、黒鉛粒子が均一かつ所定量分散したSnめっき層を形成するための浴管理が困難で、また、これがコストアップにつながる。加えて、炭素粒子はSnめっき層中に存在し、表面に露出する炭素粒子は一部に過ぎないので、挿入力の低減効果として不充分である。   On the other hand, a tin-plated copper alloy sheet that can reduce the insertion force of the mating type terminal and change the contact resistance with time by forming an Sn plating layer in which carbon particles are dispersed on the surface of the copper alloy sheet is proposed. (See Patent Document 8). However, in order to produce this plate material, a special Sn plating bath in which graphite particles are dispersed is necessary, and it is difficult to manage the bath to form a Sn plating layer in which graphite particles are uniformly dispersed in a predetermined amount. This leads to cost increase. In addition, the carbon particles are present in the Sn plating layer, and only a part of the carbon particles exposed on the surface is insufficient as an effect of reducing the insertion force.

また、錫めっき浴中の光沢剤濃度を調製し、銅合金板材の表面にCを含有させたSn又はSn合金めっき層を形成することにより、摩擦係数を低減させた多極端子用錫又は錫合金めっき銅合金板材が提案されている(特許文献9参照)。しかし、この板材でも挿入力の低減効果は不充分であり、また、リフロー処理を施していないためウィスカによる短絡が懸念される。   Also, tin or tin for multipolar terminals with a reduced friction coefficient by adjusting the brightener concentration in the tin plating bath and forming a Sn or Sn alloy plating layer containing C on the surface of the copper alloy sheet. An alloy-plated copper alloy sheet has been proposed (see Patent Document 9). However, even with this plate material, the effect of reducing the insertion force is insufficient, and there is a concern that a short circuit due to whiskers occurs because no reflow treatment is performed.

特開平10−60666号公報Japanese Patent Laid-Open No. 10-60666 特開2004−68026号公報JP 2004-68026 A 特開2002−226982号公報JP 2002-226882 A 特開平11−135226号公報JP-A-11-135226 特開2007−258156号公報JP 2007-258156 A 特開2006−183068号公報JP 2006-183068 A 特開2006−77307号公報JP 2006-77307 A 特開2006−97062号公報JP 2006-97062 A 特許第2971035号公報Japanese Patent No. 2971035

本発明は、接圧の大小に関わらず、コネクタに使用される端子の嵌合時の摩擦係数、挿入力を低減できるだけでなく、電気的信頼性も高い(接触抵抗の経時変化が少ない)、嵌合型端子用錫めっき付き銅合金板材を提供することを目的とする。   The present invention not only reduces the friction coefficient and insertion force when fitting the terminals used in the connector regardless of the contact pressure, but also has high electrical reliability (less change in contact resistance over time) It aims at providing the copper alloy board | plate material with a tin plating for fitting type terminals.

本発明に係る嵌合型端子用錫めっき付き銅又は銅合金板材は、銅又は銅合金板材の表面に、Ni被覆層、Cu−Sn合金被覆層及びSn被覆層からなる表面めっき層がこの順に形成され、前記Ni被覆層は平均厚さが0.1〜1.0μm、Cu−Sn合金被覆層は表面露出面積率が10〜75%で、平均厚さが0.1〜1.0μm、前記Sn被覆層はリフロー処理されたもので、平均厚さが0.2〜1.5μmであり、前記表面めっき層の表面に黒鉛粒子が分散して付着し、前記黒鉛粒子が前記表面めっき層表面を面積比率30%以下で被い、かつ前記黒鉛粒子のうち粒径2μm以上の黒鉛粒子の平均粒径が3〜30μmで、前記表面めっき層表面を面積比率3%以上で被い、粒径2μm以上の黒鉛粒子のうち粒径10μm以上の粒子の個数の割合が3%以上であることを特徴とする。上記表面めっき層が形成された領域は、板材の片面又は両面全体に及んでいてもよいし、片面又は両面の一部のみを占めているのでもよい。 The copper or copper alloy sheet with tin plating for mating type terminals according to the present invention has a surface plating layer composed of a Ni coating layer, a Cu-Sn alloy coating layer and a Sn coating layer in this order on the surface of the copper or copper alloy sheet. The Ni coating layer is formed with an average thickness of 0.1 to 1.0 μm, the Cu—Sn alloy coating layer has a surface exposed area ratio of 10 to 75%, and an average thickness of 0.1 to 1.0 μm. The Sn coating layer has been reflowed and has an average thickness of 0.2 to 1.5 μm. The graphite particles are dispersed and adhered to the surface of the surface plating layer, and the graphite particles are attached to the surface plating layer. covered the surface with an area ratio of 30% or less, and the average particle size of the inner diameter 2μm or more of the graphite particles of the graphite particles in 3 to 30 .mu.m, it covered the surface plating layer surface area ratio of 3% or more, grain split of the number of out particle size 10μm or more particles of diameter 2μm or more graphite particles Wherein the but 3% or more. The region where the surface plating layer is formed may extend over one side or both sides of the plate material, or may occupy only part of one side or both sides.

上記錫めっき付き銅又は銅合金板材において、Ni被覆層とCu−Sn合金被覆層の間に、さらに平均厚さ0.5μm以下のCu被覆層が形成されていてもよい。
また、銅又は銅合金板材(めっき基材)の表面は、表面粗さが最も大きく表れる方向の算術平均粗さRaが0.15〜1.0μmであることが望ましい。
本発明において、Ni被覆層、Cu被覆層及びSn被覆層は、それぞれNi、Cu、Sn金属のほか、Ni合金、Cu合金及びSn合金を含む。
In the tin-plated copper or copper alloy sheet, a Cu coating layer having an average thickness of 0.5 μm or less may be further formed between the Ni coating layer and the Cu—Sn alloy coating layer.
Moreover, it is desirable that the surface of the copper or copper alloy sheet (plating base material) has an arithmetic average roughness Ra in a direction in which the surface roughness appears to be the largest, in a range of 0.15 to 1.0 μm.
In the present invention, the Ni coating layer, the Cu coating layer, and the Sn coating layer include Ni alloy, Cu alloy, and Sn alloy in addition to Ni, Cu, and Sn metal, respectively.

前記嵌合型端子用錫めっき付き銅又は銅合金板材は、銅又は銅合金板材の表面に、Niめっき層、Cuめっき層及びSnめっき層をこの順に形成し、Snめっき層の表面に黒鉛粒子を付着させ、次いでリフロー処理を行うことにより製造される。前記Cu−Sn合金被覆層は、リフロー処理により、Cuめっき層とSnめっき層のCuとSnが相互拡散して形成されるが、その際に当初のCuめっき層が全て消滅する場合と、一部が残留する場合(この場合に前記Cu被覆層が形成される)がある。
本発明において、Niめっき層、Cuめっき層及びSnめっき層は、それぞれNi、Cu、Sn金属のほか、Ni合金、Cu合金及びSn合金を含む。
なお、本明細書において、リフロー処理後の表面めっき層を構成する各層について「被覆層」と表現し、リフロー処理前の表面めっき層を構成する各層について「めっき層」と表現している。
The tin-plated copper or copper alloy plate material for fitting type terminals is formed by forming a Ni plating layer, a Cu plating layer, and a Sn plating layer in this order on the surface of the copper or copper alloy plate material, and graphite particles on the surface of the Sn plating layer. And then reflow treatment. The Cu—Sn alloy coating layer is formed by mutual diffusion of Cu and Sn in the Cu plating layer and the Sn plating layer by reflow treatment. In this case, all of the initial Cu plating layer disappears. May remain (in this case, the Cu coating layer is formed).
In the present invention, the Ni plating layer, the Cu plating layer, and the Sn plating layer include Ni alloy, Cu alloy, and Sn alloy in addition to Ni, Cu, and Sn metal, respectively.
In the present specification, each layer constituting the surface plating layer after the reflow treatment is expressed as “coating layer”, and each layer constituting the surface plating layer before the reflow treatment is expressed as “plating layer”.

本発明に係る錫めっき付き銅又は銅合金板材は、Cu−Sn合金被覆層が所定の割合で表面に露出していることにより、Sn層が表面全体を覆う一般的な錫めっき付き銅又は銅合金板材に比べ、摩擦係数を小さく、挿入力を低減することができ、また、主として低接圧において微摺動摩耗現象による電気的信頼性の低下を防止することができる(特許文献5〜7参照)。
そして、本発明によれば、このような錫めっき付き銅又は銅合金板材の摩擦係数をさらに大きく低下させ、特に接圧力を高めたときに問題となる嵌合型端子の挿入力を大きく低減することができる。より具体的にいえば、小型の極数の多い端子において、接点の電気的信頼性を向上させるために接圧力を高くしても、摩擦係数を小さく、挿入力を低減することができ、大型の極数の少ない端子においても、接圧力が高くても挿入力を低減することができる。しかもそれを黒鉛粒子を表面めっき層に付着させるという簡単で安価な手段で実現できる。
なお、本発明に係る錫めっき付き銅又は銅合金板材において、Sn被覆層表面に付着した黒鉛粒子により、錫めっき付き銅合金板材の電気的信頼性が低下することはない。
The tin-plated copper or copper alloy sheet material according to the present invention is a general tin-plated copper or copper with which the Sn layer covers the entire surface by exposing the Cu-Sn alloy coating layer to the surface at a predetermined ratio. Compared to an alloy plate material, the friction coefficient can be reduced, the insertion force can be reduced, and a decrease in electrical reliability due to a fine sliding wear phenomenon can be prevented mainly at a low contact pressure (Patent Documents 5 to 7). reference).
According to the present invention, the coefficient of friction of such tin-plated copper or copper alloy sheet is further greatly reduced, and the insertion force of the mating type terminal, which becomes a problem particularly when the contact pressure is increased, is greatly reduced. be able to. More specifically, in small terminals with many poles, even if the contact pressure is increased to improve the electrical reliability of the contacts, the friction coefficient can be reduced and the insertion force can be reduced. Even in a terminal having a small number of poles, the insertion force can be reduced even if the contact pressure is high. Moreover, it can be realized by a simple and inexpensive means of attaching graphite particles to the surface plating layer.
In addition, in the copper or copper alloy sheet with tin plating according to the present invention, the electrical reliability of the copper alloy sheet with tin plating is not lowered by the graphite particles attached to the surface of the Sn coating layer.

黒鉛粒子を付着させた後リフロー処理した錫めっき付き銅合金板材の表面の実体顕微鏡組織写真である。It is a stereomicroscope structure | tissue photograph of the surface of the copper alloy sheet | seat with a tin plating which made the reflow process after making a graphite particle adhere. リフロー処理した後黒鉛粒子を付着させた錫めっき付き銅合金板材(上段)及び黒鉛粒子を付着させた後リフロー処理した錫めっき付き銅合金板材(下段)の表面をを比較して示す組織写真である。It is the structure photograph which compares the surface of the tin-plated copper alloy sheet material (top) to which graphite particles were adhered after reflow treatment and the surface of the tin-plated copper alloy sheet material (bottom) to which graphite particles were adhered and reflow-treated is there. リフロー処理した後黒鉛粒子を付着させた錫めっき付き銅合金板材(上段)及び黒鉛粒子を付着させた後リフロー処理した錫めっき付き銅合金板材(下段)の表面を比較して示す実体顕微鏡写真である。A stereomicrograph showing a comparison of the surface of a tin-plated copper alloy sheet (upper) with graphite particles adhered after reflow treatment and a tin-plated copper alloy sheet (lower) with graphite particles deposited and reflowed is there.

以下、本発明に係る錫めっき付き銅合金板材及びその製造方法についてより具体的に説明する。なお、銅又は銅合金板材(めっき基材)及び表面めっき層(Ni被覆層、Cu−Sn合金被覆層、Sn被覆層、Cu被覆層)については、それ自体、公知の技術(特に特許文献5〜7参照)に属する。
(銅又は銅合金板材)
銅又は銅合金板材(めっき基材)は、端子に成形して使用することができるものであれば、どのような組成、特性のものを用いても良い。例えば、黄銅、りん青銅、Cu−Ni−Si系合金、Cu−Fe−P系合金、Cu−Ni−Sn−P系合金等を用いることができる。板厚は端子の用途、板材の導電率、機械的性質などに合わせて決めれば良いが、0.1〜2.0mm程度が一般に適当である。
Hereinafter, the tin-plated copper alloy sheet according to the present invention and the manufacturing method thereof will be described more specifically. In addition, about copper or a copper alloy board | plate material (plating base material) and a surface plating layer (Ni coating layer, Cu-Sn alloy coating layer, Sn coating layer, Cu coating layer), itself is a well-known technique (especially patent document 5). To 7).
(Copper or copper alloy sheet)
The copper or copper alloy plate material (plating base material) may have any composition and characteristics as long as it can be used after being molded into a terminal. For example, brass, phosphor bronze, Cu—Ni—Si alloy, Cu—Fe—P alloy, Cu—Ni—Sn—P alloy, or the like can be used. The plate thickness may be determined in accordance with the use of the terminal, the conductivity of the plate material, the mechanical properties, etc., but about 0.1 to 2.0 mm is generally appropriate.

(Ni被覆層)
表面めっき層のうちNi被覆層は、めっき基材である銅又は銅合金板材とCu−Sn合金被覆層の中間層として形成されている場合に、Cu−Sn合金被覆層及びSn被覆層への銅又は銅合金板材からのCuの拡散を防止するために施される。また、Ni被覆層は、銅合金板材中の合金元素の拡散による半田濡れ性劣化を抑制する効果もある。Cu−Sn合金被覆層とNi被覆層の拡散防止効果の相違については、Cu−Sn合金被覆層と比較してNi被覆層はより高温環境下を想定した場合でも、拡散防止効果を発揮する。このNi被覆層の平均厚さが0.1μm未満では、拡散防止効果が不充分であり、CuがSn被覆層の表層まで拡散して酸化物を形成し、変色と共に接触抵抗が高くなり、電気的信頼性がかえって低下する。一方、1.0μmを超えると曲げ加工で割れが発生するなど、端子への成形加工性が低下する。従って、Ni被覆層の平均厚さは0.1〜1.0μmとする。好ましくは0.1〜0.5μmである。Ni被覆層は純Niのみでなく、Cu、Ag、Sn、Co、P、B等の群より選んだ1種以上の元素を1〜10質量%程度含むNi合金を含む。
(Ni coating layer)
Of the surface plating layers, the Ni coating layer is formed as an intermediate layer between the copper or copper alloy plate material that is the plating base and the Cu-Sn alloy coating layer, and is applied to the Cu-Sn alloy coating layer and the Sn coating layer. It is applied to prevent the diffusion of Cu from the copper or copper alloy sheet. Further, the Ni coating layer also has an effect of suppressing solder wettability deterioration due to diffusion of alloy elements in the copper alloy sheet. Regarding the difference in the diffusion prevention effect between the Cu—Sn alloy coating layer and the Ni coating layer, the Ni coating layer exhibits the diffusion prevention effect even when a higher temperature environment is assumed compared to the Cu—Sn alloy coating layer. When the average thickness of the Ni coating layer is less than 0.1 μm, the diffusion preventing effect is insufficient, Cu diffuses to the surface of the Sn coating layer to form an oxide, and the contact resistance increases with discoloration. The reliability of the machine is reduced. On the other hand, if it exceeds 1.0 μm, the formability to the terminal is deteriorated, for example, cracking occurs in bending. Therefore, the average thickness of the Ni coating layer is 0.1 to 1.0 μm. Preferably it is 0.1-0.5 micrometer. The Ni coating layer contains not only pure Ni but also a Ni alloy containing about 1 to 10% by mass of one or more elements selected from the group of Cu, Ag, Sn, Co, P, B and the like.

(Cu−Sn合金被覆層)
表面めっき層のうちCu−Sn合金被覆層は、Sn被覆層へのNiの拡散を防止する。Cu−Sn合金被覆層の平均厚さが0.1μm未満では拡散防止効果が不充分であり、CuがSn被覆層の表層まで拡散して酸化物を形成し、変色と共に接触抵抗が高くなり電気信頼性が低下する。一方、平均厚さが1.0μmを超えると曲げ加工で割れが発生するなど、端子への成形加工性が低下する。従って、Cu−Sn合金被覆層の平均厚さは0.1〜1.0μmとする。好ましくは0.1〜0.5μmである。
(Cu-Sn alloy coating layer)
Of the surface plating layer, the Cu—Sn alloy coating layer prevents the diffusion of Ni into the Sn coating layer. When the average thickness of the Cu—Sn alloy coating layer is less than 0.1 μm, the diffusion preventing effect is insufficient, Cu diffuses to the surface layer of the Sn coating layer to form an oxide, and the contact resistance increases with discoloration. Reliability decreases. On the other hand, when the average thickness exceeds 1.0 μm, the formability to the terminal is deteriorated, for example, cracking occurs in bending. Therefore, the average thickness of the Cu—Sn alloy coating layer is 0.1 to 1.0 μm. Preferably it is 0.1-0.5 micrometer.

Cu−Sn合金被覆層は、Cu含有量が20〜70at%のCuSn相を主体とする金属間化合物からなる。好ましくは45〜65at%である。CuSn相はSn又はSn合金に比べて非常に硬く、それを材料の表面に形成させると、端子嵌合の際にSn被覆層同士で生じる凝着によるせん断抵抗を低くすることができ、摩擦係数を低くすることができる。一方、CuSn相はCuSn相よりもさらに硬いが、Cu含有量が多いために、材料表面に形成させると、加熱経時や腐食などによる材料表面のCuがSn被覆層表面に拡散し、表面のCu酸化物量が多くなり、接触抵抗を増加させ、電気的信頼性を維持するのが困難となる。ただし、Cu−Sn合金被覆層にCuSn相が一部含まれていてもよい。また、Sn被覆層中の成分元素が含まれていてもよい。
このCu−Sn合金被覆層は、一般的にはリフロー処理によりCuめっき層とSnめっき層のCuとSnが相互拡散して形成される。
The Cu—Sn alloy coating layer is made of an intermetallic compound mainly composed of a Cu 6 Sn 5 phase having a Cu content of 20 to 70 at%. Preferably it is 45-65 at%. The Cu 6 Sn 5 phase is very hard compared to Sn or Sn alloy, and if it is formed on the surface of the material, it can reduce the shear resistance due to the adhesion that occurs between the Sn coating layers during terminal fitting. The coefficient of friction can be lowered. On the other hand, the Cu 3 Sn phase is harder than the Cu 6 Sn 5 phase, but due to the high Cu content, if it is formed on the material surface, the Cu on the material surface diffuses to the Sn coating layer surface due to heat aging or corrosion. In addition, the amount of Cu oxide on the surface increases, increasing the contact resistance and making it difficult to maintain electrical reliability. However, a part of Cu 3 Sn phase may be included in the Cu—Sn alloy coating layer. Moreover, the component element in Sn coating layer may be contained.
This Cu—Sn alloy coating layer is generally formed by interdiffusion of Cu and Sn in the Cu plating layer and the Sn plating layer by a reflow process.

Cu−Sn合金被覆層は表面めっき層の最表面に一部露出している。その表面露出面積率は、材料の単位表面積あたりに露出するCu−Sn合金被覆層の表面積に100をかけた値として算出する。Cu−Sn合金被覆層の表面露出面積率が10%未満では、相手側の錫めっき材がCu−Sn合金被覆層に接触する割合が少なく、Sn同士の接触が多いため、Sn同士の凝着を低減する効果がほとんどなく、低い摩擦係数を得ることができない。また、Cu−Sn合金被覆層の材料表面露出率が75%を超える場合には、腐食環境において防食効果を示すSnの割合が少なく、腐食による劣化が早期に起こるため、接触抵抗値を増大させたりするなど、電気的信頼性を維持することが困難となる。従って、Cu−Sn合金被覆層の材料表面露出面積率は10〜75%とする。望ましくは20〜50%である。   The Cu—Sn alloy coating layer is partially exposed on the outermost surface of the surface plating layer. The surface exposed area ratio is calculated as a value obtained by multiplying the surface area of the Cu—Sn alloy coating layer exposed per unit surface area of the material by 100. When the surface exposed area ratio of the Cu—Sn alloy coating layer is less than 10%, the rate of contact of the counterpart tin plating material with the Cu—Sn alloy coating layer is small, and there is much contact between Sn, so that Sn adhesion There is almost no effect of reducing, and a low friction coefficient cannot be obtained. Further, when the material surface exposure rate of the Cu—Sn alloy coating layer exceeds 75%, the proportion of Sn exhibiting the anticorrosion effect in the corrosive environment is small and deterioration due to corrosion occurs early, so that the contact resistance value is increased. For example, it is difficult to maintain electrical reliability. Therefore, the material surface exposed area ratio of the Cu—Sn alloy coating layer is set to 10 to 75%. Desirably, it is 20 to 50%.

(Sn被覆層)
表面めっき層のうちSn被覆層は、耐食性と電気接点としての信頼性を確保するために施される。Sn被覆層の平均厚さが0.2μm未満では耐食性及び電気接点としての信頼性が不充分である。また、1.5μmを超えると、Cu−Sn合金被覆層が表面にほとんど露出しなくなり、挿入力の低減効果が望めない。従って、Sn被覆層の平均厚さは0.2〜1.5μmとする。好ましくは0.4〜1.2μmである。Sn被覆層は、純Snのみでなく、Cu、Ag、Ni、Co、Bi、P、Zn等の群より選んだ1種以上の元素を1〜10質量%程度含むSn合金を含む。このSn被覆層は、Cu−Sn合金被覆層がリフロー処理によりCuめっき層とSnめっき層のCuとSnが相互拡散して形成される際に、Cu−Sn合金被覆層の形成後も表面めっき層の最上層として残留する層である。
(Sn coating layer)
Of the surface plating layer, the Sn coating layer is applied to ensure corrosion resistance and reliability as an electrical contact. When the average thickness of the Sn coating layer is less than 0.2 μm, the corrosion resistance and the reliability as an electrical contact are insufficient. On the other hand, when the thickness exceeds 1.5 μm, the Cu—Sn alloy coating layer is hardly exposed on the surface, and the effect of reducing the insertion force cannot be expected. Therefore, the average thickness of the Sn coating layer is set to 0.2 to 1.5 μm. Preferably it is 0.4-1.2 micrometers. The Sn coating layer includes not only pure Sn but also an Sn alloy containing about 1 to 10% by mass of one or more elements selected from the group of Cu, Ag, Ni, Co, Bi, P, Zn and the like. This Sn coating layer is surface plated even after the formation of the Cu-Sn alloy coating layer when the Cu-Sn alloy coating layer is formed by mutual diffusion of Cu and Sn in the Cu plating layer and the Sn plating layer by reflow treatment. It is the layer that remains as the top layer of the layer.

(Cu被覆層)
Cu被覆層は、リフロー処理によってCuめっき層のCuとSnめっき層のSnからCu−Sn合金が形成される際に、Cuめっき層が全て消滅せず、一部が残留する場合に形成される。残留するCu被覆層は、平均厚さ0.1μm以上存在することでめっき基材である銅合金板中の合金元素やNi被覆層中のNiの拡散防止層の役割を有するが、表面へCuが拡散することによる耐食性の低下やめっき剥離の可能性があるため、平均厚さは0.5μm以下に制限される。好ましくは0.1〜0.3μmである。Cu被覆層は純Cuのみでなく、Sn、Zn等の他の元素を含んでいてもよい。Snの場合は50質量%以下、他の元素については5質量%以下であることが望ましい。また、銅合金板材に含まれる成分が少量含まれていてもよい。
(Cu coating layer)
When the Cu-Sn alloy is formed from Cu of the Cu plating layer and Sn of the Sn plating layer by the reflow process, the Cu coating layer is formed when the Cu plating layer does not completely disappear and a part remains. . The remaining Cu coating layer has a role of an anti-diffusion layer of alloy elements in the copper alloy plate which is the plating base and Ni in the Ni coating layer due to the presence of an average thickness of 0.1 μm or more. The average thickness is limited to 0.5 μm or less because there is a possibility that the corrosion resistance is reduced and the plating is peeled off due to diffusion. Preferably it is 0.1-0.3 micrometer. The Cu coating layer may contain not only pure Cu but also other elements such as Sn and Zn. In the case of Sn, it is desirable that it is 50 mass% or less, and about 5 mass% or less about another element. Moreover, the component contained in a copper alloy board | plate material may be contained in a small amount.

(黒鉛粒子)
Sn被覆層の表面に付着・分散している黒鉛粒子は、せん断力が非常に低く、潤滑性を有しているため、嵌合型端子の摺動部における摩擦係数を低減し、これにより挿入力の大幅な低減が可能となる。Cu−Sn合金被覆層が表面に露出していることによる挿入力低減に加えて、より一層の挿入力の低減が可能である。
小径(粒径が2μm未満)の黒鉛粒子は摩擦係数の低減に対して効果が小さい。そして潤滑効果の大きい粒径2μm以上の黒鉛粒子について、その平均粒径が3μm未満では、摺動時に接触面に噛み込まれない確率が高くなり、また、噛み込まれたとしても黒鉛粒子が小さいため、へき開を起こしても潤滑効果が少ない。一方、その平均粒径が30μmを超えると、摺動時に大きな黒鉛が噛み込まれへき開するため、十分な潤滑効果は得られるが、逆に、錫同士の接点における接触面積が確保しづらくなり、電気信頼性が損なわれる可能性がある。
(Graphite particles)
Graphite particles adhering to and dispersing on the surface of the Sn coating layer have a very low shearing force and lubricity, so that the friction coefficient at the sliding part of the mating type terminal is reduced, thereby inserting the graphite particles. The power can be greatly reduced. In addition to reducing the insertion force due to the Cu—Sn alloy coating layer being exposed on the surface, it is possible to further reduce the insertion force.
Graphite particles having a small diameter (particle diameter of less than 2 μm) are less effective for reducing the friction coefficient. For graphite particles having a particle size of 2 μm or more with a large lubricating effect, if the average particle size is less than 3 μm, there is a high probability that the particles will not be caught in the contact surface during sliding, and even if they are caught, the graphite particles are small. Therefore, even if cleavage occurs, the lubricating effect is small. On the other hand, when the average particle size exceeds 30 μm, large graphite is bitten and cleaved during sliding, so that a sufficient lubricating effect is obtained, but conversely, it is difficult to secure a contact area at the contact point between tins, Electrical reliability may be impaired.

黒鉛粒子が前記表面めっき層表面を被う面積比率は、表面めっき層表面に占める黒鉛粒子の面積割合を意味し、これが30%を超えると錫同士の接点における接触面積が確保しづらくなり、電気的信頼性が損なわれる可能性がある。一方、黒鉛粒子のうち潤滑効果の大きい粒径2μm以上の黒鉛粒子の面積比率が3%未満では嵌合型端子の摺動部において十分な潤滑効果が得られない。
また、粒径2μm以上の黒鉛粒子のうち粒径10μm以上の個数の割合が3%未満では、挿入力を低減するのに必要な黒鉛粒子が嵌合型端子の摺動部にかみ込まず、十分な潤滑効果が得られない。
The area ratio of the graphite particles covering the surface plating layer surface means the area ratio of the graphite particles occupying the surface plating layer surface. If this exceeds 30%, it becomes difficult to ensure the contact area at the contact point between the tins. Reliability may be compromised. On the other hand, if the area ratio of graphite particles having a large particle size of 2 μm or more among the graphite particles is less than 3%, a sufficient lubricating effect cannot be obtained at the sliding portion of the fitting type terminal.
Further, if the ratio of the number of particles having a particle size of 10 μm or more among the graphite particles having a particle size of 2 μm or more is less than 3%, the graphite particles necessary for reducing the insertion force do not bite into the sliding portion of the fitting type terminal, A sufficient lubricating effect cannot be obtained.

従って、本発明では、黒鉛粒子は表面めっき層表面を面積比率30%以下で被い、かつ黒鉛粒子のうち粒径2μm以上の黒鉛粒子の平均粒径が3〜30μmで、前記表面めっき層表面を面積比率3%以上(30%以下)で被い、そのうち粒径10μm以上の粒子の個数の割合が3%以上とする。好ましくは、粒径2μm以上の黒鉛粒子について、平均粒径が5〜25μm、面積比率が5〜28%、粒径10μm以上の占める個数の割合が5〜60%、さらに好ましくは、平均粒径が10〜15μm、面積比率が10〜20%、粒径10μm以上の占める個数の割合が20〜40%である。図1に黒鉛粒子が付着した表面めっき層表面の実体顕微鏡写真を示す。
使用する黒鉛粒子の形状・性質については、形状は燐片状、土状、塊状のうち、燐片状のものが望ましく、純度が高く、不純物が少ないものが望ましい。
Therefore, in the present invention, the graphite particles cover the surface plating layer surface with an area ratio of 30% or less, and among the graphite particles, the average particle size of graphite particles having a particle size of 2 μm or more is 3 to 30 μm, and the surface plating layer surface Is covered with an area ratio of 3% or more (30% or less), of which the ratio of the number of particles having a particle diameter of 10 μm or more is 3% or more. Preferably, for graphite particles having a particle size of 2 μm or more, the average particle size is 5 to 25 μm, the area ratio is 5 to 28%, the ratio of the number of particles having a particle size of 10 μm or more is 5 to 60%, more preferably the average particle size Is 10 to 15 μm, the area ratio is 10 to 20%, and the ratio of the number of particles having a particle diameter of 10 μm or more is 20 to 40%. FIG. 1 shows a stereoscopic microscope photograph of the surface plating layer surface to which the graphite particles are attached.
Regarding the shape and properties of the graphite particles to be used, the shape is preferably a flake shape, a flake shape, a soil shape, or a lump shape, and preferably has a high purity and few impurities.

(特性)
本発明において、表面めっき層の最表面にCu−Sn合金被覆層を所定割合で露出させることで、端子嵌合時のSn同士の凝着量を低減し、同時に表面のSn被覆層及び露出したCu−Sn合金被覆層の上に黒鉛粒子を分散付着させることで、端子嵌合時のSn同士の凝着量をさらに低減し、摩擦係数を大幅に低減することができる。また、接点部においては導電性を持っている黒鉛粒子、Snとの混合接触において、接続信頼性も確保することができる。
これにより、本発明に係る嵌型端子用銅又は銅合金板材は、実施例に示すように、動摩擦係数0.27未満(荷重:5N)、接触抵抗値1.0mΩ以下、及び優れた曲げ性を実現することができる。また、接圧力を高く設定しても、大幅な挿入力の増加はない。
(Characteristic)
In the present invention, the Cu—Sn alloy coating layer is exposed at a predetermined ratio on the outermost surface of the surface plating layer, thereby reducing the amount of Sn adhesion during terminal fitting, and simultaneously exposing the surface Sn coating layer and the surface plating layer. By dispersing and adhering the graphite particles on the Cu—Sn alloy coating layer, the amount of adhesion between Sn at the time of terminal fitting can be further reduced, and the friction coefficient can be greatly reduced. Further, in the contact portion, connection reliability can be ensured in the mixed contact with the graphite particles and Sn having conductivity.
Thereby, as shown in the Examples, the copper or copper alloy sheet for fitting type terminals according to the present invention has a dynamic friction coefficient of less than 0.27 (load: 5 N), a contact resistance value of 1.0 mΩ or less, and excellent bendability. Can be realized. Even if the contact pressure is set high, there is no significant increase in insertion force.

(製造方法)
上記嵌合型端子用銅又は銅合金板材は、めっき基材である銅又は銅合金板上に、Niめっき層、Cuめっき層、及びSnめっき層をこの順に形成し、Snめっき層の表面に、燐片状黒鉛を付着させ、続いてリフロー処理を行って製造することができる。
(Production method)
The copper or copper alloy plate material for fitting type terminals is formed with a Ni plating layer, a Cu plating layer, and a Sn plating layer in this order on a copper or copper alloy plate which is a plating base, and on the surface of the Sn plating layer. It can be manufactured by attaching flake graphite and then performing a reflow treatment.

錫めっき付き銅又は銅合金板材(リフロー処理前)の表面に黒鉛粒子を付着させるには、Snめっき後、板材の表面(片面又は両面)に、エアー等により黒鉛粒子を吹き付ける、黒鉛粒子を懸濁させたアルコールを吹き付ける、黒鉛粒子を充填した容器中を板材を通過させ、あるいは板材を通板しながらその表面に黒鉛粒子を落下させ、その後エアブローして余分な黒鉛粒子を除去する、等の方法が可能である。
黒鉛粒子がSnめっき層表面に不均一に(一部が凝集した状態で)付着していても、続いてSnめっき層をリフロー処理して溶融させることで、比重の軽い黒鉛粒子はSnめっき表層に均一に分散し、Sn被覆層及び露出したCu−Sn合金被覆層表面に付着する。表面めっき層(Sn被覆層及び露出したCu−Sn合金被覆層)表面に単に物理的に付着させた黒鉛粒子は結合が微弱であり、脱脂工程や拭き取りによって脱離しやすいのに対して、上記工程で製造することによって表面めっき層表面への付着が強固となり、脱脂工程や拭き取りによる脱離を最小限に抑え、低摩擦効果を維持することができる。従って、リフロー処理後に黒鉛粒子を付着させるより、リフロー処理前に付着させておくことが望ましい。
To attach graphite particles to the surface of a tin-plated copper or copper alloy sheet (before reflow treatment), after Sn plating, the graphite particles are blown onto the surface (one or both sides) of the sheet by air or the like. Spraying turbid alcohol, passing a plate material through a container filled with graphite particles, or dropping graphite particles on the surface while passing the plate material, then air blowing to remove excess graphite particles, etc. A method is possible.
Even if the graphite particles adhere non-uniformly (partially in an aggregated state) to the Sn plating layer surface, the Sn plating layer can be melted by reflowing the Sn plating layer. And uniformly adhered to the surface of the Sn coating layer and the exposed Cu-Sn alloy coating layer. The graphite particles simply physically attached to the surface plating layer (Sn coating layer and exposed Cu-Sn alloy coating layer) surface are weakly bonded and easily detached by degreasing and wiping. By manufacturing with, the adhesion to the surface plating layer surface becomes strong, the desorption due to the degreasing process and wiping can be minimized, and the low friction effect can be maintained. Therefore, it is desirable to adhere the graphite particles before the reflow treatment, rather than the graphite particles after the reflow treatment.

リフロー処理後に表面めっき層の表面に黒鉛粒子を付着させた錫めっき付き銅又は銅合金板材と、表面めっき層の表面に黒鉛粒子を付着させた後リフロー処理した錫めっき付き銅又は銅合金板材とは明確に区別できる。目視観察すると、前者(図2上段)は表面めっき層の表面を黒鉛粒子が黒々と被い、鏡面光沢が見られない状態となっているのに対し、後者(図2下段)はある程度の鏡面光沢を有し、表面に薄く黒鉛の被膜が付いたような状態で外観がほとんど一般的なリフロー錫めっきと変わらない。また、実体顕微鏡写真を見ると、前者(図3上段)は黒鉛粒子の一部が凝集した状態であるが、後者(図3下段)はほぼ均一に分散した状態となっている。さらに、例えばアセトン超音波脱脂及び拭き取りを行ったとき、前者は脱離する黒鉛粒子が多いが、後者は少なく相違は顕著である。   A tin-plated copper or copper alloy plate material with graphite particles attached to the surface of the surface plating layer after the reflow treatment, and a tin-plated copper or copper alloy plate material with graphite particles attached to the surface of the surface plating layer and then reflow treatment; Are clearly distinguishable. When visually observed, the former (the upper part of FIG. 2) covers the surface of the surface plating layer with black graphite particles, and the mirror gloss is not seen, whereas the latter (the lower part of FIG. 2) has a certain mirror surface. The appearance is almost the same as a general reflow tin plating in the state that it has a gloss and has a thin graphite film on its surface. Further, from a stereoscopic micrograph, the former (the upper part in FIG. 3) is in a state where some of the graphite particles are aggregated, while the latter (the lower part in FIG. 3) is in a substantially uniformly dispersed state. Further, for example, when acetone ultrasonic degreasing and wiping are performed, the former has many graphite particles to be detached, but the latter is small and the difference is remarkable.

上記製造方法において、めっき基材である銅又は銅合金板上に形成するNiめっき層、Cuめっき層、Snめっき層は、いずれも電気めっきで形成するのが望ましい。無電解めっきで行う方法もあるが、還元剤がめっき皮膜中に取り込まれ、高温放置後にボイドを発生する。なお、Niめっき層、Cuめっき層及びSnめっき層が、それぞれNi合金、Cu合金及びSn合金からなる場合、先にNi被覆層、Cu被覆層及びSn被覆層に関して説明した各合金を用いることができる。
電気めっきの望ましい条件として、Niめっきのめっき浴としては、ワット浴やスルファミン酸浴を用いる。めっき条件は、温度45℃〜60℃、電流密度3〜20A/dmで行う。Niめっきで重要なのは電流密度であり、3A/dm未満では均一電着性が悪く、20A/dmを超えるとNiめっき粒が荒れてくる。
In the above manufacturing method, it is desirable that the Ni plating layer, the Cu plating layer, and the Sn plating layer formed on the copper or copper alloy plate as the plating base material are all formed by electroplating. Although there is a method of performing electroless plating, the reducing agent is taken into the plating film, and voids are generated after being left at a high temperature. In addition, when the Ni plating layer, the Cu plating layer, and the Sn plating layer are respectively made of a Ni alloy, a Cu alloy, and a Sn alloy, it is possible to use the respective alloys described above regarding the Ni coating layer, the Cu coating layer, and the Sn coating layer. it can.
As a desirable condition for electroplating, a watt bath or a sulfamic acid bath is used as a plating bath for Ni plating. The plating conditions are a temperature of 45 ° C. to 60 ° C. and a current density of 3 to 20 A / dm 2 . What is important in the Ni plating is the current density. If it is less than 3 A / dm 2 , the throwing power is poor, and if it exceeds 20 A / dm 2 , the Ni plating grains become rough.

Cuめっきのめっき浴としては、通常はシアン浴を用いるが、Snめっき液へのシアン混入による液劣化や排水処理の問題があるため、硫酸浴が望ましい。めっき条件は、温度30℃〜40℃、電流密度2.5〜10A/dmである。温度が40℃を超えるとCuめっき粒が荒れ、均一な厚みのCuめっき層ができなくなる。一方、温度が30℃未満になると、Cuめっき粒は荒れないが、均一電着性が悪くなる。
Snめっきのめっき浴としては、硫酸浴を用いる。めっき条件は、温度25℃以下、電流密度2〜10A/dmで行う。
As a plating bath for Cu plating, a cyan bath is usually used, but a sulfuric acid bath is desirable because there is a problem of liquid deterioration and wastewater treatment due to cyan mixing in the Sn plating solution. The plating conditions are a temperature of 30 ° C. to 40 ° C. and a current density of 2.5 to 10 A / dm 2 . When the temperature exceeds 40 ° C., Cu plating grains are rough, and a Cu plating layer having a uniform thickness cannot be formed. On the other hand, when the temperature is less than 30 ° C., the Cu plating grains are not roughened, but the throwing power is deteriorated.
A sulfuric acid bath is used as a plating bath for Sn plating. The plating conditions are a temperature of 25 ° C. or less and a current density of 2 to 10 A / dm 2 .

リフロー処理は230℃〜600℃の温度で5〜30秒間加熱する熱処理が望ましい。このリフロー処理を行うことによって、Cuめっき層とSnめっき層からCuとSnが相互拡散してCu−Sn合金被覆層が形成され、めっきの残留応力が緩和され、ウィスカが発生しなくなる。加熱温度が230℃未満ではSnが溶融せず、600℃を超えるとめっき基材である銅又は銅合金板が軟化し、歪が発生するとともに、Cu含有量の高いCu−Sn合金被覆層が形成され、接触抵抗値が増大する。また、付着させた黒鉛粒子が酸化を始め、潤滑効果が得られなくなる。加熱時間が5秒未満では熱伝達が不均一であり、必要な厚みのCu−Sn合金被覆層を形成できず、30秒を超えると表面のSnめっき層の酸化が進み、接触抵抗値が増大する。リフロー処理によってCuめっき層が全て消滅せず、一部が残留する場合、残留するCuめっき層の平均厚さは0.5μm以下に制限される。   The reflow treatment is preferably a heat treatment in which heating is performed at a temperature of 230 ° C. to 600 ° C. for 5 to 30 seconds. By performing this reflow treatment, Cu and Sn are mutually diffused from the Cu plating layer and the Sn plating layer to form a Cu—Sn alloy coating layer, the residual stress of plating is relaxed, and whiskers are not generated. When the heating temperature is less than 230 ° C., Sn does not melt, and when it exceeds 600 ° C., the copper or copper alloy plate that is the plating base material is softened, distortion occurs, and a Cu—Sn alloy coating layer having a high Cu content is formed. As a result, the contact resistance value increases. Further, the adhered graphite particles start to oxidize, and the lubricating effect cannot be obtained. If the heating time is less than 5 seconds, heat transfer is uneven, and a Cu—Sn alloy coating layer with a required thickness cannot be formed. If it exceeds 30 seconds, oxidation of the Sn plating layer on the surface proceeds and the contact resistance value increases. To do. When the Cu plating layer is not completely disappeared by the reflow process and a part thereof remains, the average thickness of the remaining Cu plating layer is limited to 0.5 μm or less.

説明が後先になったが、本発明において、リフロー処理後にCu−Sn合金被覆層の一部を表面に露出させるため、表面粗さが最も大きく表れる方向の算術平均粗さRaが0.15〜1.0μmである銅又は銅合金板材を用いることが望ましい。この表面粗さ(凹凸表面)は圧延又は機械的研磨により形成することができる。凹凸表面は極度に大きい山谷のないように全体的に均一に形成することが望ましい。
めっき基材である銅又は銅合金板材がこの表面粗さを有することにより、リフロー処理により、溶融した表面凸部のSnが表面凹部に流動し、Sn被覆層の表面が平滑化され、さらにリフロー処理中に形成されるCu−Sn合金被覆層の一部が前記Sn被覆層の表面に露出する。前記算術平均粗さRaが0.15μm以上であることにより、Cu−Sn合金被覆層の表面露出面積率を10〜75%としながら、同時にSn被覆層の平均の厚さを0.2〜1.5μmとすることができる。一方、前記算術平均粗さRaが1.0μm以下であることにより、溶融Snの流動作用によるSn被覆層表面の平滑化を行うことができる。Sn被覆層表面が平滑化しないと曲げ加工性が劣化し接触抵抗が増大する。
Although the explanation was later, in the present invention, in order to expose a part of the Cu-Sn alloy coating layer on the surface after the reflow treatment, the arithmetic average roughness Ra in the direction in which the surface roughness appears to be the largest is 0.15. It is desirable to use a copper or copper alloy sheet having a thickness of ˜1.0 μm. This surface roughness (uneven surface) can be formed by rolling or mechanical polishing. It is desirable to form the uneven surface uniformly so that there are no extremely large peaks and valleys.
The copper or copper alloy plate material that is the plating substrate has this surface roughness, so that the reflow treatment causes the molten surface convex portion Sn to flow into the surface concave portion, the surface of the Sn coating layer is smoothed, and reflow A part of the Cu—Sn alloy coating layer formed during the processing is exposed on the surface of the Sn coating layer. When the arithmetic average roughness Ra is 0.15 μm or more, the surface exposed area ratio of the Cu—Sn alloy coating layer is 10 to 75%, and at the same time, the average thickness of the Sn coating layer is 0.2 to 1. .5 μm. On the other hand, when the arithmetic average roughness Ra is 1.0 μm or less, the surface of the Sn coating layer can be smoothed by the flowing action of molten Sn. If the surface of the Sn coating layer is not smoothed, the bending workability deteriorates and the contact resistance increases.

これまで、本発明に係る表面めっき層の製造方法に関しては、銅又は銅合金板材にNiめっき層、Cuめっき層及びSnめっき層をこの順に形成してリフロー処理し、Cuめっき層とSnめっき層からCuとSnを相互拡散させてCu−Sn合金被覆層を形成する方法を説明したが、Niめっき層の上にCu−Sn合金めっき層を施し、その上にSnめっき層を形成することでも得ることができる。この場合も、Snめっき層の表面に前記燐片状黒鉛を付着させ、続いてSnめっき層のリフロー処理を行うことが望ましい。   Up to now, regarding the method for producing a surface plating layer according to the present invention, a Ni plating layer, a Cu plating layer, and a Sn plating layer are formed in this order on a copper or copper alloy sheet, and a reflow treatment is performed. The method of forming a Cu—Sn alloy coating layer by interdiffusion of Cu and Sn from the above has been described. Alternatively, a Cu—Sn alloy plating layer is applied on the Ni plating layer, and the Sn plating layer is formed thereon. Can be obtained. Also in this case, it is desirable to adhere the flake graphite to the surface of the Sn plating layer, and subsequently to perform a reflow treatment of the Sn plating layer.

厚さ0.25mmのCu−Ni−P系銅合金板材を機械的な方法(圧延又は研磨)で表面粗化処理を行い、所定の表面粗さを有する銅合金板材に仕上げた。その銅合金板材にNiめっき(一部は行わず)、Cuめっき、Snめっきをそれぞれ所定の厚さで施し、錫めっき付き銅合金板材を作製した。Niめっき、Cuめっき及びSnめっきのめっき浴及びめっき条件を表1〜表3に、各銅合金板材の表面粗さ(算術平均粗さRa)を表4に、各めっき層の平均厚さを同じく表4の初期表面めっき層の欄に示す。   A Cu—Ni—P-based copper alloy sheet having a thickness of 0.25 mm was subjected to a surface roughening treatment by a mechanical method (rolling or polishing) to finish a copper alloy sheet having a predetermined surface roughness. The copper alloy plate material was subjected to Ni plating (partially not performed), Cu plating, and Sn plating with a predetermined thickness to produce a copper alloy plate material with tin plating. The plating baths and plating conditions for Ni plating, Cu plating and Sn plating are shown in Tables 1 to 3, the surface roughness (arithmetic average roughness Ra) of each copper alloy sheet is shown in Table 4, and the average thickness of each plating layer is shown. Similarly, it is shown in the column of the initial surface plating layer in Table 4.

なお、銅合金板材の表面粗さ、及び初期表面めっき層(リフロー処理前)を構成する各めっき層の平均厚さは下記要領で測定した。
[表面粗さ測定]
接触式表面粗さ計(株式会社東京精密:サーフコム1400)を用いて、JIS B0601−2001に基づいて測定した。表面粗さの測定条件は、カットオフ値を0.8mm、基準長さを0.8mm、評価長さを4.0mm、測定速度を0.3mm/s、及び触針式先端半径を5?mRとした。なお、表面粗さの測定方向は、表面粗化処理を行った圧延又は研磨方向に直角な方向(表面粗さが最も大きく表れる方向)とした。
The surface roughness of the copper alloy sheet and the average thickness of each plating layer constituting the initial surface plating layer (before reflow treatment) were measured as follows.
[Surface roughness measurement]
It measured based on JISB0601-2001 using the contact-type surface roughness meter (Tokyo Seimitsu: Surfcom 1400). The measurement conditions for the surface roughness were a cutoff value of 0.8 mm, a reference length of 0.8 mm, an evaluation length of 4.0 mm, a measurement speed of 0.3 mm / s, and a stylus tip radius of 5? It was set as mR. The measurement direction of the surface roughness was a direction perpendicular to the rolling or polishing direction in which the surface roughening treatment was performed (the direction in which the surface roughness appears the largest).

[Niめっき層及びSnめっき層の厚さ測定]
蛍光X線膜厚計(セイコーインスツルメンツ株式会社;型式SFT3200)を用いて平均厚さを測定した。測定条件は、検量線にSn/母材の単層検量線を用い、コリメータ計をφ0.5mmとした。
[Cuめっき層の厚さ測定]
ミクロトーム法にて加工した板材の断面をSEM(走査型電子顕微鏡)を用いて1000倍の倍率で観察し、画像解析処理により平均厚さを算出した。
[Measurement of thickness of Ni plating layer and Sn plating layer]
The average thickness was measured using a fluorescent X-ray film thickness meter (Seiko Instruments Inc .; model SFT3200). The measurement conditions were a single layer calibration curve of Sn / base material for the calibration curve, and a collimator meter of φ0.5 mm.
[Cu plating layer thickness measurement]
The cross section of the plate material processed by the microtome method was observed at a magnification of 1000 times using an SEM (scanning electron microscope), and the average thickness was calculated by image analysis processing.

続いて、この錫めっき付き銅合金板材の表面に燐片状の黒鉛粒子を付着させ(No.23〜25は付着させず)、リフロー処理を行い、これを供試材とした。リフロー処理後の表面めっき層を構成する各被覆層の平均厚さを表5のリフロー後の表面めっき層の欄に示し、表面に付着した黒鉛粒子の面積比率、粒径2μm以上の黒鉛粒子の平均粒径、そのうち粒径10μm以上の粒子の個数の割合を、同じく表5に示す。なお、粒径2μm未満の黒鉛粒子の面積比率はいずれも1%以下であった。表5には粒径2μm以上の黒鉛粒子の面積比率のみを示す。   Subsequently, scaly graphite particles were adhered to the surface of the tin-plated copper alloy sheet (No. 23 to 25 were not adhered), and a reflow treatment was performed, which was used as a test material. The average thickness of each coating layer constituting the surface plating layer after the reflow treatment is shown in the column of the surface plating layer after reflowing in Table 5, the area ratio of the graphite particles adhering to the surface, the graphite particles having a particle size of 2 μm or more Table 5 shows the average particle diameter, and the ratio of the number of particles having a particle diameter of 10 μm or more. The area ratio of graphite particles having a particle diameter of less than 2 μm was 1% or less. Table 5 shows only the area ratio of graphite particles having a particle diameter of 2 μm or more.

各被覆層(リフロー処理後)の平均厚さは下記要領で測定し、Cu−Sn合金被覆層中のCu含有量、表面露出面積率について下記要領で確認した。また、黒鉛粒子の面積比率、黒鉛粒子の平均粒径、及び粒径10μm以上の粒子の個数の割合について、下記要領で測定した。
[Sn被覆層の厚さ測定]
蛍光X線膜厚計(セイコーインスツルメンツ株式会社:SFT3200)を用いて、Sn被覆層の平均厚さとCu−Sn合金被覆層に含有されるSn成分の平均厚さの和を測定した。その後、p−ニトロフェノール及び苛性ソーダを成分とする水溶液に10分間浸漬し、Sn被覆層を除去した。再度、蛍光X線膜厚計(セイコーインスツルメンツ株式会社:SFT3200)を用いて、Cu−Sn合金被覆層に含有されているSn成分の平均厚さを測定した。測定条件は、検量線にSn/母材の単層検量線を用い、コリメータ径をφ0.5mmとした。得られたSn被覆層の平均厚さとCu−Sn合金被覆層に含有されているSn成分の平均厚さの和から、Cu−Sn合金被覆層に含有しているSn成分の平均厚さを差し引くことにより、Sn被覆層の平均厚さを算出した。
The average thickness of each coating layer (after reflow treatment) was measured in the following manner, and the Cu content and the surface exposed area ratio in the Cu—Sn alloy coating layer were confirmed in the following manner. Further, the area ratio of the graphite particles, the average particle diameter of the graphite particles, and the ratio of the number of particles having a particle diameter of 10 μm or more were measured in the following manner.
[Sn coating layer thickness measurement]
The sum of the average thickness of the Sn coating layer and the average thickness of the Sn component contained in the Cu-Sn alloy coating layer was measured using a fluorescent X-ray film thickness meter (Seiko Instruments Inc .: SFT3200). Then, it immersed in the aqueous solution which uses p-nitrophenol and caustic soda as a component for 10 minutes, and removed Sn coating layer. Again, the average thickness of the Sn component contained in the Cu—Sn alloy coating layer was measured using a fluorescent X-ray film thickness meter (Seiko Instruments Inc .: SFT3200). The measurement conditions were a single-layer Sn / base metal calibration curve as the calibration curve, and a collimator diameter of 0.5 mm. The average thickness of the Sn component contained in the Cu-Sn alloy coating layer is subtracted from the sum of the average thickness of the obtained Sn coating layer and the average thickness of the Sn component contained in the Cu-Sn alloy coating layer. Thus, the average thickness of the Sn coating layer was calculated.

[Cu−Sn合金被覆層の厚さ測定]
Cu−Sn合金層の厚さは、上記の剥離液に供試材を浸漬しSn層を剥離した後、蛍光X線膜厚計を用いて測定した。
[Cu被覆層の厚さ測定]
Cu被覆層の厚さは、ミクロトーム法にて加工した板材の断面をSEM観察し、画像解析処理により平均厚さとして算出した。
[Ni被覆層の厚さ測定]
Ni被覆層の厚さは、蛍光X線膜厚計を用いて測定した。
[Measurement of thickness of Cu-Sn alloy coating layer]
The thickness of the Cu—Sn alloy layer was measured using a fluorescent X-ray film thickness meter after immersing the test material in the above stripping solution and stripping the Sn layer.
[Cu coating layer thickness measurement]
The thickness of the Cu coating layer was calculated as an average thickness by SEM observation of the cross section of the plate material processed by the microtome method, and image analysis processing.
[Measurement of Ni coating layer thickness]
The thickness of the Ni coating layer was measured using a fluorescent X-ray film thickness meter.

[Cu−Sn合金中のCu含有量(at%)測定]
まず、p−ニトロフェノール及び苛性ソーダを成分とする剥離液に10分間浸漬し、最表面のSn層を除去する。その後、試料表面の酸化及び汚れ等の付着物の影響をなくすため深さ300Åの地点までアルゴンエッチングし、Cu−Sn合金層中のCu含有量をESCA−LAB210D(VG社製)で測定した。No.1〜26のCu含有量はいずれも55at%(CuSnの組成)であった。
[Measurement of Cu content (at%) in Cu-Sn alloy]
First, the outermost Sn layer is removed by immersing in a stripping solution containing p-nitrophenol and caustic soda as components for 10 minutes. Thereafter, the surface of the sample was subjected to argon etching to a depth of 300 mm in order to eliminate the influence of oxidation and contamination on the sample surface, and the Cu content in the Cu—Sn alloy layer was measured with ESCA-LAB210D (manufactured by VG). No. The Cu contents of 1 to 26 were all 55 at% (composition of Cu 6 Sn 5 ).

[黒鉛粒子の面積比率]
黒鉛粒子が付着した供試材の表面を、実体顕微鏡により観察して表面の画像(倍率×500,面積500μm×670μm)を取得し、その画像を元に、粒径2μm以上の全ての黒鉛粒子の面積を画像解析ソフトによって算出し、その面積の総和を画像中に占める粒径2μm以上の黒鉛粒子の総面積とし、これを画像全体の面積で除した値を粒径2μm以上の黒鉛粒子の面積比率とした。実体顕微鏡の画像の一例を図1に示す。一方、粒径2μm未満の黒鉛粒子の面積比率は、より拡大した(倍率の高い)画像を取得し、前記と同様の画像解析の手法で求めた。その結果、本実施例において粒径2μm未満の黒鉛粒子の面積比率は極めて小さく、いずれも1%以下と算出された。なお、この結果は、前記500倍の画像を用いて事前に目視判定した結果(1%以下と判定)と一致した。
[Area ratio of graphite particles]
The surface of the test material to which the graphite particles are adhered is observed with a stereomicroscope to obtain a surface image (magnification × 500, area 500 μm × 670 μm). Based on the image, all the graphite particles having a particle size of 2 μm or more are obtained. Is calculated by image analysis software, and the sum of the areas is defined as the total area of graphite particles having a particle size of 2 μm or more in the image, and the value obtained by dividing this by the area of the entire image is calculated for the graphite particles having a particle size of 2 μm or more. The area ratio was used. An example of a stereoscopic microscope image is shown in FIG. On the other hand, the area ratio of the graphite particles having a particle diameter of less than 2 μm was obtained by obtaining a larger image (higher magnification) and using the same image analysis technique as described above. As a result, in this example, the area ratio of graphite particles having a particle diameter of less than 2 μm was extremely small, and both were calculated to be 1% or less. This result coincided with the result of visual judgment in advance using the 500 times image (determined to be 1% or less).

[平均粒径]
粒径2μm以上の黒鉛粒子の粒径は円相当直径(各粒子と同一面積の円の直径)とした。前記画像を元に、粒径2μm以上の全黒鉛粒子について粒径を求め、粒径の和を粒径2μm以上の全黒鉛粒子の数で除した値をその平均粒径とした。
[粒径10μm以上の割合]
前記画像を元に、粒径2μm以上の黒鉛粒子のうち粒径10μm以上の黒鉛粒子の割合を、粒径10μm以上の黒鉛粒子の数を粒径2μm以上の黒鉛粒子の全粒子数で除して求めた。
[Average particle size]
The particle diameter of graphite particles having a particle diameter of 2 μm or more was set to the equivalent circle diameter (the diameter of a circle having the same area as each particle). Based on the image, the particle size was obtained for all graphite particles having a particle size of 2 μm or more, and the average particle size was obtained by dividing the sum of the particle sizes by the number of all graphite particles having a particle size of 2 μm or more.
[Ratio of particle size of 10 μm or more]
Based on the image, the ratio of graphite particles having a particle size of 10 μm or more out of graphite particles having a particle size of 2 μm or more is divided by the total number of graphite particles having a particle size of 2 μm or more. Asked.

続いて、No.1〜26の供試材を用い、動摩擦係数、接触抵抗値、曲げ加工性、めっき平滑性について、下記要領で評価した。その結果を表6に示す。
Subsequently, no. Using the test materials 1 to 26, the dynamic friction coefficient, contact resistance value, bending workability, and plating smoothness were evaluated in the following manner. The results are shown in Table 6.

[摩擦力と動摩擦係数の測定方法]
端子嵌合時の挿入力の評価として、最大摩擦力と動摩擦係数を用いた。嵌合型端子の接点部の形状を想定して、供試材から切り出した板状の雄試験片を水平な台に固定し、その上に供試材を内径1.5mmで半球加工した雌試験片を置いて、錫めっき面同士を接触させ、雌試験片に荷重W(3.0N,5.0N)をかけて雄試験片を押え、横型荷重測定機(アイコーエンジニアリング株式会社製Model−2152)を用いて、雄試験片を水平方向に引張り(摺動速度80mm/min)、摺動距離5mmまでの最大摩擦力Fを測定した。摩擦係数μを下記式(1)により求めた。供試材は雄試験片に適用し、雌試験片は黒鉛が付着していない錫めっき付き銅合金材(表面めっき層として平均厚さ0.5μmのCu−Sn合金被覆層と平均厚さ0.5μmのSn被覆層を有するもの)を用いた。
各荷重Wにおける、最大摩擦力を各荷重の摩擦力とし、さらに、下記式(1)を用いて算出した値を各荷重における摩擦係数とした。
摩擦係数=F/W・・・・(1)
標準的な錫めっき付き銅合金材(従来例)であるNo.23の3N,5Nにおける摩擦力及び摩擦係数を基準として、その50%未満の摩擦力及び摩擦係数のものをそれぞれ合格と評価した。
[Measurement method of friction force and dynamic friction coefficient]
The maximum frictional force and the dynamic friction coefficient were used for evaluating the insertion force at the time of terminal fitting. Assuming the shape of the contact part of the mating type terminal, a female plate obtained by fixing a plate-shaped male test piece cut out from the test material to a horizontal base and processing the test material with an inner diameter of 1.5 mm thereon Place the test piece, bring the tin-plated surfaces into contact with each other, apply a load W (3.0N, 5.0N) to the female test piece to hold the male test piece, and press the horizontal load measuring machine (Model- made by Aiko Engineering Co., Ltd.). 2152), the male test piece was pulled in the horizontal direction (sliding speed 80 mm / min), and the maximum frictional force F up to a sliding distance of 5 mm was measured. The coefficient of friction μ was determined by the following formula (1). The test material was applied to a male test piece, and the female test piece was a copper alloy material with tin plating to which graphite was not attached (Cu-Sn alloy coating layer having an average thickness of 0.5 μm as a surface plating layer and an average thickness of 0). Having a Sn coating layer of 5 μm).
The maximum frictional force at each load W was taken as the frictional force at each load, and the value calculated using the following equation (1) was taken as the friction coefficient at each load.
Friction coefficient = F / W (1)
Standard tin-plated copper alloy material (conventional example) No. Based on the friction force and coefficient of friction at 23N of 3N and 5N, those having a friction force and coefficient of friction of less than 50% were evaluated as acceptable.

[高温放置後の接触抵抗測定]
加熱時の電気接点における信頼性の評価として、高温放置後の接触抵抗値を用いた。供試材に対し大気中にて160℃×120hrの熱処理を行った後、接触抵抗を4端子法により、開放電圧20mV、電流10mA、荷重3N、摺動の条件にて測定した。
[曲げ加工性]
試験片を圧延方向が長手になるように切出し、JISH3110に規定されるW曲げ試験冶具を用い、圧延方向に対して直角方向となるように9.8×103Nの荷重で曲げ加工を施した。その後、ミクロトーム法にて、断面を切出し観察を行った。曲げ加工性の評価は、試験後の曲げ加工部に発生したクラックが銅合金板材へ伝播しないレベルを○と評価し、銅合金母材へ伝播し銅合金板材へクラックが発生するレベルを×と評価した。
[Measurement of contact resistance after standing at high temperature]
As an evaluation of the reliability of the electrical contact during heating, the contact resistance value after leaving at high temperature was used. After the heat treatment of 160 ° C. × 120 hr was performed on the test material in the air, the contact resistance was measured by a four-terminal method under the conditions of an open circuit voltage of 20 mV, a current of 10 mA, a load of 3 N, and sliding.
[Bending workability]
The test piece was cut out so that the rolling direction was long, and was bent with a load of 9.8 × 103 N so as to be perpendicular to the rolling direction using a W bending test jig defined in JISH3110. Then, the cross section was cut out and observed by the microtome method. For the evaluation of bending workability, the level at which the crack generated in the bent part after the test does not propagate to the copper alloy sheet is evaluated as ◯, and the level at which the crack propagates to the copper alloy base material and the crack occurs in the copper alloy sheet is evaluated as x. evaluated.

[めっき平滑性]
算術平均うねりWaを、接触式表面粗さ計(株式会社東京精密:サーフコム1400)を用いて、JIS B0601−2001に基づいて求め、算術平均うねりWaが0.6μmを超えるものがめっき平滑性が悪いと評価した。断面SEM観察でも、算術平均うねりWaが0.6μmを超えるものは、表面めっき層の表面が平滑でないことを確認した。なお、うねり曲線の測定方向は、表面粗化処理を行った圧延又は研磨方向に直角な方向とした。
[Plating smoothness]
Arithmetic average waviness Wa is determined based on JIS B0601-2001 using a contact surface roughness meter (Tokyo Seimitsu: Surfcom 1400). Rated bad. Even in cross-sectional SEM observation, it was confirmed that the surface of the surface plating layer was not smooth when the arithmetic average waviness Wa exceeded 0.6 μm. The measurement direction of the waviness curve was a direction perpendicular to the rolling or polishing direction in which the surface roughening treatment was performed.

表6に示すように、リフロー後の表面めっき層の構成及び黒鉛粒子の分布形態に関する本発明の規定を満たすNo.1〜8は、3Nと5Nの両荷重とも動摩擦係数が0.25未満で、標準材(No.23)に比べて大きく低下(50%未満)した。また、高温放置後の接触抵抗が小さく(1mΩ未満)、曲げ加工性及びめっき平滑性にも優れる。
これに対し、黒鉛粒子の分布形態に関する本発明の規定のいずれかを満たさないNo.18〜25は、標準材(No.23)に比べて、主として高荷重(5N)において動摩擦係数の低下が少ないか、高温放置後の接触抵抗が大きい。また、リフロー後の表面めっき層の構成に関する本発明の規定のいずれかを満たさないNo.9〜17,26は、動摩擦係数、高温放置後の接触抵抗、曲げ加工性及びめっき平滑性のいずれか1又は2以上の特性が劣る。
As shown in Table 6, No. 1 satisfying the provisions of the present invention relating to the structure of the surface plating layer after reflow and the distribution form of the graphite particles. 1 to 8 had a dynamic friction coefficient of less than 0.25 for both 3N and 5N loads, which was significantly lower (less than 50%) compared to the standard material (No. 23). In addition, the contact resistance after standing at high temperature is small (less than 1 mΩ), and it is excellent in bending workability and plating smoothness.
On the other hand, No. which does not satisfy any of the provisions of the present invention regarding the distribution form of graphite particles. Nos. 18 to 25 have a smaller decrease in the dynamic friction coefficient mainly at a high load (5N) or higher contact resistance after being left at a high temperature as compared with the standard material (No. 23). Moreover, No. which does not satisfy any of the provisions of the present invention relating to the configuration of the surface plating layer after reflow. Nos. 9 to 17 and 26 are inferior in any one or more characteristics of a dynamic friction coefficient, contact resistance after leaving at high temperature, bending workability and plating smoothness.

具体的に説明すると、No.18は2μm以上の黒鉛粒子の平均粒径が小さいため、潤滑効果が不足し、高接圧(5N)において動摩擦係数の低下が少なく、No.19は平均粒径が大きいため、高温放置後の接触抵抗が大きい。No.20は10μm以上の黒鉛粒子の数割合が低いため、No.21は2μm以上の黒鉛粒子の面積比率が低いため、それぞれ潤滑効果が不足し、動摩擦係数の低下が少ない。No.22は2μm以上の黒鉛粒子の面積比率が高いため、高温放置後の接触抵抗が大きい。No.23〜25は黒鉛粒子の分散付着がなく(従来技術)、動摩擦係数が改善していない。特に表面めっき層の構成が本発明の規定を満たすNo.25については、高接圧(5N)での動摩擦係数が高い。
No.9,26はCu−Sn合金層の露出がないため、高接圧(5N)において動摩擦係数の低下が少なく、No.10は表面平滑性が悪いことにより、高温放置後の接触抵抗及び曲げ加工性が劣る。No.11はNi被覆層がないため、高温放置後の接触抵抗が大きい。No.12はNi被覆層が厚く、No.15はCu−Sn合金被覆層が厚いため、いずれも曲げ加工性が劣る。No.13はCu被覆層が厚く、No.14はCu−Sn合金被覆層が薄く、No.16はCu−Sn合金被覆層の露出面積率が高いため、いずれも高温放置後の接触抵抗が大きい。No.17はCu−Sn合金被覆層の露出面積率が低く、Sn被覆層が厚いため、高接圧(5N)において動摩擦係数の低下が少ない。
More specifically, no. No. 18 has a small average particle diameter of graphite particles of 2 μm or more, so that the lubrication effect is insufficient, and the dynamic friction coefficient is less decreased at high contact pressure (5N). Since No. 19 has a large average particle size, the contact resistance after leaving at high temperature is large. No. No. 20 has a low number ratio of graphite particles of 10 μm or more. Since No. 21 has a low area ratio of graphite particles of 2 μm or more, the lubrication effect is insufficient, and the dynamic friction coefficient is hardly lowered. No. Since No. 22 has a high area ratio of graphite particles of 2 μm or more, the contact resistance after standing at high temperature is large. No. In Nos. 23 to 25, graphite particles were not dispersed and adhered (prior art), and the dynamic friction coefficient was not improved. In particular, the structure of the surface plating layer satisfies No. 1 of the present invention. About 25, the dynamic friction coefficient in high contact pressure (5N) is high.
No. Nos. 9 and 26 have no exposure of the Cu—Sn alloy layer, so the dynamic friction coefficient does not decrease much at high contact pressure (5 N). No. 10 is inferior in contact resistance and bending workability after being left at high temperature due to poor surface smoothness. No. Since No. 11 has no Ni coating layer, the contact resistance after standing at high temperature is large. No. No. 12 has a thick Ni coating layer. No. 15 is inferior in bending workability because the Cu—Sn alloy coating layer is thick. No. No. 13 has a thick Cu coating layer. No. 14 has a thin Cu—Sn alloy coating layer. Since No. 16 has a high exposed area ratio of the Cu—Sn alloy coating layer, all have high contact resistance after being left at high temperature. No. In No. 17, the exposed area ratio of the Cu—Sn alloy coating layer is low, and the Sn coating layer is thick, so that there is little decrease in the dynamic friction coefficient at high contact pressure (5N).

Claims (6)

銅又は銅合金板材の表面に、Ni被覆層、Cu−Sn合金被覆層及びSn被覆層からなる表面めっき層がこの順に形成され、前記Ni被覆層は平均厚さが0.1〜1.0μm、Cu−Sn合金被覆層は表面露出面積率が10〜75%で、平均厚さが0.1〜1.0μm、前記Sn被覆層はリフロー処理されたもので、平均厚さが0.2〜1.5μmであり、前記表面めっき層の表面に黒鉛粒子が分散して付着し、前記黒鉛粒子が前記表面めっき層表面を面積比率30%以下で被い、かつ前記黒鉛粒子のうち粒径2μm以上の黒鉛粒子の平均粒径が3〜30μmで、前記表面めっき層表面を面積比率3%以上で被い、粒径2μm以上の黒鉛粒子のうち粒径10μm以上の粒子の個数の割合が3%以上であることを特徴とする嵌合型端子用錫めっき付き銅又は銅合金板材。 On the surface of the copper or copper alloy plate material, a Ni plating layer, a Cu-Sn alloy coating layer, and a surface plating layer comprising a Sn coating layer are formed in this order, and the Ni coating layer has an average thickness of 0.1 to 1.0 μm. The Cu—Sn alloy coating layer has a surface exposed area ratio of 10 to 75% and an average thickness of 0.1 to 1.0 μm. The Sn coating layer is reflow-treated and has an average thickness of 0.2. ˜1.5 μm, the graphite particles are dispersed and attached to the surface of the surface plating layer, the graphite particles cover the surface plating layer surface with an area ratio of 30% or less, and the particle size of the graphite particles The average particle diameter of graphite particles having a particle diameter of 2 μm or more is 3 to 30 μm , the surface plating layer surface is covered with an area ratio of 3% or more, and the ratio of the number of particles having a particle diameter of 10 μm or more among graphite particles having a particle diameter of 2 μm or more is 3% or more with tin plating for mating type terminals Copper or copper alloy sheet. Ni被覆層とCu−Sn合金被覆層の間にさらに平均厚さ0.5μm以下のCu被覆層が形成されていることを特徴とする請求項1に記載された嵌合型端子用錫めっき付き銅又は銅合金板材。 The tin coating for fitting type terminals according to claim 1, wherein a Cu coating layer having an average thickness of 0.5 µm or less is further formed between the Ni coating layer and the Cu-Sn alloy coating layer. Copper or copper alloy sheet. 前記銅又は銅合金板材の表面は、表面粗さが最も大きく表れる方向の算術平均粗さRaが0.15〜1.0μmであることを特徴とする請求項1又は2に記載された嵌合型端子用錫めっき付き銅又は銅合金板材。 3. The fitting according to claim 1, wherein the surface of the copper or copper alloy sheet has an arithmetic average roughness Ra of 0.15 to 1.0 μm in a direction in which the surface roughness is maximized. Copper or copper alloy sheet with tin plating for mold terminals. 前記黒鉛粒子のうち粒径2μm以上の黒鉛粒子の平均粒径が10〜15μmで、前記表面めっき層表面を面積比率10〜20%で被い、粒径2μm以上の黒鉛粒子のうち粒径10μm以上の粒子の個数の割合が20〜40%であることを特徴とする請求項1〜3のいずれかに記載された嵌合型端子用錫めっき付き銅又は銅合金板材。 Of the graphite particles, graphite particles having a particle diameter of 2 μm or more have an average particle diameter of 10 to 15 μm, the surface plating layer surface is covered with an area ratio of 10 to 20%, and among the graphite particles having a particle diameter of 2 μm or more, the particle diameter is 10 μm. The ratio of the number of the above-mentioned particle | grains is 20 to 40%, The copper or copper alloy board | plate material with a tin plating for fitting type terminals described in any one of Claims 1-3 characterized by the above-mentioned. 前記Sn被覆層は黒鉛粒子付着後にリフロー処理されたものであることを特徴とする請求項1〜4のいずれかに記載された嵌合型端子用錫めっき付き銅又は銅合金板材。 The said Sn coating layer is a reflow-processed after graphite particle adhesion, The copper or copper alloy board | plate material with tin plating for fitting type terminals described in any one of Claims 1-4 characterized by the above-mentioned. 銅又は銅合金板材の表面に、Niめっき層、Cuめっき層及びSnめっき層をこの順に形成した後、Snめっき層の表面に黒鉛粒子を付着させ、次いでSnめっき層のリフロー処理を行うことを特徴とする請求項1〜4のいずれかに記載された嵌合型端子用錫めっき付き銅又は銅合金板材の製造方法。 After forming the Ni plating layer, the Cu plating layer, and the Sn plating layer in this order on the surface of the copper or copper alloy plate material, the graphite particles are adhered to the surface of the Sn plating layer, and then the reflow treatment of the Sn plating layer is performed. The manufacturing method of the copper or copper alloy board | plate material with a tin plating for fitting type terminals described in any one of Claims 1-4 characterized by the above-mentioned.
JP2010019761A 2010-01-29 2010-01-29 Tin-plated copper alloy sheet for mating type terminal and method for manufacturing the same Expired - Fee Related JP5419737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010019761A JP5419737B2 (en) 2010-01-29 2010-01-29 Tin-plated copper alloy sheet for mating type terminal and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010019761A JP5419737B2 (en) 2010-01-29 2010-01-29 Tin-plated copper alloy sheet for mating type terminal and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2011157588A JP2011157588A (en) 2011-08-18
JP5419737B2 true JP5419737B2 (en) 2014-02-19

Family

ID=44589786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010019761A Expired - Fee Related JP5419737B2 (en) 2010-01-29 2010-01-29 Tin-plated copper alloy sheet for mating type terminal and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP5419737B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6100203B2 (en) * 2014-05-19 2017-03-22 日新製鋼株式会社 Material for connecting parts
CN104694997A (en) * 2015-03-13 2015-06-10 哈尔滨工程大学 Method for obtaining nano Cu-Sn-graphite composite coating and Cu-Sn-graphite electroplating solution

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4024244B2 (en) * 2004-12-27 2007-12-19 株式会社神戸製鋼所 Conductive material for connecting parts and method for manufacturing the same
JP5255225B2 (en) * 2007-03-29 2013-08-07 古河電気工業株式会社 Plating material having lubricating particles, method for producing the same, and electric / electronic component using the same
JP2009099282A (en) * 2007-10-12 2009-05-07 Kobe Steel Ltd Fitting type connector
JP5306870B2 (en) * 2009-03-25 2013-10-02 株式会社神戸製鋼所 Tin-plated copper alloy sheet for mating terminals

Also Published As

Publication number Publication date
JP2011157588A (en) 2011-08-18

Similar Documents

Publication Publication Date Title
JP4090302B2 (en) Conductive material plate for forming connecting parts
KR101682791B1 (en) A copper alloy sheet with sn coating layer for a fitting type connection terminal and a fitting type connection terminal
JP6160582B2 (en) Tin-plated copper alloy terminal material and manufacturing method thereof
JP5419594B2 (en) Copper or copper alloy material with tin plating for connection parts used for connection with aluminum conductive members
JP2006183068A (en) Conductive material for connecting part and method for manufacturing the conductive material
JP2009108389A (en) Sn-PLATED MATERIAL FOR ELECTRONIC PARTS
JP2010248616A (en) Sn-PLATED COPPER OR COPPER ALLOY HAVING EXCELLENT HEAT RESISTANCE AND MANUFACTURING METHOD THEREOF
JP2014208904A (en) Electroconductive material superior in resistance to fretting corrosion for connection component
TW201311944A (en) Tin-plated copper alloy terminal member with outstanding insertion and removal characteristics
JPWO2009123144A1 (en) Copper alloy tin-plated strip with excellent wear resistance, insertability and heat resistance
JP2008248294A (en) Plated material having lubricative particle, method of manufacturing the same and electric or electronic component using the same
TW201527596A (en) Tin-plated copper alloy terminal material
WO2018135482A1 (en) Terminal material for connectors and method for producing same
KR20150024252A (en) Tin-plated copper-alloy material for terminal having excellent insertion/extraction performance
JP2015110829A (en) Tin-plated copper-alloy terminal material
JP6201554B2 (en) Mating type connection terminal
JP4111522B2 (en) Sn coated copper material and terminal
WO2018164127A1 (en) Corrosion-resistant terminal material, corrosion-resistant terminal, and wire end structure
JP5419737B2 (en) Tin-plated copper alloy sheet for mating type terminal and method for manufacturing the same
JP4611419B2 (en) Copper alloy tin plating strip with excellent solder wettability and insertability
JP4090488B2 (en) Conductive material plate for connecting part forming process and manufacturing method thereof
JP5409401B2 (en) Tin-plated copper alloy sheet for mating type terminal and method for manufacturing the same
JP2015124434A (en) Tin-plated copper-alloy terminal material
JP6443092B2 (en) Tin-plated copper alloy terminal material
JP2010222675A (en) Tinned copper alloy sheet material for fitting type terminal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131119

R150 Certificate of patent or registration of utility model

Ref document number: 5419737

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees