JP5419594B2 - Copper or copper alloy material with tin plating for connection parts used for connection with aluminum conductive members - Google Patents

Copper or copper alloy material with tin plating for connection parts used for connection with aluminum conductive members Download PDF

Info

Publication number
JP5419594B2
JP5419594B2 JP2009193675A JP2009193675A JP5419594B2 JP 5419594 B2 JP5419594 B2 JP 5419594B2 JP 2009193675 A JP2009193675 A JP 2009193675A JP 2009193675 A JP2009193675 A JP 2009193675A JP 5419594 B2 JP5419594 B2 JP 5419594B2
Authority
JP
Japan
Prior art keywords
layer
alloy
copper
aluminum
alloy layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009193675A
Other languages
Japanese (ja)
Other versions
JP2011042860A (en
Inventor
靖 真砂
章 畚野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009193675A priority Critical patent/JP5419594B2/en
Publication of JP2011042860A publication Critical patent/JP2011042860A/en
Application granted granted Critical
Publication of JP5419594B2 publication Critical patent/JP5419594B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Description

本発明は、例えば自動車用ワイヤーハーネス等に用いるアルミニウム電線やアルミニウム合金端子などのアルミニウム製導電部材と接続するコネクタ等に用いられる接続部品用錫めっき付銅又は銅合金材料に関する。   The present invention relates to a tin-plated copper or copper alloy material for connection parts used for connectors and the like connected to aluminum conductive members such as aluminum wires and aluminum alloy terminals used in, for example, automobile wire harnesses.

近年、自動車の電装化が進み、取り付けられる電子部品・電線が増加している。電子部品に使用される導電材料や電線には、導電性、強度、成形加工性、耐食性などの観点から銅又は銅合金が使用されており、一台あたり数十キログラムになっている。一方、近年の地球温暖化に代表される環境問題への取り組みに、自動車の小型・軽量化による燃費向上があり、電線や端子等の導電部材へのアルミニウム又はアルミニウム合金の適用が積極的に検討されている。   In recent years, electronic components of automobiles have been advanced, and electronic parts and electric wires to be attached are increasing. Copper or copper alloys are used for conductive materials and electric wires used for electronic parts from the viewpoints of conductivity, strength, moldability, corrosion resistance, etc., and each unit has several tens of kilograms. On the other hand, efforts to tackle environmental problems represented by global warming in recent years have improved fuel efficiency by reducing the size and weight of automobiles, and actively considering the application of aluminum or aluminum alloys to conductive members such as wires and terminals. Has been.

アルミニウム電線は、従来の銅線と異なり、表面に硬度が高く電気抵抗が高いアルミニウム酸化皮膜が形成されているため、端子とアルミニウム電線を接続する際、この酸化皮膜を破壊する必要がある。そのため、特許文献1のように、圧着部分に複数のインデントを付けた端子、特許文献2のように、アルミニウム電線と端子を超音波接合する技術が提案されている。   Unlike conventional copper wires, aluminum wires have an aluminum oxide film with high hardness and high electrical resistance formed on the surface. Therefore, when connecting a terminal and an aluminum wire, it is necessary to destroy the oxide film. For this reason, a technique in which an aluminum wire and a terminal are ultrasonically bonded as in Patent Document 1 and a terminal in which a plurality of indents are attached to a crimped portion as in Patent Document 1 and a terminal are proposed.

しかし、錫めっき付銅又は銅合金材料からなる端子とアルミニウム電線を接続する際、特許文献1の技術を適用しても、端子表面のめっき層の錫は、アルミニウム酸化皮膜に比べて軟らかいため、アルミニウム酸化皮膜が破壊されにくく、接触部の電気抵抗が大きくなりやすい。また、端子成形時にインデント加工を行うため、特殊な加工金型が必要となりコストアップになる。   However, when connecting the terminal made of tin-plated copper or copper alloy material and the aluminum electric wire, even if the technique of Patent Document 1 is applied, the tin of the plating layer on the terminal surface is softer than the aluminum oxide film, The aluminum oxide film is not easily destroyed and the electrical resistance of the contact portion tends to increase. In addition, since indent processing is performed at the time of terminal molding, a special processing die is required, which increases costs.

また、錫めっき付銅又は銅合金材料からなる端子とアルミニウム電線を接続する際、特許文献2の超音波接合技術を適用しても、錫とアルミニウムはほとんど固溶しないため、錫めっき表面にアルミニウム電線を接合することは困難である。そのため、端子のアルミニウム電線との接合部は銅又は銅合金素材を露出させた状態、端子嵌合部は錫めっき表面とする必要があり、端子成形後に端子嵌合部に錫めっきを施すか、もしくは、端子成形加工前に端子嵌合部に加工される部分の銅又は銅合金素材表面に部分的に錫めっきを行うなど、特殊なめっき工程が必要となる。また、超音波接合工程はコストアップ要因である。   In addition, when connecting a terminal made of tin-plated copper or a copper alloy material and an aluminum electric wire, even if the ultrasonic bonding technique of Patent Document 2 is applied, tin and aluminum are hardly dissolved, so that the surface of the tin plating has aluminum. It is difficult to join electric wires. Therefore, the joint portion of the terminal with the aluminum electric wire is in a state where the copper or copper alloy material is exposed, the terminal fitting portion needs to be a tin-plated surface, or the terminal fitting portion is tin-plated after terminal molding, Alternatively, a special plating process is required, for example, tin plating is partially performed on the surface of the copper or copper alloy material that is processed into the terminal fitting portion before the terminal forming process. In addition, the ultrasonic bonding process is a cost increase factor.

一方、アルミニウム電線と接続する端子材料としてアルミニウムを適用し、このアルミニウム端子に錫めっき付銅又は銅合金材料からなる端子を嵌合して接続する場合、両端子の嵌合部では硬度の低い錫めっき皮膜と硬度の高いアルミニウム酸化皮膜との接触となるため、この場合もアルミニウム酸化皮膜は破壊されず、接触部の電気抵抗が高くなりやすい。   On the other hand, when aluminum is applied as a terminal material to be connected to an aluminum electric wire and a terminal made of tin-plated copper or a copper alloy material is fitted and connected to the aluminum terminal, tin having low hardness at the fitting portion of both terminals Since the plating film is in contact with the aluminum oxide film having high hardness, the aluminum oxide film is not destroyed in this case, and the electrical resistance of the contact portion tends to be high.

特許第3984539号公報Japanese Patent No. 3984539 特許第4021734号公報Japanese Patent No. 4021734

アルミニウムを導電部材として利用する場合、アルミニウム酸化皮膜は電気抵抗が高く接触抵抗を増大させる。そのため、接点部として使用する場合、接触抵抗を低くするために、アルミニウム酸化皮膜を除去し、新生面で接触させることが重要である。しかし、アルミニウム表面の酸化皮膜は錫めっき皮膜に比べて非常に硬いため、一般的な錫めっき付き銅又は銅合金材料を用いた接続部材の場合、アルミニウム製導電部材に接触させても、錫めっき皮膜のみが削られ、アルミニウムの新生面が露出せず接触抵抗が高くなる。
アルミニウム酸化皮膜を除去するには両者を強く押し付けることが有効であるが、例えば錫めっき付銅又は銅合金材料からなる端子とアルミニウム電線の圧着の場合、アルミニウム電線が変形し断線する場合がある。また、錫めっき付銅又は銅合金材料からなる端子とアルミニウム製端子を嵌合させる場合、強く押し付けると端子挿入力が高くなり、作業性が低下する問題が発生する。
When aluminum is used as the conductive member, the aluminum oxide film has high electrical resistance and increases contact resistance. Therefore, when using as a contact part, in order to make a contact resistance low, it is important to remove an aluminum oxide film and to make it contact in a new surface. However, since the oxide film on the aluminum surface is much harder than the tin-plated film, in the case of a connecting member using a general tin-plated copper or copper alloy material, even if it is brought into contact with an aluminum conductive member, it is tin-plated. Only the film is shaved, and the new surface of the aluminum is not exposed and the contact resistance increases.
In order to remove the aluminum oxide film, it is effective to press both of them strongly. For example, in the case of crimping a terminal made of tin-plated copper or a copper alloy material and an aluminum wire, the aluminum wire may be deformed and disconnected. In addition, when fitting a terminal made of tin-plated copper or a copper alloy material and an aluminum terminal, if the terminal is pressed strongly, the terminal insertion force is increased, and the workability is lowered.

本発明は、上記従来の問題点に鑑みてなされたものであり、アルミニウム製の電線や端子等のアルミニウム製導電部材と接続する場合に、無理に強く接触させなくても、電気的信頼性(低い接触抵抗)を十分に確保できる、接続部品用錫めっき付銅又は銅合金材料を提供することを目的とする。   The present invention has been made in view of the above-described conventional problems. When connecting to an aluminum conductive member such as an aluminum wire or terminal, the electrical reliability ( An object of the present invention is to provide a tin-plated copper or copper alloy material for connection parts that can sufficiently ensure a low contact resistance.

本発明者らは、特定の表面被覆層構成を有する錫めっき付き銅又は銅合金材料を用いた場合、これをアルミニウムに対し軽く押し付けることで、アルミニウム酸化被膜を削り取ることができ、両者の接触抵抗が低くなることを見出した。本発明はこの知見に基づいてなされたものである。   When the present inventors used a tin-plated copper or copper alloy material having a specific surface coating layer configuration, the aluminum oxide film can be scraped off by lightly pressing it against aluminum, and the contact resistance between the two Was found to be lower. The present invention has been made based on this finding.

本発明に係る接続部品用錫めっき付銅又は銅合金材料は、特にアルミニウム製導電部材との接続に用いられる接続部品用材料であり、銅又は銅合金板条(板又は条)からなる母材の表面に、リフロー処理により形成されたCu−Sn合金層とSn層がこの順に形成され、Sn層の表面にCu−Sn合金層の一部が露出し、Cu−Sn合金層の材料表面露出面積率が10〜75%、材料表面露出間隔が0.01〜0.5mm、平均の厚さが0.2〜5.0μm、Cu含有量が20〜70at%であり、材料表面の算術平均粗さRaが0.15μm以上、3.0μm以下であることを特徴とする。本発明においてアルミニウム製導電部材のアルミニウムとは、純アルミニウムとアルミニウム合金の両方を含む意味で用いている。
Cu−Sn合金層とSn層からなる表面被覆層が形成された領域は、母材の片面又は両面全体に及んでいてもよいし、片面又は両面の一部のみを占めているのでもよい。
The tin-plated copper or copper alloy material for connection parts according to the present invention is a connection part material particularly used for connection to an aluminum conductive member, and is a base material made of copper or a copper alloy plate (plate or strip). A Cu—Sn alloy layer and an Sn layer formed by reflow treatment are formed in this order on the surface of the Cu layer, a part of the Cu—Sn alloy layer is exposed on the surface of the Sn layer, and the surface of the material of the Cu—Sn alloy layer is exposed. The area ratio is 10 to 75%, the material surface exposure interval is 0.01 to 0.5 mm, the average thickness is 0.2 to 5.0 μm, the Cu content is 20 to 70 at%, and the arithmetic average of the material surface Roughness Ra is 0.15 μm or more and 3.0 μm or less. In the present invention, aluminum in an aluminum conductive member is used in the meaning including both pure aluminum and aluminum alloy.
The region where the surface coating layer composed of the Cu—Sn alloy layer and the Sn layer is formed may extend over one or both surfaces of the base material, or may occupy only a part of one surface or both surfaces.

この錫めっき付銅又は銅合金材料において、前記Sn層の平均の厚さが0.3〜6.0μmであることが望ましい。母材表面とCu−Sn合金層の間にさらにNi層が形成されていてもよい。また、母材表面とCu−Sn合金層の間(Ni層が形成されない場合)、あるいはNi層とCu−Sn合金層の間(Ni層が形成された場合)に、さらにCu層を有していてもよい。
本発明において、Sn層、Cu層及びNi層は、それぞれSn、Cu、Ni金属のほか、Sn合金、Cu合金及びNi合金を含む。
また、本発明において、銅又は銅合金板条からなる母材には、銅又は銅合金を被覆した板条が含まれる。例えば銅を被覆した鉄系材料の板条や、銅を被覆したアルミニウム系材料の板条である。
なお、以上述べた接続部品用銅又は銅合金材料の表面被覆層構成自体は公知である(例えば特開2006−183068号公報参照)。
In the tin-plated copper or copper alloy material, it is desirable that the average thickness of the Sn layer is 0.3 to 6.0 μm. A Ni layer may be further formed between the surface of the base material and the Cu—Sn alloy layer. Further, a Cu layer is further provided between the surface of the base material and the Cu—Sn alloy layer (when the Ni layer is not formed) or between the Ni layer and the Cu—Sn alloy layer (when the Ni layer is formed). It may be.
In the present invention, the Sn layer, the Cu layer, and the Ni layer include Sn alloy, Cu alloy, and Ni alloy in addition to Sn, Cu, and Ni metal, respectively.
In the present invention, the base material made of copper or a copper alloy strip includes a strip coated with copper or a copper alloy. For example, it is a strip of iron-based material coated with copper or a strip of aluminum-based material coated with copper.
In addition, the surface coating layer structure itself of the copper or copper alloy material for connection parts described above is publicly known (see, for example, JP-A-2006-183068).

前記錫めっき付き銅又は銅合金材料は、銅又は銅合金板条からなる母材の表面に、Niめっき層(必要に応じて)、Cuめっき層及びSnめっき層をこの順に形成した後、リフロー処理を行うことにより製造される。なお、本明細書において、リフロー処理前の表面被覆層を構成する各層について「めっき」という表現を付加し、リフロー処理後の表面被覆層を構成する各層と区別している。
Cu−Sn合金層は、リフロー処理においてCuめっき層とSnめっき層のCuとSnが相互拡散して形成されるが、その際にCuめっき層が全て消滅する場合と一部残留する場合の両方があり得る。前記Cu層はCuめっき層の一部が残留したものである。Cuめっき層の厚さによっては、母材からもCuが供給される場合がある。
本発明において、Cuめっき層、Snめっき層及びNiめっき層は、それぞれCu、Sn、Ni金属のほか、Cu合金、Sn合金及びNi合金を含む。
The tin-plated copper or copper alloy material is reflowed after forming a Ni plating layer (if necessary), a Cu plating layer, and a Sn plating layer in this order on the surface of the base material made of copper or a copper alloy sheet. Manufactured by processing. In the present specification, the expression “plating” is added to each layer constituting the surface coating layer before the reflow treatment to distinguish it from each layer constituting the surface coating layer after the reflow treatment.
The Cu-Sn alloy layer is formed by mutual diffusion of Cu and Sn in the Cu plating layer and the Sn plating layer in the reflow process. There can be. The Cu layer is a part of the Cu plating layer remaining. Depending on the thickness of the Cu plating layer, Cu may also be supplied from the base material.
In this invention, Cu plating layer, Sn plating layer, and Ni plating layer contain Cu alloy, Sn alloy, and Ni alloy other than Cu, Sn, and Ni metal, respectively.

本発明に係る錫めっき付銅又は銅合金材料は、表面に硬いCu−Sn合金を露出させているため、アルミニウム系材料に軽く押し付けることで、表面のアルミニウム酸化皮膜を削り取ることが可能であり、接触抵抗が低くなる。
従って、本発明に係る錫めっき付き銅又は銅合金材料は、特にアルミニウム電線と圧着接続する端子用として、アルミニウム電線との高い接続信頼性を得ることができる。また、アルミニウムを使用した端子材と嵌合する場合、特に強く押し付けなくても、嵌合部において高い接触信頼性を得ることができる。
Since the copper or copper alloy material with tin plating according to the present invention exposes a hard Cu-Sn alloy on the surface, it is possible to scrape the aluminum oxide film on the surface by lightly pressing the aluminum-based material, Contact resistance is lowered.
Therefore, the copper or copper alloy material with tin plating according to the present invention can obtain high connection reliability with an aluminum electric wire, particularly for a terminal to be crimped to the aluminum electric wire. Moreover, when fitting with the terminal material which uses aluminum, even if it does not press especially strongly, high contact reliability can be acquired in a fitting part.

本発明に係る錫めっき付き銅又は銅合金材料の断面構造(リフロー後)の模式図である。It is a schematic diagram of the cross-sectional structure (after reflow) of the copper or copper alloy material with tin plating which concerns on this invention. 実施例No.1の供試材の最表面構造のSEM組成像である。Example No. 1 is an SEM composition image of an outermost surface structure of a specimen 1; 摺動試験機の概念図である。It is a conceptual diagram of a sliding test machine. 摺動時の抵抗値の測定チャートの一例である。It is an example of the measurement chart of the resistance value at the time of sliding.

以下、本発明に係る錫めっき付き銅又は銅合金材料について、具体的に説明する。
(1)Cu−Sn合金層の材料表面露出面積率を10〜75%とした理由について述べる。なお、本発明では、Cu−Sn合金層の材料表面露出面積率を、材料の単位表面積あたりに露出するCu−Sn合金層の表面積に100をかけた値として算出する。Cu−Sn合金層の材料表面露出面積率が10%未満では、アルミニウム表面酸化皮膜を削り取る面積が少なくなるため電気的信頼性が低くなる。一方75%を超える場合には、経時や腐食などによる材料表面のCuの酸化物量などが多くなり、接触抵抗を増加させ易く、電気的接続の信頼性を維持することが困難となる。従って、Cu−Sn合金層の材料表面露出面積率を10〜75%に規定する。より望ましくは10〜50%である。
Hereinafter, the tin-plated copper or copper alloy material according to the present invention will be specifically described.
(1) The reason why the material surface exposed area ratio of the Cu—Sn alloy layer is set to 10 to 75% will be described. In the present invention, the material surface exposed area ratio of the Cu—Sn alloy layer is calculated as a value obtained by multiplying the surface area of the Cu—Sn alloy layer exposed per unit surface area of the material by 100. When the material surface exposed area ratio of the Cu—Sn alloy layer is less than 10%, the area where the aluminum surface oxide film is scraped is reduced, and thus the electrical reliability is lowered. On the other hand, if it exceeds 75%, the amount of Cu oxide on the surface of the material due to aging or corrosion increases, and it is easy to increase the contact resistance and it becomes difficult to maintain the reliability of electrical connection. Therefore, the material surface exposed area ratio of the Cu—Sn alloy layer is specified to be 10 to 75%. More desirably, it is 10 to 50%.

(2)材料表面のCu−Sn合金層の平均の材料表面露出間隔を0.01〜0.5mmとした理由について述べる。なお、本発明では、Cu−Sn合金層の平均の材料表面露出間隔を、材料表面に描いた直線を横切るCu−Sn合金層の平均の幅(前記直線に沿った長さ)とSn層の平均の幅を足した値と定義する。Cu−Sn合金層の平均の材料表面露出間隔が0.01mm未満では、高温酸化などの熱拡散による材料表面のCuの酸化物量が多くなり、接触抵抗を増加させ易く、電気的接続の信頼性を維持することが困難となる。一方、0.5mmを超える場合には、特に小型端子に用いた際に低い摩擦係数を得ることが困難となる場合が生じてくる。また、一般的に端子が小型になれば、インデントやリブなどの電気接点部(挿抜部)の接触面積が小さくなるため、挿抜の際にCu−Sn合金層の部分がアルミニウムと接触する確率が低下し、電気的信頼性を得ることが困難となる。従って、Cu−Sn合金層の平均の材料表面露出間隔を0.01〜0.5mmとすることが望ましい。
アルミニウム電線と端子の圧着を考えた場合、アルミニウム電線は細線を束ねた構造であるため、圧着部表面に電線長手方向に任意に直線を引いた場合、硬いCu−Sn合金層が必ず露出していることが望ましい。電線長手方向でCu−Sn合金層が露出していない箇所で電線と接触した場合、電線表面の酸化被膜が破壊されず、電気的接続の信頼性が得られない。錫めっき付き銅合金板条から端子を成形加工する場合、端子挿入方向(電線長手方向)と圧延方向は垂直な関係に加工することが多く、少なくとも圧延方向と垂直に直線を引いた場合、Cu−Sn合金層が必ず露出していれば良く、露出間隔は0.01〜0.5mmとすることが望ましい。
しかしながら、必ずしも電線長手方向と圧延方向の関係が垂直になるとは限らないので、より望ましくは、Cu−Sn合金層の平均の材料表面露出間隔を全ての方向において0.01〜0.5mmにする。これにより、挿抜の際のCu−Sn合金層とアルミニウムの接触確率が増加する。さらに望ましくは0.05〜0.3mmである。
(2) The reason for setting the average material surface exposure interval of the Cu—Sn alloy layer on the material surface to 0.01 to 0.5 mm will be described. In addition, in this invention, the average width | variety (length along the said straight line) of the Cu-Sn alloy layer which cross | intersects the straight line drawn on the material surface with the average material surface exposure space | interval of a Cu-Sn alloy layer, and Sn layer. It is defined as the value obtained by adding the average width. When the average material surface exposure interval of the Cu-Sn alloy layer is less than 0.01 mm, the amount of Cu oxide on the material surface due to thermal diffusion such as high-temperature oxidation increases, the contact resistance is likely to increase, and the reliability of electrical connection It becomes difficult to maintain. On the other hand, when it exceeds 0.5 mm, it may be difficult to obtain a low coefficient of friction particularly when used for a small terminal. In general, if the terminal is made smaller, the contact area of an electrical contact portion (insertion / extraction portion) such as an indent or a rib is reduced. Therefore, there is a probability that the portion of the Cu-Sn alloy layer is in contact with aluminum at the time of insertion / extraction. It becomes difficult to obtain electrical reliability. Therefore, it is desirable that the average material surface exposure interval of the Cu—Sn alloy layer be 0.01 to 0.5 mm.
When considering the crimping of aluminum wires and terminals, the aluminum wires have a structure in which fine wires are bundled. Therefore, when a straight line is drawn arbitrarily in the longitudinal direction of the wires on the crimp surface, a hard Cu-Sn alloy layer is always exposed. It is desirable. When the Cu—Sn alloy layer is not exposed in the longitudinal direction of the electric wire and is in contact with the electric wire, the oxide film on the surface of the electric wire is not broken and the reliability of electrical connection cannot be obtained. When forming a terminal from a tin-plated copper alloy strip, the terminal insertion direction (wire longitudinal direction) and the rolling direction are often processed in a perpendicular relationship, and at least when a straight line is drawn perpendicular to the rolling direction, Cu The Sn alloy layer is necessarily exposed, and the exposure interval is preferably 0.01 to 0.5 mm.
However, since the relationship between the longitudinal direction of the electric wire and the rolling direction is not necessarily perpendicular, more preferably, the average material surface exposure interval of the Cu—Sn alloy layer is set to 0.01 to 0.5 mm in all directions. . Thereby, the contact probability of the Cu—Sn alloy layer and aluminum at the time of insertion / extraction increases. More desirably, the thickness is 0.05 to 0.3 mm.

(3)Cu−Sn合金層の平均の厚さを0.2〜5.0μmとした理由について述べる。なお本発明では、Cu−Sn合金層の平均の厚さは、純Sn層を除去した後Cu−Sn合金層に含まれるSn成分を蛍光X線膜厚計にて測定した厚さと定義する。(下記実施例に記載したCu−Sn合金層の平均の厚さ測定方法は、この定義に準拠するものである)。Cu−Sn合金層の平均の厚さが0.2μm未満では、特に本発明のようにCu−Sn合金層を材料表面に部分的に露出形成させる場合には、高温酸化などの熱拡散による材料表面のCuの酸化物量が多くなり、接触抵抗を増加させ易く、電気的接続の信頼性を維持することが困難となる。一方5.0μmを超える場合には、経済的に不利であり、生産性も悪く、硬い層が厚く形成されるために成形加工性なども悪くなる。従って、Cu−Sn合金層の平均の厚さを0.2〜5.0μmに規定する。より望ましくは0.3〜1.0μmである。 (3) The reason why the average thickness of the Cu—Sn alloy layer is 0.2 to 5.0 μm will be described. In the present invention, the average thickness of the Cu—Sn alloy layer is defined as the thickness obtained by measuring the Sn component contained in the Cu—Sn alloy layer with a fluorescent X-ray film thickness meter after removing the pure Sn layer. (The method for measuring the average thickness of the Cu—Sn alloy layers described in the examples below is based on this definition). When the average thickness of the Cu—Sn alloy layer is less than 0.2 μm, particularly when the Cu—Sn alloy layer is partially exposed on the surface of the material as in the present invention, the material by thermal diffusion such as high temperature oxidation. The amount of Cu oxide on the surface increases, the contact resistance is likely to increase, and it becomes difficult to maintain the reliability of electrical connection. On the other hand, when the thickness exceeds 5.0 μm, it is economically disadvantageous, the productivity is poor, and the hard layer is formed thick, so that the moldability is deteriorated. Therefore, the average thickness of the Cu—Sn alloy layer is specified to be 0.2 to 5.0 μm. More desirably, the thickness is 0.3 to 1.0 μm.

(4)Cu−Sn合金層について、そのCu含有量を20〜70at%とした理由について述べる。Cu含有量が20〜70at%のCu−Sn合金層は、CuSn相を主体とする金属間化合物からなる。CuSn相はSn層を形成するSn又はSn合金に比べて非常に硬く、それを材料の最表面に部分的に露出形成すると、アルミニウムと接触する際、アルミニウム酸化皮膜を除去することができる。さらに、本発明ではCuSn相がSn層の表面に部分的に突出しているため、アルミニウム電線との圧着や、端子挿抜などにおける電気接点部の接触の際、硬いCuSn相で接触するため、アルミニウム酸化皮膜を軽い荷重で除去することができる。一方、CuSn相はさらに硬く、アルミニウム酸化皮膜の除去には適しているが、CuSn相に比べてCu含有量が多いため、これをSn層の表面全面に露出させた場合には、経時や腐食などによる材料表面のCuの酸化物量などが多くなり、接触抵抗を増加させ易く、電気的接続の信頼性を維持することが困難となる。また、CuSn相はCuSn相に比べて脆いために、成形加工性などが劣るという問題点がある。従って、Cu−Sn合金層の構成成分を、Cu含有量が20〜70at%のCu−Sn合金に規定する。このCu−Sn合金層には、CuSn相のみでなくCuSn相が一部含まれていてもよく、母材及びSnめっき中の成分元素などが含まれていてもよい。しかし、Cu−Sn合金層のCu含有量が20at%未満では硬度が低く、アルミニウム酸化皮膜を除去することが困難となり、接触抵抗が増加する。一方Cu含有量が70at%を超えるとCuSn相の比率が高くなり経時や腐食などによる電気的接続の信頼性を維持することが困難となり、成形加工性なども悪くなる。従って、Cu−Sn合金層のCu含有量を20〜70at%に規定する。より望ましくは45〜65at%である。 (4) Regarding the Cu—Sn alloy layer, the reason why the Cu content is set to 20 to 70 at% will be described. The Cu—Sn alloy layer having a Cu content of 20 to 70 at% is made of an intermetallic compound mainly composed of a Cu 6 Sn 5 phase. The Cu 6 Sn 5 phase is very hard compared to Sn or Sn alloy forming the Sn layer, and when it is partially exposed on the outermost surface of the material, it can remove the aluminum oxide film when it comes into contact with aluminum. it can. Further, in the present invention, since the Cu 6 Sn 5 phase partially protrudes from the surface of the Sn layer, the hard Cu 6 Sn 5 phase is used in contact with the electrical contact part in crimping with an aluminum electric wire or terminal insertion / extraction. Because of the contact, the aluminum oxide film can be removed with a light load. On the other hand, the Cu 3 Sn phase is harder and suitable for removing the aluminum oxide film, but has a higher Cu content than the Cu 6 Sn 5 phase, so that it is exposed to the entire surface of the Sn layer. Increases the amount of Cu oxide on the surface of the material due to aging or corrosion, etc., and tends to increase the contact resistance, making it difficult to maintain the reliability of electrical connection. Further, since the Cu 3 Sn phase is more fragile than the Cu 6 Sn 5 phase, there is a problem that molding processability is inferior. Therefore, the constituent component of the Cu—Sn alloy layer is defined as a Cu—Sn alloy having a Cu content of 20 to 70 at%. This Cu—Sn alloy layer may include not only the Cu 6 Sn 5 phase but also a part of the Cu 3 Sn phase, and may include a base material and component elements during Sn plating. However, if the Cu content of the Cu—Sn alloy layer is less than 20 at%, the hardness is low, and it becomes difficult to remove the aluminum oxide film, and the contact resistance increases. On the other hand, if the Cu content exceeds 70 at%, the ratio of the Cu 3 Sn phase becomes high, it becomes difficult to maintain the reliability of electrical connection due to aging or corrosion, and the moldability and the like deteriorate. Therefore, the Cu content of the Cu—Sn alloy layer is specified to be 20 to 70 at%. More desirably, it is 45 to 65 at%.

(5)材料表面の算術平均粗さRaが0.15μm以上、3.0μm以下とした理由について述べる。算術平均粗さRaが0.15μm未満の場合、Cu−Sn合金層の材料表面突出高さが全体に低く、アルミニウム系材料と接触した際、アルミニウム表面の酸化皮膜を除去する効果が小さくなり、接触信頼性が低下する。一方、算術平均粗さRaが3.0μmを超える場合、端子成形後加工後、高温環境に保持された時、材料表面のCuの酸化物量が多くなり、接触抵抗を増加させ易く、また耐食性も悪くなることから、電気的接続の信頼性を維持することが困難となる。従って、材料表面粗さは、算術平均粗さRaが0.15μm以上かつ3.0μm以下と規定する。より望ましくは0.15〜2.0μmである。
段落0017で述べた通り、アルミニウム電線は細線を束ねた構造であるため、少なくとも圧延方向と垂直に測定した粗さが算術平均粗さRaが0.15μm以上かつ3.0μm以下であればよい。
しかしながら、必ずしも電線長手方向と圧延方向の関係が垂直になるとは限らないので、より望ましくは、全ての方向で測定した算術平均あらさRaが0.15μm以上かつ3.0μm以下であることが望ましい。より望ましくは0.15〜2.0μmである。
図1に本発明に係る錫めっき付銅又は銅合金材料(リフロー後)の断面構造を模式的に示す。Cu−Sn合金層YがSn層Xの表面から突出している。算術平均粗さRaが小さいとCu−Sn合金層の突出が小さく、アルミニウム酸化皮膜が除去されにくく、算術平均粗さRaが大きくなると、Cu−Sn合金層の露出面積が広くなり、電気的信頼性、耐食性が低下する。
(5) The reason why the arithmetic average roughness Ra of the material surface is 0.15 μm or more and 3.0 μm or less will be described. When the arithmetic average roughness Ra is less than 0.15 μm, the material surface protrusion height of the Cu—Sn alloy layer is low overall, and when it comes into contact with the aluminum-based material, the effect of removing the oxide film on the aluminum surface becomes small, Contact reliability decreases. On the other hand, when the arithmetic average roughness Ra exceeds 3.0 μm, the amount of Cu oxide on the surface of the material increases when it is kept in a high-temperature environment after processing after terminal molding, and it is easy to increase the contact resistance and also has corrosion resistance. Since it worsens, it becomes difficult to maintain the reliability of electrical connection. Therefore, the material surface roughness is defined as an arithmetic average roughness Ra of 0.15 μm or more and 3.0 μm or less. More desirably, the thickness is 0.15 to 2.0 μm.
As described in paragraph 0017, since the aluminum electric wire has a structure in which fine wires are bundled, the roughness measured at least perpendicular to the rolling direction may be an arithmetic average roughness Ra of 0.15 μm or more and 3.0 μm or less.
However, since the relationship between the wire longitudinal direction and the rolling direction is not always perpendicular, it is more desirable that the arithmetic average roughness Ra measured in all directions is 0.15 μm or more and 3.0 μm or less. More desirably, the thickness is 0.15 to 2.0 μm.
FIG. 1 schematically shows a cross-sectional structure of a tin-plated copper or copper alloy material (after reflow) according to the present invention. The Cu—Sn alloy layer Y protrudes from the surface of the Sn layer X. When the arithmetic average roughness Ra is small, the protrusion of the Cu—Sn alloy layer is small, and the aluminum oxide film is difficult to be removed. When the arithmetic average roughness Ra is large, the exposed area of the Cu—Sn alloy layer is widened and the electrical reliability is increased. And corrosion resistance are reduced.

(6)Sn層の平均の厚さを0.3〜6.0μmとした理由について述べる。なお、本発明では、Sn層の平均の厚さは、試験材の皮膜中に含まれるSn成分(Sn層の膜厚とCu−Sn合金層に含有されるSn成分の膜厚の和)を蛍光X線膜厚計にて測定した後、Sn層を除去しCu−Sn合金層に含有されるSn成分の膜厚を測定、試験材の皮膜中に含まれるSn成分から、Cu−Sn合金層に含有されるSn成分を差し引くことにより算出した値と定義する。(下記実施例に記載したSn層の平均の厚さ測定方法は、この定義に準拠するものである)。Sn層の平均の厚さが0.3μm未満では、高温酸化などの熱拡散による材料表面のCuの酸化物量が多くなり、接触抵抗を増加させ易く、また耐食性も悪くなることから、電気的接続の信頼性を維持することが困難となる。一方6.0μmを超える場合には、経済的に不利であり、生産性も悪くなる。従って、Sn層の平均の厚さを0.3〜6.0μmに規定する。より望ましくは0.5〜3.0μmである。Sn層がSn合金からなる場合、Sn合金のSn以外の構成成分としては、Pb、Bi、Zn、Ag、Cuなどが挙げられる。Pbについては50質量%未満、他の元素については10質量%未満が望ましい。 (6) The reason for setting the average thickness of the Sn layer to 0.3 to 6.0 μm will be described. In the present invention, the average thickness of the Sn layer is the Sn component (the sum of the thickness of the Sn layer and the thickness of the Sn component contained in the Cu-Sn alloy layer) contained in the test material film. After measuring with a fluorescent X-ray film thickness meter, the Sn layer is removed and the film thickness of the Sn component contained in the Cu—Sn alloy layer is measured. From the Sn component contained in the film of the test material, the Cu—Sn alloy is measured. It is defined as a value calculated by subtracting the Sn component contained in the layer. (The method for measuring the average thickness of the Sn layer described in the examples below is based on this definition). If the average thickness of the Sn layer is less than 0.3 μm, the amount of Cu oxide on the surface of the material due to thermal diffusion such as high-temperature oxidation increases, and the contact resistance tends to increase and the corrosion resistance also deteriorates. It becomes difficult to maintain the reliability. On the other hand, if it exceeds 6.0 μm, it is economically disadvantageous and the productivity is also deteriorated. Therefore, the average thickness of the Sn layer is specified to be 0.3 to 6.0 μm. More desirably, the thickness is 0.5 to 3.0 μm. When the Sn layer is made of an Sn alloy, examples of constituents other than Sn of the Sn alloy include Pb, Bi, Zn, Ag, and Cu. Pb is preferably less than 50% by mass, and other elements are preferably less than 10% by mass.

(7)黄銅や丹銅のようなZn含有Cu合金を母材として用いる場合などには、母材とCu−Sn合金層の間にCu層を有していてもよい。このCu層はリフロー処理後にCuめっき層が残留したものである。Cu層は、Znやその他の母材構成元素の材料表面への拡散を抑制するのに役立ち、はんだ付け性などが改善されることが広く知られている。Cu層は厚くなりすぎると成形加工性などが劣化し、経済性も悪くなることから、Cu層の厚さは3.0μm以下が好ましい。Cu層には、母材に含まれる成分元素等が少量混入していてもよい。また、Cu層がCu合金からなる場合、Cu合金のCu以外の構成成分としてはSn、Zn等が挙げられる。Snの場合は50質量%未満、他の元素については5質量%未満が望ましい。 (7) When using a Zn-containing Cu alloy such as brass or red brass as a base material, a Cu layer may be provided between the base material and the Cu-Sn alloy layer. This Cu layer is a layer in which the Cu plating layer remains after the reflow treatment. It is widely known that the Cu layer is useful for suppressing the diffusion of Zn and other base material constituent elements to the material surface, and that the solderability is improved. If the Cu layer becomes too thick, the moldability and the like deteriorate and the economic efficiency also deteriorates. Therefore, the thickness of the Cu layer is preferably 3.0 μm or less. The Cu layer may contain a small amount of component elements contained in the base material. When the Cu layer is made of a Cu alloy, examples of constituent components other than Cu of the Cu alloy include Sn and Zn. In the case of Sn, less than 50% by mass, and for other elements, less than 5% by mass is desirable.

(8)また、母材とCu−Sn合金層の間(Cu層がない場合)、又は母材とCu層の間に、Ni層が形成されていてもよい。Ni層はCuや母材構成元素の材料表面への拡散を抑制して、高温長時間使用後も接触抵抗の上昇を抑制するとともに、Cu−Sn合金層の成長を抑制してSn層の消耗を防止し、また亜硫酸ガス耐食性が向上することが知られている。また、Ni層自身の材料表面への拡散はCu−Sn合金層やCu層により抑制される。このことから、Ni層を形成した接続部品用材料は、耐熱性が求められる接続部品に特に適する。Ni層は厚くなりすぎると成形加工性などが劣化し、経済性も悪くなることから、Ni層の厚さは3.0μm以下が好ましい。Ni層には、母材に含まれる成分元素等が少量混入していてもよい。また、Ni層がNi合金からなる場合、Ni合金のNi以外の構成成分としては、Cu、P、Coなどが挙げられる。Cuについては40質量%以下、P、Coについては10質量%以下が望ましい。 (8) Moreover, the Ni layer may be formed between the base material and the Cu—Sn alloy layer (when there is no Cu layer) or between the base material and the Cu layer. The Ni layer suppresses the diffusion of Cu and matrix constituent elements to the surface of the material, suppresses the increase in contact resistance even after high temperature use for a long time, suppresses the growth of the Cu—Sn alloy layer, and consumes the Sn layer. It is known that sulfur dioxide gas corrosion resistance is improved. Further, the diffusion of the Ni layer itself onto the material surface is suppressed by the Cu—Sn alloy layer or the Cu layer. For this reason, the connecting component material on which the Ni layer is formed is particularly suitable for connecting components that require heat resistance. If the Ni layer becomes too thick, the moldability and the like deteriorate, and the economic efficiency also deteriorates. Therefore, the thickness of the Ni layer is preferably 3.0 μm or less. A small amount of component elements contained in the base material may be mixed in the Ni layer. Further, when the Ni layer is made of a Ni alloy, Cu, P, Co and the like can be cited as constituent components other than Ni of the Ni alloy. For Cu, 40% by mass or less, and for P and Co, 10% by mass or less are desirable.

(9)本発明の材料表面におけるSn層表面の凹凸は表面光沢を低下させ、摩擦係数や接触抵抗に悪影響を及ぼす場合があるため、なるべく平滑なほうが望ましい。母材表面の凹凸が激しい材料に被覆したSn層の表面を平滑化する方法には、被覆層を形成させた後に研削、研磨などを行う機械的方法や、Sn層をリフロー処理する方法が挙げられるが、経済性や生産性を考慮すると、Sn層をリフロー処理する方法が望ましい。さらに、本発明のように、前記Cu−Sn合金層の一部を前記Sn層の表面に露出して形成させるには、リフロー処理以外の方法では製造が非常に困難となる。凹凸の激しい母材表面に直接に、あるいはNiめっき層やCuめっき層を介してSnめっき層を施した場合、めっきの均一電着性が良好であれば、Snめっき層表面は、母材の表面形態を反映して凹凸の激しい表面が得られてしまう。これにリフロー処理を施すと、溶融した表面凸部のSnが表面凹部に流動する作用により、Sn層の表面を平滑化でき、さらにリフロー処理中に形成されるCu−Sn合金層の一部を前記Sn層の表面に露出して形成させることができる。またリフロー処理を施すことにより、耐ウィスカ性も向上する。なお、Cuめっき層と溶融したSnめっき層の間に形成されるCu−Sn拡散合金層は、通常、母材の表面形態を反映して成長する。ただし、リフロー処理条件が不適切だと、Sn層の表面に突出するCu−Sn合金層の厚さが前記Cu−Sn合金層の平均の厚さと比較して極めて薄くなる場合がある。 (9) Since the irregularities on the surface of the Sn layer on the material surface of the present invention may reduce the surface gloss and adversely affect the friction coefficient and contact resistance, it is desirable to be as smooth as possible. Examples of the method of smoothing the surface of the Sn layer coated with a material having a rough surface of the base material include a mechanical method of performing grinding and polishing after forming the coating layer, and a method of reflowing the Sn layer. However, in consideration of economy and productivity, a method of reflowing the Sn layer is desirable. Further, as in the present invention, in order to form a part of the Cu—Sn alloy layer so as to be exposed on the surface of the Sn layer, it is very difficult to manufacture by a method other than the reflow treatment. When the Sn plating layer is applied directly on the surface of the base material with severe irregularities or through the Ni plating layer or the Cu plating layer, if the uniform electrodeposition of plating is good, the Sn plating layer surface is Reflecting the surface form, a highly uneven surface is obtained. When reflow treatment is applied to this, the surface of the Sn layer can be smoothed by the action of the molten surface convex portion Sn flowing into the surface concave portion, and a part of the Cu-Sn alloy layer formed during the reflow treatment can be removed. It can be formed exposed on the surface of the Sn layer. Moreover, whisker resistance is also improved by applying the reflow treatment. The Cu—Sn diffusion alloy layer formed between the Cu plating layer and the molten Sn plating layer usually grows reflecting the surface form of the base material. However, if the reflow treatment conditions are inappropriate, the thickness of the Cu—Sn alloy layer protruding from the surface of the Sn layer may be extremely thin compared to the average thickness of the Cu—Sn alloy layer.

図1において、銅又は銅合金母材Aの一方の表面(図1において上側の表面)が粗面化され、他方の表面が従来材と同じく平滑である。粗面化した前記一方の表面では、表面の凹凸に沿って、数〜数十μm程度の径の粒子からなるCu−Sn合金層Yが形成され、Sn層Xが溶融流動して平滑化しており、それに伴い、Cu−Sn合金層Yが一部材料表面に露出し、Sn層Xの表面から突出している。平滑な前記他方の表面では、従来材と同じく、Cu−Sn合金層Yの全面をSn層Xが覆っている。
このように本発明の錫めっき付銅又は銅合金材料は、電気的接続の信頼性の維持に必要なSn層を厚く形成させても、電気的接続の信頼性が比較的良好で、かつアルミニウム酸化皮膜を除去するのに効果的なCu−Sn合金層を、材料表面に適正な条件で露出させているため、電気的接続の信頼性(低い接触抵抗)を維持することができる。
また、この錫めっき付銅又は銅合金材料は、少なくともアルミニウムと接触する部分の被覆層構成について、Cu含有量が20〜70at%で平均の厚さが0.2〜5.0μmのCu−Sn合金層と平均の厚さが0.3〜6.0μmのSn層がこの順に形成され、その材料表面はリフロー処理されていて、算術平均粗さRaが0.15μm以上3.0μm以下であり、前記Sn層の表面に前記Cu−Sn合金層の一部が露出して形成され、前記Cu−Sn合金層の材料表面露出面積率が10〜75%となっていればよく、アルミニウムと接触しない部分の被覆層構成は前記規定を満たしていなくてもよい。
In FIG. 1, one surface of copper or copper alloy base material A (the upper surface in FIG. 1) is roughened, and the other surface is smooth as in the conventional material. On the roughened one surface, a Cu—Sn alloy layer Y composed of particles having a diameter of several to several tens of μm is formed along the unevenness of the surface, and the Sn layer X melts and flows to be smoothed. Accordingly, a part of the Cu—Sn alloy layer Y is exposed on the surface of the material and protrudes from the surface of the Sn layer X. On the other smooth surface, the Sn layer X covers the entire surface of the Cu—Sn alloy layer Y as in the conventional material.
Thus, the tin-plated copper or copper alloy material of the present invention has relatively good electrical connection reliability even when the Sn layer necessary for maintaining the reliability of the electrical connection is formed thick, and aluminum. Since the Cu—Sn alloy layer effective for removing the oxide film is exposed on the surface of the material under appropriate conditions, the reliability of electrical connection (low contact resistance) can be maintained.
In addition, this tin-plated copper or copper alloy material is Cu-Sn having a Cu content of 20 to 70 at% and an average thickness of 0.2 to 5.0 [mu] m at least for the coating layer structure in contact with aluminum. An alloy layer and an Sn layer having an average thickness of 0.3 to 6.0 μm are formed in this order, the material surface is reflowed, and the arithmetic average roughness Ra is not less than 0.15 μm and not more than 3.0 μm It is sufficient that a part of the Cu-Sn alloy layer is exposed on the surface of the Sn layer, and the exposed area ratio of the material surface of the Cu-Sn alloy layer is 10 to 75%. The coating layer configuration of the portion that is not required does not have to satisfy the above definition.

以上述べた錫めっき付き銅又は銅合金材料は、銅又は銅合金板条からなる母材の表面を例えば機械的方法(圧延又は研磨)で粗面化処理したうえで、該母材表面に、Niめっき層(必要に応じて)、Cuめっき層及びSnめっき層をこの順に形成した後、リフロー処理を行うことにより製造される。Niめっき層、Cuめっき層及びSnめっき層が、それぞれNi合金、Cu合金及びSn合金からなる場合は、先にNi層、Cu層及びSn層に関して説明した各合金を用いることができる。なお、本発明に係る錫めっき付銅又は銅合金材料の製造には、前記特開2006−183068号公報に記載された製造方法がそのまま適用できる。   The tin-plated copper or copper alloy material described above is obtained by roughening the surface of a base material made of copper or a copper alloy sheet by, for example, a mechanical method (rolling or polishing), It is manufactured by forming a Ni plating layer (if necessary), a Cu plating layer, and a Sn plating layer in this order, and then performing a reflow process. When the Ni plating layer, the Cu plating layer, and the Sn plating layer are made of a Ni alloy, a Cu alloy, and a Sn alloy, respectively, the alloys described above with respect to the Ni layer, the Cu layer, and the Sn layer can be used. In addition, the manufacturing method described in the said Unexamined-Japanese-Patent No. 2006-183068 can be applied as it is to manufacture of the tin-plated copper or copper alloy material according to the present invention.

以下の実施例により、要点を絞り、更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   The following examples will focus on the essential points and will be described more specifically, but the present invention is not limited to these examples.

[銅合金母材の作製]
表1に、使用した銅合金(No.1、No.2)の化学成分を示す。本実施例においては、これらの銅合金板条を用い、機械的な方法(圧延又は研磨)で表面粗化処理を行い(試験No.17は行わず)、ビッカース硬さHv200、厚さ0.25mmで、銅合金母材に仕上げた。この時の母材の算術平均粗さRaは0.1〜4μmであった。なお、この表面粗さは後述する[材料表面粗さ測定方法]で測定した。
さらに、Niめっき、Cuめっき及びSnめっきを施した後、280℃で10秒間のリフロー処理を行うことにより試験材No.1〜21を得た。
[Preparation of copper alloy base material]
Table 1 shows chemical components of the copper alloys (No. 1 and No. 2) used. In this example, using these copper alloy strips, surface roughening was performed by a mechanical method (rolling or polishing) (no test No. 17 was performed), and Vickers hardness Hv200, thickness 0. A copper alloy base material was finished at 25 mm. The arithmetic mean roughness Ra of the base material at this time was 0.1 to 4 μm. This surface roughness was measured by [Material surface roughness measuring method] described later.
Furthermore, after applying Ni plating, Cu plating, and Sn plating, the test material No. 1-21 were obtained.

リフロー処理前の試験材について、Snめっき層、Cuめっき層、Niめっき層の平均の厚さを、下記要領で測定した。その結果を表2に示す。
[Snめっき層の平均の厚さ測定方法]
蛍光X線膜厚計(セイコーインスツルメンツ株式会社;SFT3200)を用いて、リフロー処理前の試験材のSnめっきの平均厚さを算出した。測定条件は、検量線にSn/母材の単層検量線又はSn/Ni/母材の2層検量線を用い、コリメータ径をφ0.5mmとした。
About the test material before a reflow process, the average thickness of Sn plating layer, Cu plating layer, and Ni plating layer was measured in the following way. The results are shown in Table 2.
[Method for measuring average thickness of Sn plating layer]
Using a fluorescent X-ray film thickness meter (Seiko Instruments Inc .; SFT3200), the average thickness of the Sn plating of the test material before the reflow treatment was calculated. The measurement conditions were a single layer calibration curve of Sn / base material or a two-layer calibration curve of Sn / Ni / base material for the calibration curve, and the collimator diameter was φ0.5 mm.

[Cuめっきの平均の厚さ測定方法]
Cuめっき後の試験材をミクロトーム法にて加工し、その断面をSEM(走査型電子顕微鏡)を用いて10,000倍の倍率で観察し、画像解析処理にて平均の厚さを算出した。なお、このCuめっき層の厚さは、リフロー処理後の試験材のCu層の厚さを示す値ではなく、めっき皮膜の厚さである。
[Niめっき層の平均の厚さ測定方法]
蛍光X線膜厚計(セイコーインスツルメンツ株式会社;SFT3200)を用いて、リフロー処理前の試験材のNiめっきの平均厚さを算出した。測定条件は、検量線にSn/Ni/母材の2層検量線を用い、コリメータ径をφ0.5mmとした。なお、Niめっき層の平均の厚さはリフロー処理後(Ni層)もほとんど変化しない。
[Measuring method of average thickness of Cu plating]
The test material after Cu plating was processed by the microtome method, the cross section was observed at a magnification of 10,000 using a SEM (scanning electron microscope), and the average thickness was calculated by image analysis processing. In addition, the thickness of this Cu plating layer is not a value indicating the thickness of the Cu layer of the test material after the reflow treatment, but the thickness of the plating film.
[Measuring method of average thickness of Ni plating layer]
The average thickness of the Ni plating of the test material before the reflow treatment was calculated using a fluorescent X-ray film thickness meter (Seiko Instruments Inc .; SFT3200). The measurement conditions were Sn / Ni / base metal two-layer calibration curve for the calibration curve and the collimator diameter was φ0.5 mm. Note that the average thickness of the Ni plating layer hardly changes even after the reflow treatment (Ni layer).

続いて、リフロー処理後の試験材について、Cu−Sn合金層のCu含有量、Cu−Sn合金層の平均の厚さ、Sn層の平均の厚さ、Cu−Sn合金層の材料表面露出面積率、Cu−Sn合金層の平均の材料表面露出間隔、及び材料表面粗さを下記要領で測定した。その結果を表3に示す。
[Cu−Sn合金層のCu含有量測定方法]
まず、試験材をp−ニトロフェノール及び苛性ソーダを成分とする水溶液に10分間浸漬し、Sn層を除去した。その後、EDX(エネルギー分散型X線分光分析器)を用いて、Cu−Sn合金層のCu含有量を定量分析により求めた。
Subsequently, for the test material after the reflow treatment, the Cu content of the Cu—Sn alloy layer, the average thickness of the Cu—Sn alloy layer, the average thickness of the Sn layer, and the material surface exposed area of the Cu—Sn alloy layer The average material surface exposure interval of the Cu—Sn alloy layer and the material surface roughness were measured as follows. The results are shown in Table 3.
[Method for measuring Cu content of Cu-Sn alloy layer]
First, the test material was immersed in an aqueous solution containing p-nitrophenol and caustic soda as components for 10 minutes to remove the Sn layer. Then, Cu content of a Cu-Sn alloy layer was calculated | required by quantitative analysis using EDX (energy dispersive X-ray-spectrometer).

[Cu−Sn合金層の平均の厚さ測定方法]
まず、試験材をp−ニトロフェノール及び苛性ソーダを成分とする水溶液に10分間浸漬し、Sn層を除去した。その後、蛍光X線膜厚計(セイコーインスツルメンツ株式会社;SFT3200)を用いて、Cu−Sn合金層に含有されるSn成分の膜厚を測定した。測定条件は、検量線にSn/母材の単層検量線又はSn/Ni/母材の2層検量線を用い、コリメータ径をφ0.5mmとした。得られた値をCu−Sn合金層の平均の厚さと定義して算出した。
[Measuring method of average thickness of Cu-Sn alloy layer]
First, the test material was immersed in an aqueous solution containing p-nitrophenol and caustic soda as components for 10 minutes to remove the Sn layer. Then, the film thickness of the Sn component contained in the Cu—Sn alloy layer was measured using a fluorescent X-ray film thickness meter (Seiko Instruments Inc .; SFT3200). The measurement conditions were a single layer calibration curve of Sn / base material or a two-layer calibration curve of Sn / Ni / base material for the calibration curve, and the collimator diameter was φ0.5 mm. The obtained value was calculated as the average thickness of the Cu—Sn alloy layer.

[Sn層の平均の厚さ測定方法]
まず、蛍光X線膜厚計(セイコーインスツルメンツ株式会社;SFT3200)を用いて、試験材のSn層の膜厚とCu−Sn合金層に含有されるSn成分の膜厚の和を測定した。その後、p−ニトロフェノール及び苛性ソーダを成分とする水溶液に10分間浸漬し、Sn層を除去した。再度、蛍光X線膜厚計を用いて、Cu−Sn合金層に含有されるSn成分の膜厚を測定した。測定条件は、検量線にSn/母材の単層検量線又はSn/Ni/母材の2層検量線を用い、コリメータ径をφ0.5mmとした。得られたSn層の膜厚とCu−Sn合金層に含有されるSn成分の膜厚の和から、Cu−Sn合金層に含有されるSn成分の膜厚を差し引くことにより、Sn層の平均の厚さを算出した。
[Method for measuring average thickness of Sn layer]
First, the sum of the film thickness of the Sn layer of the test material and the film thickness of the Sn component contained in the Cu—Sn alloy layer was measured using a fluorescent X-ray film thickness meter (Seiko Instruments Inc .; SFT3200). Thereafter, the Sn layer was removed by immersing in an aqueous solution containing p-nitrophenol and caustic soda as components. Again, the film thickness of the Sn component contained in the Cu—Sn alloy layer was measured using a fluorescent X-ray film thickness meter. The measurement conditions were a single layer calibration curve of Sn / base material or a two-layer calibration curve of Sn / Ni / base material for the calibration curve, and the collimator diameter was φ0.5 mm. By subtracting the film thickness of the Sn component contained in the Cu-Sn alloy layer from the sum of the film thickness of the obtained Sn layer and the film thickness of the Sn component contained in the Cu-Sn alloy layer, the average of the Sn layers The thickness of was calculated.

[Cu−Sn合金層の材料表面露出面積率測定方法]
試験材の表面を、EDX(エネルギー分散型X線分光分析器)を搭載したSEM(走査型電子顕微鏡)を用いて200倍の倍率で観察し、得られた組成像の濃淡(汚れや傷等のコントラストは除く)から画像解析によりCu−Sn合金層の材料表面露出面積率を測定した。図2にNo.1の組成像を示す。図中、XはSn層、Yは露出したCu−Sn合金層である。
[Cu−Sn合金被覆層の平均の材料表面露出間隔測定方法]
試験材の表面を、EDX(エネルギー分散型X線分光分析器)を搭載したSEM(走査型電子顕微鏡)を用いて200倍の倍率で観察し、得られた組成像から、材料表面に引いた直線を横切るCu−Sn合金被覆層の平均の幅(前記直線に沿った長さ)とSn被覆層の平均の幅を足した値の平均を求めることにより、Cu−Sn合金被覆層の平均の材料表面露出間隔を測定した。測定方向(引いた直線の方向)は、表面粗化処理の際に行った圧延又は研磨方向に直角な方向とした。
[Measuring Method of Material Surface Exposed Area Ratio of Cu-Sn Alloy Layer]
The surface of the test material was observed at a magnification of 200 using an SEM (scanning electron microscope) equipped with EDX (energy dispersive X-ray spectrometer), and the resulting composition image was shaded (dirt, scratches, etc.). The ratio of the exposed surface area of the Cu—Sn alloy layer was measured by image analysis. In FIG. 1 shows a composition image. In the figure, X is a Sn layer, and Y is an exposed Cu—Sn alloy layer.
[Measuring method of average material surface exposure interval of Cu—Sn alloy coating layer]
The surface of the test material was observed at a magnification of 200 times using an SEM (scanning electron microscope) equipped with EDX (energy dispersive X-ray spectrometer), and was drawn on the material surface from the obtained composition image. By calculating the average of the value obtained by adding the average width (length along the straight line) of the Cu—Sn alloy coating layer crossing the straight line and the average width of the Sn coating layer, the average of the Cu—Sn alloy coating layer is obtained. The material surface exposure interval was measured. The measurement direction (the direction of the drawn straight line) was a direction perpendicular to the rolling or polishing direction performed during the surface roughening treatment.

[材料表面粗さ測定方法]
接触式表面粗さ計(株式会社東京精密;サーフコム1400)を用いて、JIS B0601−1994に基づいて測定した。表面粗さ測定条件は、カットオフ値を0.8mm、基準長さを0.8mm、評価長さを4.0mm、測定速度を0.3mm/s、及び触針先端半径を5μmRとした。なお、表面粗さ測定方向は、表面粗化処理の際に行った圧延又は研磨方向に直角な方向(表面粗さが最も大きく出る方向)とした。
[Material surface roughness measurement method]
It measured based on JISB0601-1994 using the contact-type surface roughness meter (Tokyo Seimitsu; Surfcom 1400). The surface roughness measurement conditions were a cutoff value of 0.8 mm, a reference length of 0.8 mm, an evaluation length of 4.0 mm, a measurement speed of 0.3 mm / s, and a stylus tip radius of 5 μmR. The surface roughness measurement direction was a direction perpendicular to the rolling or polishing direction performed during the surface roughening treatment (the direction in which the surface roughness is maximized).

また、得られた試験材について、アルミニウム板との接触抵抗評価試験、高温放置後の接触抵抗評価試験を、下記の要領で行った。その結果を、表3及び表4に合わせて示す。
[アルミニウム板の接触抵抗評価試験]
嵌合型接続部品における電気接点のインデント部の形状を模擬し、図3に示すような摺動試験機(株式会社山崎精機研究所;CRS−B1050CHO)を用いて評価した。まず、アルミニウム板(A1050:0.5mmt,ビッカース硬さ:Hv40)から切り出した板材のオス試験片1を水平な台2に固定し、その上に各試験材から切り出した半球加工材(内径をφ1.5mmとした)のメス試験片3をおいて被覆層同士を接触させた。続いて、メス試験片3に49mNの荷重(錘4)をかけてオス試験片3を押さえ、オス試験片1とメス試験片3の間に定電流を印加し、ステッピングモータ5を用いてオス試験片1を水平方向に摺動させ(摺動距離を50μm、摺動周波数を1Hzとした)、摺動回数5回の抵抗を四端子法により、開放電圧20mV、電流10mAの条件にて測定し、摺動時の平均抵抗値を測定チャートより読み取った。測定チャートの一例(試験No.1,17)を図4に示す。なお、矢印は摺動方向である。
[高温放置後の接触抵抗評価試験]
各試験材に対し、大気中にて160℃×120hrの熱処理を行った後、接触抵抗を四端子法により、開放電圧20mV、電流10mA、無摺動の条件にて測定した。
Moreover, about the obtained test material, the contact resistance evaluation test with an aluminum plate and the contact resistance evaluation test after leaving at high temperature were performed in the following manner. The results are shown in Table 3 and Table 4.
[Aluminum plate contact resistance evaluation test]
The shape of the indented portion of the electrical contact in the fitting-type connecting part was simulated and evaluated using a sliding tester (Yamazaki Seiki Laboratory Co., Ltd .; CRS-B1050CHO) as shown in FIG. First, a male test piece 1 of a plate material cut out from an aluminum plate (A1050: 0.5 mmt, Vickers hardness: Hv40) is fixed to a horizontal base 2, and a hemispherical processed material (inner diameter is cut out from each test material thereon) A female test piece 3 having a diameter of 1.5 mm was placed and the coating layers were brought into contact with each other. Subsequently, a load of 49 mN (weight 4) is applied to the female test piece 3 to hold the male test piece 3, a constant current is applied between the male test piece 1 and the female test piece 3, and the male is used using the stepping motor 5. The test piece 1 was slid in the horizontal direction (sliding distance was 50 μm, sliding frequency was 1 Hz), and the resistance of 5 times of sliding was measured by the four-terminal method under the conditions of an open voltage of 20 mV and a current of 10 mA. The average resistance value during sliding was read from the measurement chart. An example of the measurement chart (Test Nos. 1 and 17) is shown in FIG. The arrow indicates the sliding direction.
[Evaluation test for contact resistance after standing at high temperature]
Each test material was heat-treated at 160 ° C. for 120 hours in the air, and then contact resistance was measured by a four-terminal method under an open voltage of 20 mV, a current of 10 mA, and no sliding.

表3に示す結果について、次のように評価される。
No.1〜11は、被覆層構成に関して本発明に規定する要件を満たし、アルミニウム板との接触抵抗が非常に低く、高温長時間放置後の接触抵抗についても優れた特性を示す。
一方、No.12はSn層及びCu−Sn合金層の平均の厚さが薄く、No.13はCu−Sn合金層の平均の厚さが薄いため、高温放置後の接触抵抗が高い。また、No.14は特性上問題は無いが、めっき厚さが厚いため製造コストが高くなる。
No.15はCu−Sn合金層内のCu含有量が低く合金層の硬度が低いため、アルミニウムの酸化皮膜が破壊されず接触抵抗が高い。No.16はCu−Sn合金層内のCu含有量が高いため、高温放置により表面までCuが拡散し、Cuの酸化皮膜が表面に形成されるため高温放置後の接触抵抗が高い。
No.17は粗面化処理を行わない通常母材を用いたため、Cu−Sn合金層が材料表面に露出せず、アルミニウムとの接触抵抗が高い。No.18はCu−Sn合金層の露出面積率が大きいため、高温酸化放置後の接触抵抗が高い。
No.19はCu−Sn合金層の露出間隔が広く、Cu−Sn合金層がメス試験片3とオス試験片1の接点部に存在していないため、アルミニウム板との接触抵抗が高い。
No.20は材料の表面粗度が小さいため、アルミニウムの酸化皮膜が破壊されず接触抵抗が高い。No.21は材料の表面粗度が大きいため、高温酸化放置後の接触抵抗が高くなる。
The results shown in Table 3 are evaluated as follows.
No. Nos. 1 to 11 satisfy the requirements stipulated in the present invention with respect to the coating layer structure, have very low contact resistance with an aluminum plate, and exhibit excellent characteristics in contact resistance after standing at high temperature for a long time.
On the other hand, no. No. 12 has a thin average thickness of the Sn layer and the Cu—Sn alloy layer. No. 13, since the average thickness of the Cu—Sn alloy layer is thin, the contact resistance after being left at high temperature is high. No. No. 14 has no problem in characteristics, but the manufacturing cost increases because the plating thickness is thick.
No. No. 15 has a low Cu content in the Cu—Sn alloy layer and a low hardness of the alloy layer, so that the aluminum oxide film is not destroyed and the contact resistance is high. No. No. 16 has a high Cu content in the Cu—Sn alloy layer, so that Cu diffuses to the surface when left at high temperature, and an oxide film of Cu is formed on the surface, so contact resistance after high temperature standing is high.
No. Since No. 17 used the normal base material which does not perform a roughening process, a Cu-Sn alloy layer is not exposed to the material surface, but contact resistance with aluminum is high. No. Since No. 18 has a large exposed area ratio of the Cu—Sn alloy layer, the contact resistance after being left at high temperature oxidation is high.
No. No. 19 has a wide exposure interval of the Cu—Sn alloy layer, and since the Cu—Sn alloy layer is not present at the contact portion between the female test piece 3 and the male test piece 1, the contact resistance with the aluminum plate is high.
No. No. 20 has a low surface roughness of the material, so that the aluminum oxide film is not destroyed and the contact resistance is high. No. No. 21 has a high surface roughness of the material, so that the contact resistance after leaving at high temperature is increased.

A 母材
X Sn被覆層
Y Cu−Sn合金被覆層
1 オス試験片
2 台
3 メス試験片
4 錘
5 ロードセル
A Base material X Sn coating layer Y Cu-Sn alloy coating layer 1 Male test piece 2 units 3 Female test piece 4 Weight 5 Load cell

Claims (5)

アルミニウム製導電部材との接続に用いられる接続部品用材料であり、銅又は銅合金板条からなる母材の表面に、リフロー処理により形成されたCu−Sn合金層とSn層がこの順に形成され、少なくとも前記アルミニウム製導電部材と接触する部分において、前記Sn層の表面に前記Cu−Sn合金層の一部が露出し、前記Cu−Sn合金層の材料表面露出面積率が10〜75%、材料表面露出間隔が0.01〜0.5mm、平均の厚さが0.2〜5.0μm、Cu含有量が20〜70at%であり、材料表面の算術平均粗さRaが0.15μm以上、3.0μm以下であることを特徴とする接続部品用錫めっき付銅又は銅合金材料。 It is a material for connection parts used for connection with aluminum conductive members. Cu-Sn alloy layer and Sn layer formed by reflow treatment are formed in this order on the surface of the base material made of copper or copper alloy sheet. A part of the Cu—Sn alloy layer is exposed on the surface of the Sn layer at least in a portion in contact with the aluminum conductive member, and a material surface exposed area ratio of the Cu—Sn alloy layer is 10 to 75%, The material surface exposure interval is 0.01 to 0.5 mm, the average thickness is 0.2 to 5.0 μm, the Cu content is 20 to 70 at%, and the arithmetic average roughness Ra of the material surface is 0.15 μm or more. 3.0 μm or less, tin-plated copper or copper alloy material for connecting parts. 前記Sn層の平均の厚さが0.3〜6.0μmであることを特徴とする請求項1に記載された接続部品用錫めっき付銅合金材料。 2. The tin-plated copper alloy material for connection parts according to claim 1, wherein the Sn layer has an average thickness of 0.3 to 6.0 μm. 前記Cu−Sn合金層の下にCu層を有することを特徴とする請求項1又は2に記載された接続部品用錫めっき付銅合金材料。 3. The copper alloy material with tin plating for connection parts according to claim 1 or 2, further comprising a Cu layer under the Cu-Sn alloy layer. 前記母材表面と前記Cu−Sn合金層の間にNi層が形成されていることを特徴とする請求項1又は2に記載された接続部品用錫めっき付銅合金材料。 The copper alloy material with tin plating for connection parts according to claim 1 or 2, wherein a Ni layer is formed between the surface of the base material and the Cu-Sn alloy layer. 前記Ni層と前記Cu−Sn合金層の間にCu層を有することを特徴とする請求項4に記載された接続部品用錫めっき付銅合金材料。 5. The copper alloy material with tin plating for connection parts according to claim 4, further comprising a Cu layer between the Ni layer and the Cu—Sn alloy layer.
JP2009193675A 2009-08-24 2009-08-24 Copper or copper alloy material with tin plating for connection parts used for connection with aluminum conductive members Expired - Fee Related JP5419594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009193675A JP5419594B2 (en) 2009-08-24 2009-08-24 Copper or copper alloy material with tin plating for connection parts used for connection with aluminum conductive members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009193675A JP5419594B2 (en) 2009-08-24 2009-08-24 Copper or copper alloy material with tin plating for connection parts used for connection with aluminum conductive members

Publications (2)

Publication Number Publication Date
JP2011042860A JP2011042860A (en) 2011-03-03
JP5419594B2 true JP5419594B2 (en) 2014-02-19

Family

ID=43830483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009193675A Expired - Fee Related JP5419594B2 (en) 2009-08-24 2009-08-24 Copper or copper alloy material with tin plating for connection parts used for connection with aluminum conductive members

Country Status (1)

Country Link
JP (1) JP5419594B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011084174A1 (en) * 2011-10-07 2013-04-11 Tyco Electronics Amp Gmbh crimp
JP5587935B2 (en) * 2012-03-30 2014-09-10 Jx日鉱日石金属株式会社 Sn plating material
JP2014002977A (en) * 2012-06-20 2014-01-09 Japan Aviation Electronics Industry Ltd Surface structure of conductive member, and washer and crimp terminal including surface structure
TW201413068A (en) * 2012-07-02 2014-04-01 Mitsubishi Materials Corp Tin-plated copper alloy terminal member with outstanding insertion and removal characteristics and method of manufacturing the same
JP5692192B2 (en) * 2012-09-21 2015-04-01 株式会社オートネットワーク技術研究所 Method for manufacturing connector terminal and method for manufacturing connector terminal material
US9748683B2 (en) 2013-03-29 2017-08-29 Kobe Steel, Ltd. Electroconductive material superior in resistance to fretting corrosion for connection component
JP6134557B2 (en) * 2013-03-29 2017-05-24 Jx金属株式会社 Copper strip or copper alloy strip and heat dissipating part provided with the strip
EP2799595A1 (en) * 2013-05-03 2014-11-05 Delphi Technologies, Inc. Electric contact element
EP3051635B1 (en) * 2015-01-30 2018-01-17 TE Connectivity Germany GmbH Electric contact means and electrical cable assembly for the automotive industry
JP6113822B1 (en) * 2015-12-24 2017-04-12 株式会社神戸製鋼所 Conductive material for connecting parts
CN116411202A (en) * 2021-12-29 2023-07-11 无锡市蓝格林金属材料科技有限公司 Copper-tin alloy wire and preparation method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004014216A (en) * 2002-06-05 2004-01-15 Auto Network Gijutsu Kenkyusho:Kk Wire connection terminal
JP4021734B2 (en) * 2002-08-30 2007-12-12 矢崎総業株式会社 Wire ultrasonic bonding method
JP3984539B2 (en) * 2002-12-17 2007-10-03 株式会社オートネットワーク技術研究所 Connector terminal and manufacturing method thereof
JP3926355B2 (en) * 2004-09-10 2007-06-06 株式会社神戸製鋼所 Conductive material for connecting parts and method for manufacturing the same
JP4024244B2 (en) * 2004-12-27 2007-12-19 株式会社神戸製鋼所 Conductive material for connecting parts and method for manufacturing the same
JP4255939B2 (en) * 2004-09-17 2009-04-22 神鋼リードミック株式会社 Press-fit terminal and manufacturing method thereof
JP4503620B2 (en) * 2007-01-25 2010-07-14 株式会社神戸製鋼所 Conductive material for connecting parts and method for manufacturing the same
JP5464792B2 (en) * 2007-04-20 2014-04-09 株式会社神戸製鋼所 Method for manufacturing mating connector terminal
JP2009099282A (en) * 2007-10-12 2009-05-07 Kobe Steel Ltd Fitting type connector
JP4964795B2 (en) * 2008-01-23 2012-07-04 Jx日鉱日石金属株式会社 Copper alloy tin plating strip with excellent wear resistance
JP5089451B2 (en) * 2008-03-19 2012-12-05 古河電気工業株式会社 Metal material for connector and manufacturing method thereof
JP5384382B2 (en) * 2009-03-26 2014-01-08 株式会社神戸製鋼所 Copper or copper alloy with Sn plating excellent in heat resistance and method for producing the same

Also Published As

Publication number Publication date
JP2011042860A (en) 2011-03-03

Similar Documents

Publication Publication Date Title
JP5419594B2 (en) Copper or copper alloy material with tin plating for connection parts used for connection with aluminum conductive members
JP4024244B2 (en) Conductive material for connecting parts and method for manufacturing the same
JP3926355B2 (en) Conductive material for connecting parts and method for manufacturing the same
JP4503620B2 (en) Conductive material for connecting parts and method for manufacturing the same
JP5384382B2 (en) Copper or copper alloy with Sn plating excellent in heat resistance and method for producing the same
JP5025387B2 (en) Conductive material for connecting parts and method for manufacturing the same
JP6113605B2 (en) Copper alloy strip with surface coating layer with excellent heat resistance
JP6103811B2 (en) Conductive material for connecting parts
KR100870334B1 (en) Conductive material for connecting part and method for manufacturing the conductive material
JP6740635B2 (en) Tin-plated copper terminal material, its manufacturing method, and wire terminal structure
JP4771970B2 (en) Conductive material for connecting parts
JP4934456B2 (en) Plating material and electric / electronic component using the plating material
JP5355935B2 (en) Metal materials for electrical and electronic parts
JP2014208904A (en) Electroconductive material superior in resistance to fretting corrosion for connection component
WO2017195768A1 (en) Tinned copper terminal material, terminal, and electrical wire end part structure
TW201527596A (en) Tin-plated copper alloy terminal material
KR20150024252A (en) Tin-plated copper-alloy material for terminal having excellent insertion/extraction performance
JP5949291B2 (en) Connector terminal and connector terminal material
JP2004300524A (en) Sn-COATED COPPER OR COPPER ALLOY MEMBER AND ITS MANUFACTURING METHOD
CN104600459A (en) Tin-plated copper-alloy terminal material
JP2009099282A (en) Fitting type connector
WO2017110859A1 (en) Conductive material for connection component
WO2018164127A1 (en) Corrosion-resistant terminal material, corrosion-resistant terminal, and wire end structure
JPWO2018074256A1 (en) Conductive strip
JP2018147778A (en) Anticorrosive terminal material, anticorrosive terminal, and wire terminal structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131119

R150 Certificate of patent or registration of utility model

Ref document number: 5419594

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees