JP4368931B2 - Male terminal and manufacturing method thereof - Google Patents

Male terminal and manufacturing method thereof Download PDF

Info

Publication number
JP4368931B2
JP4368931B2 JP2008549222A JP2008549222A JP4368931B2 JP 4368931 B2 JP4368931 B2 JP 4368931B2 JP 2008549222 A JP2008549222 A JP 2008549222A JP 2008549222 A JP2008549222 A JP 2008549222A JP 4368931 B2 JP4368931 B2 JP 4368931B2
Authority
JP
Japan
Prior art keywords
plating
thickness
layer
plating layer
fitting portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008549222A
Other languages
Japanese (ja)
Other versions
JPWO2008072418A1 (en
Inventor
靖夫 富岡
Original Assignee
日鉱富士電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉱富士電子株式会社 filed Critical 日鉱富士電子株式会社
Application granted granted Critical
Publication of JP4368931B2 publication Critical patent/JP4368931B2/en
Publication of JPWO2008072418A1 publication Critical patent/JPWO2008072418A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/04Pins or blades for co-operation with sockets

Description

本発明は半田付け部と嵌合部を備えたオス端子及びその製造方法に関し、その中でもとりわけ芯数の多いコネクタへの使用に適したオス端子及びその製造方法に関する。本発明はより特別には自動車用コネクタへの使用に適したオス端子及びその製造方法に関する。   The present invention relates to a male terminal having a soldering portion and a fitting portion and a manufacturing method thereof, and more particularly to a male terminal suitable for use in a connector having a large number of cores and a manufacturing method thereof. More particularly, the present invention relates to a male terminal suitable for use in an automobile connector and a method for manufacturing the same.

電子機器等のコネクタに用いられる金属部品であるオス端子の中には、一端がプリント基板等に半田付けされ、他端がメス端子に接続されるものがある。例えば、自動車において使用される、プリント基板とワイヤーハーネスを中継する棒状のオス端子は、一端は嵌合部と呼ばれメス端子と嵌合する機能を持ち、もう一端は半田付け部と呼ばれ基板と半田付けされる機能を持つ。   Some male terminals, which are metal parts used in connectors for electronic devices, have one end soldered to a printed circuit board or the like and the other end connected to a female terminal. For example, a rod-shaped male terminal that relays a printed circuit board and a wire harness used in an automobile has one end called a fitting portion and a function to fit a female terminal, and the other end called a soldering portion. And has the function of being soldered.

この場合、嵌合部はメス端子との安定した電気的接触を確保するため、接触抵抗の小さいことが要求される。また、挿抜が容易であることも要求される。半田付け部はプリント基板と半田付けされるため、半田付け性の良好なことが要求される。特に、自動車用途等、高温環境下での使用が予定される場合や、また、半田付け前であっても倉庫で長期間保管されたり、輸出入のため船底に高温で長期間放置されたりする場合があるため、上記特性を高温下でも保持することの可能な耐熱性が強く要請される。   In this case, the fitting portion is required to have a low contact resistance in order to ensure stable electrical contact with the female terminal. Moreover, it is also required that insertion / extraction is easy. Since the soldering portion is soldered to the printed circuit board, it is required that the solderability is good. In particular, when it is planned to be used in a high temperature environment such as for automobiles, or stored for a long time in a warehouse even before soldering, or left at the bottom of a ship for a long time for import and export. Therefore, there is a strong demand for heat resistance capable of maintaining the above characteristics even at high temperatures.

一般に、オス端子の材料としては導電性及びコストの面で銅又は銅合金が使用されており、その表面には上記のような要求特性を満足させるべく、下地めっきとして銅又はニッケル、仕上げめっきとしてリフローSnが施される2層めっきが工業的に行われている。   In general, copper or copper alloy is used as the material for the male terminal in terms of conductivity and cost, and copper or nickel is used as the base plating for the surface to satisfy the above required characteristics, and as the finish plating. Two-layer plating to which reflow Sn is applied is industrially performed.

近年では、自動車の電装化の進展とともにコネクタの芯数が増大しており、中には100を超える数の芯を有するものも存在することから、挿抜力の小さなことが特に要求されており、従来のめっき構成では、年々厳しくなっていくオス端子に対する要求特性を満足することが困難になりつつある。すなわち、Snは軟らかい金属であるため端子の嵌合接続時の摩擦が大きい。そのため、コネクタの芯数が著しく増大すると強大な挿抜力が必要になる。挿抜力を低下させるためには、リフローSnめっき厚を薄くすればよいが、リフローSnめっきの厚みが薄くなると今度は高温環境下で表層のSnが素材のCu又は下地めっきのNi及びCuと合金化して表層にSnが残存しなくなり、半田付け性や接触抵抗が悪化してしまうという二律背反の問題がある。   In recent years, the number of cores of the connector has increased with the progress of the electrification of automobiles, and since some of them have more than 100 cores, a small insertion / extraction force is particularly required, With the conventional plating configuration, it is becoming difficult to satisfy the required characteristics for male terminals that are becoming stricter year by year. That is, since Sn is a soft metal, the friction at the time of terminal fitting connection is large. For this reason, when the number of cores of the connector is significantly increased, a strong insertion / extraction force is required. In order to reduce the insertion / extraction force, the reflow Sn plating thickness may be reduced. However, when the reflow Sn plating thickness is reduced, the surface Sn is alloyed with Cu as the raw material or Ni and Cu as the base plating in a high temperature environment. As a result, Sn does not remain on the surface layer, and solderability and contact resistance are deteriorated.

そこで、特開2005−307240号(特許文献1)では、上記のような問題を解決すべく、部位によってSnめっき厚さを変えた3層めっきを提案している。すなわち、銅又は銅合金からなる素材の一部領域が厚さ0.05μm以上0.8μm未満のSnめっき薄層で被覆され、残部領域が厚さ0.8μm以上3μm以下の一体に形成されたSnめっき厚層で被覆されてなり、該Snめっき薄層および該Snめっき厚層の下地層として、前記素材側からNiめっき層とCuめっき層で形成された下地層を有する導電材が提供されている(請求項1)。該導電材は、めっき浴中において、前記下地層を有する素材を陰極とし、該陰極と該陰極に対向する陽極との間の一部に絶縁性遮蔽板を配置して電気めっきを行うことによって、該陰極上の一部領域に厚さ0.05μm以上0.8μm未満のSnめっき薄層を被覆し、残部領域に厚さ0.8μm以上3μm以下の一体に形成されたSnめっき厚層を被覆する方法によって製造される(請求項6)。
特開2005−307240号
In view of this, Japanese Patent Application Laid-Open No. 2005-307240 (Patent Document 1) proposes three-layer plating in which the Sn plating thickness is changed depending on the part in order to solve the above-described problems. That is, a partial region of a material made of copper or a copper alloy was covered with a Sn plating thin layer having a thickness of 0.05 μm or more and less than 0.8 μm, and the remaining region was integrally formed with a thickness of 0.8 μm or more and 3 μm or less. Provided is a conductive material that is covered with a Sn plating thick layer, and has a base layer formed of a Ni plating layer and a Cu plating layer from the material side as the Sn plating thin layer and the base layer of the Sn plating thick layer. (Claim 1). The conductive material is obtained by performing electroplating in a plating bath by using the material having the base layer as a cathode and disposing an insulating shielding plate in a part between the cathode and the anode facing the cathode. The Sn plating thin layer having a thickness of 0.05 μm or more and less than 0.8 μm is coated on a partial area on the cathode, and the Sn plating thick layer integrally formed with a thickness of 0.8 μm or more and 3 μm or less is formed on the remaining area. Manufactured by a coating method (claim 6).
JP 2005-307240 A

3層めっきは一般に図2に示すような構成を有し、母材の表面に対してNi及びCuの下地めっきを順次施し、その表層にSnめっきを行った後、リフロー処理を行う。適正なめっき厚さの管理とリフロー処理によりCuめっきは大半がSnとの金属間化合物となる。
そのため、リフロー処理後には表層のSnとCuとの反応は殆ど終了しており、その後に加熱しても、Sn−Cu金属間化合物は殆ど成長せず、表層のSn厚さは維持される。更に、Sn−Cu金属間化合物は、表層のSnが下地Niと反応して金属間化合物を生成するのを抑制するためのバリアとしても作用する。
The three-layer plating generally has a structure as shown in FIG. 2, and Ni and Cu are sequentially plated on the surface of the base material, Sn plating is performed on the surface layer, and then reflow treatment is performed. Due to proper management of plating thickness and reflow treatment, most of Cu plating becomes an intermetallic compound with Sn.
Therefore, the reaction between Sn and Cu on the surface layer is almost completed after the reflow treatment, and even if heated after that, the Sn—Cu intermetallic compound hardly grows, and the Sn thickness of the surface layer is maintained. Further, the Sn—Cu intermetallic compound also acts as a barrier for suppressing the surface Sn from reacting with the base Ni to form an intermetallic compound.

ここで、オス端子は平板状の金属材料を打ち抜き加工して生産されるが、従前は黄銅などの銅合金にSnめっきを施した条材からプレスによって打ち抜くことにより製造するのが主流であった(2面めっき)。Snめっきした材料を打ち抜き加工すると、プレス破面にて金属材料が露出する。電子材料の半田付けは、従来のSn−Pb合金からPbフリー化により、Sn等のSn−Pb合金より高融点の金属が用いられるようになったが、プレス破面にて金属材料が露出していると、これらの高融点のろう材は、半田付け不良が発生することがある。そのため、プレス後にプレス破面も含めて全面にめっきを行う方法が最近では多く選択されている。しかしながら、プレス後に全面めっきを行う場合はめっき厚の均一制御が難しいという問題があり、3層めっきの場合だとめっき厚制御の難易度は更に高くなる。   Here, the male terminal is produced by punching a flat metal material, but it has been mainly produced by punching from a strip material obtained by applying Sn plating to a copper alloy such as brass. (Two side plating). When the Sn-plated material is punched, the metal material is exposed at the press fracture surface. For soldering electronic materials, metals with higher melting points than Sn-Pb alloys such as Sn have been used by making Pb-free from conventional Sn-Pb alloys, but the metal materials are exposed at the press fracture surface. As a result, soldering defects may occur in these high melting point brazing materials. For this reason, many methods have recently been selected for plating on the entire surface including the press fracture surface after pressing. However, there is a problem that uniform plating thickness control is difficult when full plating is performed after pressing, and in the case of three-layer plating, the difficulty of plating thickness control is further increased.

以下に上記問題点を詳しく説明する。オス端子の各部の一般的な幅は以下の寸法であるが、端子形態に加工後めっきを行う場合、端子形状が例えば棒状であるときは、めっき加工時の電流集中の影響により端子の両端のめっき厚が厚くなることが避けられない。この傾向は端子幅が細いほど、端子長さが長いほど顕著となり、先端のめっき厚が通常部の5倍にもおよぶ場合もある。
端子長さ:15〜80mm
(例:32mm)
端子厚み:0.4〜1.0mm
(例:0.64mm)
半田付部:幅0.4〜1.0mm
(例:0.64mm)
嵌合部: 幅0.5〜5.0mm
(例:0.64mm、1.0mm、2.3mm)
The above problems will be described in detail below. The general width of each part of the male terminal is the following dimensions, but when plating after processing into the terminal form, if the terminal shape is, for example, a rod shape, the both ends of the terminal due to the effect of current concentration during plating It is inevitable that the plating thickness is increased. This tendency becomes more prominent as the terminal width is thinner and the terminal length is longer, and the plating thickness at the tip may be as much as five times that of the normal part.
Terminal length: 15-80mm
(Example: 32mm)
Terminal thickness: 0.4 to 1.0 mm
(Example: 0.64mm)
Soldering part: Width 0.4-1.0mm
(Example: 0.64mm)
Mating part: Width 0.5-5.0mm
(Example: 0.64mm, 1.0mm, 2.3mm)

このようなめっき厚分布が存在することによって、3層めっきの効果は更に減退してしまう。
すなわち、中間のCuめっき厚が端子先端で厚くなった場合には、リフロー処理後にSnと金属間化合物を形成しなかったCuが大量に残存するため、その後の加熱でSnとの反応が進み、接触抵抗の上昇、半田付け性の低下につながる。一方、良好な半田付け性を得る目的で、半田付け部のSnめっき厚を厚くしようとすると、嵌合部でのSnめっきの厚さも厚くなってしまい、挿抜性が劣化してしまう。
The presence of such plating thickness distribution further reduces the effect of the three-layer plating.
That is, when the intermediate Cu plating thickness is increased at the tip of the terminal, a large amount of Cu that has not formed an intermetallic compound with Sn after the reflow treatment remains, so that the reaction with Sn proceeds with subsequent heating, This leads to increased contact resistance and reduced solderability. On the other hand, if an attempt is made to increase the Sn plating thickness of the soldered portion for the purpose of obtaining good solderability, the thickness of the Sn plating at the fitting portion also increases, and the insertion / extraction properties deteriorate.

従って、上記の先行技術による解決手段は、端子に施される各めっき層の厚みを充分に制御することが可能な場合には有効であると考えられるが、オス端子は形状によってはめっき厚に分布が生じてしまい、均一なめっき厚を端子全体に施すことが困難となる場合がある。例えば、自動車用オス端子は、細長い棒状の形状を有しているため電流密度に分布が発生する結果、極端なめっき厚分布が生じ、端子中央部から先端にかけてめっき厚は数倍大きくなる。上記の先行技術のような3層めっきにおいて所定の特性を得るためには、各めっき層の厚さを厳密に制御する必要があるが、上記のめっき厚分布のために所望する特性を得ることは容易ではない。そのため、よりめっき厚の制御が容易なめっき構成が望まれる。   Therefore, the above-described prior art solution is considered effective when the thickness of each plating layer applied to the terminal can be sufficiently controlled, but the male terminal has a plating thickness depending on the shape. Distribution may occur, and it may be difficult to apply a uniform plating thickness to the entire terminal. For example, since a male terminal for automobile has a long and narrow bar shape, distribution of current density occurs, resulting in an extreme plating thickness distribution, and the plating thickness increases several times from the center of the terminal to the tip. In order to obtain the predetermined characteristics in the three-layer plating as in the above prior art, it is necessary to strictly control the thickness of each plating layer, but to obtain the desired characteristics due to the plating thickness distribution. Is not easy. Therefore, a plating configuration in which the plating thickness can be easily controlled is desired.

そこで、本発明は、めっき厚に有意な分布が生じて端子全体への均一めっきが困難な形状を有するオス端子においても、嵌合部は低接触抵抗及び低挿抜力を満足し、且つ、半田付け部は良好な半田付け性を有するオス端子を提供することを課題とする。また、本発明は、そのようなオス端子の製造方法を提供することを別の課題とする。また、本発明はそのようなオス端子を備えたコネクタを提供することを更に別の課題とする。   Therefore, the present invention provides a fitting portion satisfying a low contact resistance and a low insertion / extraction force even in a male terminal having a shape in which a significant distribution of plating thickness occurs and uniform plating over the entire terminal is difficult, and soldering. An object of the present invention is to provide a male terminal having good solderability. Moreover, this invention makes it another subject to provide the manufacturing method of such a male terminal. Moreover, this invention makes it another subject to provide the connector provided with such a male terminal.

本発明者は上記課題を解決すべく鋭意研究した結果、嵌合部は3層めっきとしつつ、半田付け部はSnと合金化しやすいCuめっきを行わず、Ni下地+Snめっきの2層めっきとする構成を採用することによって(図1参照)、嵌合部における低接触抵抗及び挿抜性と同時に、半田付け部における半田付け性を従前よりも高い確実性で容易に達成できることを見出した。すなわち、めっき厚分布の制御に緻密性が最も要求されるCuめっきを嵌合部のみに部分めっきすることにより、上記のような課題を克服することができる。
なお、Sn/Niの2層めっきは、加熱によりSn−Ni合金を形成し、これは半田付け性に悪影響を与えるが、半田付け部に挿抜性は要求されず、Snを表層に比較的厚く残存させればよい。そのため、めっき厚の厳密な制御が不要となる。半田付け部も3層めっきとした場合には、先端のCuめっき層が厚くなりリフロー後に過剰のCuが残存することになるため、その後のSn−Cu合金の成長はSn−Ni合金よりも早く、半田付け性の劣化はSn/Ni2層めっきよりもむしろ早くなる。この点からも嵌合部は3層、半田付け性はSn/Ni2層とするのが好ましい構成であるといえる。
As a result of diligent research to solve the above-mentioned problems, the present inventor has adopted a two-layer plating of Ni base + Sn plating without performing Cu plating which is easy to alloy with Sn while the fitting portion is three-layer plating. By adopting the configuration (see FIG. 1), it has been found that the solderability at the soldering portion can be easily achieved with higher certainty at the same time as the low contact resistance and insertion / removability at the fitting portion. That is, the above-described problems can be overcome by partially plating only the fitting portion with Cu plating that is most required to control the plating thickness distribution.
In addition, Sn / Ni two-layer plating forms a Sn—Ni alloy by heating, which adversely affects solderability, but does not require insertion / extraction at the soldered portion, and Sn is relatively thick on the surface layer. It only has to remain. Therefore, strict control of the plating thickness becomes unnecessary. If the soldering part is also made of three-layer plating, the Cu plating layer at the tip becomes thick and excess Cu remains after reflow, so the subsequent growth of the Sn—Cu alloy is faster than the Sn—Ni alloy. In addition, the deterioration of solderability is accelerated rather than Sn / Ni two-layer plating. Also from this point, it can be said that it is preferable that the fitting portion has three layers and the solderability is an Sn / Ni2 layer.

上記の知見を基礎として完成された本発明は、一側面において、メス端子と嵌合される嵌合部と半田付けされる半田付け部とを有する金属を素材としたオス端子であって、嵌合部には素材の全面に又は表裏の2面に素材側より厚み0.3〜5.0μmのNiめっき層、厚み0〜0.3μmのCuめっき層、厚み0.1〜0.7μmのCu−Sn合金層、及び厚み0.2〜1.0μmのSnめっき層がこの順に形成されており、半田付け部には素材の全面に素材側より厚み0.3〜5.0μmのNiめっき層、厚み0.1〜0.7μmのSn−Ni合金層、及び厚み0.3μm以上のSnめっき層がこの順に形成されていることを特徴とするオス端子である。   The present invention completed on the basis of the above knowledge is, in one aspect, a male terminal made of a metal having a fitting portion to be fitted to a female terminal and a soldering portion to be soldered. In the joint part, the Ni plating layer having a thickness of 0.3 to 5.0 μm, the Cu plating layer having a thickness of 0 to 0.3 μm, and the thickness of 0.1 to 0.7 μm are formed on the entire surface of the material or on the two surfaces of the front and back A Cu—Sn alloy layer and a Sn plating layer having a thickness of 0.2 to 1.0 μm are formed in this order, and a Ni plating with a thickness of 0.3 to 5.0 μm is formed on the entire surface of the material from the material side at the soldering portion. The male terminal is characterized in that a layer, a Sn—Ni alloy layer having a thickness of 0.1 to 0.7 μm, and a Sn plating layer having a thickness of 0.3 μm or more are formed in this order.

本発明に係るオス端子の一実施形態においては、素材として用いられる金属は銅又は銅合金である。   In one embodiment of the male terminal according to the present invention, the metal used as the material is copper or a copper alloy.

本発明に係るオス端子の一実施形態においては、嵌合部における前記Cuめっき層の厚みは0〜0.2μmである。   In one Embodiment of the male terminal which concerns on this invention, the thickness of the said Cu plating layer in a fitting part is 0-0.2 micrometer.

本発明に係るオス端子の別の一実施形態においては、嵌合部における前記Cuめっき層の厚みは0μmである。   In another embodiment of the male terminal according to the present invention, the thickness of the Cu plating layer in the fitting portion is 0 μm.

本発明に係るオス端子の更に別の一実施形態においては、嵌合部には素材の全面に前記Niめっき層、随意的なCuめっき層、Cu−Sn合金層、及びSnめっき層が形成されている。   In yet another embodiment of the male terminal according to the present invention, the Ni plating layer, an optional Cu plating layer, a Cu-Sn alloy layer, and a Sn plating layer are formed on the entire surface of the material in the fitting portion. ing.

本発明に係るオス端子の更に別の一実施形態においては、オス端子は、厚み:0.4〜1.0mmであり、嵌合部が幅:0.5〜5.0mm、半田付け部が幅:0.4〜1.0mmであり、嵌合部の先端から半田付け部の先端まで長さが15〜80mmである。   In still another embodiment of the male terminal according to the present invention, the male terminal has a thickness of 0.4 to 1.0 mm, a fitting portion has a width of 0.5 to 5.0 mm, and a soldering portion. The width is 0.4 to 1.0 mm, and the length from the tip of the fitting portion to the tip of the soldering portion is 15 to 80 mm.

本発明に係るオス端子の更に別の一実施形態においては、オス端子は、嵌合部と半田付け部の間に半田吸い上がりバリア部を有する。   In yet another embodiment of the male terminal according to the present invention, the male terminal has a solder suction barrier portion between the fitting portion and the soldering portion.

本発明に係るオス端子の更に別の一実施形態においては、前記半田吸い上がりバリア部にはNiめっき層、Ni−Sn合金層又はCu−Sn合金層が表層に形成されている。   In still another embodiment of the male terminal according to the present invention, a Ni plating layer, a Ni—Sn alloy layer, or a Cu—Sn alloy layer is formed on the surface of the solder suck-up barrier portion.

本発明に係るオス端子の更に別の一実施形態においては、自動車用である。   In still another embodiment of the male terminal according to the present invention, the male terminal is for an automobile.

本発明は、別の一側面において、上記オス端子の製造方法であって、
(1)金属製平板素材を所望のオス端子形状にプレス加工する工程と、
(2)嵌合部及び半田付け部共に該素材の全面に対して、それぞれ0.3〜5.0μmの厚さのNiめっき層を形成する工程と、
(3)半田付け部にはCuめっき層を形成せずに、嵌合部の該Niめっき層の上に、0.1〜0.6μmの厚さのCuめっき層を形成する工程と、
(4)嵌合部の該Cuめっき層の上には0.4〜1.5μmの厚さを有し、半田付け部の該Niめっき層の上には1.0μm以上の厚さを有するSnめっき層を形成する工程と、
(5)嵌合部及び半田付け部に対してリフロー処理を行う工程と、
を含む製造方法である。
In another aspect, the present invention is a method of manufacturing the male terminal,
(1) a step of pressing a metal flat plate material into a desired male terminal shape;
(2) forming a Ni plating layer having a thickness of 0.3 to 5.0 μm on the entire surface of the material for both the fitting portion and the soldering portion;
(3) forming a Cu plating layer having a thickness of 0.1 to 0.6 μm on the Ni plating layer of the fitting portion without forming a Cu plating layer on the soldering portion;
(4) The fitting portion has a thickness of 0.4 to 1.5 μm on the Cu plating layer, and the soldering portion has a thickness of 1.0 μm or more on the Ni plating layer. Forming a Sn plating layer;
(5) a step of performing a reflow process on the fitting portion and the soldering portion;
It is a manufacturing method containing.

本発明に係る上記オス端子の製造方法の一実施形態においては、
(1’)金属製平板素材から嵌合部をプレス加工しないことを条件に、少なくとも半田付け部をプレス加工する工程と、
(2’)嵌合部に対しては該素材の表裏2面、半田付け部に対しては該素材の全面に対して、それぞれ0.3〜5.0μmの厚さのNiめっき層を形成する工程と、
(3’)半田付け部にはCuめっき層を形成せずに、嵌合部の該Niめっき層の上に、0.1〜0.6μmの厚さのCuめっき層を形成する工程と、
(4’)嵌合部の該Cuめっき層の上には0.4〜1.5μmの厚さを有し、半田付け部の該Niめっき層の上には1.0μm以上の厚さを有するSnめっき層を形成する工程と、
(5’)嵌合部及び半田付け部に対してリフロー処理を行う工程と、
(6’)嵌合部を含めてプレス加工されていない部分をプレス加工することにより所望のオス端子形状に成形する工程
を含む製造方法である。
In one embodiment of the manufacturing method of the male terminal according to the present invention,
(1 ′) a step of pressing at least a soldering part on the condition that the fitting part is not pressed from a metal flat plate material;
(2 ′) Ni plating layers having a thickness of 0.3 to 5.0 μm are respectively formed on the front and back surfaces of the material for the fitting portion and on the entire surface of the material for the soldering portion. And a process of
(3 ′) a step of forming a Cu plating layer having a thickness of 0.1 to 0.6 μm on the Ni plating layer of the fitting portion without forming a Cu plating layer on the soldering portion;
(4 ′) A thickness of 0.4 to 1.5 μm is formed on the Cu plating layer of the fitting portion, and a thickness of 1.0 μm or more is formed on the Ni plating layer of the soldering portion. Forming a Sn plating layer comprising:
(5 ′) a step of performing a reflow process on the fitting portion and the soldering portion;
(6 ′) A manufacturing method including a step of forming a desired male terminal shape by pressing a portion that is not pressed including the fitting portion.

本発明に係る製造方法の一実施形態においては、素材として用いられる金属は銅又は銅合金である。   In one embodiment of the manufacturing method according to the present invention, the metal used as the material is copper or a copper alloy.

本発明に係る製造方法の一実施形態においては、嵌合部と半田付け部の間に、表層のSnめっき層を除去し、Cu−Sn合金又はCu−Ni合金を表面に露出する方法によって半田吸い上がりバリア部を形成する。   In one embodiment of the manufacturing method according to the present invention, the surface Sn plating layer is removed between the fitting portion and the soldering portion, and the Cu—Sn alloy or the Cu—Ni alloy is exposed to the surface to perform soldering. A wicking barrier is formed.

本発明は、更に別の一側面において、上記オス端子を組み込んだコネクタである。   In yet another aspect, the present invention is a connector incorporating the male terminal.

本発明に係るオス端子は、嵌合部において低接触抵抗及び低挿抜力を満足し、且つ、半田付け部において良好な半田付け性を有する。そして、本発明に係るオス端子に採用されるめっき構成は、緻密なめっき厚の制御、とりわけ端子全体を3層めっきするときのようなCuめっき厚の緻密な制御を要することなく、比較的簡単なめっき操作により達成することができるため、めっき厚分布が生じやすい形状のオス端子に対しても、より確実に所望の挿抜性、通電特性及び半田付け性を得ることが可能となる。   The male terminal according to the present invention satisfies the low contact resistance and the low insertion / extraction force at the fitting portion, and has good solderability at the soldering portion. The plating structure employed for the male terminal according to the present invention is relatively simple without requiring precise plating thickness control, particularly precise control of Cu plating thickness as in the case of three-layer plating of the entire terminal. Therefore, it is possible to more reliably obtain desired insertion / removability, energization characteristics, and solderability even for a male terminal having a shape in which plating thickness distribution is likely to occur.

本発明のめっきの構成を示す概略図である。It is the schematic which shows the structure of the plating of this invention. 3層めっきの構成を示す概略図である。It is the schematic which shows the structure of 3 layer plating. 嵌合部におけるめっき構造を示す概略図である。It is the schematic which shows the plating structure in a fitting part. 半田付け部におけるめっき構造を示す概略図である。It is the schematic which shows the plating structure in a soldering part. 本発明に係るオス端子の製造工程例を示す概略図である。It is the schematic which shows the example of a manufacturing process of the male terminal which concerns on this invention. 本発明に係るオス端子をプリント回路基板に実装したときの模式図である。It is a schematic diagram when the male terminal which concerns on this invention is mounted in the printed circuit board. オス端子の形状の例を示す概略図である。It is the schematic which shows the example of the shape of a male terminal.

端子の素材
本発明に係るオス端子に使用する金属素材には端子に用いられるものとして公知のものを特に制限はなく使用でき、例えば銅、銅合金、鉄、鉄合金(例えばステンレス鋼)、高ニッケル合金等が使用できる。本発明に係るオス端子の金属素材としては強度、加工性、導電性及びコストの面で銅又は銅合金が好ましい。銅合金としては黄銅、りん青銅、ベリリウム銅、洋白、丹銅、チタン銅及びコルソン合金などが挙げられ、端子の要求特性に従い、適宜選択でき、何等制限されない。
The material of the terminal The metal material used for the male terminal according to the present invention can be any known material used for the terminal without any particular limitation, such as copper, copper alloy, iron, iron alloy (for example, stainless steel), high Nickel alloys can be used. The metal material of the male terminal according to the present invention is preferably copper or a copper alloy in terms of strength, workability, conductivity, and cost. Examples of the copper alloy include brass, phosphor bronze, beryllium copper, white, red, titanium copper, and Corson alloy, which can be appropriately selected according to the required characteristics of the terminal and are not limited at all.

端子の形状
オス端子として機能する形状であれば特に制限はないが、めっき厚に有意な分布が生じて端子全体への均一めっきが困難な形状を有する端子に対して本発明は特に有用である。そのような端子は、端子幅が細く、端子長さが長く、例えば以下のような形状を有する。
端子長さ:15〜80mm
端子厚み:0.4〜1.0mm
半田付部:幅0.4〜1.0mm
嵌合部: 幅0.5〜5.0mm
そのような端子はより典型的には、以下のような形状を有する。
端子長さ:20〜50mm
端子厚み:0.5〜0.8mm
半田付部:幅0.5〜0.8mm
嵌合部: 幅0.64〜2.3mm
図7にオス端子形状の具体例を示す。該オス端子は端子長さ:34mm、端子厚み:0.64mm、半田付け部1の幅:0.64mm、嵌合部2の幅:2.3mmである。所望により半田吸い上がりバリア部3を設けてもよい。
The shape of the terminal is not particularly limited as long as it functions as a male terminal, but the present invention is particularly useful for a terminal having a shape in which a significant distribution occurs in the plating thickness and it is difficult to uniformly plate the entire terminal. . Such a terminal has a narrow terminal width and a long terminal length, and has the following shape, for example.
Terminal length: 15-80mm
Terminal thickness: 0.4 to 1.0 mm
Soldering part: Width 0.4-1.0mm
Mating part: Width 0.5-5.0mm
More typically, such terminals have the following shape.
Terminal length: 20-50mm
Terminal thickness: 0.5-0.8mm
Soldering part: width 0.5-0.8mm
Fitting part: Width 0.64-2.3mm
FIG. 7 shows a specific example of the male terminal shape. The male terminal has a terminal length of 34 mm, a terminal thickness of 0.64 mm, a width of the soldering portion 1 of 0.64 mm, and a width of the fitting portion 2 of 2.3 mm. If desired, a solder suck-up barrier unit 3 may be provided.

めっき構成
本発明に係るオス端子は、嵌合部において素材の全面又は表裏の2面に素材側より厚み0.3〜5.0μm、好ましくは0.5〜4.0μm、より好ましくは0.6〜3.0μmのNiめっき層、厚み0〜0.3μm、好ましくは0〜0.2μm、より好ましくは0μmのCuめっき層、厚み0.1〜0.7μm、好ましくは0.2〜0.6μm、より好ましくは0.3〜0.5μmのCu−Sn合金層、及び厚み0.2〜1.0μm、好ましくは0.2〜0.8μm、より好ましくは0.2〜0.6μmのSnめっき層がこの順に形成されている。
また、本発明に係るオス端子は、半田付け部において素材の全面に素材側より厚み0.3〜5.0μm、好ましくは0.5〜4.0μm、より好ましくは0.6〜3.0μmのNiめっき層、厚み0.1〜0.7μm、好ましくは0.2〜0.6μm、より好ましくは0.3〜0.5μmのSn−Ni合金層、及び厚み0.3μm以上、好ましくは0.5μm以上、より好ましくは0.5〜10.0μmのSnめっき層がこの順に形成されている。
Plating Configuration The male terminal according to the present invention has a thickness of 0.3 to 5.0 [mu] m, preferably 0.5 to 4.0 [mu] m, more preferably 0. 6-3.0 μm Ni plating layer, thickness 0-0.3 μm, preferably 0-0.2 μm, more preferably 0 μm Cu plating layer, thickness 0.1-0.7 μm, preferably 0.2-0 .Mu.m, more preferably 0.3-0.5 .mu.m Cu-Sn alloy layer, and thickness 0.2-1.0 .mu.m, preferably 0.2-0.8 .mu.m, more preferably 0.2-0.6 .mu.m. The Sn plating layers are formed in this order.
The male terminal according to the present invention has a thickness of 0.3 to 5.0 μm, preferably 0.5 to 4.0 μm, more preferably 0.6 to 3.0 μm from the material side over the entire surface of the material in the soldering portion. Ni-plated layer, thickness 0.1-0.7 μm, preferably 0.2-0.6 μm, more preferably 0.3-0.5 μm Sn—Ni alloy layer, and thickness 0.3 μm or more, preferably An Sn plating layer of 0.5 μm or more, more preferably 0.5 to 10.0 μm is formed in this order.

嵌合部及び半田付け部の双方において形成されているNiめっき層は、素材に使用される金属(典型的にはCuやZn及びP等の合金元素)が表層に拡散するのを抑制し、半田付け性及び接触抵抗を良好なまま維持するのに役立ち、そして均一に電着するため、良好な外観を得ることができる。Niめっき層が0.3μmより薄い場合には拡散防止効果が小さく、半田付け性及び接触抵抗が劣化し、また、仕上げの外観を害する。一方、Niめっき層が5.0μmより厚い場合には拡散防止効果が飽和する一方、曲げ工程にてNiめっき層に割れを生じる。   The Ni plating layer formed in both the fitting part and the soldering part suppresses the diffusion of the metal used for the material (typically alloy elements such as Cu, Zn and P) to the surface layer, It helps to maintain good solderability and contact resistance, and it can be electrodeposited uniformly, so that a good appearance can be obtained. When the Ni plating layer is thinner than 0.3 μm, the diffusion preventing effect is small, the solderability and the contact resistance are deteriorated, and the appearance of the finish is impaired. On the other hand, when the Ni plating layer is thicker than 5.0 μm, the diffusion preventing effect is saturated, while the Ni plating layer is cracked in the bending process.

嵌合部に形成されているCu−Snの合金層はCuめっき層がリフロー処理によって変化したものである。嵌合部に形成されているCu−Snの合金層は、経時変化や高温環境下に晒されることによって下地のNiめっき層が表層のSnめっきにまで拡散して導電性の悪いNi−Sn合金を形成し、接触抵抗が悪化するのを防止することができる。一方、リフロー後にCuめっき層が残存していると、高温環境下ではリフロー後もCuとSnの拡散が進展するために表層で導電性の悪いCu−Snの合金が形成され、接触抵抗が悪化する傾向が高い。従って、Cuめっき層はリフロー処理によってすべてCu−Sn合金層に変化しているのが望ましく、せいぜい0.3μm程度までの厚さとする。
また、Cu−Snの合金層の厚さが0.2μm未満となると、NiがSn中に拡散できるようになるため、接触抵抗が悪化する傾向が高い。一方、Cu−Snの合金層の厚さが0.6μmを超える過度のリフロー処理を行うと、リフロー処理時に表層のSnめっきが酸化し接触抵抗が劣化する。
In the Cu—Sn alloy layer formed in the fitting portion, the Cu plating layer is changed by the reflow process. The Cu—Sn alloy layer formed in the fitting portion is a Ni—Sn alloy having poor conductivity due to diffusion of the underlying Ni plating layer to the Sn plating of the surface layer when exposed to changes over time or in a high temperature environment. It is possible to prevent the contact resistance from deteriorating. On the other hand, if the Cu plating layer remains after reflow, Cu and Sn diffusion progresses even after reflow in a high-temperature environment, so an alloy of poor conductivity Cu-Sn is formed on the surface layer and contact resistance deteriorates. The tendency to do is high. Therefore, it is desirable that the Cu plating layer is all changed to a Cu—Sn alloy layer by the reflow treatment, and the thickness is at most about 0.3 μm.
Further, when the thickness of the Cu—Sn alloy layer is less than 0.2 μm, Ni can diffuse into Sn, so that the contact resistance tends to deteriorate. On the other hand, when an excessive reflow process in which the thickness of the Cu—Sn alloy layer exceeds 0.6 μm is performed, the Sn plating on the surface layer is oxidized during the reflow process and the contact resistance is deteriorated.

半田付け部に形成されているSn−Ni合金層はリフロー処理により形成されるが、厚さが0.2μm未満ではリフロー処理が不十分となり良好な外観が得られない。一方、厚さが1.0μmを超えると、過度のリフロー処理となり、表層のSnめっきが酸化され、はんだ付性が劣化する。   The Sn—Ni alloy layer formed in the soldering portion is formed by reflow treatment. However, if the thickness is less than 0.2 μm, the reflow treatment is insufficient and a good appearance cannot be obtained. On the other hand, when the thickness exceeds 1.0 μm, excessive reflow treatment is performed, Sn plating on the surface layer is oxidized, and solderability is deteriorated.

嵌合部に形成されているSnめっき層は良好な接触抵抗を有するが、0.2μm未満となると、表層のSnがCuとの拡散反応により全てCu−Sn化合物となる部分が生じ、Cu−Sn化合物が表面に露出し、接触抵抗が悪化する傾向が強くなる。一方、嵌合部のSnめっき層は1.0μmを超えると挿抜力が高くなるため好ましくない。
半田付け部に形成されているSnめっき層は良好なはんだ付性を有するが、0.5μm未満となるとNi−Sn化合物が表面に露出し、半田付け性が低下し易くなる。一方、半田付け部のSnめっき層には上限は特にないが、Snめっきが厚いと組立工程で粉が発生するため通常は10μm程度、好ましくは5μm程度の厚さまでとする。
The Sn plating layer formed in the fitting portion has a good contact resistance. However, when the thickness is less than 0.2 μm, a portion in which Sn on the surface layer becomes a Cu—Sn compound due to a diffusion reaction with Cu occurs, and Cu— The tendency that the Sn compound is exposed on the surface and the contact resistance is deteriorated is increased. On the other hand, if the Sn plating layer of the fitting part exceeds 1.0 μm, the insertion / extraction force is increased, which is not preferable.
The Sn plating layer formed on the soldering portion has good solderability. However, when the thickness is less than 0.5 μm, the Ni—Sn compound is exposed on the surface, and the solderability tends to be lowered. On the other hand, there is no particular upper limit to the Sn plating layer of the soldering portion. However, if the Sn plating is thick, powder is generated in the assembly process, so that the thickness is usually about 10 μm, preferably about 5 μm.

本発明に係るめっき構成は、既存のめっき技術を応用することで得ることができるが、例えば:
(1)該素材を所望のオス端子形状にプレス加工する工程と、
(2)嵌合部及び半田付け部共に素材の全面に対して、それぞれ0.3〜5.0μmの厚さのNiめっき層を形成する工程と、
(3)半田付け部にはCuめっき層を形成せずに、嵌合部の該Niめっき層の上に、0.1〜0.6μmの厚さのCuめっき層を形成する工程と、
(4)嵌合部の該Cuめっき層の上には0.4〜1.5μmの厚さを有し、半田付け部の該Niめっき層の上には1.0μm以上の厚さを有するSnめっき層を形成する工程と、
(5)嵌合部及び半田付け部に対してリフロー処理を行う工程と、
を含む製造方法により得ることができる。
The plating configuration according to the present invention can be obtained by applying existing plating techniques, for example:
(1) a step of pressing the material into a desired male terminal shape;
(2) forming a Ni plating layer having a thickness of 0.3 to 5.0 μm on the entire surface of the material for both the fitting part and the soldering part;
(3) forming a Cu plating layer having a thickness of 0.1 to 0.6 μm on the Ni plating layer of the fitting portion without forming a Cu plating layer on the soldering portion;
(4) The fitting portion has a thickness of 0.4 to 1.5 μm on the Cu plating layer, and the soldering portion has a thickness of 1.0 μm or more on the Ni plating layer. Forming a Sn plating layer;
(5) a step of performing a reflow process on the fitting portion and the soldering portion;
It can obtain by the manufacturing method containing.

前記(2)の工程において、嵌合部には素材の全面に対して前記Niめっき層が形成されるが、嵌合部の幅が狭い又は長いため、先端のめっき厚さが厚くなりすぎる場合には、嵌合部についてはプレス前に端子素材の3層めっきを行い(表裏の2面めっきとなる。)、その後にプレスを行えば、めっき厚さの分布は良好なものとすることができる。
すなわち、本発明に係る上記オス端子の製造方法の一実施形態においては、
(1’)金属素材から嵌合部をプレス加工しないことを条件に、少なくとも半田付け部をプレス加工する工程と、
(2’)嵌合部に対しては素材の表裏2面、半田付け部に対しては素材の全面に対して、それぞれ0.3〜5.0μmの厚さのNiめっき層を形成する工程と、
(3’)半田付け部にはCuめっき層を形成せずに、嵌合部の該Niめっき層の上に、0.1〜0.6μmの厚さのCuめっき層を形成する工程と、
(4’)嵌合部の該Cuめっき層の上には0.4〜1.5μmの厚さを有し、半田付け部の該Niめっき層の上には1.0μm以上の厚さを有するSnめっき層を形成する工程と、
(5’)嵌合部及び半田付け部に対してリフロー処理を行う工程と、
(6’)嵌合部を含めてプレス加工されていない部分をプレス加工することにより所望のオス端子形状に成形する工程
を含む製造方法である。
この手順により、半田付け部は全面がめっきで覆われ、良好なはんだ付性を有し、嵌合部においても良好なめっき厚さ分布が得られる。
In the step (2), the Ni plating layer is formed on the entire surface of the material in the fitting part, but the plating thickness at the tip becomes too thick because the width of the fitting part is narrow or long. For the fitting part, if the terminal material is subjected to three-layer plating before pressing (becomes two-sided plating on the front and back sides) and then pressed, the distribution of the plating thickness should be good. it can.
That is, in one embodiment of the manufacturing method of the male terminal according to the present invention,
(1 ′) on the condition that the fitting portion is not pressed from a metal material, and at least a step of pressing the soldering portion;
(2 ′) A step of forming a Ni plating layer having a thickness of 0.3 to 5.0 μm on the front and back surfaces of the material for the fitting portion and on the entire surface of the material for the soldering portion. When,
(3 ′) a step of forming a Cu plating layer having a thickness of 0.1 to 0.6 μm on the Ni plating layer of the fitting portion without forming a Cu plating layer on the soldering portion;
(4 ′) A thickness of 0.4 to 1.5 μm is formed on the Cu plating layer of the fitting portion, and a thickness of 1.0 μm or more is formed on the Ni plating layer of the soldering portion. Forming a Sn plating layer comprising:
(5 ′) a step of performing a reflow process on the fitting portion and the soldering portion;
(6 ′) A manufacturing method including a step of forming a desired male terminal shape by pressing a portion that is not pressed including the fitting portion.
By this procedure, the entire soldered portion is covered with plating, has good solderability, and a good plating thickness distribution can be obtained even in the fitting portion.

各めっき工程の具体例について以下に詳述する。   Specific examples of each plating step will be described in detail below.

Niめっき層形成工程
本発明においては、「Niめっき」にはNiめっきのほか、例えばNi−P合金、Ni−Pd合金、Ni−Co合金、Ni−Sn合金のようなニッケル合金めっきも含まれる。これらの中でもめっき速度が早い、コストが低い等の理由から特にNiめっきが好ましい。ニッケルめっきは公知の任意の手段により施すことができるが、例えば電気ニッケルめっきにより施すことができる。
In the present invention, “Ni plating” includes nickel plating as well as nickel alloy plating such as Ni—P alloy, Ni—Pd alloy, Ni—Co alloy, and Ni—Sn alloy. . Among these, Ni plating is particularly preferable because of high plating speed and low cost. Nickel plating can be performed by any known means, but can be performed by, for example, electric nickel plating.

Niめっきは嵌合部及び半田付け部においてリフロー処理前でNiめっき層として0.3〜5.0μm、好ましくは0.5〜4.0μm、より好ましくは0.6〜3.0μmの厚さとなるように施すことで、リフロー処理後に半田付け部におけるNi−Sn合金層として0.1〜0.7μm、好ましくは0.2〜0.6μm、より好ましくは0.3〜0.5μmとすることができる。   Ni plating has a thickness of 0.3 to 5.0 μm, preferably 0.5 to 4.0 μm, more preferably 0.6 to 3.0 μm as a Ni plating layer before reflow treatment in the fitting part and the soldering part. By applying in such a manner, 0.1 to 0.7 μm, preferably 0.2 to 0.6 μm, more preferably 0.3 to 0.5 μm, as the Ni—Sn alloy layer in the soldered portion after the reflow treatment. be able to.

端子形状によっては各部位のNiめっきの厚みに分布が生じることがあるが、上記厚さ範囲内にあれば分布が生じても許容されるし、上記厚さ範囲は比較的に幅が大きいので、厚さ制御にはそれほど困難は伴わない。それでもやはり、厚さ分布が大きく、めっき厚が上記範囲を満たせない場合には嵌合側、半田付け側にそれぞれ遮蔽治具などをとりつけて分布の均一化を図ることで対処すればよい。   Depending on the terminal shape, there may be a distribution in the Ni plating thickness of each part, but if it is within the above thickness range, it is acceptable even if the distribution occurs, and the thickness range is relatively wide. The thickness control is not so difficult. Nevertheless, if the thickness distribution is large and the plating thickness cannot satisfy the above range, it can be dealt with by providing a shielding jig or the like on each of the fitting side and the soldering side to equalize the distribution.

Cuめっき層形成工程
Cuめっきは後のリフロー処理によりCu−Snの合金層を形成するために施す。
本発明においては、「Cuめっき」にはCuめっきのほか、例えばCu−Al合金、Cu−Bi合金、Cu−Co合金、Cu−Ni−P合金、Cu−Sn−Co合金、Cu−Fe−Ni合金のような銅合金めっきも含まれる。合金めっきは組成にばらつきがでることがあり、当該合金めっき中のCuの組成がばらつくと、リフロー処理時に生成するCu−Sn合金層厚さの制御が困難になるため、特にCuめっきが好ましい。Cuめっきは公知の任意の手段により施すことができるが、例えば電気Cuめっきにより施すことができる。
Cu plating layer formation process Cu plating is performed in order to form an alloy layer of Cu-Sn by a later reflow process.
In the present invention, “Cu plating” includes Cu plating, for example, Cu—Al alloy, Cu—Bi alloy, Cu—Co alloy, Cu—Ni—P alloy, Cu—Sn—Co alloy, Cu—Fe—. Copper alloy plating such as Ni alloy is also included. The alloy plating may vary in composition, and if the composition of Cu in the alloy plating varies, it is difficult to control the thickness of the Cu—Sn alloy layer generated during the reflow treatment, so Cu plating is particularly preferable. Although Cu plating can be performed by any known means, for example, it can be performed by electric Cu plating.

Cuめっきは、半田付け部に対しては施さないことと、嵌合部に対しては施すことを条件として、Niめっき層の上に施す。従って、本発明の一実施形態においては、半田付け部を残して端子全面に対してCuめっきを施す。また、本発明の別の一実施形態においては、嵌合部のみにCuめっきを施す。本発明においては、半田付け部と嵌合部におけるCuめっき層の厚さの同時制御が不要であり、嵌合部の厚さ調整だけで済むため、Cuめっき層の厚さの調整は容易化される。   The Cu plating is performed on the Ni plating layer on condition that it is not applied to the soldered portion and applied to the fitting portion. Therefore, in one embodiment of the present invention, Cu plating is performed on the entire surface of the terminal, leaving the soldered portion. In another embodiment of the present invention, Cu plating is performed only on the fitting portion. In the present invention, simultaneous control of the thickness of the Cu plating layer in the soldering portion and the fitting portion is unnecessary, and only the adjustment of the thickness of the fitting portion is required, so adjustment of the thickness of the Cu plating layer is facilitated. Is done.

Cuめっきは嵌合部においてリフロー処理前にCuめっき層として0.1〜0.6μm、好ましくは0.1〜0.5μm、より好ましくは0.2〜0.4μmの厚さとなるように施す。Cuめっき層の厚さが0.1μm未満となると、NiがSn中に拡散できるようになるため、接触抵抗が悪化する傾向が高い。一方、Cuめっき層の厚さが0.6μmより厚い場合には、リフロー後にCu層が残存し、リフロー後もCuとSnの拡散が進展するために表層で導電性の悪いCu−Snの合金が形成され、高温環境下で接触抵抗が悪化する傾向が高い。この際の拡散の速度はNiとSnの拡散よりも速いため、Ni−Snの2層めっきよりも耐熱性は低下することになる。   Cu plating is performed so that the thickness of the Cu plating layer is 0.1 to 0.6 [mu] m, preferably 0.1 to 0.5 [mu] m, more preferably 0.2 to 0.4 [mu] m before reflow treatment at the fitting portion. . When the thickness of the Cu plating layer is less than 0.1 μm, since Ni can diffuse into Sn, the contact resistance tends to deteriorate. On the other hand, when the thickness of the Cu plating layer is larger than 0.6 μm, the Cu layer remains after reflow, and the diffusion of Cu and Sn progresses after reflow. Is formed, and the contact resistance tends to be deteriorated under a high temperature environment. Since the diffusion speed at this time is faster than the diffusion of Ni and Sn, the heat resistance is lower than that of Ni-Sn two-layer plating.

Cuめっきを端子の一部に施す方法としては一般的にはCuめっきを施そうとする素材の部分をめっき液中に浸漬し、上記範囲を満たすために遮蔽治具などを用いて分布の均一化を図ることができる。   In general, Cu plating is applied to a part of the terminal by immersing the part of the material to be subjected to Cu plating in a plating solution and using a shielding jig or the like in order to satisfy the above range. Can be achieved.

Snめっき層形成工程
本発明においては、Snめっきが嵌合部と半田付け部の両方に対して施され、端子の全体に施してもよい。
本発明においては、「Snめっき」にはSnめっきのほか、例えばSn−Cu合金、Sn−Zn合金、Sn−Ag合金、Sn−Bi合金のようなSn合金めっきも含まれる。合金めっきは組成にばらつきがでることがあり、当該合金めっき中のSnの組成がばらつくと、リフロー処理時に生成するCu−Sn合金層厚さの制御が困難になるため、特にSnめっきが好ましい。Snめっきは公知の任意の手段により施すことができるが、例えば電気Snめっきにより施すことができる。
Sn plating layer formation process In this invention, Sn plating may be given with respect to both a fitting part and a soldering part, and may be given to the whole terminal.
In the present invention, “Sn plating” includes Sn plating as well as Sn alloy plating such as Sn—Cu alloy, Sn—Zn alloy, Sn—Ag alloy, and Sn—Bi alloy. The alloy plating may vary in composition, and if the composition of Sn in the alloy plating varies, it is difficult to control the thickness of the Cu—Sn alloy layer generated during the reflow treatment, and thus Sn plating is particularly preferable. Although Sn plating can be performed by any known means, for example, it can be performed by electric Sn plating.

Snめっきは嵌合部においては、Cuめっき層の上にリフロー処理前で0.4〜1.5μm、好ましくは0.5〜1.1μm、より好ましくは0.6〜0.8μmの厚さを有するように施す。嵌合部において、Snめっき層の厚さが0.4μmより薄い場合にはリフロー処理後にCu−Sn化合物が表面に露出し、接触抵抗を悪化させる傾向が高い。一方、1.5μmよりも厚い場合にはリフロー処理後にもSnめっき層が厚く残り、挿抜性が低下する。
また、Snめっきは半田付け部においては、Niめっき層の上に1.0μm以上、好ましくは1.0〜10μm、より好ましくは1.0〜5.0μmの厚さを有するように施す。1.0μmよりも薄い場合にはNi−Sn化合物が露出し、半田付け性を低下させる傾向が高い。
Sn plating has a thickness of 0.4 to 1.5 [mu] m, preferably 0.5 to 1.1 [mu] m, more preferably 0.6 to 0.8 [mu] m before reflow treatment on the Cu plating layer in the fitting portion. Apply to have. In the fitting portion, when the thickness of the Sn plating layer is thinner than 0.4 μm, the Cu—Sn compound is exposed to the surface after the reflow treatment, and the contact resistance tends to be deteriorated. On the other hand, when it is thicker than 1.5 μm, the Sn plating layer remains thick even after the reflow process, and the insertion / removability deteriorates.
In addition, Sn plating is performed on the Ni plating layer so as to have a thickness of 1.0 μm or more, preferably 1.0 to 10 μm, more preferably 1.0 to 5.0 μm in the soldering portion. When it is thinner than 1.0 μm, the Ni—Sn compound is exposed, and the tendency to lower the solderability is high.

Snめっき厚の調整はCuめっきほどの緻密性は要求されないので、全面浸漬によってめっきすればよいが、めっき厚分布が発生するため、めっき槽の使用方法には注意が必要である。特に嵌合部のめっき厚分布は半田付け部のそれよりも避けるべきであるため、遮蔽治具を用いる等して分布の均一化を図る。嵌合部にて、さらに厚さ分布を小さくしたい場合は、前述したように、嵌合部についてはプレス前に端子素材の表裏2面に3層めっきを行い、その後にプレスを行うことに所定のめっき厚を得ることができる。   Since the Sn plating thickness is not required to be as dense as Cu plating, plating may be performed by immersion on the entire surface. However, since a plating thickness distribution is generated, attention must be paid to the method of using the plating tank. In particular, since the plating thickness distribution of the fitting portion should be avoided more than that of the soldering portion, the distribution is made uniform by using a shielding jig or the like. When it is desired to further reduce the thickness distribution at the fitting portion, as described above, the fitting portion is subjected to three-layer plating on the front and back surfaces of the terminal material before pressing, and then the pressing is performed thereafter. The plating thickness can be obtained.

以上のような一連の工程の一例を図式化したものを図5に示す。   FIG. 5 shows a schematic diagram of an example of the series of steps as described above.

リフロー処理
リフロー工程によりめっき表面を平滑にし、組立工程でのめっき粉発生を抑えるとともに、ウィスカーの発生を抑える。リフロー時には嵌合部のCu−Sn合金と、半田付け部のNi−Sn合金層が形成される。
Reflow treatment The plating surface is smoothed by the reflow process, and the generation of plating powder in the assembly process is suppressed, and the occurrence of whiskers is suppressed. At the time of reflow, a Cu—Sn alloy in the fitting portion and a Ni—Sn alloy layer in the soldering portion are formed.

リフロー工程にてめっき材に加わる熱は、ライン速度と炉温によって決まる。材料の加熱が弱いときには、錫めっきが溶融せずに上記の効果が得られない。また材料の加熱が強いときには、錫めっき表面が酸化により変色を生じる。したがってライン速度と炉温の条件を適切に決める必要がある。例えば、240〜350℃の温度、10〜60秒間、好ましくは250〜300℃の温度、20〜40秒間加熱されるような速度でリフロー処理を行う。リフロー処理を適切な条件で行うことにより、最終的に本発明に係るめっき構成を有するオス端子を製造することができる。   The heat applied to the plating material in the reflow process is determined by the line speed and the furnace temperature. When the material is weakly heated, the tin plating does not melt and the above effect cannot be obtained. In addition, when the material is strongly heated, the tin plating surface is discolored by oxidation. Therefore, it is necessary to appropriately determine the line speed and furnace temperature conditions. For example, the reflow treatment is performed at a temperature of 240 to 350 ° C. for 10 to 60 seconds, preferably 250 to 300 ° C. and 20 to 40 seconds. By performing the reflow process under appropriate conditions, a male terminal having a plating configuration according to the present invention can be finally produced.

以上の工程にて製造した嵌合部におけるめっきの構造を図式化したのが図3である。素材側からNiめっき層、(Cuめっき層)、Cu−Snの合金層、Snめっき層が形成された構造となる。Cu−Sn合金層とSnめっき層の界面は雲形となるのが一般的である。また、半田付け部におけるめっきの構造を図式化したのが図4である。素材側からNiめっき層、Ni−Snの合金層、Snめっき層が形成された構造となる。   FIG. 3 schematically shows the structure of the plating in the fitting portion manufactured by the above process. The structure is such that a Ni plating layer, (Cu plating layer), Cu—Sn alloy layer, and Sn plating layer are formed from the material side. The interface between the Cu—Sn alloy layer and the Sn plating layer is generally cloud-shaped. FIG. 4 shows a schematic diagram of the plating structure in the soldering portion. The structure is such that a Ni plating layer, a Ni—Sn alloy layer, and a Sn plating layer are formed from the material side.

本発明に係るオス端子をプリント回路基板に実装したときの模式図を例示的に図6に示す。   FIG. 6 exemplarily shows a schematic diagram when the male terminal according to the present invention is mounted on a printed circuit board.

半田吸い上がりバリア部
端子が小型化すると毛細管現象により半田付け時に半田が端子に吸い上がり易くなるが、この吸い上がりが過度に生じると電子部品の機能や性能を損なう恐れがある。例えば、コネクタでは半田付け部から半田が端子に吸い上がって遂には相手コネクタとの接点部に達することでコネクタの接続信頼性が損なわれたり、近隣の半田付け部に半田が達して短絡する半田ブリッジが生じたりし、或いは半田付け部に充分な量の半田が残らなくなるといった問題が生じ得る。そこで、嵌合部と半田付け部の間には半田濡れ性の悪い半田吸い上がりバリア部を形成してもよい。表層に形成されたNiめっき層、Ni−Sn合金層又はCu−Sn合金層は半田吸い上がりバリア部として有効である。
半田吸い上がりバリア部は公知の任意の方法によって形成することができるが、例えば半田吸い上がりバリア部となる部分に予めNiめっき層、随意的なCuめっき層、及びSnめっき層を先述した工程で形成しておき、リフロー処理後、表層のSnをレーザ照射、電解研磨、化学研磨などで除去し、Ni−Sn合金層又はCu−Sn合金層を露出させる方法によって形成することができる。
また、特に自動車用のオス端子においては、コネクタ組立工程において、嵌合部と半田付け部の中間点で端子を直角に曲げる工程が加わるが、上記のバリア部で曲げ加工される場合、曲げ加工時に曲げ金具によってSnめっきが削れて、コネクタに異物として付着するのを防ぐ効果にもつながるため有益である。
When the solder sucking barrier terminal is downsized, the capillary phenomenon causes the solder to be easily sucked into the terminal at the time of soldering. However, if this sucking occurs excessively, the function and performance of the electronic component may be impaired. For example, in a connector, solder sucks up from the soldering part to the terminal and eventually reaches the contact part with the mating connector, so that the connection reliability of the connector is impaired, or solder that reaches the nearby soldering part and short-circuits. There may be a problem that a bridge is generated or a sufficient amount of solder does not remain in the soldering portion. Therefore, a solder suction barrier portion with poor solder wettability may be formed between the fitting portion and the soldering portion. The Ni plating layer, Ni—Sn alloy layer, or Cu—Sn alloy layer formed on the surface layer is effective as a solder suck-up barrier portion.
The solder suck-up barrier portion can be formed by any known method. For example, the Ni plating layer, the optional Cu plating layer, and the Sn plating layer are previously formed on the portion that becomes the solder suck-up barrier portion. After forming and reflowing, the surface Sn can be removed by laser irradiation, electrolytic polishing, chemical polishing, or the like to expose the Ni—Sn alloy layer or the Cu—Sn alloy layer.
In particular, in the case of a male terminal for an automobile, a step of bending the terminal at a right angle at an intermediate point between the fitting portion and the soldering portion is added in the connector assembly process. This is beneficial because it sometimes leads to the effect of preventing the Sn plating from being scraped off by the bent metal fitting and adhering to the connector as a foreign substance.

本発明においては、各めっき層、合金層の厚さの測定は次の通り決定するものとする。
なお、各めっき層、合金層厚さの測定箇所は、嵌合部、はんだ付け部とも、端子先端から1±0.2mmの幅方向中央部にて測定した。
Snめっき層
電解にてSn層のみを除去することができるため、電解前後で蛍光X線でSnめっき厚を測定し、電解前のSnめっき厚から電解後のめっき厚を差し引いたものをSnめっき層厚とする。
Cu−Sn合金層
Cu−Snの合金層の厚さは、電解にてSnめっき層のみを除去した後、蛍光X線でSnめっき厚として測定された数値とする。
Ni−Sn合金層
Ni−Snの合金層の厚さは、電解にてSnめっき層のみを除去した後、蛍光X線でSnめっき厚として測定された数値とする。
Cuめっき層及びNiめっき層
Cu層及びNi層の厚さはめっき断面を5000〜20000倍にてSEM観察し、10箇所の平均値をとる。
In the present invention, the thickness of each plating layer and alloy layer is determined as follows.
In addition, the measurement location of each plating layer and alloy layer thickness was measured in the center part of the width direction of 1 +/- 0.2mm from the terminal tip in both the fitting part and the soldering part.
Since only Sn layer can be removed by Sn plating layer electrolysis, Sn plating thickness is measured by fluorescent X-ray before and after electrolysis, and Sn plating thickness is obtained by subtracting plating thickness after electrolysis from Sn plating thickness before electrolysis Layer thickness.
The thickness of the Cu—Sn alloy layer Cu—Sn is the value measured as the Sn plating thickness with fluorescent X-rays after removing only the Sn plating layer by electrolysis.
The thickness of the alloy layer of the Ni—Sn alloy layer Ni—Sn is a numerical value measured as the Sn plating thickness with fluorescent X-rays after removing only the Sn plating layer by electrolysis.
Cu plating layer and Ni plating layer The thicknesses of the Cu layer and the Ni layer are obtained by SEM observation of the plating cross section at 5000 to 20000 times, and take the average value at 10 locations.

本発明に係るオス端子はコネクタに搭載でき、特に高温環境下での使用が予定される自動車等に好適に使用される。   The male terminal according to the present invention can be mounted on a connector, and is particularly suitable for an automobile or the like that is planned to be used in a high temperature environment.

以下に、本発明及びその利点をより良く理解するために本発明に係るオス端子及びその製造方法の実施例を記載するが、これらは例示のためであって本発明が限定されることを意図するものではない。   In order to better understand the present invention and the advantages thereof, examples of the male terminal and the manufacturing method thereof according to the present invention will be described below, but these are for illustrative purposes and the present invention is intended to be limited. Not what you want.

各めっき層、合金層の厚みの測定には上述した測定条件に従って、微小部蛍光X線膜厚計(SII社製:型式SFT−9255)及びSEM(日本電子社製:型式JSM−7000F)用いてめっき厚を測定した。   For the measurement of the thickness of each plating layer and alloy layer, a micro fluorescent X-ray film thickness meter (manufactured by SII: model SFT-9255) and SEM (manufactured by JEOL: model JSM-7000F) were used according to the measurement conditions described above. The plating thickness was measured.

挿抜性の評価には、市販のCu下地リフローSnめっきメス端子(Snめっき厚さ1.1μm)を用い、挿抜試験機により挿入時の嵌合力を測定した。   For evaluation of insertion / extraction, a commercially available Cu base reflow Sn-plated female terminal (Sn plating thickness: 1.1 μm) was used, and the fitting force at the time of insertion was measured by an insertion / extraction tester.

接触抵抗の測定には山崎式接点シミュレータを用い、4端子法にて測定した。   The contact resistance was measured by a 4-terminal method using a Yamazaki contact simulator.

半田付け性の評価にはJIS C 0053に従い、以下の条件でメニスコグラフ法により、半田濡れ時間を測定した。
はんだ:鉛フリーはんだ Sn−3.0Ag−0.5Cu(千住金属社製M705)
はんだ浴温度:250℃
フラックス:25%ロジンエタノール
測定機器:ソルダーチェッカー(レスカ製SA−5000)
浸漬速度:20mm/s
浸漬深さ:2mm
浸漬時間:10s
For the evaluation of solderability, according to JIS C 0053, the solder wetting time was measured by the meniscograph method under the following conditions.
Solder: Lead-free solder Sn-3.0Ag-0.5Cu (M705 manufactured by Senju Metal Co., Ltd.)
Solder bath temperature: 250 ° C
Flux: 25% rosin ethanol Measuring instrument: Solder Checker (SA-5000 manufactured by Reska)
Immersion speed: 20 mm / s
Immersion depth: 2mm
Immersion time: 10s

また、各端子を155℃にて16h加熱した後のはんだ付け性と、155℃にて184h加熱した後の接触抵抗を評価し、耐熱性をみた。   Moreover, the solderability after heating each terminal for 16 hours at 155 ° C. and the contact resistance after heating for 184 hours at 155 ° C. were evaluated, and heat resistance was observed.

No.1(実施例)
図7に示すような形状を有する嵌合部幅2.3mm、半田付け部幅0.64mm、厚み0.64mmの黄銅製プレス材を用いてオス端子を製造した。該プレス材に対して、前処理、Niめっき、Cuめっき、Snめっき、リフローの順に加工し、特性を調査した。
No. 1 (Example)
A male terminal was manufactured using a brass pressed material having a fitting portion width of 2.3 mm, a soldering portion width of 0.64 mm, and a thickness of 0.64 mm having the shape shown in FIG. The press material was processed in the order of pretreatment, Ni plating, Cu plating, Sn plating, and reflow, and the characteristics were investigated.

前処理は以下の条件で行った。
NaOHを含むアルカリ脱脂液を用い、60℃、電流密度7A/dm2の条件にて電解脱脂した後、10%希硫酸で酸洗した。
The pretreatment was performed under the following conditions.
Using an alkaline degreasing solution containing NaOH, electrolytic degreasing was carried out under conditions of 60 ° C. and a current density of 7 A / dm 2 , followed by pickling with 10% dilute sulfuric acid.

Niめっきは以下の条件で行った。
スルファミン酸浴を用い、55℃、電流密度0.6〜30A/dm2の条件にてNiめっきした。
Ni plating was performed under the following conditions.
Ni plating was carried out using a sulfamic acid bath at 55 ° C. and a current density of 0.6 to 30 A / dm 2 .

Cuめっきは以下の条件で行った。
硫酸銅浴を用い、40℃、電流密度2〜15A/dm2の条件にてCuめっきした。
Cu plating was performed under the following conditions.
Cu plating was performed using a copper sulfate bath at 40 ° C. and a current density of 2 to 15 A / dm 2 .

Snめっきは以下の条件で行った。
メタンスルホン酸浴を用い、55℃、電流密度5〜40A/dm2の条件にてSnめっきした。
Sn plating was performed under the following conditions.
Sn plating was performed using a methanesulfonic acid bath at 55 ° C. and a current density of 5 to 40 A / dm 2 .

リフロー処理は以下の条件で行った。
炉温を450℃に設定し、滞留時間25秒としてリフロー処理した後、水冷した。
The reflow process was performed under the following conditions.
The furnace temperature was set to 450 ° C., the reflow treatment was performed with a residence time of 25 seconds, and then water cooling was performed.

No.2(実施例)〜No.15(比較例)
実施例2〜7及び比較例9〜15はNiめっき厚、Cuめっき厚、Snめっき厚を変化させるために電流値を変え、またSnの外観を調整するために、リフロー温度を±50℃の範囲で変化させた以外は実施例1と同一の条件としてオス端子を製造した。また、No.8(実施例)は1次プレスにて半田付け部のみ打ち抜いて嵌合部は平板のままめっきし、めっき後2次プレスにて嵌合部を打ち抜いて製品化したものである。No.8の嵌合部をプレス前に平板のままめっきしたのは、嵌合部のめっき厚分布をより狭い範囲で管理できるからである。
No. 2 (Example) -No. 15 (Comparative example)
In Examples 2 to 7 and Comparative Examples 9 to 15, the current value was changed to change the Ni plating thickness, Cu plating thickness, and Sn plating thickness, and the reflow temperature was adjusted to ± 50 ° C. in order to adjust the appearance of Sn. A male terminal was manufactured under the same conditions as in Example 1 except that the range was changed. No. No. 8 (Example) is a product obtained by punching only the soldering portion with a primary press and plating the fitting portion with a flat plate, and punching the fitting portion with a secondary press after plating. No. The reason why the fitting portion 8 is plated as it is before pressing is that the plating thickness distribution of the fitting portion can be managed in a narrower range.

結果を表1に示す。
No.1〜8(実施例)は本発明の規定範囲内にあり、良好な特性を示した。
No.2はリフロー後もCuが0.2μm残存し、表層のSnも0.2μmと薄いため、加熱後に接触抵抗が若干増加した。しかし、コネクタとしては使用可能なレベルである。
No.5はリフロー後にCuが0.3μm残存しているが、表層のSnが1.0μmと厚いため、加熱による接触抵抗の劣化はない。また、嵌合力が少し高い値であるが、使用可能なレベルである。
No.8はめっき厚分布が狭い範囲で管理が可能であるため、リフロー後のSn厚さが0.3μmと薄くでき、嵌合力が小さい。また、残存するCuめっきもないため、No.1〜7(No.2を除く)と同様に、加熱による接触抵抗の劣化もない。
No.9及び10(比較例)は嵌合部にCuめっきが存在しないか又はCuめっき厚が薄いために、加熱後に嵌合部の接触抵抗が悪化した例である。
No.11(比較例)は嵌合部のCuめっき厚が厚いために、加熱後に嵌合部の接触抵抗が悪化した例である。
No.12(比較例)は嵌合部だけでなく半田付け部も含む端子全体にCuめっきをした例であるが、嵌合部のみの部分めっきの例とは異なり、Cuめっき厚プロフィールの制御が難しいため必要以上のCuがめっきされた結果、リフロー後にもCuが残存し、加熱後の半田付け部の半田付け性が低下した例である。
No.13(比較例)は嵌合部のSnめっき厚が薄いために、加熱後に嵌合部の接触抵抗が悪化した例である。
No.14(比較例)は半田付け部のSnめっき厚が薄いために、加熱後に半田付け部の半田付け性が低下した例である。
No.15(比較例)は嵌合部のSnめっき厚が厚いために、挿抜力が上昇した例である。
The results are shown in Table 1.
No. 1 to 8 (Examples) were within the specified range of the present invention and exhibited good characteristics.
No. In No. 2, Cu remained 0.2 μm even after reflow, and Sn on the surface layer was as thin as 0.2 μm, so the contact resistance slightly increased after heating. However, it is a usable level as a connector.
No. No. 5 has 0.3 μm of Cu remaining after reflow, but since the Sn of the surface layer is as thick as 1.0 μm, there is no deterioration in contact resistance due to heating. Moreover, although the fitting force is a slightly high value, it is a usable level.
No. Since No. 8 can be managed in a narrow range of plating thickness distribution, the Sn thickness after reflow can be as thin as 0.3 μm and the fitting force is small. Also, since there is no remaining Cu plating, No. Similar to 1 to 7 (excluding No. 2), there is no deterioration of contact resistance due to heating.
No. 9 and 10 (comparative examples) are examples in which the contact resistance of the fitting portion deteriorated after heating because there was no Cu plating in the fitting portion or the Cu plating thickness was thin.
No. 11 (Comparative Example) is an example in which the contact resistance of the fitting portion deteriorated after heating because the Cu plating thickness of the fitting portion was thick.
No. 12 (Comparative Example) is an example in which the entire terminal including not only the fitting portion but also the soldering portion is plated with Cu, but unlike the example of partial plating with only the fitting portion, it is difficult to control the Cu plating thickness profile. Therefore, as a result of plating more than necessary Cu, Cu remains even after reflow, and the solderability of the soldered portion after heating is reduced.
No. 13 (comparative example) is an example in which the contact resistance of the fitting portion deteriorated after heating because the Sn plating thickness of the fitting portion was thin.
No. No. 14 (comparative example) is an example in which the soldering property of the soldering part deteriorates after heating because the Sn plating thickness of the soldering part is thin.
No. 15 (Comparative Example) is an example in which the insertion / extraction force is increased because the Sn plating thickness of the fitting portion is thick.

Figure 0004368931
Figure 0004368931

Claims (14)

メス端子と嵌合される嵌合部と半田付けされる半田付け部とを有する金属を素材としたオス端子であって、嵌合部には素材の全面に又は表裏の2面に素材側より厚み0.3〜5.0μmのNiめっき層、厚み0〜0.3μmのCuめっき層、厚み0.1〜0.7μmのCu−Sn合金層、及び厚み0.2〜1.0μmのSnめっき層がこの順に形成されており、半田付け部には素材の全面に素材側より厚み0.3〜5.0μmのNiめっき層、厚み0.1〜0.7μmのSn−Ni合金層、及び厚み0.3μm以上のSnめっき層がこの順に形成されていることを特徴とするオス端子。  It is a male terminal made of a metal having a fitting portion to be fitted to a female terminal and a soldering portion to be soldered, and the fitting portion is formed on the entire surface of the material or on the front and back surfaces from the material side. Ni plating layer having a thickness of 0.3 to 5.0 μm, Cu plating layer having a thickness of 0 to 0.3 μm, Cu—Sn alloy layer having a thickness of 0.1 to 0.7 μm, and Sn having a thickness of 0.2 to 1.0 μm A plating layer is formed in this order, and a soldering portion has a Ni plating layer having a thickness of 0.3 to 5.0 μm, a Sn—Ni alloy layer having a thickness of 0.1 to 0.7 μm from the material side over the entire surface of the material, And a Sn plating layer having a thickness of 0.3 μm or more is formed in this order. 素材として用いられる金属は銅又は銅合金である請求項1に記載のオス端子。  The male terminal according to claim 1, wherein the metal used as a material is copper or a copper alloy. 嵌合部における前記Cuめっき層の厚みは0〜0.2μmである請求項1又は2に記載のオス端子。  The male terminal according to claim 1 or 2, wherein a thickness of the Cu plating layer in the fitting portion is 0 to 0.2 µm. 嵌合部における前記Cuめっき層の厚みは0μmである請求項3に記載のオス端子。  The male terminal according to claim 3, wherein the thickness of the Cu plating layer in the fitting portion is 0 μm. 嵌合部には素材の表裏2面のみに前記Niめっき層、随意的なCuめっき層、Cu−Sn合金層、及びSnめっき層が形成されている請求項1〜4の何れか一項に記載のオス端子。  The fitting part is formed with the Ni plating layer, optional Cu plating layer, Cu-Sn alloy layer, and Sn plating layer only on the front and back surfaces of the material. The male terminal described. オス端子は、厚み:0.4〜1.0mm、嵌合部が幅:0.5〜5.0mm、半田付け部が幅:0.4〜1.0mm、嵌合部の先端から半田付け部の先端まで長さが15〜80mmである形状を有する請求項1〜5の何れか一項に記載のオス端子。  The male terminal has a thickness of 0.4 to 1.0 mm, a fitting portion having a width of 0.5 to 5.0 mm, a soldering portion having a width of 0.4 to 1.0 mm, and soldering from the tip of the fitting portion. The male terminal as described in any one of Claims 1-5 which has a shape whose length is 15-80 mm to the front-end | tip of a part. 嵌合部と半田付け部の間に半田吸い上がりバリア部を有する請求項1〜の何れか一項に記載のオス端子。The male terminal according to any one of claims 1 to 6 , further comprising a solder suction barrier portion between the fitting portion and the soldering portion. 前記半田吸い上がりバリア部にはNiめっき層、Ni−Sn合金層又はCu−Sn合金層が表層に形成されている請求項7に記載のオス端子。  The male terminal according to claim 7, wherein a Ni plating layer, a Ni—Sn alloy layer, or a Cu—Sn alloy layer is formed on a surface layer of the solder sucking-up barrier portion. 自動車に用いられる請求項1〜8の何れか一項に記載のオス端子。  The male terminal as described in any one of Claims 1-8 used for a motor vehicle. (1)金属製平板素材を所望のオス端子形状にプレス加工する工程と、
(2)嵌合部及び半田付け部共に該素材の全面に対して、それぞれ0.3〜5.0μmの厚さのNiめっき層を形成する工程と、
(3)半田付け部にはCuめっき層を形成せずに、嵌合部の該Niめっき層の上に、0.1〜0.6μmの厚さのCuめっき層を形成する工程と、
(4)嵌合部の該Cuめっき層の上には0.4〜1.5μmの厚さを有し、半田付け部の該Niめっき層の上には1.0μm以上の厚さを有するSnめっき層を形成する工程と、
(5)嵌合部及び半田付け部に対してリフロー処理を行う工程と、
を含む請求項1〜9の何れか一項に記載のオス端子の製造方法。
(1) a step of pressing a metal flat plate material into a desired male terminal shape;
(2) forming a Ni plating layer having a thickness of 0.3 to 5.0 μm on the entire surface of the material for both the fitting portion and the soldering portion;
(3) forming a Cu plating layer having a thickness of 0.1 to 0.6 μm on the Ni plating layer of the fitting portion without forming a Cu plating layer on the soldering portion;
(4) The fitting portion has a thickness of 0.4 to 1.5 μm on the Cu plating layer, and the soldering portion has a thickness of 1.0 μm or more on the Ni plating layer. Forming a Sn plating layer;
(5) a step of performing a reflow process on the fitting portion and the soldering portion;
The manufacturing method of the male terminal as described in any one of Claims 1-9 containing.
(1’)金属製平板素材から嵌合部をプレス加工しないことを条件に、少なくとも半田付け部をプレス加工する工程と、
(2’)嵌合部に対しては該素材の表裏2面、半田付け部に対しては該素材の全面に対して、それぞれ0.3〜5.0μmの厚さのNiめっき層を形成する工程と、
(3’)半田付け部にはCuめっき層を形成せずに、嵌合部の該Niめっき層の上に、0.1〜0.6μmの厚さのCuめっき層を形成する工程と、
(4’)嵌合部の該Cuめっき層の上には0.4〜1.5μmの厚さを有し、半田付け部の該Niめっき層の上には1.0μm以上の厚さを有するSnめっき層を形成する工程と、
(5’)嵌合部及び半田付け部に対してリフロー処理を行う工程と、
(6’)嵌合部を含めてプレス加工されていない部分をプレス加工することにより所望のオス端子形状に成形する工程と、
を含む請求項1〜9の何れか一項に記載のオス端子の製造方法。
(1 ′) a step of pressing at least a soldering part on the condition that the fitting part is not pressed from a metal flat plate material;
(2 ′) Ni plating layers having a thickness of 0.3 to 5.0 μm are respectively formed on the front and back surfaces of the material for the fitting portion and on the entire surface of the material for the soldering portion. And a process of
(3 ′) a step of forming a Cu plating layer having a thickness of 0.1 to 0.6 μm on the Ni plating layer of the fitting portion without forming a Cu plating layer on the soldering portion;
(4 ′) A thickness of 0.4 to 1.5 μm is formed on the Cu plating layer of the fitting portion, and a thickness of 1.0 μm or more is formed on the Ni plating layer of the soldering portion. Forming a Sn plating layer comprising:
(5 ′) a step of performing a reflow process on the fitting portion and the soldering portion;
(6 ′) a step of forming a desired male terminal shape by pressing a portion that is not pressed including the fitting portion;
The manufacturing method of the male terminal as described in any one of Claims 1-9 containing.
素材として用いられる金属は銅又は銅合金である請求項10又は11に記載の製造方法。The manufacturing method according to claim 10 or 11 , wherein the metal used as a material is copper or a copper alloy. 嵌合部と半田付け部の間に表層のSnめっき層を除去し、Cu−Sn合金又はCu−Ni合金を表面に露出する方法によって半田吸い上がりバリア部を形成する工程を含む請求項10〜12何れか一項に記載の製造方法。The surface layer of the Sn-plated layer was removed during the fitting portion and the soldering portion, according to claim 10-14 comprising the step of forming a solder sucking up barrier section by a method of exposing the Cu-Sn alloy or Cu-Ni alloy on the surface 12. The production method according to any one of 12 above. 請求項1〜9の何れか一項に記載のオス端子を組み込んだコネクタ。  The connector which incorporated the male terminal as described in any one of Claims 1-9.
JP2008549222A 2006-12-13 2007-10-17 Male terminal and manufacturing method thereof Active JP4368931B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006336257 2006-12-13
JP2006336257 2006-12-13
PCT/JP2007/070267 WO2008072418A1 (en) 2006-12-13 2007-10-17 Male terminal, and its manufacturing method

Publications (2)

Publication Number Publication Date
JP4368931B2 true JP4368931B2 (en) 2009-11-18
JPWO2008072418A1 JPWO2008072418A1 (en) 2010-03-25

Family

ID=39511448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008549222A Active JP4368931B2 (en) 2006-12-13 2007-10-17 Male terminal and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP4368931B2 (en)
WO (1) WO2008072418A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104093888A (en) * 2012-01-23 2014-10-08 株式会社村田制作所 Electronic part and manufacturing method therefor
CN114424413A (en) * 2019-09-19 2022-04-29 株式会社自动网络技术研究所 Pin terminal, connector, harness with connector, and control unit

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5229785B2 (en) * 2007-12-28 2013-07-03 日本圧着端子製造株式会社 Plating layer and method for forming the same
JP5241246B2 (en) * 2008-01-11 2013-07-17 日本圧着端子製造株式会社 Plating layer and method for forming the same
JP4611419B2 (en) * 2008-12-26 2011-01-12 Jx日鉱日石金属株式会社 Copper alloy tin plating strip with excellent solder wettability and insertability
JP5396139B2 (en) * 2009-05-08 2014-01-22 株式会社神戸製鋼所 Press-fit terminal
JP5260620B2 (en) 2010-12-07 2013-08-14 株式会社神戸製鋼所 PCB terminal and manufacturing method thereof
DE102011006899A1 (en) * 2011-04-06 2012-10-11 Tyco Electronics Amp Gmbh Process for the production of contact elements by mechanical application of material layer with high resolution and contact element
JP6446287B2 (en) * 2015-02-25 2018-12-26 Dowaメタルテック株式会社 Sn plating material and method for producing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02243800A (en) * 1989-03-16 1990-09-27 Fujitsu Ltd Production of lead terminal
JP3953169B2 (en) * 1997-12-26 2007-08-08 株式会社神戸製鋼所 Manufacturing method of plating material for mating type connection terminal
JP3538747B2 (en) * 1998-01-27 2004-06-14 住友電装株式会社 Terminal fitting
JP2003031333A (en) * 2001-07-12 2003-01-31 Sumitomo Wiring Syst Ltd Terminal manufacturing method
JP4090483B2 (en) * 2001-07-31 2008-05-28 株式会社神戸製鋼所 Conductive connection parts
JP4560642B2 (en) * 2004-04-19 2010-10-13 Dowaメタルテック株式会社 Method for producing Sn-coated conductive material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104093888A (en) * 2012-01-23 2014-10-08 株式会社村田制作所 Electronic part and manufacturing method therefor
CN104093888B (en) * 2012-01-23 2016-08-24 株式会社村田制作所 Electronic unit and manufacture method thereof
CN114424413A (en) * 2019-09-19 2022-04-29 株式会社自动网络技术研究所 Pin terminal, connector, harness with connector, and control unit
CN114424413B (en) * 2019-09-19 2023-12-08 株式会社自动网络技术研究所 Pin terminal, connector, wire harness with connector, and control unit

Also Published As

Publication number Publication date
JPWO2008072418A1 (en) 2010-03-25
WO2008072418A1 (en) 2008-06-19

Similar Documents

Publication Publication Date Title
JP4368931B2 (en) Male terminal and manufacturing method thereof
JP5319101B2 (en) Sn plating material for electronic parts
JP4402132B2 (en) Reflow Sn plating material and electronic component using the same
JP5025387B2 (en) Conductive material for connecting parts and method for manufacturing the same
JP4940081B2 (en) Reflow Sn plating material and electronic component using the same
JP5464792B2 (en) Method for manufacturing mating connector terminal
JP5005420B2 (en) Mating connector terminal and manufacturing method thereof
EP2273621A1 (en) Terminal for connector and process for producing the terminal for connector
JP5373598B2 (en) PCB terminal
JP2003293187A (en) Copper or copper alloy subjected to plating and method for manufacturing the same
KR101058763B1 (en) Whisker-Resistant Cu-Kn Alloy Heat Resistant Sn-Plated Strip
JP4489738B2 (en) Cu-Ni-Si-Zn alloy tin plating strip
JP2004300524A (en) Sn-COATED COPPER OR COPPER ALLOY MEMBER AND ITS MANUFACTURING METHOD
JP5185759B2 (en) Conductive material and manufacturing method thereof
JP5226032B2 (en) Cu-Zn alloy heat resistant Sn plating strip with reduced whisker
JP2009097050A (en) Tin-plated material for electronic parts
JP2009173989A (en) Tinned strip of copper alloy having excellent wear resistance
JP7162341B2 (en) Method for manufacturing plated laminate and plated laminate
JP5975903B2 (en) Mating connector terminal
JP6743556B2 (en) Method for manufacturing tin-plated copper terminal material
JP2007321177A (en) COPPER ALLOY MATERIAL PLATED WITH REFLOW Sn HAVING EXCELLENT WHISKER-FORMING RESISTANCE, AND ELECTRONIC COMPONENT USING THE SAME
JP2015120966A (en) Plated wire rod, method for producing the plated wire rod, and metal square wire connector terminal
JP5076088B2 (en) Sn plated copper substrate, manufacturing method of Sn plated copper substrate, lead frame and connector terminal using the same
JP6435575B2 (en) Plating wire manufacturing method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090826

R150 Certificate of patent or registration of utility model

Ref document number: 4368931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250