JP5846655B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP5846655B2
JP5846655B2 JP2014020543A JP2014020543A JP5846655B2 JP 5846655 B2 JP5846655 B2 JP 5846655B2 JP 2014020543 A JP2014020543 A JP 2014020543A JP 2014020543 A JP2014020543 A JP 2014020543A JP 5846655 B2 JP5846655 B2 JP 5846655B2
Authority
JP
Japan
Prior art keywords
metal layer
mounting
semiconductor element
forming
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014020543A
Other languages
Japanese (ja)
Other versions
JP2014116632A (en
Inventor
陽一郎 浜田
陽一郎 浜田
由裕 井上
由裕 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SH Materials Co Ltd
Original Assignee
SH Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SH Materials Co Ltd filed Critical SH Materials Co Ltd
Priority to JP2014020543A priority Critical patent/JP5846655B2/en
Publication of JP2014116632A publication Critical patent/JP2014116632A/en
Application granted granted Critical
Publication of JP5846655B2 publication Critical patent/JP5846655B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Lead Frames For Integrated Circuits (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Description

本発明は、電鋳フレームを用いた表面実装型の半導体装置の製造方法に関する。   The present invention relates to a method for manufacturing a surface-mount type semiconductor device using an electroformed frame.

従来、電鋳フレームを用いた表面実装型の半導体装置として、導電性基板上に半導体素子搭載用のアイランド部と外部導出用の電極部とを電鋳形成し、アイランド部上に半導体素子を搭載した後ワイヤボンディングにより半導体素子と電極部を電気的接続し、導電性基板上で樹脂封止した後、導電性基板のみを除去し、樹脂封止体を切断して個片化する構成は公知である(特許文献1参照)。   Conventionally, as a surface-mount type semiconductor device using an electroformed frame, an island portion for mounting a semiconductor element and an electrode portion for leading out are formed on a conductive substrate, and the semiconductor element is mounted on the island portion. After that, the semiconductor element and the electrode part are electrically connected by wire bonding, and after resin sealing on the conductive substrate, only the conductive substrate is removed, and the resin sealing body is cut into individual pieces. (See Patent Document 1).

この特許文献1の半導体装置の製造方法を図3及び図4に基づいて説明すると次の通りである。
図3(a)は、ステンレスやアルミ、銅等から成る導電性基板11を示す。
以下、製造方法を工程順に説明する。
図3(b)に示す、導電性基板11上に、半導体素子搭載用のアイランド部及び外部導出用の電極部を形成するための所定パターンから成るレジストマスク層4を形成する工程、
図3(c)に示す、導電性基板11の露出面についてマイクロエッチング等の表面活性化処理を実施した後、実装用金属層5としてAuやAgをめっき形成する工程、
図3(d)に示す、実装用金属層5の上にアイランド部と電極部となる電鋳層6を電鋳形成し、電鋳物7とする工程、
図3(e)に示す、導電性基板11よりレジストマスク層4を除去する工程、
次いで図4(f)に示す、電鋳物7のアイランド部に半導体素子8を搭載し、半導体素子8と電極部をワイヤボンディング9により電気的に接続する工程、
図4(g)に示す、導電性基板11上の半導体素子8、アイランド部、電極部およびボンディングワイヤ9を樹脂封止して樹脂封止体10とする工程、
図4(h)に示す、導電性基板11を剥離して樹脂封止体10を得る工程、
図4(i)に示す、樹脂封止体10を切断して半導体装置を個片化する工程、
とにより製作される。
The manufacturing method of the semiconductor device of Patent Document 1 will be described with reference to FIGS. 3 and 4 as follows.
FIG. 3A shows a conductive substrate 11 made of stainless steel, aluminum, copper or the like.
Hereinafter, the manufacturing method will be described in the order of steps.
A step of forming a resist mask layer 4 having a predetermined pattern for forming an island portion for mounting a semiconductor element and an electrode portion for leading out on the conductive substrate 11 shown in FIG.
3C, a surface activation process such as micro-etching is performed on the exposed surface of the conductive substrate 11, and then Au or Ag is plated as the mounting metal layer 5.
The step of forming an electroformed layer 6 to be an island part and an electrode part on the mounting metal layer 5 shown in FIG.
A step of removing the resist mask layer 4 from the conductive substrate 11 shown in FIG.
Next, a step of mounting the semiconductor element 8 on the island part of the electroformed product 7 shown in FIG. 4 (f) and electrically connecting the semiconductor element 8 and the electrode part by wire bonding 9,
4G, a step of resin-sealing the semiconductor element 8, the island portion, the electrode portion, and the bonding wire 9 on the conductive substrate 11 to form a resin sealing body 10.
The process of peeling the conductive substrate 11 and obtaining the resin sealing body 10 shown in FIG.
A step of cutting the resin sealing body 10 and dividing the semiconductor device into pieces as shown in FIG.
It is manufactured by.

特開2009−055055号公報JP 2009-055055 A

特許文献1に係る半導体装置においては、アイランド部及び電極部を電鋳形成するにあたり、導電性基板とアイランド部及び電極部との密着力を向上させるため、導電性基板表面を活性化処理した後に実装用金属層を形成する方法が採られている。   In the semiconductor device according to Patent Document 1, in order to improve the adhesion between the conductive substrate, the island portion, and the electrode portion when electroforming the island portion and the electrode portion, the surface of the conductive substrate is activated. A method of forming a mounting metal layer is employed.

しかしながら上記方法では、導電性基板としてステンレスを用いる場合、マイクロエッチングした面に凹凸が形成され易く、その後の電鋳において凹凸がノジュール発生を引き起こし、アイランド部や電極部の表面が平滑に形成されず、半導体素子搭載やボンディング工程において接続不具合が発生する虞がある。   However, in the above method, when stainless steel is used as the conductive substrate, unevenness is likely to be formed on the microetched surface, and unevenness causes nodule generation in the subsequent electroforming, and the surface of the island part or electrode part is not formed smoothly. There is a risk that a connection failure may occur in the semiconductor element mounting or bonding process.

更に、導電性基板をロール・ツー・ロールで取り扱って連続的に電鋳する場合、ステンレスは表面電気抵抗が大きく、給電用電極との接触不良によりめっきが異常析出したり、印加電圧を高くする必要があるためアノードで水素が発生し易く、ピット不良が発生し易い状況にあった。   Furthermore, when conducting electroforming continuously by handling a conductive substrate in a roll-to-roll manner, stainless steel has a large surface electrical resistance, resulting in abnormal deposition of plating due to poor contact with the power supply electrode, or an increased applied voltage. Since it was necessary, hydrogen was likely to be generated at the anode, and pit defects were likely to occur.

また、導電性基板としてCuを用いた場合、Cuと実装用金属層との密着力が強過ぎ、導電性基板を樹脂封止体から剥離する際に、アイランド部や電極部が変形したり、導電性基板側に残留するといった問題があった。   In addition, when Cu is used as the conductive substrate, the adhesion between Cu and the mounting metal layer is too strong, and when the conductive substrate is peeled from the resin sealing body, the island part and the electrode part are deformed, There was a problem of remaining on the conductive substrate side.

そこで、本発明は前記課題に鑑みてなされたものであり、上記不具合の発生を回避し、表面実装型の半導体装置を量産性に優れ且つ安定的に生産できる製造方法を提供することを目的としている。   Accordingly, the present invention has been made in view of the above problems, and an object of the present invention is to provide a manufacturing method capable of avoiding the occurrence of the above-described problems and stably producing a surface-mount type semiconductor device with excellent mass productivity. Yes.

上記課題を解決するため、本発明の半導体装置の製造方法は、活性化処理により第1の金属層上に活性化面を形成した後、Au、Ag又はSnのいずれかから成る実装用金属よりも融点が高く前記実装用金属が拡散し難いNi、Ti、Cr、Mo、W、又はこれらを含む合金のいずれかから成る第2の金属層を前記活性化面上に形成したベース基板を準備する工程と、前記第2の金属層上にパターニングされたレジストマスク層を形成する工程と、前記レジストマスク層から露出した前記第2の金属層上に前記第2の金属層の酸化膜を介して実装用金属層を形成する工程と、前記実装用金属層上に電鋳により複数の半導体素子搭載部及び電極端子部を形成する工程と、前記レジストマスク層を除去する工程と、前記半導体素子搭載部に半導体素子を搭載し、半導体素子と前記電極端子部とを電気的に接続する工程と、前記半導体素子搭載部、半導体素子及び電極端子部を樹脂封止し、樹脂封止体を形成する工程と、前記第2の金属層を含むベース基板を前記実装用金属層から剥離除去する工程と、を順次経ることを特徴としている。 In order to solve the above-described problem, a method for manufacturing a semiconductor device according to the present invention includes an activation surface formed on a first metal layer by an activation process, and then a mounting metal made of any of Au, Ag, or Sn. A base substrate is prepared in which a second metal layer made of Ni, Ti, Cr, Mo, W, or an alloy containing these is formed on the activated surface, which has a high melting point and is difficult to diffuse the mounting metal. A step of forming a patterned resist mask layer on the second metal layer, and an oxide film of the second metal layer on the second metal layer exposed from the resist mask layer. Forming a mounting metal layer, forming a plurality of semiconductor element mounting portions and electrode terminal portions on the mounting metal layer by electroforming, removing the resist mask layer, and the semiconductor element Semiconductor on mounting part Mounting the element, electrically connecting the semiconductor element and the electrode terminal portion, sealing the semiconductor element mounting portion, the semiconductor element and the electrode terminal portion, and forming a resin sealing body; And a step of peeling and removing the base substrate including the second metal layer from the mounting metal layer .

本発明によれば、実装表面型の半導体装置を、安定的に量産することができる。   According to the present invention, a mounting surface type semiconductor device can be stably mass-produced.

本発明の一実施例に係る半導体装置の製造方法を示した図である。図1(a)は、第1の金属層を示した図である。図1(b)は、第2の金属層の形成工程を示した図である。図1(c)は、レジストマスク層形成工程を示した図である。図1(d)は、実装用金属層の形成工程を示した図である。図1(e)は、電鋳工程を示した図である。図1(f)は、レジストマスク層除去工程を示した図である。It is the figure which showed the manufacturing method of the semiconductor device which concerns on one Example of this invention. FIG. 1A is a diagram showing a first metal layer. FIG. 1B is a diagram showing a process of forming the second metal layer. FIG. 1C is a diagram showing a resist mask layer forming process. FIG. 1D is a diagram showing a process for forming a mounting metal layer. FIG.1 (e) is the figure which showed the electroforming process. FIG. 1F is a diagram showing a resist mask layer removing process. 本発明の一実施例に係る半導体装置の製造方法を示した図1の続きである。図2(g)は、半導体素子を搭載し、ワイヤボンディングした状態を示した図である。図2(h)は、樹脂封止工程を示した図である。図2(i)は、ベース基板の剥離工程を示した図である。図2(j)は、半導体装置を示した図である。FIG. 1 is a continuation of FIG. 1 showing a method for manufacturing a semiconductor device according to an embodiment of the present invention. FIG. 2G is a diagram showing a state in which a semiconductor element is mounted and wire-bonded. FIG. 2H is a diagram illustrating a resin sealing process. FIG. 2I is a diagram illustrating a base substrate peeling process. FIG. 2J illustrates a semiconductor device. 従来の半導体装置の製造方法を示した図である。図3(a)は、導電性基板を示した図である。図3(b)は、レジストマスク層形成工程を示した図である。図3(c)は、実装用金属層の形成工程を示した図である。図3(d)は、電鋳工程を示した図である。図3(e)は、レジストマスク層除去工程を示した図である。It is the figure which showed the manufacturing method of the conventional semiconductor device. FIG. 3A is a diagram showing a conductive substrate. FIG. 3B is a diagram showing a resist mask layer forming process. FIG. 3C is a diagram showing a process for forming a mounting metal layer. FIG. 3D is a diagram showing an electroforming process. FIG. 3E is a diagram showing a resist mask layer removing process. 従来の半導体装置の製造方法を示した図3の続きである。図4(f)は、半導体素子を搭載し、ワイヤボンディングした状態を示した図である。図4(g)は、樹脂封止工程を示した図である。図4(h)は、導電性基板の剥離工程を示した図である。図4(i)は、半導体装置を示した図である。FIG. 4 is a continuation of FIG. 3 showing a conventional method for manufacturing a semiconductor device. FIG. 4F is a diagram showing a state in which a semiconductor element is mounted and wire-bonded. FIG. 4G is a view showing a resin sealing process. FIG. 4H is a diagram showing a conductive substrate peeling step. FIG. 4I shows a semiconductor device.

本発明に係る半導体装置の製造方法は、半導体装置の製造方法において、活性化処理により第1の金属層上に活性化面を形成した後、実装用金属が拡散し難い第2の金属層を活性化面上に形成したベース基板を準備する工程と、第2の金属層上にパターニングされたレジストマスク層を形成する工程と、レジストマスク層から露出した第2の金属層上に第2の金属層の酸化膜を介して実装用金属層を形成する工程と、実装用金属層上に電鋳により複数の半導体素子搭載部及び電極端子部を形成する工程と、レジストマスク層を除去する工程と、半導体素子搭載部に半導体素子を搭載し、半導体素子と前記電極端子部とを電気的に接続する工程と、半導体素子搭載部、半導体素子及び電極端子部を樹脂封止し、樹脂封止体を形成する工程と、第2の金属層を含むベース基板を剥離除去する工程と、を順次経ることを特徴とする。   According to another aspect of the present invention, there is provided a method for manufacturing a semiconductor device comprising: forming a second metal layer in which a mounting metal is difficult to diffuse after an activation surface is formed on the first metal layer by an activation process. A step of preparing a base substrate formed on the activated surface, a step of forming a patterned resist mask layer on the second metal layer, and a second layer on the second metal layer exposed from the resist mask layer. A step of forming a mounting metal layer through an oxide film of the metal layer, a step of forming a plurality of semiconductor element mounting portions and electrode terminal portions on the mounting metal layer by electroforming, and a step of removing the resist mask layer Mounting a semiconductor element on the semiconductor element mounting portion and electrically connecting the semiconductor element and the electrode terminal portion; resin-sealing the semiconductor element mounting portion, the semiconductor element and the electrode terminal portion; Forming the body, and A step of the base substrate is peeled removing comprising a metal layer, wherein the sequentially through the.

電鋳工程前に第2の金属層表面を自然酸化、又は酸化処理して所望厚の酸化膜を形成することで、第2の金属層と電鋳物との密着力を適度に設定することができ、樹脂封止体からベース基板を剥離する際の電着物変形又は剥離不良を防止することができる。また、ベース基板をマイクロエッチングした後に電鋳する場合に比して電鋳の下地を平滑に形成することができ、電鋳時の凹凸やノジュールの発生を抑制することができる。   Before the electroforming process, the surface of the second metal layer is naturally oxidized or oxidized to form an oxide film having a desired thickness, thereby appropriately setting the adhesion between the second metal layer and the electroformed product. It is possible to prevent electrodeposit deformation or peeling failure when the base substrate is peeled from the resin sealing body. In addition, the base of electroforming can be formed more smoothly than when electroforming after microetching the base substrate, and the occurrence of irregularities and nodules during electroforming can be suppressed.

更に、活性化処理により、第1の金属層と第2の金属層との密着力を向上させているため、ベース基板を剥離除去する工程において、第2の金属層を確実にベース基板と共に剥離除去することができる。   Furthermore, since the adhesion between the first metal layer and the second metal layer is improved by the activation treatment, the second metal layer is surely peeled off together with the base substrate in the step of peeling and removing the base substrate. Can be removed.

また、実装用金属層が拡散し難い金属を第2の金属層に用いることで、半導体素子搭載時のボンディング工程において実装用金属層が第1の金属層へ拡散することを抑制でき、半導体装置の実装時におけるハンダ濡れ性低下等の不具合を防止することができる。更に、樹脂封止工程等の加熱処理によっても実装用金属層が第2の金属層へ拡散し難いので、実装用金属層と第2の金属層との界面の接着力が適度な状態で保持され、ベース基板を剥離除去する際、実装用金属層と第2の金属層との界面で確実に剥離することができる。   In addition, by using a metal in which the mounting metal layer is difficult to diffuse in the second metal layer, it is possible to suppress the mounting metal layer from diffusing into the first metal layer in the bonding process when mounting the semiconductor element. It is possible to prevent problems such as a decrease in solder wettability during mounting. Furthermore, since the mounting metal layer is difficult to diffuse into the second metal layer even by heat treatment such as a resin sealing process, the adhesive force at the interface between the mounting metal layer and the second metal layer is maintained in an appropriate state. When the base substrate is peeled and removed, the base substrate can be surely peeled at the interface between the mounting metal layer and the second metal layer.

したがって、樹脂封止体からベース基板を剥離除去した後に実装用金属層をめっきする工程を省略でき、電鋳工程と連続した工程の中で実装用金属層を形成することができ、量産性に優れ、安価な生産を行うことが可能となる。   Therefore, the process of plating the mounting metal layer after peeling off the base substrate from the resin sealing body can be omitted, and the mounting metal layer can be formed in a process continuous with the electroforming process. Excellent and inexpensive production can be performed.

また本発明の半導体装置の製造方法は好ましくは、第1の金属層がCuから成り、第2の金属層がNiから成る。   In the method for manufacturing a semiconductor device of the present invention, preferably, the first metal layer is made of Cu and the second metal layer is made of Ni.

これにより、ベース基板としてステンレスを使用する場合に比してベース基板自体の電気抵抗を低くし、めっき異常析出やピット不良等の発生を防止することができる。   Thereby, compared with the case where stainless steel is used as the base substrate, the electric resistance of the base substrate itself can be lowered, and the occurrence of abnormal plating deposition or defective pits can be prevented.

また、電鋳工程前にNi表面を自然酸化、又は酸化処理して所望厚の酸化膜を形成することで、Ni層と電鋳物との密着力を適度に設定することができ、樹脂封止体からベース基板を剥離する際の電着物変形又は剥離不良を防止することができる。更に、第2の金属層をNiめっきで形成することにより電鋳領域を平滑化でき、ノジュールの発生を抑制し、電鋳物の上面を平坦面にすることができる。   In addition, the surface of Ni can be naturally oxidized or oxidized before the electroforming process to form an oxide film with a desired thickness, so that the adhesion between the Ni layer and the electroformed product can be set appropriately, and the resin sealing It is possible to prevent electrodeposit deformation or peeling failure when peeling the base substrate from the body. Furthermore, the electroformed region can be smoothed by forming the second metal layer by Ni plating, the generation of nodules can be suppressed, and the upper surface of the electroformed product can be made flat.

なお、従来のCuから成るベース基板上に直接電鋳物を形成する製造方法は、Cuと電鋳物との密着力が強力であるためベース基板を剥離除去することが難しく、ベース基板はエッチング除去する必要があった。Niから成る第2金属層と電鋳物の間に剥離面を設定できるため、従来のCuから成るベース基板上に直接電鋳物を形成する製造方法のようにベース基板をエッチング除去する必要もない。よって、半導体装置形成後に薬液処理を実施する必要がないので、半導体装置の薬品残渣等の発生がなく、電気信頼性に優れ、かつ製造コストを低減した半導体装置の提供が可能となる。   In the conventional manufacturing method of directly forming an electroformed product on a base substrate made of Cu, it is difficult to peel and remove the base substrate because of the strong adhesion between Cu and the electroformed product, and the base substrate is removed by etching. There was a need. Since a peeling surface can be set between the second metal layer made of Ni and the electroformed product, it is not necessary to etch away the base substrate as in the conventional manufacturing method of directly forming the electroformed product on the base substrate made of Cu. Therefore, it is not necessary to perform chemical treatment after the formation of the semiconductor device, so that it is possible to provide a semiconductor device that does not generate chemical residues or the like in the semiconductor device, has excellent electrical reliability, and has a reduced manufacturing cost.

また本発明の半導体装置の製造方法は好ましくは、実装用金属層はAu、Ag又はSnから成る。 In the semiconductor device manufacturing method of the present invention, the mounting metal layer is preferably made of Au, Ag, or Sn .

実装用金属層をAu、Ag又はSnとすることにより、実装用金属層が第2の金属層に拡散し難く、半導体素子搭載時のボンディング工程において実装用金属層が第1の金属層へ拡散することを抑制でき、半導体装置の実装時におけるハンダ濡れ性低下等の不具合を防止することができる。更に、樹脂封止工程等の加熱処理によってもAu、Ag又はSnから成る実装用金属層は第2の金属層へ拡散し難いので、実装用金属層と第2の金属層との界面の接着力が適度な状態で保持され、ベース基板を剥離除去する際、実装用金属層と第2の金属層との界面で確実に剥離することができる。 By making the mounting metal layer Au, Ag or Sn , the mounting metal layer is difficult to diffuse into the second metal layer, and the mounting metal layer diffuses into the first metal layer in the bonding process when mounting the semiconductor element. This can be suppressed, and problems such as reduced solder wettability during mounting of the semiconductor device can be prevented. Further, since the mounting metal layer made of Au, Ag, or Sn is difficult to diffuse into the second metal layer even by heat treatment such as a resin sealing process, adhesion at the interface between the mounting metal layer and the second metal layer is difficult. The force is maintained in an appropriate state, and when the base substrate is peeled and removed, it can be surely peeled off at the interface between the mounting metal layer and the second metal layer.

以下、図1及び図2を参照して、本発明を実施例について説明する。   Hereinafter, the present invention will be described with reference to FIGS. 1 and 2.

図1は、本発明を適用した実施例に係る半導体装置の製造方法のうち、電鋳フレームを形成するまでの工程を示した図である。   FIG. 1 is a diagram showing steps up to forming an electroformed frame in a method of manufacturing a semiconductor device according to an embodiment to which the present invention is applied.

図1(a)において、第1の金属層を準備する。第1の金属層1はCu、Al、Sn、Fe等から成る。第1の金属層1は、金属板又は絶縁材料上に金属層を成膜した複合材から形成されてもよい。
第1の金属層1の厚さは用途に応じて適宜設定してよいが、例えば、板厚0.10mmのCu板を用いてもよい。
In FIG. 1A, a first metal layer is prepared. The first metal layer 1 is made of Cu, Al, Sn, Fe or the like. The first metal layer 1 may be formed from a composite material in which a metal layer is formed on a metal plate or an insulating material.
Although the thickness of the 1st metal layer 1 may be suitably set according to a use, you may use Cu board with a board thickness of 0.10 mm, for example.

活性化処理により第1の金属層上に活性化面を形成するには、例えば以下のように行えばよい。
第1の金属層がCu板から成る場合、その表面を酸洗浄することで活性化させることができる。酸洗浄には硫酸、塩酸等が好適に使用でき、Cu板表面の酸化被膜を除去できれば、その他の薬品を使用してもよい。更に、第1の金属層と第2の金属層との密着性をより強固なものとするために、マイクロエッチングを実施してもよい。
いずれにしても、活性化処理は第1の金属層と第2の金属層との密着性向上を主目的とするため、第1の金属層上の汚れや酸化膜等の密着性阻害要因を除去できる処理を実施すればよく、電解脱脂やアルカリ洗浄を併用しても構わない。
In order to form the activation surface on the first metal layer by the activation treatment, for example, the following may be performed.
When the first metal layer is made of a Cu plate, the surface can be activated by acid cleaning. For acid cleaning, sulfuric acid, hydrochloric acid, or the like can be suitably used, and other chemicals may be used as long as the oxide film on the surface of the Cu plate can be removed. Further, microetching may be performed in order to further strengthen the adhesion between the first metal layer and the second metal layer.
In any case, the activation treatment is mainly aimed at improving the adhesion between the first metal layer and the second metal layer. What is necessary is just to implement the process which can be removed and you may use electrolytic degreasing and alkali washing together.

図1(b)において、活性化面を形成した第1の金属層1上に第2の金属層2を形成し、ベース基板3を形成する。第2の金属層2はNi、Ti等から成り、湿式めっき法や乾式めっき法によって形成される。
第2の金属層2の厚さは0.1〜1μmの範囲で形成することが望ましい。0.1μmよりも薄い場合は、その後の酸化膜厚設定が難しくなり、ベース基板剥離工程における適度な剥離強度が発現し難くなる。電鋳1μmを超えて厚過ぎる場合は、金属層形成のコストが上昇すると共に、第1の金属層1と第2の金属層2との内部応力差によるベース基板の反りが大きくなり、各工程での取り扱いが難しくなる。
In FIG. 1B, the second metal layer 2 is formed on the first metal layer 1 on which the activated surface is formed, and the base substrate 3 is formed. The second metal layer 2 is made of Ni, Ti, or the like, and is formed by a wet plating method or a dry plating method.
The thickness of the second metal layer 2 is desirably formed in the range of 0.1 to 1 μm. When the thickness is less than 0.1 μm, it is difficult to set the subsequent oxide film thickness, and an appropriate peel strength in the base substrate peeling step is hardly exhibited. If the thickness is more than 1 μm, the cost of forming the metal layer increases, and the warpage of the base substrate due to the internal stress difference between the first metal layer 1 and the second metal layer 2 becomes large. Handling becomes difficult.

図1(c)において、第2の金属層2上にレジストマスク層4を形成する。レジストマスク層4は感光性樹脂等からなり、露光、現像工程により、半導体素子搭載部及び電極端子部を含む所定のパターンが形成される。レジストマスク層4の厚さは、電鋳物7の厚さに応じて適宜設定される。電鋳物7の断面形状を略矩形に形成する場合は、電鋳物7よりも厚い層厚に設定され、電鋳物7上部に断面庇形状の突出部を形成する場合は、電鋳物7よりも薄い層厚に設定される。   In FIG. 1C, a resist mask layer 4 is formed on the second metal layer 2. The resist mask layer 4 is made of a photosensitive resin or the like, and a predetermined pattern including a semiconductor element mounting portion and an electrode terminal portion is formed by exposure and development processes. The thickness of the resist mask layer 4 is appropriately set according to the thickness of the electroformed product 7. When the cross-sectional shape of the electroformed product 7 is formed in a substantially rectangular shape, the layer thickness is set to be thicker than that of the electroformed product 7, and when the protruding portion having a cross-sectional shape is formed on the electroformed product 7, it is thinner than the electroformed product 7. Set to layer thickness.

図1(d)において、レジストマスク層4から露出した第2の金属層2上にAu、Ag、Sn等から成る実装用金属層5を形成する。実装用金属層5は湿式めっきにより形成され、その厚みは用途に応じて適宜設定され、例えば0.05〜0.5μmの範囲で形成される。   In FIG. 1D, a mounting metal layer 5 made of Au, Ag, Sn or the like is formed on the second metal layer 2 exposed from the resist mask layer 4. The mounting metal layer 5 is formed by wet plating, and the thickness thereof is appropriately set according to the application, for example, in the range of 0.05 to 0.5 μm.

実装用金属層5が拡散し難い第2の金属層2とするためには、第2の金属層2を実装用金属層5よりも融点が高い金属から選択すればよい。例えば、実装用金属層5をAu、Ag、Snとすると、第2の金属層2をNi、Ti、Cr、Mo、W、又はそれらを含む合金等とすればよい。   In order to make the mounting metal layer 5 difficult to diffuse, the second metal layer 2 may be selected from metals having a melting point higher than that of the mounting metal layer 5. For example, if the mounting metal layer 5 is Au, Ag, or Sn, the second metal layer 2 may be Ni, Ti, Cr, Mo, W, or an alloy containing them.

また、実装用金属層5を形成する前に、第2の金属層2表面に酸化膜を形成し、実装用金属層5と第2の金属層2との密着性を調整する。酸化膜は意図的に酸化処理を実施して形成してもよく、自然酸化で形成されたものでもよい。   Further, before forming the mounting metal layer 5, an oxide film is formed on the surface of the second metal layer 2 to adjust the adhesion between the mounting metal layer 5 and the second metal layer 2. The oxide film may be formed by intentionally performing an oxidation treatment, or may be formed by natural oxidation.

図1(e)において、実装用金属層5の上に電鋳層6を形成し、複数の金属層が一体に形成された電鋳物7を形成する。電鋳層6はCu、Ni等から成り、電解めっきにより形成される。電鋳物7が半導体素子搭載部及び電極端子部となる。   In FIG.1 (e), the electroformed layer 6 is formed on the metal layer 5 for mounting, and the electroformed object 7 in which the some metal layer was integrally formed is formed. The electroformed layer 6 is made of Cu, Ni or the like and is formed by electrolytic plating. The electroformed product 7 becomes a semiconductor element mounting portion and an electrode terminal portion.

図1(f)において、レジストマスク層4を除去する。レジストマスク層4が感光性樹脂から成る場合は、苛性ソーダ等のアルカリ溶液によって除去することができる。   In FIG. 1F, the resist mask layer 4 is removed. When the resist mask layer 4 is made of a photosensitive resin, it can be removed with an alkaline solution such as caustic soda.

図1(f)に続く図2(g)において、半導体素子搭載部に半導体素子を載置し、半導体素子と電極端子部とをワイヤボンディングにより電気的に接続する。
このワイヤボンディング工程において電鋳物7は加熱されるが、実装用金属層5が拡散し難い金属により第2の金属層2は形成されているため、実装用金属層5が第1の金属層1へ拡散することを抑制でき、実装時の接合不良等を防止することができる。
In FIG. 2G following FIG. 1F, the semiconductor element is mounted on the semiconductor element mounting portion, and the semiconductor element and the electrode terminal portion are electrically connected by wire bonding.
In this wire bonding step, the electroformed product 7 is heated, but the second metal layer 2 is formed of a metal that the mounting metal layer 5 is difficult to diffuse, and therefore the mounting metal layer 5 is the first metal layer 1. It is possible to suppress diffusion into the substrate, and to prevent a bonding failure at the time of mounting.

図2(h)において、第2の金属層2上に形成された半導体素子搭載部及び電極端子部から成る電鋳物7、半導体素子8及びボンディングワイヤ9を樹脂封止し、樹脂封止体10を形成する。
このとき、封止樹脂を硬化させるために電鋳フレーム全体も加熱されるが、実装用金属層5が拡散し難い金属により第2の金属層2は形成されているため、実装用金属層5が第1の金属層1へ拡散することを抑制でき、実装時の接合不良等を防止することができる。
In FIG. 2 (h), the electroformed product 7, the semiconductor element 8 and the bonding wire 9 comprising the semiconductor element mounting portion and the electrode terminal portion formed on the second metal layer 2 are resin-sealed, and the resin sealing body 10 Form.
At this time, the entire electroformed frame is also heated in order to cure the sealing resin. However, since the second metal layer 2 is formed of a metal in which the mounting metal layer 5 is difficult to diffuse, the mounting metal layer 5 is formed. Can be prevented from diffusing into the first metal layer 1, and poor bonding during mounting can be prevented.

図2(i)において、樹脂封止体からベース基板3を剥離除去する。
前記製造方法により、表面実装型の半導体装置を安定的に量産することが可能となる。
In FIG. 2I, the base substrate 3 is peeled off from the resin sealing body.
According to the manufacturing method, it is possible to stably mass-produce surface-mount semiconductor devices.

以上、本発明の好ましい実施例について説明したが、本発明は上述した実施例に制限されることはなく、本発明範囲を逸脱しない範囲で、上述した実施例に種々の変形及び置換を加えることができる。   The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various modifications and substitutions may be made to the above-described embodiments without departing from the scope of the present invention. Can do.

本発明は、IC等の半導体素子を搭載し、半導体装置を製造するための半導体装置用基板及び半導体装置に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used for a semiconductor device substrate and a semiconductor device for mounting a semiconductor element such as an IC and manufacturing the semiconductor device.

1 第1の金属層
2 第2の金属層
3 ベース基板
4 レジストマスク層
5 実装用金属層
6 電鋳層
7 電鋳物
8 半導体素子
9 ボンディングワイヤ
10 樹脂封止体
11 導電性基板
DESCRIPTION OF SYMBOLS 1 1st metal layer 2 2nd metal layer 3 Base substrate 4 Resist mask layer 5 Mounting metal layer 6 Electroformed layer 7 Electroformed material 8 Semiconductor element 9 Bonding wire 10 Resin sealing body 11 Conductive substrate

Claims (1)

半導体装置の製造方法において、
活性化処理により第1の金属層上に活性化面を形成した後、Au、Ag又はSnのいずれかから成る実装用金属よりも融点が高く前記実装用金属が拡散し難いNi、Ti、Cr、Mo、W、又はこれらを含む合金のいずれかから成る第2の金属層を前記活性化面上に形成したベース基板を準備する工程と、
前記第2の金属層上にパターニングされたレジストマスク層を形成する工程と、
前記レジストマスク層から露出した前記第2の金属層上に前記第2の金属層の酸化膜を介して実装用金属層を形成する工程と、
前記実装用金属層上に電鋳により複数の半導体素子搭載部及び電極端子部を形成する工程と、
前記レジストマスク層を除去する工程と、
前記半導体素子搭載部に半導体素子を搭載し、半導体素子と前記電極端子部とを電気的に接続する工程と、
前記半導体素子搭載部、半導体素子及び電極端子部を樹脂封止し、樹脂封止体を形成する工程と、
前記第2の金属層を含むベース基板を前記実装用金属層から剥離除去する工程と、
を順次経ることを特徴とする半導体装置の製造方法。
In a method for manufacturing a semiconductor device,
After the activation surface is formed on the first metal layer by the activation process, the melting point is higher than the mounting metal made of any of Au, Ag, or Sn, and the mounting metal is difficult to diffuse. Ni, Ti, Cr Preparing a base substrate on which the second metal layer made of Mo, W, or an alloy containing these is formed on the activated surface;
Forming a patterned resist mask layer on the second metal layer;
Forming a mounting metal layer on the second metal layer exposed from the resist mask layer via an oxide film of the second metal layer;
Forming a plurality of semiconductor element mounting portions and electrode terminal portions by electroforming on the mounting metal layer;
Removing the resist mask layer;
Mounting a semiconductor element on the semiconductor element mounting portion, and electrically connecting the semiconductor element and the electrode terminal portion;
A step of resin-sealing the semiconductor element mounting portion, the semiconductor element and the electrode terminal portion, and forming a resin sealant;
Peeling and removing the base substrate including the second metal layer from the mounting metal layer ;
A method of manufacturing a semiconductor device, wherein
JP2014020543A 2014-02-05 2014-02-05 Manufacturing method of semiconductor device Active JP5846655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014020543A JP5846655B2 (en) 2014-02-05 2014-02-05 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014020543A JP5846655B2 (en) 2014-02-05 2014-02-05 Manufacturing method of semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010063698A Division JP2011198977A (en) 2010-03-19 2010-03-19 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2014116632A JP2014116632A (en) 2014-06-26
JP5846655B2 true JP5846655B2 (en) 2016-01-20

Family

ID=51172264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014020543A Active JP5846655B2 (en) 2014-02-05 2014-02-05 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP5846655B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6913993B2 (en) * 2016-08-05 2021-08-04 マクセルホールディングス株式会社 Substrates for semiconductor devices, manufacturing methods for semiconductor devices

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03243789A (en) * 1990-02-20 1991-10-30 Nippon Steel Corp Cu-coated cr-containing steel sheet excellent in corrosion resistance, solderability and adhesion
JP3879135B2 (en) * 1996-03-28 2007-02-07 日立化成工業株式会社 Transfer wiring support member and semiconductor package manufacturing method using the same
JPH11323567A (en) * 1998-05-13 1999-11-26 Okuno Chem Ind Co Ltd Electroless plating method
JP2000332150A (en) * 1999-05-20 2000-11-30 Fujitsu Ltd Method of manufacturing semiconductor device
JP4027642B2 (en) * 2001-11-08 2007-12-26 日本パーカライジング株式会社 Nickel-based surface treatment film with excellent heat-resistant adhesion to resin
JP4341328B2 (en) * 2003-07-04 2009-10-07 ソニー株式会社 Manufacturing method of semiconductor device
JP4814552B2 (en) * 2005-06-13 2011-11-16 Dowaメタルテック株式会社 Surface treatment method
JP2007129068A (en) * 2005-11-04 2007-05-24 Toshiba Corp Semiconductor device and its manufacturing method therefor, substrate used for manufacturing semiconductor device
JP2007321212A (en) * 2006-06-02 2007-12-13 Nippon Steel Corp Ni-PLATED STEEL SHEET HAVING EXCELLENT SLIDABILITY AND CONTACT RESISTANCE AND ITS PRODUCTION METHOD
KR20080003971A (en) * 2006-07-04 2008-01-09 김영희 Method for manufacturing color oxide layer on plating layer of materials

Also Published As

Publication number Publication date
JP2014116632A (en) 2014-06-26

Similar Documents

Publication Publication Date Title
CN106169458B (en) Semiconductor element mounting lead frame and semiconductor device and its manufacturing method
JP6362111B2 (en) Lead frame manufacturing method
JP5493323B2 (en) Manufacturing method of lead frame type substrate
JP2006310397A (en) Circuit member, its manufacturing method, semiconductor device and multilayer structure of surface of circuit member
JP5532570B2 (en) Lead frame type substrate, manufacturing method thereof, and semiconductor device
JP5549066B2 (en) Lead frame type substrate, manufacturing method thereof, and semiconductor device
TWI516178B (en) A composite metal layer to which a support metal foil is attached, a wiring board using the same, and a method for manufacturing the same, and a method of manufacturing the semiconductor package using the wiring board
JP6044936B2 (en) Manufacturing method of semiconductor device mounting substrate
JP2011198977A (en) Manufacturing method of semiconductor device
JP2010080889A (en) Lead frame and method of manufacturing the same
JP5846655B2 (en) Manufacturing method of semiconductor device
JP2002231871A (en) Method for manufacturing leadframe and leadframe
JP2007180247A (en) Circuit member manufacturing method
JP4735274B2 (en) Flexible wiring board and manufacturing method thereof.
JP5034913B2 (en) Semiconductor device manufacturing substrate and manufacturing method thereof
KR101088410B1 (en) Surface treatment method for metal pcb substrate for improving heat dissipation
JP2011023517A (en) Tab tape for semiconductor device and method of manufacturing the same
CN111739864A (en) Substrate for mounting semiconductor element
JP2008103455A (en) Semiconductor device and method for manufacturing the semiconductor device
JP2007329325A (en) Method for manufacturing interconnection substrate
JP5493020B2 (en) Wiring board manufacturing method and semiconductor package manufacturing method
JP5168998B2 (en) Semiconductor device substrate and manufacturing method thereof
JP2011044748A (en) Method of manufacturing leadframe
JP2017022267A (en) Method for manufacturing lead frame
JP2017117985A (en) Method for manufacturing lead frame

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151119

R150 Certificate of patent or registration of utility model

Ref document number: 5846655

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250