JP2007329325A - Method for manufacturing interconnection substrate - Google Patents

Method for manufacturing interconnection substrate Download PDF

Info

Publication number
JP2007329325A
JP2007329325A JP2006159912A JP2006159912A JP2007329325A JP 2007329325 A JP2007329325 A JP 2007329325A JP 2006159912 A JP2006159912 A JP 2006159912A JP 2006159912 A JP2006159912 A JP 2006159912A JP 2007329325 A JP2007329325 A JP 2007329325A
Authority
JP
Japan
Prior art keywords
conductive circuit
conductive
plating
etching
plating resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006159912A
Other languages
Japanese (ja)
Inventor
Hideyuki Shibata
秀幸 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2006159912A priority Critical patent/JP2007329325A/en
Publication of JP2007329325A publication Critical patent/JP2007329325A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Printed Wiring (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an interconnection substrate with the surface of the conductive circuit part formed flat. <P>SOLUTION: The method for manufacturing the interconnection substrate comprises a plating resist step for providing the plating resist layer 4 having a pattern opposite of a circuit pattern on the surface of the conductive seed layer 3 provided to an insulating substrate 2, a plating step for providing a conductive circuit part 5 of the circuit pattern by plating on the surface of the conductive seed layer 3 without covered by the plating resist layer 4, a flattening etching step for falttening the surface of the conductive circuit part 5 by etching with the use of a hydrogen peroxide-based etchant or an amine-based etchant as an etchant before removing the plating resist layer 4, a plating resist layer removal step for removing the plating resist layer 4, and a seed layer removal step for removing a part of the conductive seed layer 3 without the conductive circuit part 5 provided. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、絶縁性基材の表面にめっきによって導電回路部を形成する配線基板の製造方法に関する。   The present invention relates to a method for manufacturing a wiring board in which a conductive circuit portion is formed on a surface of an insulating substrate by plating.

配線基板の製造方法の一つとしてセミアディティブ工法がある。このセミアディティブ工法は、ファインピッチ回路(例えば、30μm未満のピッチ)を形成するのに適した工法であり、その従来の製造方法の一例が特許文献1に開示されている。以下、この製造方法を簡単に説明する。   One of the methods for manufacturing a wiring board is a semi-additive method. This semi-additive method is a method suitable for forming a fine pitch circuit (for example, a pitch of less than 30 μm), and an example of the conventional manufacturing method is disclosed in Patent Document 1. Hereinafter, this manufacturing method will be briefly described.

先ず、図4(a)に示す絶縁性基材100を出発材料として用いて、図4(b)に示すように、この絶縁性基材100の一面に、薄い導電性シード層101を形成する。次に、図4(c)に示すように、導電性シード層101の上に、回路パターンとは逆パターンのめっきレジスト層102をパターニングする。次に、図4(d)に示すように、めっきレジスト層102で被われていない導電性シード層101の表面に、めっきによって所望の回路パターンの導電回路部103を成長させる。次に、図4(e)に示すように、めっきレジスト層102を除去する前に、導電回路部103をその厚み方向途中までエッチングする(ハーフエッチング工程)。このハーフエッチング工程では、公知のエッチング液(例えば銅エッチング液)を使用して化学エッチングを行い、エッチング前の導電回路部103の高さを100%とすると、50〜98%となるまでエッチングを行う。   First, using the insulating substrate 100 shown in FIG. 4A as a starting material, a thin conductive seed layer 101 is formed on one surface of the insulating substrate 100 as shown in FIG. 4B. . Next, as shown in FIG. 4C, a plating resist layer 102 having a pattern opposite to the circuit pattern is patterned on the conductive seed layer 101. Next, as shown in FIG. 4D, a conductive circuit portion 103 having a desired circuit pattern is grown on the surface of the conductive seed layer 101 not covered with the plating resist layer 102 by plating. Next, as shown in FIG. 4E, before removing the plating resist layer 102, the conductive circuit portion 103 is etched halfway in the thickness direction (half-etching step). In this half-etching process, chemical etching is performed using a known etching solution (for example, copper etching solution), and etching is performed until the height of the conductive circuit portion 103 before etching is 50% to 98% when the height is 100%. Do.

次に、めっきレジスト層102を除去して図4(f)に示すような構造とする。次に、図5(a)に示すように、導電回路部103が設けられていない導電性シード層101の箇所をエッチングによって除去する。最後に、図5(b)に示すように、絶縁性基材100上の導電回路部103を被うように保護層104を形成する。   Next, the plating resist layer 102 is removed to obtain a structure as shown in FIG. Next, as shown in FIG. 5A, the conductive seed layer 101 where the conductive circuit portion 103 is not provided is removed by etching. Finally, as shown in FIG. 5B, a protective layer 104 is formed so as to cover the conductive circuit portion 103 on the insulating substrate 100.

この配線基板の製造方法によれば、めっきにより導電回路部103を形成した後に、めっきレジスト層102を残した状態で、導電回路部103をその厚さ方向途中までエッチングすることにより、回路パターン形状や配置に係わらず全ての箇所の導電回路部103の厚みをほぼ均一にしようとするものである。   According to this method for manufacturing a wiring board, after forming the conductive circuit portion 103 by plating, the conductive circuit portion 103 is etched halfway in the thickness direction while leaving the plating resist layer 102, thereby forming a circuit pattern shape. It is intended to make the thickness of the conductive circuit portion 103 in all places almost uniform regardless of the arrangement.

つまり、配線密度の高い部分の導電回路部103におけるエッチング液周りが配線密度の低い導電回路部103におけるエッチング液周りよりも良好である。これを利用して、配線密度の高い部分の導電回路部103の厚みを厚く、配線密度の低い導電回路部103の厚みを薄く設定しておくことにより、配線密度の高い部分の各導電回路部103がより多くエッチングされる一方、配線密度の低い部分の導電回路部103がより少なくエッチングされる。従って、配線密度の高い部分の導電回路部103の厚みと、配線密度の低い部分の導電回路部103の厚みをほぼ等しくすることができる。
特開2004−39771号公報
That is, the periphery of the etching solution in the conductive circuit portion 103 in the portion with a high wiring density is better than the periphery of the etching solution in the conductive circuit portion 103 with a low wiring density. By utilizing this, by setting the thickness of the conductive circuit portion 103 in the portion with high wiring density to be thick and setting the thickness of the conductive circuit portion 103 with low wiring density to be small, each conductive circuit portion in the portion with high wiring density is set. While 103 is etched more, a portion of the conductive circuit portion 103 having a lower wiring density is etched less. Therefore, the thickness of the conductive circuit portion 103 in the portion with high wiring density can be made substantially equal to the thickness of the conductive circuit portion 103 in the portion with low wiring density.
JP 2004-37771 A

しかしながら、導電回路部103を形成するめっき工程にあって、めっきレジスト層102に近い導電回路部103の幅方向の両端部と、めっきレジスト層102より離れた導電回路部103の幅方向の中央部ではめっき浴の循環効率が相違し、導電回路部103の中央部に対して両端部の循環効率が悪い。そのため、導電回路部103は、その両端部に較べて中央部が厚くなる凸形状となる。導電回路部103が凸形状であると、導電回路部103上に載置された実装部品の端子が横ずれを起こし易いため、部品の実装性が悪いという問題がある。   However, in the plating step for forming the conductive circuit portion 103, both ends in the width direction of the conductive circuit portion 103 close to the plating resist layer 102 and the central portion in the width direction of the conductive circuit portion 103 that is separated from the plating resist layer 102 Then, the circulation efficiency of the plating bath is different, and the circulation efficiency of both end portions is poor with respect to the central portion of the conductive circuit portion 103. Therefore, the conductive circuit portion 103 has a convex shape whose central portion is thicker than both end portions thereof. If the conductive circuit portion 103 has a convex shape, the terminals of the mounted components placed on the conductive circuit portion 103 are liable to be laterally displaced, and there is a problem that the mountability of the components is poor.

特に、異方導電性接着フィルムを用いたACF接合では、プレス時に異方性導電フィルムの導電粒子が導電回路部103の側部領域に逃げ、導電回路部103と接触して有効に機能する異方性粒子の個数が少なくなり、実装部品の接続信頼性が低下する。   In particular, in the ACF bonding using the anisotropic conductive adhesive film, the conductive particles of the anisotropic conductive film escape to the side region of the conductive circuit portion 103 during pressing and contact with the conductive circuit portion 103 to function effectively. The number of isotropic particles is reduced, and the connection reliability of the mounted parts is lowered.

そこで、本発明は、導電回路部の表面が平坦な配線基板の製造方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a method for manufacturing a wiring board having a flat conductive circuit portion surface.

本発明は、配線基板の製造方法であって、絶縁性基材上に、回路パターンとは逆パターンのめっきレジスト層を設けるレジストパターニング工程と、めっきレジスト層で被われていない領域に、めっき処理によって回路パターンの導電回路部を設けるめっき工程と、めっきレジスト層を除去する前に、エッチングによって導電回路部の表面を平坦化する平坦化エッチング工程と、を有することを要旨とする。なお、平坦化エッチング工程は、硫酸過酸化水素系、アミン系のエッチング液を使用してエッチングすることが好ましい。そして、エッチングのレートは、0.1〜1μm/分であることが好ましい。   The present invention relates to a method for manufacturing a wiring board, comprising: a resist patterning process in which a plating resist layer having a pattern opposite to a circuit pattern is provided on an insulating substrate; and a plating treatment in a region not covered with the plating resist layer. The present invention includes a plating process for providing a conductive circuit part of a circuit pattern by a step and a flattening etching process for flattening the surface of the conductive circuit part by etching before removing the plating resist layer. In the planarization etching step, it is preferable to perform etching using a hydrogen peroxide-based or amine-based etching solution. The etching rate is preferably 0.1 to 1 μm / min.

本発明によれば、めっき工程では、幅方向の断面形状が中央が突出した形状の導電回路部が形成されるが、次の平坦化エッチング工程によって導電回路部の表面が平坦化されるため、導電回路部の表面が平坦な配線基板を製造できる。このため、本発明により製造された配線基板は、導電回路部表面の平坦度が高くなるため、接続の信頼性を高めることができる。   According to the present invention, in the plating step, a conductive circuit portion having a shape in which the cross-sectional shape in the width direction protrudes at the center is formed, but the surface of the conductive circuit portion is flattened by the next flattening etching step. A wiring board having a flat conductive circuit surface can be manufactured. For this reason, the wiring board manufactured according to the present invention increases the flatness of the surface of the conductive circuit portion, and therefore can improve the connection reliability.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1〜図3は本発明の一実施の形態に係るプリント配線基板の各製造過程の断面図である。   1 to 3 are cross-sectional views of each manufacturing process of a printed wiring board according to an embodiment of the present invention.

図3(b)に示すように、プリント配線基板1は、絶縁性基材2と、この一面に形成された所定の回路パターンの導電性シード層3と、この導電性シード層3の表面に形成された所定の回路パターンの導電回路部5と、絶縁性基材2上に設けられ、導電回路部5を被う保護層6とから構成されている。   As shown in FIG. 3B, the printed wiring board 1 includes an insulating base material 2, a conductive seed layer 3 having a predetermined circuit pattern formed on the one surface, and a surface of the conductive seed layer 3. The conductive circuit portion 5 having a predetermined circuit pattern is formed, and a protective layer 6 is provided on the insulating substrate 2 and covers the conductive circuit portion 5.

以下、このプリント配線基板1の製造方法を順に説明する。 図1(a)に示す絶縁性基材2を出発材料とする。絶縁性基材2は、例えばポリイミド樹脂、アクリル樹脂等より形成されている。   Hereinafter, the manufacturing method of this printed wiring board 1 is demonstrated in order. The insulating base material 2 shown in FIG. The insulating base material 2 is formed from, for example, a polyimide resin, an acrylic resin, or the like.

先ず、図1(b)に示すように、絶縁性基板2の一面に薄い導電性シード層3を形成する(シード層形成工程)。   First, as shown in FIG. 1B, a thin conductive seed layer 3 is formed on one surface of the insulating substrate 2 (seed layer forming step).

次に、図2(a)に示すように、導電性シード層3の表面に、所望の回路パターンとは逆パターンのめっきレジスト層4を形成する(めっきレジスト工程)。めっきレジスト層4は、導電性シード層3の表面にレジスト膜を塗布し、このレジスト膜を露光し、現像を行うことによって形成する。   Next, as shown in FIG. 2A, a plating resist layer 4 having a pattern opposite to the desired circuit pattern is formed on the surface of the conductive seed layer 3 (plating resist process). The plating resist layer 4 is formed by applying a resist film on the surface of the conductive seed layer 3, exposing the resist film, and developing the resist film.

次に、図2(b)に示すように、めっきレジスト層4で被われていない導電性シード層3の面に、めっきによって所望の回路パターンの導電回路部5を形成する(めっき工程)。導電回路部5は、導電性シード層3を電解層として、めっきレジスト層4で被われていない箇所に電解めっきを施すことによって形成する。   Next, as shown in FIG. 2B, a conductive circuit portion 5 having a desired circuit pattern is formed by plating on the surface of the conductive seed layer 3 not covered with the plating resist layer 4 (plating step). The conductive circuit portion 5 is formed by performing electrolytic plating on a portion not covered with the plating resist layer 4 using the conductive seed layer 3 as an electrolytic layer.

次に、図2(c)に示すように、めっきレジスト層4を除去する前に、エッチング液として硫酸過酸化水素系又はアミン系のエッチング液を使用して導電回路部5の表面をエッチングによって平坦化する(平坦化エッチング工程)。つまり、エッチング液として硫酸過酸化水素系又はアミン系のエッチング液を使用した場合は、特に、めっきレジスト層4に近い導電回路部5の両端部がエッチングされ難く、めっきレジスト層4より離れた導電回路部5の中央部がエッチングされ易いために、凸状の導電回路部5を平坦化できる。   Next, as shown in FIG. 2C, before removing the plating resist layer 4, the surface of the conductive circuit portion 5 is etched by using a sulfuric acid hydrogen peroxide-based or amine-based etching solution as an etching solution. Planarization (planarization etching process). That is, when a hydrogen peroxide sulfate or amine-based etchant is used as the etchant, both ends of the conductive circuit portion 5 near the plating resist layer 4 are difficult to be etched, and the conductivity away from the plating resist layer 4 is particularly difficult. Since the central part of the circuit part 5 is easily etched, the convex conductive circuit part 5 can be flattened.

次に、図2(d)に示すように、めっきレジスト層4を除去する(めっきレジスト層除去工程)。   Next, as shown in FIG. 2D, the plating resist layer 4 is removed (plating resist layer removing step).

次に、図3(a)に示すように、導電回路部5が設けられていない導電性シード層3の箇所をエッチングによって除去する(シード層除去工程)。   Next, as shown in FIG. 3A, the conductive seed layer 3 where the conductive circuit portion 5 is not provided is removed by etching (seed layer removal step).

最後に、図3(b)に示すように、絶縁性基材2上に、導電回路部5を被うように保護層6を形成すれば完了する。   Finally, as shown in FIG. 3B, the protective layer 6 is formed on the insulating base material 2 so as to cover the conductive circuit portion 5.

以上、説明したように、めっき工程では、図2(b)に示す如く凸形状の導電回路部5が形成されるが、次の平坦化エッチング工程によって導電回路部5の表面が平坦化されるため、導電回路部5の表面が平坦なプリント配線基板1を製造できる。従って、導電回路部5上に載置された実装部品の端子が横ズレし難くなるため、部品の実装性が向上する。ACF接合にあっても、プレス時に異方性導電フィルムの導電粒子が導電回路部の側部領域に逃げなくなるため、導電回路部5と接触して有効に機能する異方性粒子の個数が多くなり、実装部品の接続信頼性が向上する。   As described above, in the plating step, the convex conductive circuit portion 5 is formed as shown in FIG. 2B, but the surface of the conductive circuit portion 5 is flattened by the next flattening etching step. Therefore, the printed wiring board 1 in which the surface of the conductive circuit portion 5 is flat can be manufactured. Accordingly, since the terminals of the mounted component placed on the conductive circuit portion 5 are not easily displaced laterally, the mountability of the component is improved. Even in the ACF bonding, the conductive particles of the anisotropic conductive film do not escape to the side region of the conductive circuit portion during pressing, so the number of anisotropic particles that function effectively in contact with the conductive circuit portion 5 is large. Thus, the connection reliability of the mounted parts is improved.

(実施例)
次に、上述した製造方法の各工程の具体例を説明する。
(Example)
Next, specific examples of each process of the manufacturing method described above will be described.

絶縁性基材2としては、ポリイミド(東レ・デュポン社製;商標名カプトンEN)を使用した。   As the insulating substrate 2, polyimide (manufactured by Toray DuPont; trade name Kapton EN) was used.

シード層形成工程では、絶縁性基材2をスパッタチャンバにセットし、プラズマガスとしてアルゴンガスを用い、7×10−3Torrの真空化で、スパッタリングによりニッケル層を100Å、その上に銅層を2000Åスパッタリング蒸着することにより導電性シード層3を形成した。 In the seed layer forming process, the insulating base material 2 is set in a sputtering chamber, argon gas is used as a plasma gas, and vacuum is 7 × 10 −3 Torr. Conductive seed layer 3 was formed by sputtering deposition of 2000 mm.

めっきレジスト工程では、導電性シード層3の表面にドライフィルムレジスト(日立化成社製)をラミネートし、このドライフィルムレジストに回路パターンを露光・現像し、回路形成領域のドライフィルムレジストを除去することによってめっきレジスト層4を形成した。   In the plating resist process, a dry film resist (manufactured by Hitachi Chemical Co., Ltd.) is laminated on the surface of the conductive seed layer 3, and a circuit pattern is exposed and developed on the dry film resist to remove the dry film resist in the circuit formation region. Then, the plating resist layer 4 was formed.

めっき工程では、下記の硫酸銅めっき浴を用い、この硫酸銅めっき浴中に浸した絶縁基材2上の導電性シード層3に電気を流し、めっきレジスト層4で被われていない箇所に銅を析出することによって導電回路部5を形成した。   In the plating process, the following copper sulfate plating bath is used, electricity is applied to the conductive seed layer 3 on the insulating base material 2 immersed in the copper sulfate plating bath, and copper is applied to portions not covered with the plating resist layer 4. The conductive circuit part 5 was formed by depositing.

硫酸銅めっき浴は、硫酸銅5水塩が75g/リットル(l)、硫酸が190g/リットル、塩酸が50mg/リットル、カバーグリームCLX−A(メルテックス社製)が5ml/リットル、カバーグリームCLX−C(メルテックス社製)が5ml/リットルのものである。   The copper sulfate plating bath is 75 g / liter (l) of copper sulfate pentahydrate, 190 g / liter of sulfuric acid, 50 mg / liter of hydrochloric acid, 5 ml / liter of cover cream CLX-A (Meltex), cover cream CLX -C (Meltex) is 5 ml / liter.

平坦化エッチング工程では、エッチング液としてアミン系エッチング液を使用し、28℃、0.15MPaの条件の下に導電回路部5の表面をエッチングする。   In the planarization etching step, an amine-based etching solution is used as the etching solution, and the surface of the conductive circuit portion 5 is etched under the conditions of 28 ° C. and 0.15 MPa.

めっきレジスト層除去工程では、3%水酸化ナトリウム水溶液を用いてめっきレジスト層4を剥離した。   In the plating resist layer removing step, the plating resist layer 4 was peeled off using a 3% aqueous sodium hydroxide solution.

シード層除去工程では、塩化鉄液や塩化銅液等のエッチング液を用いて導電性シード層3をエッチングによって除去した。   In the seed layer removing step, the conductive seed layer 3 was removed by etching using an etching solution such as iron chloride solution or copper chloride solution.

このようにして製造したプリント配線基板1は、その導電回路部5の両端部と中央部の高低差が0.5μm以内であった。これに対し、平坦化エッチング工程以外を同じ製造工程で製造したプリント配線基板では、導電回路部の両端部と中央部の高低差が最大1.2μmであった。以上より、本発明における導電回路部5の平坦化が実証された。   The printed wiring board 1 manufactured in this way had a height difference of 0.5 μm or less between the both end portions and the central portion of the conductive circuit portion 5. On the other hand, in the printed wiring board manufactured in the same manufacturing process other than the flattening etching process, the height difference between the both end portions and the central portion of the conductive circuit portion was 1.2 μm at the maximum. From the above, flattening of the conductive circuit portion 5 in the present invention was demonstrated.

(平坦化エッチング工程のエッチング液の他の具体例及びエッチングのレート)
(1)エッチング液
平坦化エッチング工程では、エッチング液として硫酸過酸化水素系、アミン系を使用しても良い。
(Another specific example of etching liquid in the flattening etching step and etching rate)
(1) Etching solution In the flattening etching step, a hydrogen peroxide sulfate or an amine may be used as the etching solution.

硫酸過酸化水素系又はアミン系のエッチング液を使用すれば、ドライフィルムレジストと回路の接する部位よりも回路がむき出しになっている部分がエッチングされ易いため、回路形状を平坦化することができる。   If a sulfuric acid hydrogen peroxide-based or amine-based etching solution is used, the portion where the circuit is exposed is more easily etched than the portion where the dry film resist is in contact with the circuit, and the circuit shape can be flattened.

(2)エッチングのレート
エッチングのレートは0.1〜1μm/分とした。このようにエッチングのレートを0.1〜1μm/分とした理由は、この範囲でないと微量なエッチング量をコントロールする必要があるため作業上困難となるからである。
(2) Etching rate The etching rate was 0.1 to 1 µm / min. The reason why the etching rate is set to 0.1 to 1 μm / min is that it is difficult to work because it is necessary to control a small amount of etching unless the etching rate is within this range.

なお、上記実施の形態では、電解めっきによるセミアディティブ工法の場合を説明したが、本発明は無電解めっきによるフルアディティブ工法等にも適用可能である。   In addition, although the case of the semi-additive construction method by electroplating was demonstrated in the said embodiment, this invention is applicable also to the full additive construction method etc. by electroless plating.

本発明の一実施の形態を示し、(a)は絶縁性基材の断面図、(b)はプリント配線基板の一製造過程の断面図である。1 shows an embodiment of the present invention, in which (a) is a cross-sectional view of an insulating substrate, and (b) is a cross-sectional view of a printed wiring board in one manufacturing process. 本発明の一実施の形態を示し、(a)〜(d)はプリント配線基板の各製造過程の断面図である。1 shows an embodiment of the present invention, wherein (a) to (d) are cross-sectional views of each manufacturing process of a printed wiring board. 本発明の一実施の形態を示し、(a)はプリント配線基板の一製造過程の断面図、(b)は製造されたプリント配線基板の断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows an embodiment of the present invention, in which (a) is a cross-sectional view of one printed wiring board manufacturing process, and (b) is a cross-sectional view of the manufactured printed wiring board. 従来例を示し、(a)は絶縁性基材の断面図、(b)〜(f)はプリント配線基板の各製造過程の断面図である。A prior art example is shown, (a) is sectional drawing of an insulating base material, (b)-(f) is sectional drawing of each manufacturing process of a printed wiring board. 従来例を示し、(a)はプリント配線基板の一製造過程の断面図、(b)は製造されたプリント配線基板の断面図である。A conventional example is shown, (a) is a cross-sectional view of one manufacturing process of a printed wiring board, (b) is a cross-sectional view of the manufactured printed wiring board.

符号の説明Explanation of symbols

1 プリント配線基板(配線基板)
2 絶縁性基材
3 導電性シード層
4 めっきレジスト層
5 導電回路部
1 Printed wiring board (wiring board)
2 Insulating substrate 3 Conductive seed layer 4 Plating resist layer 5 Conductive circuit section

Claims (3)

絶縁性基材上に、回路パターンとは逆パターンのめっきレジスト層を設けるレジストパターニング工程と、
前記めっきレジスト層で被われていない領域に、めっき処理によって回路パターンの導電回路部を設けるめっき工程と、
前記めっきレジスト層を除去する前に、エッチングによって前記導電回路部の表面を平坦化する平坦化エッチング工程と、
を有することを特徴とする配線基板の製造方法。
A resist patterning step of providing a plating resist layer having a pattern opposite to the circuit pattern on the insulating substrate;
A plating step of providing a conductive circuit portion of a circuit pattern by plating in a region not covered with the plating resist layer;
A planarization etching step of planarizing the surface of the conductive circuit portion by etching before removing the plating resist layer;
A method of manufacturing a wiring board, comprising:
請求項1記載の配線基板の製造方法であって、
前記平坦化エッチング工程では、硫酸過酸化水素系、アミン系のエッチング液を使用してエッチングすることを特徴とする配線基板の製造方法。
It is a manufacturing method of the wiring board according to claim 1,
In the flattening etching step, etching is performed using a hydrogen peroxide-based or amine-based etching solution.
請求項1記載の配線基板の製造方法であって、
エッチングのレートは、0.1〜1μm/分であることを特徴とする配線基板の製造方法。
It is a manufacturing method of the wiring board according to claim 1,
Etching rate is 0.1-1 micrometer / min, The manufacturing method of the wiring board characterized by the above-mentioned.
JP2006159912A 2006-06-08 2006-06-08 Method for manufacturing interconnection substrate Pending JP2007329325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006159912A JP2007329325A (en) 2006-06-08 2006-06-08 Method for manufacturing interconnection substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006159912A JP2007329325A (en) 2006-06-08 2006-06-08 Method for manufacturing interconnection substrate

Publications (1)

Publication Number Publication Date
JP2007329325A true JP2007329325A (en) 2007-12-20

Family

ID=38929589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006159912A Pending JP2007329325A (en) 2006-06-08 2006-06-08 Method for manufacturing interconnection substrate

Country Status (1)

Country Link
JP (1) JP2007329325A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101006887B1 (en) 2008-09-18 2011-01-12 주식회사 코리아써키트 Method of manufacturing print circuit board
KR20110117399A (en) * 2010-04-21 2011-10-27 삼성테크윈 주식회사 Method for manufacturing circuit board
CN111405771A (en) * 2020-03-09 2020-07-10 电子科技大学 Method for manufacturing conductive circuit of printed circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101006887B1 (en) 2008-09-18 2011-01-12 주식회사 코리아써키트 Method of manufacturing print circuit board
KR20110117399A (en) * 2010-04-21 2011-10-27 삼성테크윈 주식회사 Method for manufacturing circuit board
KR101712074B1 (en) * 2010-04-21 2017-03-03 해성디에스 주식회사 Method for manufacturing circuit board
CN111405771A (en) * 2020-03-09 2020-07-10 电子科技大学 Method for manufacturing conductive circuit of printed circuit

Similar Documents

Publication Publication Date Title
JP5138459B2 (en) Wiring board manufacturing method
JP2006278774A (en) Double-sided wiring board, method for manufacturing the same and base substrate thereof
WO2007058147A1 (en) Printed wiring board, method for manufacturing same and use of same
JP2003008199A (en) Method for roughening copper surface of printed wiring board and printed wiring board and its producing method
TW200939927A (en) Wiring substrate and its manufacturing process
TW201114336A (en) Printed circuit board and method of manufacturing the same
JP2006278950A (en) Printed circuit board and its manufacturing method
JP2007036217A (en) Manufacturing method of printed circuit substrate using imprint method
JP2007329325A (en) Method for manufacturing interconnection substrate
JP2007243043A (en) Flexible wiring board and method of manufacturing same
JP5640667B2 (en) Circuit board manufacturing method
KR20110009790A (en) Flexible printed circuit board and method for manufacturing the same
JP2007243097A (en) Method of forming conductive pattern
JP2001111201A (en) Method of manufacturing wiring board and wiring board using the same
JP3431532B2 (en) Method of manufacturing transfer medium and method of manufacturing wiring board using the transfer medium
KR101555014B1 (en) Printed circuit board for forming fine wiring and method for manufacturing the same
TW200938048A (en) Method for manufacturing wire substrate
JP5263830B2 (en) Printed circuit board and manufacturing method thereof
JP2004095983A (en) Manufacturing method of printed wiring board
KR101075683B1 (en) Method for manufacturing printed circuit board
KR100752016B1 (en) Method for manufacturing printed circuit board
JP2002368380A (en) Method of manufacturing double-sided flexible circuit board
JP2010087222A (en) Method of manufacturing printed wiring board, and the printed wiring board
JP2007329326A (en) Method for manufacturing wiring substrate
JP2011018830A (en) Method of manufacturing multilayer printed wiring board, and multilayer printed wiring board