JP4027642B2 - Nickel-based surface treatment film with excellent heat-resistant adhesion to resin - Google Patents

Nickel-based surface treatment film with excellent heat-resistant adhesion to resin Download PDF

Info

Publication number
JP4027642B2
JP4027642B2 JP2001342880A JP2001342880A JP4027642B2 JP 4027642 B2 JP4027642 B2 JP 4027642B2 JP 2001342880 A JP2001342880 A JP 2001342880A JP 2001342880 A JP2001342880 A JP 2001342880A JP 4027642 B2 JP4027642 B2 JP 4027642B2
Authority
JP
Japan
Prior art keywords
nickel
layer
acid
resin
based surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001342880A
Other languages
Japanese (ja)
Other versions
JP2003147549A (en
Inventor
純 川口
洋樹 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Parkerizing Co Ltd
Original Assignee
Nihon Parkerizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co Ltd filed Critical Nihon Parkerizing Co Ltd
Priority to JP2001342880A priority Critical patent/JP4027642B2/en
Priority to TW91121277A priority patent/TW574420B/en
Priority to CNA028203429A priority patent/CN1568380A/en
Priority to KR10-2004-7005110A priority patent/KR20040054703A/en
Priority to PCT/JP2002/010825 priority patent/WO2003040432A1/en
Publication of JP2003147549A publication Critical patent/JP2003147549A/en
Application granted granted Critical
Publication of JP4027642B2 publication Critical patent/JP4027642B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • H05K3/384Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by plating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemically Coating (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Chemical Treatment Of Metals (AREA)
  • ing And Chemical Polishing (AREA)
  • Laminated Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、対象とする基材、特に金属基材と樹脂とを接着する際に、きわめて強力な接着力を提供するために金属基材表面に形成されるニッケル系表面処理皮膜に関する。より詳細に述べるならば、前記金属−樹脂接合体が200℃〜300℃といった高温環境下に置かれても優れた接着力を保持することができるニッケル系表面処理皮膜に関する。
【0002】
【従来の技術】
プリント配線板、リードフレーム、LSIなどの電子電気部品には、金属と樹脂との接合部分が多く使用されている。特に、このような分野で用いられるエポキシ樹脂やポリイミド樹脂などの熱硬化性樹脂または成形温度の高い熱可塑性樹脂では、これら樹脂を成形する際に部品全体を200℃〜300℃といった高温にさらす必要がある。また、樹脂上に接着された銅箔で配線パターンを形成するために、有機溶剤、酸およびアルカリなどの化学薬品と接触するといった過酷な製造工程を経る必要がある。さらに、半導体素子などの能動部品、LCRなどの受動部品を実装する際には、半田付けが用いられるが、昨今の環境問題から鉛半田が使用できなくなるため、半田リフロー温度はますます高温になりつつある。
【0003】
このような状況において、金属基材と樹脂との接着性が劣ると、特に高温度では金属面に吸着していた水分や製造工程で接着界面に吸収された水分が膨張して金属基材表面と樹脂との剥離を促し、膨れなどを生じて内部の耐食性を損なったり、場合によっては樹脂が割れたり、配線パターンが破壊される結果となる。
【0004】
金属基材と樹脂との接着性を向上させるには、金属表面を機械的に粗面化し、いわゆるアンカーを形成する方法が古くから行われているが、該してこのような機械加工は生産性が悪く高コストになりがちなのと、加工の際に発生する微粒子が電子電気部品の精密性を損なうことが多い。従って、現実的には金属基材表面側に何らかの表面処理を行うことが一般的である。
【0005】
例えば、鉄鋼材料においてはリン酸塩処理が、銅および銅合金においては「黒染め」と言われる酸化銅処理が代表的である。前者は、亜鉛などの第3リン酸との溶解度積のきわめて小さな重金属を溶解させたリン酸酸性水溶液に接触させる方法、後者は、適当な酸化剤を含有した強アルカリ水溶液に浸漬して煮沸する方法である。
【0006】
しかしながら、リン酸塩処理により形成される皮膜の多くは結晶水を有するために、高々200℃程度の温度で結晶が破壊し、皮膜の耐熱性に劣ること、「黒染め」処理においては、接着初期の接着性は良好であるが、耐久性に劣るため時間と共に接合強度が低下したり、また加熱処理に対しても当初の接着力を維持することができない。
【0007】
これに対して、特開平9-209167号公報や特開平9-172125号公報では、金属基材表面にクロメート処理を施すことにより接着性を向上させている。さらに、特開2000-183235号公報では電解法を用いて、表面に多数の微細な鱗片状突起を有する特殊なクロム化合物層を形成させる方法が開示されている。
【0008】
しかし、これらの方法は、いずれも表面処理液に有害な6価のクロム化合物を用いており、形成された金属基材表面上にも6価クロムが含有されているものと思われ、環境上好ましくない。
【0009】
【発明が解決しようとする課題】
本発明はこれらの従来技術の抱える前記問題点を解決するためのものであり、本発明の目的は、6価クロムなどの環境汚染の原因となる物質を用いることなく、金属基材と樹脂との接着性、特に高温度における接着性に優れた表面処理皮膜を提供することにある。
【0010】
【課題を解決するための手段】
本発明者らは、従来技術の抱える上記問題点を解決すべく鋭意検討を重ねた結果、一般的に耐熱性と経時安定性に優れる金属ニッケルおよびその表面に形成されたニッケル酸化物に注目し、それらに第3の元素を導入することにより樹脂との接着性にきわめて優れる新たなニッケル系表面処理皮膜を発明するに至った。
【0011】
すなわち、本発明は対象とする素材上に形成された2層構造を有するニッケル系表面処理皮膜であって、該素材の表面に接する下層にニッケルとリンを、その上層にニッケル、酸素およびリンを含有することを特徴とする樹脂との耐熱接着性に優れたニッケル系表面処理皮膜を提供する。
【0012】
また、本発明の前記ニッケル系表面処理皮膜に含有されるリンの代わりの元素としてホウ素を用いることができる。
【0013】
また、本発明の前記ニッケル系表面処理皮膜に含有される元素として、リンとホウ素が共存しても良い。
【0014】
さらに、前記ニッケル系表面処理皮膜のニッケルに対するリンおよび/またはホウ素の含有比率は、上層の含有比率が下層のそれに比べて大きいこと、すなわち下記の関係を満足することがより好ましい。
[(リン及び/又はホウ素)/Ni]下層<[(リン及び/又はホウ素)/Ni]上層
【0015】
さらに、前記ニッケル系表面処理皮膜の上層は柱状組織を有し、柱状組織の柱と柱の間には微細な間隙を有することがより好ましい。
【0016】
前記本発明のニッケル系表面処理皮膜は銅又は銅合金上に形成されるのが好ましい。
【0017】
前記本発明のニッケル系表面処理皮膜は、灰色、灰黒色または黒色外観を有することが好ましい。
【0018】
以下、本発明のニッケル系表面処理皮膜についてより詳細に説明する。
【0019】
本発明のニッケル系表面処理皮膜は、素材の表面に接する下層に金属ニッケルとリンおよび/またはホウ素をその表面、すなわち上層にさらに酸素を含有する層を配した2層構造を有するが、下層の金属ニッケルが対象素材に対して十分な密着性をもって形成することができる限り、対象素材は特に限定されない。ただし、電子電気部品の分野においては、特に銅または銅合金と樹脂との耐熱接着性が要求されることが多いので、対象素材として銅を中心に説明する。
【0020】
本発明のニッケル系表面処理皮膜の断面走査形電子顕微鏡(以下、SEMと云う)像を図1に、表面SEM像を図2に示す。図1の符号1は、本発明のニッケル系表面処理皮膜の上層柱状組織(ニッケル、酸素、リンを含む)を示し、図1の符号2は、本発明のニッケル系表面処理皮膜の下層(ニッケル、リンを含む)を示し図1の符号3は銅基板を示す。図2は本発明のニッケル系表面処理皮膜の表面SEM像(×10000)を示す。
図1に示されるように、本発明の表面処理皮膜の上層は柱状組織を有し、柱と柱との間には微細な間隙が観察される(櫛状組織)。従って、これを表面から観察すると(図2)、不定形ではあるが数10nm〜数100nmオーダーのきわめて微細な凹凸として観察され、樹脂との接着時にきわめて有効な巨大な実質表面積を得ることができる。
【0021】
XPSによる分析によれば、上層のニッケルは酸化状態にありその厚さは500nm程度であるが、単なる金属ニッケル上に形成される酸化物はこれよりさらに薄膜であり、かつ本発明のような柱状組織は形成されない。本発明で導入された第三元素、すなわちリンおよび/またはホウ素が導入されることにより、このような形態が得られる。経験的には、これらの第三元素は2重量%〜50重量%の範囲であることが好ましい。2重量%未満ではこのような形態が得られないし、50重量%を越える事は差し支えないが、そのような組成のニッケル皮膜を形成することは含有量の増加と共に徐々に困難となる。すなわち、経済的に不利となる。
【0022】
本発明のニッケル系表面処理皮膜の上層柱状組織の高さは、50〜3000nmの範囲であることが好ましい。50nm未満であると表面の微細な凹凸が十分形成されなくなるし、3000nmを越えると凹凸が粗大化する。一方、下層の金属ニッケル層の厚さは特に限定されない。しかし、対象素材表面の一部が露出しないように十分覆うためには、0.5μm以上であることが好ましい。また、不必要な厚膜は経済的に不利なので、膜厚の上限は5μmもあれば十分であろう。
【0023】
本発明のニッケル系表面処理皮膜の外観は、該して灰色、灰黒色から黒色を呈する。これは図1および図2に見られるように間隙を伴う柱状組織が可視光を吸収することによると思われるが、これは特に電子電気部品分野においては好ましい。銅配線パターン側から樹脂を通して接着面(本発明の表面処理皮膜表面)を観察したときに、それが黒色系を呈していると、パターンとのコントラストが明確になり、パターンの検査を光学的に行う際に有利となる。
【0024】
本発明のニッケル系表面処理皮膜は、種々の方法で対象素材に金属ニッケル層を形成した後、表面を酸化させることによって形成することができる。金属ニッケル層を形成する方法は、PVDなどのような物理的方法も可能だが、電気めっき法や無電解めっき法などの湿式表面処理法が量産性に優れている。以下、前記第三元素を共析させるためのめっき法について述べる。
【0025】
第三元素としてリンを共析させるためには、電気めっきの場合、例えば良く知られるワット浴などにさらに次亜リン酸または亜リン酸を添加すればよい。また、無電解めっきの場合では、市販されている次亜リン酸を還元剤としたタイプのものを用いればよい。
【0026】
次に、第三元素としてホウ素を共析させるためには、DMAB(ジメチルアミンポラン)などのホウ素含有還元剤を用いた無電解めっき浴を用いればよい。さらに、還元剤としてDMABと次亜リン酸を同時に用いると、リンとホウ素を同時に共析させることができる。これらはいずれも市販されている。
【0027】
一方、めっき液に添加される添加剤によっては、リンおよび/またはホウ素に加えて、さらに炭素、窒素、硫黄および亜鉛を共析させることができる。黒色化という意味ではこれらの方法はより好ましい方向に作用する。例えば、以下に述べる添加剤を導入することにより可能となる。
【0028】
すなわち、窒素を共析させるには、アニリン、モノエチルアミン、ジエタノールアミン、ジメチルアミン、トリエタノールアミン、ニトリロトリ酢酸、ピリジン、イミダゾール、モルフォリン、o−フェナントロリン、グリシン、グルタミン酸、アラニン、セリン、ヒドラジン、アスパラギン酸、エチレンジアミン、に代表される窒素含有有機物を添加すればよい。硫黄を共析させるには、N,N-ジエチルージチオカルバミン酸ソーダ、1,3−ジエチル−2−チオ尿素、メチオニン、エチオニン、シスチン、システイン、グルタチオン、チオグリコール酸、サッカリン、ジピリジン、1,2,3−ベンゾトリアゾール−2−チアゾリン−2−チオール、チアゾール、チオ尿素、チオゾール、チオインドキシル酸、o−スルホンアミド安息香酸、スルファニル酸、メチルオレンジ、ナフチオン酸、ナフタレン−α−スルホン酸、2−メルカプトベンゾチアゾール、サルファダイアジン、ロダンアンモン等の硫黄含有有機化合物を添加すればよい。亜鉛を共析させるには、炭酸亜鉛、酸化亜鉛、塩化亜鉛、硫酸亜鉛などの亜鉛化合物を添加すればよい。最後に、炭素を共析させるには、ジエチレントリアミンなどに代表されるアミン系有機化合物を添加すればよい。
【0029】
以上のめっきを、例えば銅および銅合金に適用する場合には、電気めっきの場合は銅表面を清浄にした後、直接電気めっきを行えばよいが、無電解めっきで特に次亜リン酸を還元剤とした浴を用いる場合は、銅は次亜リン酸に対して触媒活性がないためそのままではめっきできない。このような場合は、パラジウム置換めっき等により微量のパラジウムめっきを前処理として施すか、ストライクめっきとして電気ニッケルめっきを薄く(サブミクロン程度)行った後に、無電解ニッケルめっきをすると良い。
【0030】
対象素材に所定のニッケルめっき層を形成した後に、表面に柱状組織層を形成させる。それには、適当な酸化剤を含有した酸に接触させて処理するのが効果的である。具体的には、リン酸、硫酸、または塩酸をベースとして、これに硝酸、過マンガン酸、第二鉄イオンまたは過酸化水素などの酸化剤を必要量添加すればよい。あるいは、前記ベースの酸水溶液中にてアノード電解しても良い。このような酸化物形成処理を単なる金属ニッケル表面に適用しても本発明のような表面形態が得られないが、本発明のニッケル系表面処理皮膜に導入したリンを初めとする第三元素は、概して金属ニッケルの結晶を微細化し、さらには非晶質化するが、これが酸化処理に伴って形成される局部電池のアノードおよびカソードの分布状態を微細化することにより、結果として本発明の特徴的な表面柱状組織層を作り上げるものと思われる。実際、XPSなどの分析によると、ニッケルに対するリンをはじめとする第三元素の含有比率は、下層のそれに比べて上層が大きくなる。すなわち、酸化処理によりニッケルがより優先的に溶解して、リン等が残存することを示唆している。なお、上層の柱状組織に含有される酸素は、このような酸化処理に伴って導入され、表層ほどその含有率が大きく下層に向かって減少する。
【0031】
本発明のニッケル系表面処理皮膜と接着される樹脂については特に限定されないが、電子電気部品の分野ではエポキシ樹脂、ポリイミド樹脂が多用され、本発明の主な対象となる。接着という観点からは、ガラス転移温度の低い樹脂ほど、高温時軟化して金属−樹脂間の熱膨張率の差を緩和することができて接着性には都合がよい。しかし、このような樹脂では樹脂自身の耐熱性が低下することから、ガラス転移温度は高い方が好ましい。本発明のニッケル系表面処理皮膜は、経験的には特にこのようなガラス転移温度の高い樹脂においてその本領を発揮する。
【0032】
【実施例】
以下、本発明の実施例を比較例とともに挙げ、本発明を具体的に説明する。
【0033】
実施例1
300×200×0.5mmの銅板(JISC1100)表面に、ワット浴を用いて、1μmのストライクニッケルめっきを行った後、リン含有量が9重量%となるように調製した無電解めっき浴に浸漬して5μmの無電解Ni−P合金層を形成した。さらに、これを75%リン酸と67.5%硝酸を容量比90:10で混合した酸化処理液に、40℃にて3分間浸漬し、銅板上のNi−P合金層表面にリンが濃化したニッケル層を形成した。酸化処理後の表面は光沢のない美しい黒色外観を呈した。XPSにより深さ方向のリンの分析を行うと、最表層では35重量%、下層(柱状組織の下部)では8.8重量%であった。ちなみに、図1および図2は実施例1のものである。
【0034】
次に、前記ニッケル系表面処理が施された銅板上に、ポリイミド接着剤(三井化学製「ネオフレックス両面接着シート」)を50μmの厚さで張り合わせ、その上に厚さ35μmの銅箔を配置し、プレス圧力50kg/cm2、加熱温度250℃、加熱時間2時間の条件でプレス接着した。この試料を50mm角に切断して、劣化を促進するために85℃、85%RHの加温湿潤環境下に24時間放置した後、270℃の溶融半田浴に浮かべたところ、300秒間以上が認められなかった。
【0035】
以下に、実施例1に用いためっき浴と処理条件の詳細について述べる。ストライクニッケルめっきは、ワット浴、すなわち硫酸ニッケル:330g/L、塩化ニッケル:45g/L、ホウ酸:38g/Lの濃度となるようにそれぞれ脱イオン水に試薬(特級を使用)を溶解し、浴温:50℃にて、ニッケル板をアノードにして、カソード電流密度を5A/dm2として行った。無電解めっき浴は、次亜リン酸ナトリウム:0.15mol/L、硫酸アンモニウム:0.5mol/L、クエン酸三ナトリウム:0.2mol/L、硫酸ニッケル:0.1mol/Lの濃度となるようにそれぞれ脱イオン水に試薬を溶解し、さらに苛性ソーダを添加して、pHを9に調整した。このように調整した無電解Ni−P合金めっき浴を90℃に加温して無電解めっきを行い前記Ni−P合金層を形成した。
【0036】
実施例2
前記無電解Ni−P合金めっき浴の代わりに、以下に示す無電解Ni−B合金めっき浴を用いて実施例1と同様の試験を行った。すなわち、無電解Ni−B合金めっき浴として、塩化ニッケル:0.126mol/L、DMAB:0.06mol/L、マロン酸:0.378mol/L、TINO:70mg/Lの濃度となるようにそれぞれ脱イオン水に試薬を溶解し、さらにアンモニア水によりpHを6に調整した。このように調整した無電解Ni−B合金めっき浴を70℃に加温して用いた。得られたNi−B合金皮膜中のホウ素含有量は2.8重量%であった。これを実施例1と同様の方法で酸化処理したところ、灰黒色の外観を呈した。さらに同様にポリイミド接着剤を介して銅箔と接着し加温湿潤環境下においた後に、半田耐熱性を調べたところ240秒で銅箔にフクレが生じた。
【0037】
実施例3
実施例1で用いたストライクめっき用のワット浴に亜リン酸を10g/L添加し、温度40℃、電流密度:5A/dm2の条件でカソード電解を施し、リン含有量10重量%のNi−P合金皮膜を5μm形成した。実施例1と同様に方法で酸化処理を行うと美しい黒色外観を呈した。以下、実施例1と同様の試料を作製し、評価したところ、半田耐熱性において300秒間で異常が認められなかった。
【0038】
比較例1
実施例1で用いたNiストライクめっき用のワット浴をそのまま用いて、3μmのニッケルめっきを形成した後、実施例1と同様の酸化処理を施したところ、やや光沢が失われたが、ほぼ白色の外観を呈した。以下、実施例1と同様の試料を作製し、評価したところ、2〜3秒間でフクレが生じ、接着剤層が剥離した。
【0039】
以上の実施例1〜3により、本発明のニッケル系表面処理皮膜を適用した後、樹脂と接着することにより、例えば高温湿潤環境下にさらされた後でもきわめて良好な耐熱接着性を得ることができる。これに対して、比較例1のように単なるニッケル皮膜表面を酸化しただけでは良い接着性が得られないことがわかる。
【0040】
【発明の効果】
本発明のニッケル系表面処理皮膜を適用することにより、金属基材と樹脂とを接着する際に、耐湿潤性および高温下での優れた接着性を付与することができることから、電子電気部品に高い信頼性をもたらすことができる。さらに、付帯的な効果として、本発明の表面処理皮膜は光沢のない黒色系の外観を有することから、電子電気部品に光学的な検査を行う場合において、良いコントラストを与えて検査精度を向上させることができる。
【図面の簡単な説明】
【図1】は、本発明のニッケル系表面処理皮膜の断面SEM像(×3000)を示す。
【図2】は、本発明のニッケル系表面処理皮膜の表面SEM像(×10000)を示す。
【符号の説明】
1 本発明のニッケル系表面処理皮膜の上層柱状組織(ニッケル、酸素、リンを含む)
2 本発明のニッケル系表面処理皮膜の下層(ニッケル、リンを含む)
3 銅基板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a nickel-based surface treatment film formed on the surface of a metal substrate in order to provide extremely strong adhesive force when bonding a target substrate, particularly a metal substrate and a resin. More specifically, the present invention relates to a nickel-based surface treatment film that can maintain excellent adhesion even when the metal-resin bonded body is placed in a high temperature environment of 200 ° C. to 300 ° C.
[0002]
[Prior art]
Many electronic and electrical parts such as printed wiring boards, lead frames, LSIs, and the like use joints between metal and resin. In particular, in thermosetting resins such as epoxy resins and polyimide resins used in such fields or thermoplastic resins having a high molding temperature, it is necessary to expose the entire part to a high temperature of 200 ° C. to 300 ° C. when molding these resins. There is. In addition, in order to form a wiring pattern with a copper foil adhered on a resin, it is necessary to go through a harsh manufacturing process such as contact with a chemical such as an organic solvent, acid, and alkali. Furthermore, when mounting active components such as semiconductor elements and passive components such as LCR, soldering is used, but because of the recent environmental problems, lead solder cannot be used, so the solder reflow temperature will become even higher. It's getting on.
[0003]
In such a situation, if the adhesion between the metal substrate and the resin is poor, the moisture adsorbed on the metal surface or the moisture absorbed at the adhesion interface in the manufacturing process expands, especially at high temperatures, and the surface of the metal substrate This promotes peeling between the resin and the resin, causes swelling and the like, impairs the internal corrosion resistance, cracks the resin in some cases, and destroys the wiring pattern.
[0004]
In order to improve the adhesion between the metal substrate and the resin, a method of roughening the metal surface and forming a so-called anchor has been used for a long time. In many cases, fineness generated during processing tends to impair the precision of electronic and electrical parts. Therefore, in practice, it is common to perform some kind of surface treatment on the metal substrate surface side.
[0005]
For example, a phosphating treatment is typical for steel materials, and a copper oxide treatment called “black dyeing” is typical for copper and copper alloys. The former is a method in which a heavy metal having a very small solubility product with tertiary phosphoric acid such as zinc is brought into contact with an acidic aqueous solution of phosphoric acid, and the latter is immersed in a strong alkaline aqueous solution containing an appropriate oxidizing agent and boiled. Is the method.
[0006]
However, since many of the films formed by the phosphate treatment have crystal water, the crystals are broken at a temperature of about 200 ° C. at the most, and the heat resistance of the film is inferior. Although the initial adhesiveness is good, since the durability is poor, the bonding strength decreases with time, and the initial adhesive force cannot be maintained even with heat treatment.
[0007]
On the other hand, in JP-A-9-209167 and JP-A-9-172125, the adhesion is improved by subjecting the surface of the metal substrate to chromate treatment. Furthermore, Japanese Patent Application Laid-Open No. 2000-183235 discloses a method of forming a special chromium compound layer having a large number of fine scaly projections on the surface using an electrolytic method.
[0008]
However, all of these methods use hexavalent chromium compounds that are harmful to the surface treatment liquid, and it is considered that hexavalent chromium is contained on the surface of the formed metal substrate. It is not preferable.
[0009]
[Problems to be solved by the invention]
The present invention is for solving the above-mentioned problems of the prior art, and the object of the present invention is to use a metal substrate and a resin without using a substance that causes environmental pollution such as hexavalent chromium. An object of the present invention is to provide a surface-treated film excellent in adhesion, particularly at high temperatures.
[0010]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems of the prior art, the present inventors have paid attention to metallic nickel generally excellent in heat resistance and stability over time and nickel oxide formed on the surface thereof. Thus, by introducing a third element into them, a new nickel-based surface treatment film having excellent adhesion to the resin has been invented.
[0011]
That is, the present invention is a nickel-based surface treatment film having a two-layer structure formed on a target material, in which nickel and phosphorus are in a lower layer in contact with the surface of the material, and nickel, oxygen and phosphorus are in an upper layer. A nickel-based surface treatment film excellent in heat-resistant adhesiveness with a resin characterized by being contained.
[0012]
Further, boron can be used as an element instead of phosphorus contained in the nickel-based surface treatment film of the present invention.
[0013]
Moreover, phosphorus and boron may coexist as an element contained in the nickel-based surface treatment film of the present invention.
[0014]
Furthermore, it is more preferable that the content ratio of phosphorus and / or boron to nickel in the nickel-based surface treatment film is larger than that of the lower layer, that is, the following relationship is satisfied.
[(Phosphorus and / or Boron) / Ni] Lower Layer <[(Phosphorus and / or Boron) / Ni] Upper Layer
[0015]
Furthermore, it is more preferable that the upper layer of the nickel-based surface treatment film has a columnar structure, and a fine gap is provided between the columns of the columnar structure.
[0016]
The nickel-based surface treatment film of the present invention is preferably formed on copper or a copper alloy.
[0017]
The nickel-based surface treatment film of the present invention preferably has a gray, gray-black or black appearance.
[0018]
Hereinafter, the nickel-based surface treatment film of the present invention will be described in more detail.
[0019]
The nickel-based surface treatment coating of the present invention has a two-layer structure in which metallic nickel and phosphorus and / or boron are disposed on the lower layer in contact with the surface of the material, that is, a layer containing oxygen is further disposed on the upper layer. The target material is not particularly limited as long as the metallic nickel can be formed with sufficient adhesion to the target material. However, in the field of electronic / electrical components, particularly heat resistance adhesion between copper or a copper alloy and a resin is often required, so that description will be made mainly on copper as a target material.
[0020]
A cross-sectional scanning electron microscope (hereinafter referred to as SEM) image of the nickel-based surface treatment film of the present invention is shown in FIG. 1, and a surface SEM image is shown in FIG. Reference numeral 1 in FIG. 1 represents an upper columnar structure (including nickel, oxygen, and phosphorus) of the nickel-based surface treatment film of the present invention, and reference numeral 2 in FIG. 1 represents a lower layer (nickel) of the nickel-based surface treatment film of the present invention. In FIG. 1, reference numeral 3 denotes a copper substrate. FIG. 2 shows a surface SEM image (× 10000) of the nickel-based surface treatment film of the present invention.
As shown in FIG. 1, the upper layer of the surface treatment film of the present invention has a columnar structure, and a fine gap is observed between the columns (comb-like structure). Therefore, when this is observed from the surface (FIG. 2), it is observed as an extremely fine unevenness of an order of several tens to several hundreds of nanometers, and a very effective substantial surface area can be obtained at the time of adhesion to the resin. .
[0021]
According to the analysis by XPS, the upper layer nickel is in an oxidized state and the thickness thereof is about 500 nm. However, the oxide formed on the mere metallic nickel is a thin film, and the columnar shape as in the present invention. An organization is not formed. Such a form can be obtained by introducing the third element introduced in the present invention, that is, phosphorus and / or boron. Empirically, these third elements are preferably in the range of 2% to 50% by weight. If it is less than 2% by weight, such a form cannot be obtained, and if it exceeds 50% by weight, it is not difficult to form a nickel film having such a composition as the content increases. That is, it is economically disadvantageous.
[0022]
The height of the upper columnar structure of the nickel-based surface treatment film of the present invention is preferably in the range of 50 to 3000 nm. If the thickness is less than 50 nm, fine unevenness on the surface is not sufficiently formed, and if it exceeds 3000 nm, the unevenness becomes coarse. On the other hand, the thickness of the lower metallic nickel layer is not particularly limited. However, in order to sufficiently cover a part of the target material surface so as not to be exposed, it is preferably 0.5 μm or more. Moreover, since an unnecessary thick film is economically disadvantageous, it is sufficient that the upper limit of the film thickness is 5 μm.
[0023]
The appearance of the nickel-based surface treatment film of the present invention is gray, grayish black to black. This seems to be due to the fact that columnar structures with gaps absorb visible light as seen in FIGS. 1 and 2, which is particularly preferred in the field of electronic and electrical components. When the adhesion surface (surface treatment film surface of the present invention) is observed through the resin from the copper wiring pattern side, if it is black, the contrast with the pattern becomes clear, and the pattern inspection is optically performed. This is advantageous when done.
[0024]
The nickel-based surface treatment film of the present invention can be formed by forming a metallic nickel layer on a target material by various methods and then oxidizing the surface. The method for forming the metallic nickel layer can be a physical method such as PVD, but a wet surface treatment method such as an electroplating method or an electroless plating method is excellent in mass productivity. Hereinafter, a plating method for co-depositing the third element will be described.
[0025]
In order to eutect phosphorus as the third element, in the case of electroplating, for example, hypophosphorous acid or phosphorous acid may be further added to a well-known Watt bath. In the case of electroless plating, a commercially available type using hypophosphorous acid as a reducing agent may be used.
[0026]
Next, in order to eutectoid boron as the third element, an electroless plating bath using a boron-containing reducing agent such as DMAB (dimethylamine borane) may be used. Furthermore, when DMAB and hypophosphorous acid are simultaneously used as the reducing agent, phosphorus and boron can be co-deposited simultaneously. These are all commercially available.
[0027]
On the other hand, depending on the additive added to the plating solution, in addition to phosphorus and / or boron, carbon, nitrogen, sulfur and zinc can be co-deposited. In the sense of blackening, these methods work in a more preferred direction. For example, it becomes possible by introducing the additives described below.
[0028]
That is, to co-deposit nitrogen, aniline, monoethylamine, diethanolamine, dimethylamine, triethanolamine, nitrilotriacetic acid, pyridine, imidazole, morpholine, o-phenanthroline, glycine, glutamic acid, alanine, serine, hydrazine, aspartic acid Nitrogen-containing organic substances typified by ethylenediamine may be added. To co-deposit sulfur, N, N-diethyl-dithiocarbamate sodium, 1,3-diethyl-2-thiourea, methionine, ethionine, cystine, cysteine, glutathione, thioglycolic acid, saccharin, dipyridine, 1,2 , 3-Benzotriazole-2-thiazoline-2-thiol, thiazole, thiourea, thiozole, thioindoxylic acid, o-sulfonamidobenzoic acid, sulfanilic acid, methyl orange, naphthionic acid, naphthalene-α-sulfonic acid, 2 -A sulfur-containing organic compound such as mercaptobenzothiazole, sulfadiazine, or rhodanammon may be added. In order to eutect the zinc, a zinc compound such as zinc carbonate, zinc oxide, zinc chloride, or zinc sulfate may be added. Finally, in order to eutect the carbon, an amine organic compound typified by diethylenetriamine or the like may be added.
[0029]
When applying the above plating to copper and copper alloys, for example, in the case of electroplating, the copper surface may be cleaned and then directly electroplated, but hypophosphorous acid is reduced especially by electroless plating. In the case of using a bath as an agent, copper cannot be plated as it is because it has no catalytic activity for hypophosphorous acid. In such a case, a small amount of palladium plating may be applied as a pretreatment by palladium displacement plating or the like, or electroless nickel plating may be performed thinly (about submicron) as strike plating and then electroless nickel plating.
[0030]
After a predetermined nickel plating layer is formed on the target material, a columnar structure layer is formed on the surface. For this purpose, it is effective to carry out the treatment by contacting with an acid containing a suitable oxidizing agent. Specifically, a necessary amount of an oxidizing agent such as nitric acid, permanganic acid, ferric ion or hydrogen peroxide may be added to phosphoric acid, sulfuric acid or hydrochloric acid as a base. Alternatively, anodic electrolysis may be performed in the base acid aqueous solution. Even if such an oxide forming treatment is applied to a mere nickel metal surface, the surface morphology as in the present invention cannot be obtained, but the third elements including phosphorus introduced in the nickel-based surface treatment film of the present invention are In general, the metal nickel crystal is refined and further amorphized, but this refines the distribution state of the anode and cathode of the local battery formed by the oxidation treatment, resulting in the characteristics of the present invention. It seems that a typical surface columnar texture layer is created. In fact, according to analysis such as XPS, the upper layer has a higher content ratio of the third element including phosphorus to nickel than that of the lower layer. That is, it is suggested that nickel is preferentially dissolved by the oxidation treatment and phosphorus and the like remain. In addition, oxygen contained in the columnar structure of the upper layer is introduced along with such an oxidation treatment, and the content rate of the surface layer increases and decreases toward the lower layer.
[0031]
The resin bonded to the nickel-based surface treatment film of the present invention is not particularly limited, but epoxy resin and polyimide resin are frequently used in the field of electronic and electrical parts, and are the main object of the present invention. From the viewpoint of adhesion, a resin having a lower glass transition temperature is more convenient for adhesion because it can be softened at a higher temperature to reduce the difference in coefficient of thermal expansion between the metal and the resin. However, such a resin preferably has a high glass transition temperature because the heat resistance of the resin itself is lowered. The nickel-based surface treatment film of the present invention is empirically demonstrated particularly in such a resin having a high glass transition temperature.
[0032]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples of the present invention together with comparative examples.
[0033]
Example 1
The surface of a 300 × 200 × 0.5 mm copper plate (JISC1100) was plated with 1 μm of strike nickel using a Watt bath, and then immersed in an electroless plating bath prepared so that the phosphorus content was 9% by weight. Thus, an electroless Ni—P alloy layer having a thickness of 5 μm was formed. Furthermore, this was immersed in an oxidation treatment solution in which 75% phosphoric acid and 67.5% nitric acid were mixed at a volume ratio of 90:10 for 3 minutes at 40 ° C., and phosphorus was concentrated on the surface of the Ni—P alloy layer on the copper plate. A nickel layer was formed. The surface after the oxidation treatment had a beautiful black appearance with no gloss. When analyzing phosphorus in the depth direction by XPS, it was 35% by weight in the outermost layer and 8.8% by weight in the lower layer (the lower part of the columnar structure). Incidentally, FIGS. 1 and 2 are those of the first embodiment.
[0034]
Next, a polyimide adhesive (“Neoflex double-sided adhesive sheet” manufactured by Mitsui Chemicals) is laminated to a thickness of 50 μm on the nickel-based surface treated copper plate, and a 35 μm thick copper foil is disposed thereon. Then, press bonding was performed under the conditions of a pressing pressure of 50 kg / cm 2 , a heating temperature of 250 ° C., and a heating time of 2 hours. This sample was cut into 50 mm squares, left in a heated and humid environment of 85 ° C. and 85% RH for 24 hours to promote deterioration, and then floated in a molten solder bath at 270 ° C. for 300 seconds or more. I was not able to admit.
[0035]
The details of the plating bath used in Example 1 and the processing conditions are described below. Strike nickel plating dissolves a reagent (using special grade) in deionized water so as to have a watt bath, that is, nickel sulfate: 330 g / L, nickel chloride: 45 g / L, boric acid: 38 g / L. Bath temperature: 50 ° C. The nickel plate was used as the anode, and the cathode current density was 5 A / dm 2 . The electroless plating bath has a concentration of sodium hypophosphite: 0.15 mol / L, ammonium sulfate: 0.5 mol / L, trisodium citrate: 0.2 mol / L, nickel sulfate: 0.1 mol / L. Each was dissolved in deionized water, and caustic soda was further added to adjust the pH to 9. The thus prepared electroless Ni—P alloy plating bath was heated to 90 ° C. to perform electroless plating to form the Ni—P alloy layer.
[0036]
Example 2
The same test as in Example 1 was performed using the electroless Ni-B alloy plating bath shown below instead of the electroless Ni-P alloy plating bath. That is, as an electroless Ni—B alloy plating bath, the concentration of nickel chloride: 0.126 mol / L, DMAB: 0.06 mol / L, malonic acid: 0.378 mol / L, TINO 3 : 70 mg / L. Each reagent was dissolved in deionized water, and the pH was adjusted to 6 with aqueous ammonia. The electroless Ni—B alloy plating bath adjusted as described above was heated to 70 ° C. and used. The boron content in the obtained Ni—B alloy film was 2.8% by weight. When this was oxidized in the same manner as in Example 1, a grayish black appearance was exhibited. Similarly, after bonding to a copper foil via a polyimide adhesive and placing it in a warm and humid environment, the solder heat resistance was examined. In 240 seconds, swelling occurred in the copper foil.
[0037]
Example 3
10 g / L of phosphorous acid was added to the Watt bath for strike plating used in Example 1, and cathode electrolysis was performed under conditions of a temperature of 40 ° C. and a current density of 5 A / dm 2 , and Ni having a phosphorus content of 10% by weight. A 5 μm thick P alloy film was formed. When the oxidation treatment was performed by the same method as in Example 1, a beautiful black appearance was exhibited. Hereafter, when the same sample as Example 1 was produced and evaluated, abnormality was not recognized in 300 seconds in solder heat resistance.
[0038]
Comparative Example 1
The Ni strike plating watt bath used in Example 1 was used as it was, and after forming a 3 μm nickel plating, the same oxidation treatment as in Example 1 was performed. The appearance of. Hereinafter, when the same sample as Example 1 was produced and evaluated, the swelling occurred in 2 to 3 seconds, and the adhesive layer was peeled off.
[0039]
By applying the nickel-based surface treatment film of the present invention according to the above-described Examples 1 to 3, it is possible to obtain extremely good heat-resistant adhesion even after being exposed to, for example, a high-temperature wet environment by adhering to the resin. it can. On the other hand, it can be seen that good adhesion cannot be obtained by simply oxidizing the surface of the nickel film as in Comparative Example 1.
[0040]
【The invention's effect】
By applying the nickel-based surface treatment film of the present invention, when bonding a metal substrate and a resin, it is possible to impart wet resistance and excellent adhesiveness at high temperatures. High reliability can be brought about. Further, as an incidental effect, since the surface treatment film of the present invention has a dull black appearance, it gives a good contrast and improves inspection accuracy when optically inspecting electronic and electrical parts. be able to.
[Brief description of the drawings]
FIG. 1 shows a cross-sectional SEM image (× 3000) of a nickel-based surface treatment film of the present invention.
FIG. 2 shows a surface SEM image (× 10000) of the nickel-based surface treatment film of the present invention.
[Explanation of symbols]
1 Upper columnar structure of nickel-based surface treatment film of the present invention (including nickel, oxygen and phosphorus)
2 Lower layer of nickel-based surface treatment film of the present invention (including nickel and phosphorus)
3 Copper substrate

Claims (6)

対象とする素材上に形成された2層構造を有するニッケル系表面処理皮膜であって、該素材の表面に接する下層にニッケルとリンを含有する層を、その上層として、該下層表面を硝酸、過マンガン酸、第二鉄イオン及び過酸化水素から選ばれた一種の酸化剤を含むリン酸、硫酸及び塩酸から選ばれた一種の酸水溶液で酸化処理することによって形成されたニッケル、酸素およびリンを含有し、かつ柱状組織を有し、柱状組織の柱と柱の間には微細な間隙を有する層を有することを特徴とする樹脂との耐熱接着性に優れたニッケル系表面処理皮膜。A nickel-based surface treatment film having a two-layer structure formed on a target material, wherein a layer containing nickel and phosphorus in a lower layer in contact with the surface of the material is used as an upper layer , the lower layer surface is nitric acid, Nickel, oxygen and phosphorus formed by oxidizing with a kind of aqueous acid selected from phosphoric acid, sulfuric acid and hydrochloric acid containing a kind of oxidizing agent selected from permanganic acid, ferric ion and hydrogen peroxide A nickel-based surface-treated film excellent in heat-resistant adhesion to a resin , comprising a columnar structure, and having a layer having a fine gap between columns of the columnar structure . 対象とする素材上に形成された2層構造を有するニッケル系表面処理皮膜であって、該素材の表面に接する下層にニッケルとホウ素を含有する層を、その上層として、該下層表面を硝酸、過マンガン酸、第二鉄イオン及び過酸化水素から選ばれた一種の酸化剤を含むリン酸、硫酸及び塩酸から選ばれた一種の酸水溶液で酸化処理することによって形成されたニッケル、酸素およびホウ素を含有し、かつ柱状組織を有し、柱状組織の柱と柱の間には微細な間隙を有する層を有することを特徴とする樹脂との耐熱接着性に優れたニッケル系表面処理皮膜。A nickel-based surface treatment film having a two-layer structure formed on a target material, a layer containing nickel and boron in a lower layer in contact with the surface of the material , and the lower layer surface as nitric acid, Nickel, oxygen and boron formed by oxidation treatment with a kind of aqueous acid selected from phosphoric acid, sulfuric acid and hydrochloric acid containing a kind of oxidizing agent selected from permanganic acid, ferric ion and hydrogen peroxide A nickel-based surface-treated film excellent in heat-resistant adhesion to a resin , comprising a columnar structure, and having a layer having a fine gap between columns of the columnar structure . 対象とする素材上に形成された2層構造を有するニッケル系表面処理皮膜であって、該素材の表面に接する下層にニッケル、リンおよびホウ素を含有する層を、その上層として、該下層表面を硝酸、過マンガン酸、第二鉄イオン及び過酸化水素から選ばれた一種の酸化剤を含むリン酸、硫酸及び塩酸から選ばれた一種の酸水溶液で酸化処理することによって形成されたニッケル、酸素、リンおよびホウ素を含有し、かつ柱状組織を有し、柱状組織の柱と柱の間には微細な間隙を有する層を有することを特徴とする樹脂との耐熱接着性に優れたニッケル系表面処理皮膜。A nickel-based surface treatment film having a two-layer structure formed on a target material, wherein a layer containing nickel, phosphorus and boron is formed as a lower layer in contact with the surface of the material, and the surface of the lower layer is formed. Nickel and oxygen formed by oxidizing with a kind of aqueous acid selected from phosphoric acid, sulfuric acid and hydrochloric acid containing a kind of oxidizing agent selected from nitric acid, permanganic acid, ferric ion and hydrogen peroxide A nickel-based surface excellent in heat-resistant adhesion to a resin, characterized by containing phosphorus and boron, having a columnar structure, and having a layer having a fine gap between the columns of the columnar structure Treatment film. 前記ニッケル系表面処理皮膜のニッケルに対するリンおよび/またはホウ素の含有比率は、上層の含有比率が下層のそれに比べて大きく、下記の関係を有することを特徴とする請求項1〜請求項3のいずれか1項に記載の樹脂との耐熱接着性に優れたニッケル系表面処理皮膜。
[(リン及び/又はホウ素)/Ni]下層<[(リン及び/又はホウ素)/Ni]上層
The content ratio of phosphorus and / or boron with respect to nickel in the nickel-based surface treatment film is larger than that in the lower layer, and has the following relationship. A nickel-based surface treatment film excellent in heat-resistant adhesiveness with the resin according to claim 1.
[(Phosphorus and / or Boron) / Ni] Lower Layer <[(Phosphorus and / or Boron) / Ni] Upper Layer
金属基材表面上に、請求項1〜4のいずれか1項に記載の2層構造を有するニッケル系表面処理皮膜が形成されている金属基材と樹脂とからなる金属−樹脂接合体。A metal-resin assembly comprising a metal substrate and a resin, on which a nickel-based surface treatment film having the two-layer structure according to any one of claims 1 to 4 is formed on the surface of the metal substrate. 請求項5に記載の金属−樹脂接合体を有するプリント配線板。A printed wiring board having the metal-resin bonded body according to claim 5.
JP2001342880A 2001-11-08 2001-11-08 Nickel-based surface treatment film with excellent heat-resistant adhesion to resin Expired - Fee Related JP4027642B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2001342880A JP4027642B2 (en) 2001-11-08 2001-11-08 Nickel-based surface treatment film with excellent heat-resistant adhesion to resin
TW91121277A TW574420B (en) 2001-11-08 2002-09-17 Surface treating films on nickel metal with superior heat resisting adhesivity to resins
CNA028203429A CN1568380A (en) 2001-11-08 2002-10-18 Nickel-based surface treatment films excellent in heat-resistant adhesion to resin
KR10-2004-7005110A KR20040054703A (en) 2001-11-08 2002-10-18 Nickel-based surface treatment films excellent in heat-resistant adhesion to resin
PCT/JP2002/010825 WO2003040432A1 (en) 2001-11-08 2002-10-18 Nickel-based surface treatment films excellent in heat-resistant adhesion to resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001342880A JP4027642B2 (en) 2001-11-08 2001-11-08 Nickel-based surface treatment film with excellent heat-resistant adhesion to resin

Publications (2)

Publication Number Publication Date
JP2003147549A JP2003147549A (en) 2003-05-21
JP4027642B2 true JP4027642B2 (en) 2007-12-26

Family

ID=19156661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001342880A Expired - Fee Related JP4027642B2 (en) 2001-11-08 2001-11-08 Nickel-based surface treatment film with excellent heat-resistant adhesion to resin

Country Status (5)

Country Link
JP (1) JP4027642B2 (en)
KR (1) KR20040054703A (en)
CN (1) CN1568380A (en)
TW (1) TW574420B (en)
WO (1) WO2003040432A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320905A (en) * 2004-05-10 2005-11-17 Boc Edwards Kk Vacuum pump
JP4705776B2 (en) * 2004-12-17 2011-06-22 日本カニゼン株式会社 Method for forming electroless nickel plating film having phosphate coating and film for forming the same
JP4809037B2 (en) * 2005-10-27 2011-11-02 日本カニゼン株式会社 Black plating film, method for forming the same, and article having plating film
JP4539869B2 (en) * 2006-03-10 2010-09-08 セイコーエプソン株式会社 Wiring board manufacturing method
JP4975344B2 (en) * 2006-03-15 2012-07-11 大和電機工業株式会社 Plating method
WO2008152974A1 (en) * 2007-06-15 2008-12-18 Nippon Mining & Metals Co., Ltd. Method for production of metal-coated polyimide resin substrate having excellent thermal aging resistance property
JP5385625B2 (en) * 2008-12-08 2014-01-08 株式会社Jcu Two-layer flexible copper-clad laminate and method for producing the same
JP5846655B2 (en) * 2014-02-05 2016-01-20 Shマテリアル株式会社 Manufacturing method of semiconductor device
US9708693B2 (en) 2014-06-03 2017-07-18 Macdermid Acumen, Inc. High phosphorus electroless nickel
US20170181292A1 (en) 2015-12-16 2017-06-22 Rohm And Haas Electronic Materials Llc Method for forming organic coating on nickel surface

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222419A (en) * 1986-03-24 1987-09-30 Seiko Epson Corp Magnetic memory body

Also Published As

Publication number Publication date
KR20040054703A (en) 2004-06-25
TW574420B (en) 2004-02-01
JP2003147549A (en) 2003-05-21
WO2003040432A1 (en) 2003-05-15
CN1568380A (en) 2005-01-19

Similar Documents

Publication Publication Date Title
US6329074B1 (en) Copper foil for printed wiring board having excellent chemical resistance and heat resistance
US10021789B2 (en) Metal-laminated polyimide substrate, and method for production thereof
US20130058062A1 (en) Method for manufacturing base material having gold-plated metal fine pattern, base material having gold-plated metal fine pattern, printed wiring board, interposer, and semiconductor device
CN101909871B (en) Copper foil attached to the carrier foil, a method for preparing the same and printed circuit board using the same
TW201126619A (en) Substrate for mounting semiconductor chip and method for producing same
JP4959052B2 (en) Improved method of forming conductive traces and printed circuit manufactured thereby
JP4027642B2 (en) Nickel-based surface treatment film with excellent heat-resistant adhesion to resin
JP4159897B2 (en) Surface-treated Al plate excellent in solderability, heat sink using the same, and method for producing surface-treated Al plate excellent in solderability
CN1953868A (en) Chromium-free antitarnish adhesion promoting treatment composition
JPH0441696A (en) Surface treatment of copper foil for printed circuit
TWI547600B (en) Electrolytic copper-alloy foil and electrolytic copper-alloy foil with carrier foil
EP2072639A1 (en) Method for adhesion promotion between the nickel and nickel alloy layer and another metal or a dielectric, such as in the manufacture of lead frames for semiconductor devices
KR100743512B1 (en) Method for preparing surface treated copper foil
JPS62278293A (en) Production of electronic parts
JP2006028635A (en) Method for manufacturing surface treated copper foil for microfabrication circuit substrate
JP4660819B2 (en) Copper foil for flexible printed wiring boards for COF
US6224991B1 (en) Process for electrodeposition of barrier layer over copper foil bonding treatment, products thereof and electrolyte useful in such process
US6579568B2 (en) Copper foil for printed wiring board having excellent chemical resistance and heat resistance
JP3677617B2 (en) Electroless gold plating solution
US20140308538A1 (en) Surface treated aluminum foil for electronic circuits
JP3900116B2 (en) Surface-treated copper foil for electronic circuit board and manufacturing method thereof
TWI415742B (en) A method for manufacturing fine grain copper foil with high peel strength and environmental protection for printed circuit board tool
JPH06237078A (en) Manufacture of copper foil for printed circuit
JP2002016111A (en) Copper foil used for tab tape carrier, and tab carrier tape and tab tape carrier using copper foil
JP2022122426A (en) Manufacturing method of aluminum-ceramic circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees