JP5385625B2 - Two-layer flexible copper-clad laminate and method for producing the same - Google Patents

Two-layer flexible copper-clad laminate and method for producing the same Download PDF

Info

Publication number
JP5385625B2
JP5385625B2 JP2009022636A JP2009022636A JP5385625B2 JP 5385625 B2 JP5385625 B2 JP 5385625B2 JP 2009022636 A JP2009022636 A JP 2009022636A JP 2009022636 A JP2009022636 A JP 2009022636A JP 5385625 B2 JP5385625 B2 JP 5385625B2
Authority
JP
Japan
Prior art keywords
copper
plating
component
layer
copper plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009022636A
Other languages
Japanese (ja)
Other versions
JP2010159478A (en
Inventor
晃宜 大野
誠 高徳
実香 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JCU Corp
Original Assignee
JCU Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2009022636A priority Critical patent/JP5385625B2/en
Application filed by JCU Corp filed Critical JCU Corp
Priority to TW098141515A priority patent/TWI494470B/en
Priority to PCT/JP2009/070720 priority patent/WO2010067854A1/en
Priority to CN200980149178XA priority patent/CN102245805A/en
Priority to CN201911409524.5A priority patent/CN111235555B/en
Priority to KR1020117013002A priority patent/KR101634835B1/en
Priority to CN201610357771.5A priority patent/CN106011803A/en
Publication of JP2010159478A publication Critical patent/JP2010159478A/en
Application granted granted Critical
Publication of JP5385625B2 publication Critical patent/JP5385625B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • C23C18/1641Organic substrates, e.g. resin, plastic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • C23C18/50Coating with alloys with alloys based on iron, cobalt or nickel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • C25D5/611Smooth layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/617Crystalline layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • C25D7/123Semiconductors first coated with a seed layer or a conductive layer

Description

本発明は、2層フレキシブル銅張積層基材及びその製造方法に関し、より詳細には、酸性銅めっき浴組成物を用いて、樹脂フィルム面に銅を厚付けめっきさせて平滑で光沢外観を有し、しかも、耐剥離性に優れ、かつ、ファインパターン化されやすい2層フレキシブル銅張積層基材(2層FCCL)に関する。   The present invention relates to a two-layer flexible copper-clad laminate and a method for producing the same, and more specifically, using an acidic copper plating bath composition, copper is thickly plated on a resin film surface to provide a smooth and glossy appearance. In addition, the present invention relates to a two-layer flexible copper-clad laminate (two-layer FCCL) that is excellent in peel resistance and easily finely patterned.

また、本発明は、このような2層FCCLを、酸性銅めっき浴組成物を用い、かつ電気めっき工程が、1工程の湿式めっき法である2層フレキシブル銅張積層基材の製造方法にも関する。   In addition, the present invention provides a method for producing a two-layer flexible copper-clad laminate having such a two-layer FCCL using an acidic copper plating bath composition and the electroplating step being a one-step wet plating method. Related.

近年、携帯電話、パソコン、ビデオ、ゲーム機等の電子機器は、使用部品の高密度化及び小型化が進み、それらを実装させるプリント基板等においても、実装させる回路も一層の高密度化が求められ、その基板の少なくとも片面もしくは多層基板の層間接続に使用されるスルーホールやブライントビアホールも、更に小径化、高アスペクト化の傾向にあるのが実情である。   In recent years, electronic devices such as mobile phones, personal computers, videos, game machines, etc. have been used with higher density and smaller size of components, and printed circuit boards on which they are mounted require higher density of circuits to be mounted. In fact, through-holes and blind via holes used for interlayer connection of at least one side of the substrate or a multilayer substrate tend to have a smaller diameter and a higher aspect.

また、これらの実装回路は、従来から積層板に設けるブラインドビアホールやスルーホール等の微小孔中に析出させる導電性金属によって各回路層間の接続が行われ、また、そのブライントビアホールには、通常、ブライントビアホールの内側面及び底面に導電性金属被膜を形成させるブライントビアホールめっき法等によって各層間の接続が行われる。一方、スルーホールについても、通常、スルーホールの内側面に均一に導電性金属被膜を形成させるスルーホールめっき法により、基板の各層間の接続が行われるのが一般的である。   In addition, these mounting circuits are conventionally connected between each circuit layer by a conductive metal deposited in a minute hole such as a blind via hole or a through hole provided in a laminated board. The layers are connected by a blind via hole plating method for forming a conductive metal film on the inner side surface and bottom surface of the blind via hole. On the other hand, the through holes are generally connected between the respective layers of the substrate by a through hole plating method in which a conductive metal film is uniformly formed on the inner surface of the through hole.

このような基板に係わって、ポリイミド樹脂フィルムは、例えば、プリント配線板(PWB)、フレキシブルプリント配線板(FPC)、テープ自動ボンディング用(TAB)テープ、チップオンフィルム(COF)テープ等の電子部品用絶縁基板材として広く用いられている。また、このようなPWB、FPC、TABテープ、COFテープは、ポリイミド樹脂フィルムの少なくとも片面に、金属導体層として、主に銅を被覆させた金属被覆ポリイミドフィルム基材が用いられている。   In connection with such substrates, polyimide resin films are, for example, electronic components such as printed wiring boards (PWB), flexible printed wiring boards (FPC), automatic tape bonding (TAB) tapes, and chip-on-film (COF) tapes. Widely used as an insulating substrate material. In addition, such PWB, FPC, TAB tape, and COF tape use a metal-coated polyimide film base material in which copper is mainly coated as a metal conductor layer on at least one surface of a polyimide resin film.

また、このような金属被覆ポリイミドフィルム基材を加工(叉は製造)するに、従来から、例えば、1)接着剤を介してポリイミドフィルムと銅箔とを接合させて得られる3層銅ポリイミド基材と、2)ポリイミドフィルムに直接、銅層を形成させてえられる2層銅ポリイミド基材とがある。また、その後者の2層銅ポリイミド基材[=2層フレキシブル銅張積層板(Flexible Copper Clad Laminate;2層FCCL)]には、銅箔にポリイミドを成膜させるキャスティング法と、銅箔とポリイミドフィルムを熱可塑性ポリイミドで熱圧着させるラミネート法と、スパッタリングでシード層を形成後、電気めっきにより導体層を形成させるスパッタ/めっき法(メタライズ法)とがあって、それぞれ対銅密着力、寸法安定性、ファインパターン等の観点で一長一短がある。その中でも特にファインパターン化に有利とされているのがスパッタ/めっき法(メタライズ法)による2層FCCLであると言われている。   Further, for processing (or manufacturing) such a metal-coated polyimide film substrate, conventionally, for example, 1) a three-layer copper polyimide base obtained by bonding a polyimide film and a copper foil via an adhesive. And 2) a two-layer copper polyimide base material obtained by directly forming a copper layer on a polyimide film. Further, the latter two-layer copper polyimide base material [= Flexible Copper Clad Laminate (two-layer FCCL)], a casting method for forming a polyimide film on a copper foil, and copper foil and polyimide There are a laminating method in which a film is thermocompression bonded with thermoplastic polyimide, and a sputtering / plating method (metallizing method) in which a conductor layer is formed by electroplating after forming a seed layer by sputtering. There are pros and cons in terms of properties and fine patterns. Among them, it is said that the two-layer FCCL by sputtering / plating method (metallization method) is particularly advantageous for fine patterning.

そこで、例えば、特許文献1には、携帯電子機器の小型化及び薄型化にともない、当初より小さいTABテープやCOFテープに対しても、より小型化及び薄型化、すなわち、より高密度化させて、配線ピッチが一層狭まる技術傾向に対処するために、導電化処理されたポリイミドフィルム上に0.5〜2μm範囲の無光沢銅めっきを施した後、銅めっき層の厚さが20μm以下になるように光沢銅めっきを施した2層めっき基材(叉は基板)が記載されている。   Therefore, for example, in Patent Document 1, with the reduction in size and thickness of portable electronic devices, even smaller TAB tapes and COF tapes are made smaller and thinner, that is, higher in density. In order to cope with the technical trend of further narrowing of the wiring pitch, after the matte copper plating in the range of 0.5 to 2 μm is applied on the conductive polyimide film, the thickness of the copper plating layer becomes 20 μm or less. Thus, a two-layer plating base material (or substrate) subjected to bright copper plating is described.

このように銅層厚が薄くできて、かつ、その厚さが自在にコントロールできるなどに着目されている2層めっき基材は、屈曲性を有し、厚さが10μm以下の銅層とポリイミドフィルムとの接合界面が平坦であることから、ファインパターンの形成に適している基材とも言われている。ところが、近年に至っては、更なる微細なファインパターン化が要求されることから、このような2層めっき基板を用いているPWB、FPC、TABテープ、C0Fテープ等の電子部品を製造する場合、特に露光ムラやエッチングムラを起こす原因となるため、その2層めっき基板の表面は、より平滑であることが求められている。   In this way, the two-layer plating base material that is focused on that the copper layer thickness can be made thin and the thickness can be freely controlled is a flexible copper layer having a thickness of 10 μm or less and polyimide Since the bonding interface with the film is flat, it is also said to be a substrate suitable for forming a fine pattern. However, since finer fine patterning is required in recent years, when manufacturing electronic parts such as PWB, FPC, TAB tape, C0F tape using such a two-layer plating substrate, In particular, it causes uneven exposure and uneven etching, so that the surface of the two-layer plated substrate is required to be smoother.

また、既に上記するファインパターン化に有利とされるスパッタ/めっき法(メタライズ法)は、通常、(1)前処理として、ポリイミド樹脂フィルム表面にプラズマ処理をし、真空下でのスパッタリングによる金属化処理等から装置が大がかりになってしまう。また、(2)プラズマ処理、スパッタリング処理等の乾式処理後に、めっきによる湿式処理を行うために、製造プロセスの連続化が困難で、生産性が低くコスト高になる傾向にある。また、(3)電気銅めっき後の膨れや熱処理(ベーキングとも称す)による膨れが発生しやすく、「ポリイミド−無電解ニッケルめっき」間、「無電解ニッケルめっき−電気銅めっき」間の密着性が部分的に低下する傾向にある。   In addition, the sputtering / plating method (metallization method) that is already advantageous for fine patterning as described above is usually (1) as a pretreatment, a polyimide resin film surface is subjected to plasma treatment and metallization by sputtering under vacuum. The device becomes a large scale due to processing and the like. In addition, (2) since wet processing by plating is performed after dry processing such as plasma processing and sputtering processing, continuation of the manufacturing process is difficult, and productivity tends to be low and cost is increased. Also, (3) blistering after electrolytic copper plating and swelling due to heat treatment (also referred to as baking) are likely to occur, and there is adhesion between “polyimide-electroless nickel plating” and “electroless nickel plating-electrocopper plating”. It tends to decrease partially.

そこで、特許文献2には、これらの問題に対処するために、特にプラズマ処理やスパッタリング処理をすることなく、湿式処理を主体のプロセスで、連続処理化が容易で、絶縁抵抗の劣化やマイグレーションを促進させることなく、めっき析出安定性がよく、更にポリイミド樹脂フィルムと金属との平滑性及び密着性をポリイミド樹脂の種類によらず確保できるポリイミド樹脂材の表面金属化方法が提案されている。   Therefore, in Patent Document 2, in order to deal with these problems, it is easy to make continuous treatment with a process mainly including wet treatment without performing plasma treatment or sputtering treatment, and deterioration of insulation resistance or migration is performed. There has been proposed a method for surface metallization of a polyimide resin material that has good plating deposition stability without being promoted, and can ensure smoothness and adhesion between the polyimide resin film and the metal regardless of the type of polyimide resin.

すなわち、その表面金属化方法とは、ポリイミド樹脂材の前処理としてカルボニル基を分子内に有する、特にジメチルホルムアミドなどの非プロトン系極性溶剤を用いてのポリイミド樹脂材の表面処理工程と、表面酸化処理工程と、アルカリ性水溶液での処理工程を含み、無電解ニッケルめっき処理後の厚付け銅めっき処理は、アルカリ性無電解銅めっき処理叉はアルカリ性電気銅めっき処理を行って2層FCCLを得るポリイミド樹脂材の表面金属化方法である。   That is, the surface metallization method includes a surface treatment step of a polyimide resin material having a carbonyl group in the molecule as a pretreatment of the polyimide resin material, particularly using an aprotic polar solvent such as dimethylformamide, and surface oxidation. A polyimide resin that includes a treatment step and a treatment step with an alkaline aqueous solution, and the thick copper plating treatment after the electroless nickel plating treatment is performed by performing an alkaline electroless copper plating treatment or an alkaline electrolytic copper plating treatment to obtain a two-layer FCCL. This is a surface metallization method of a material.

また、特許文献3には、PWB、FPC、TAB及びCOFとして多用されているポリイミドフィルムの少なくとも片面を、酸素プラズマで表面改質させた後、Ni、Cr、Ni−Cr合金等をスパッタさせて導電性金属のシード層を形成させた上に、スパッタ銅層を施して1次銅めっきをさせ、次いで電気銅めっき法、若しくは無電解銅めっき法で銅厚付けさせてなる2層FCCLが、3層基板と同等以上の(400N/m以上)耐熱密着力を発揮し、また、その要因は、この酸素プラズマによる前処理によって、そのポリイミド樹脂表面に適度のラフネスさと化学的変質とが付与されていると記載されている。   In Patent Document 3, at least one surface of a polyimide film frequently used as PWB, FPC, TAB, and COF is surface-modified with oxygen plasma, and then Ni, Cr, Ni—Cr alloy or the like is sputtered. A two-layer FCCL formed by forming a conductive metal seed layer, applying a sputtered copper layer, performing primary copper plating, and then depositing copper by electrolytic copper plating or electroless copper plating, It exhibits a heat-resistant adhesion equal to or better than that of a three-layer substrate (400 N / m or more), and the cause is that the pretreatment with oxygen plasma gives moderate roughness and chemical alteration to the polyimide resin surface. It is stated that.

特開2007−23344号公報JP 2007-23344 A 特開2007−262481号公報Japanese Patent Laid-Open No. 2007-262481 特開2008−78276号公報JP 2008-78276 A

このような状況下に、本発明者らは、以前から前記特許文献1〜3を含めてこれらの技術分野に着目し、この分野に用いられる各種の基板面に酸性銅めっき処理を施してなす研究経緯下に、ブラインドビアホールやスルーホールの内部やコーナー部のめっき付き回り性、めっき面のレベリング性などのめっき外観にも優れた特性を発揮し、また下地不良にも対応する新規なめっき用レベリング剤を提案している。また、これらの成果に基づいて、このレベリング剤を一成分とする酸性銅めっき浴組成物を用いることで、スルーホールやブラインドビアホールなどの微小孔を有する基板、あるいは銅などの導電性金属被覆された樹脂フィルムに、高い信頼性で銅めっきを施せる基板の銅めっき方法として、既に特許出願(特願2006−243651号)している(特開2008−63624号公報参照)。   Under such circumstances, the present inventors have been paying attention to these technical fields including the above-mentioned Patent Documents 1 to 3, and performing an acidic copper plating process on various substrate surfaces used in this field. Under the background of research, for the new plating that exhibits excellent plating appearance such as blind via hole and through hole inside and corner corner plating, and plating surface leveling, and also supports substrate defects A leveling agent is proposed. In addition, based on these results, by using an acidic copper plating bath composition containing this leveling agent as a component, a substrate having micropores such as through holes and blind via holes, or a conductive metal such as copper is coated. A patent application (Japanese Patent Application No. 2006-243651) has already been filed as a method for copper plating of a substrate that can apply copper plating to a resin film with high reliability (see Japanese Patent Application Laid-Open No. 2008-63624).

すなわち、酸性銅めっき浴を用いることにより、スルーホールやブラインドビアホールなどの微小孔を有する基板、あるいは銅などの導電性金属を表面に被覆した樹脂フィルムに対し、従来品と比べて、より高い信頼性で銅めっき処理を施すことができたのである。   In other words, by using an acidic copper plating bath, a substrate with minute holes such as through holes and blind via holes, or a resin film whose surface is coated with a conductive metal such as copper is more reliable than conventional products. It was possible to perform copper plating treatment.

そこで、本発明の目的は、近年に至って、各種の電子機器に係わって、使用部品の高密度化及び小型化が進み、それらを実装させるプリント基板等に設ける実装回路も一層の高密度化が求められ、更に小径化、高アスペクト化傾向にある状況下に、新規に開発した酸性銅めっき浴組成物を用いて、ポリイミドフィルムなどの樹脂フィルムに、1次銅めっきを介さずに、湿式厚付けめっきされた2層フレキシブル銅張積層基材(2層FCCL)が、そのめっき層が平滑で光沢外観を呈し、しかも、その銅めっき層が耐剥離性に優れ、かつ、ファインパターン化しやすい金属被覆樹脂フィルム基材を提供することである。   Therefore, the object of the present invention has been related to various electronic devices in recent years, and the density and miniaturization of components used have progressed, and the mounting circuit provided on a printed circuit board or the like on which the components are mounted has further increased in density. Under the circumstances where there is a demand for further reduction in diameter and trend toward higher aspect, a newly developed acidic copper plating bath composition is used to wet the thickness of resin film such as polyimide film without using primary copper plating. A two-layer flexible copper-clad laminated base material (two-layer FCCL) plated and plated has a smooth and glossy appearance, and the copper plating layer has excellent peeling resistance and is easily made into a fine pattern. It is to provide a coated resin film substrate.

また、本発明の他の目的は、このような2層FCCLを、この新規に開発した酸性銅めっき浴組成物を用いて、全プロセスがウエットプロセスで、しかも、その銅付け工程が1工程で厚付けめっきできる金属被覆樹脂フィルム基材の製造方法を提供することである。   Another object of the present invention is to use such a two-layer FCCL with the newly developed acidic copper plating bath composition, the entire process being a wet process, and the copper coating process in one step. It is providing the manufacturing method of the metal coating resin film base material which can be thickness-plated.

本発明者らは、上記目的を達成すべく鋭意検討した結果、めっき用レベリング剤である「ジアリルジアルキルアンモニウムアルキルサルフェイト」−「(メタ)アクリルアミド類」−「二酸化イオウ」との共重合体を1成分とする酸性銅めっき浴組成物中で、予め導電性Ni金属被膜シード層を形成させた樹脂フィルムに、1次銅めっきを介さずに、厚付け銅めっきさせたところ、その2層フレキシブル銅張積層板(2層FCCL)が、平滑な光沢外観を呈して、しかも、得られた銅めっき層の耐剥離性が格段に向上することを見出して、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have found a copolymer of “diallyldialkylammonium alkylsulfate”-“(meth) acrylamides”-“sulfur dioxide” which is a leveling agent for plating. In the acidic copper plating bath composition as one component, when the resin film on which the conductive Ni metal film seed layer has been formed in advance is thick copper plated without using the primary copper plating, the two-layer flexible The present inventors have found that the copper clad laminate (two-layer FCCL) has a smooth glossy appearance and that the peel resistance of the obtained copper plating layer is remarkably improved, thereby completing the present invention.

すなわち、本発明によれば、前処理として親水化改質された樹脂フィルム基板面に、予め無電解めっき法で、Ni又はその合金の被覆厚10〜300nm範囲にあるシード層が形成され、
そのシード層上に、酸性銅めっき浴組成物を用いて、ストライク銅めっきなる1次銅めっきを介さずに、銅めっき被覆厚0.05〜50μm範囲で厚付けめっきされていることを特徴とする2層フレキシブル銅張積層基材を提供する。
That is, according to the present invention, a seed layer having a coating thickness of 10 to 300 nm of Ni or an alloy thereof is formed in advance by an electroless plating method on the surface of the resin film substrate that has been hydrophilically modified as a pretreatment,
The seed layer is plated with a thickness in the range of 0.05 to 50 μm of copper plating without using a primary copper plating which is a strike copper plating, using an acidic copper plating bath composition. A two-layer flexible copper-clad laminate substrate is provided.

また、本発明によれば、この被覆厚10〜300nm範囲のNi又はその合金被覆シード層が施されている樹脂フィルム基板及び用いた新規に開発した酸性銅めっき浴組成物と、得られる2層フレキシブル銅張積層基材(2層FCCL)の銅めっき層が平滑で、光沢外観で、耐剥離性なる作用効果に係って、
(1) 用いた樹脂フィルム基板が、シード層として無電解めっきの導電性金属のニッケル・シード層が施されたポリイミドフィルムである2層フレキシブル銅張積層基材を提供できる。
(2) 酸性銅めっき浴組成物が(A)銅イオン成分、(B)有機酸及び/叉は無機酸成分、(C)塩素イオン成分、(D)有機ポリマー成分、(E)ブライトナー成分、及び(F)めっき用レベリング剤としてのジアリルジアルキルアンモニウムアルキルサルフェイトと(メタ)アクリルアミド類と二酸化イオウとの共重合体成分で構成されている2層フレキシブル銅張積層基材を提供できる。
Further, according to the present invention, the resin film substrate on which Ni or its alloy coating seed layer having a coating thickness in the range of 10 to 300 nm is applied, the newly developed acidic copper plating bath composition used, and the two layers obtained The copper plating layer of the flexible copper-clad laminate (two-layer FCCL) is smooth, glossy, and peel-resistant.
(1) It is possible to provide a two-layer flexible copper-clad laminate in which the resin film substrate used is a polyimide film to which a nickel seed layer of electroless plating conductive metal is applied as a seed layer.
(2) Acid copper plating bath composition is (A) copper ion component, (B) organic acid and / or inorganic acid component, (C) chlorine ion component, (D) organic polymer component, (E) Brightener component And (F) a two-layer flexible copper-clad laminate composed of a copolymer component of diallyldialkylammonium alkyl sulfate as a leveling agent for plating, (meth) acrylamides and sulfur dioxide.

また、本発明によれば、上記する作用効果を発揮する2層フレキシブル銅張積層基材(2層FCCL)を、新規に開発した酸性銅めっき浴組成物を用いて、シード層形成と、そのシード層上に銅導電層を厚付けめっきさせる工程とからなる全工程が、ウエットプロセスで、しかも、全銅付け工程が一段工程であることを特徴とする2層フレキシブル銅張積層基材(2層FCCL)の製造方法を提供する。   Further, according to the present invention, a two-layer flexible copper-clad laminate substrate (two-layer FCCL) that exhibits the above-described effects is formed using a newly developed acidic copper plating bath composition, A two-layer flexible copper-clad laminate (2) characterized in that the entire process including the step of thickly plating the copper conductive layer on the seed layer is a wet process, and the all-coppering process is a one-step process. A method for producing the layer FCCL) is provided.

すなわち、
親水化表面改質を施した樹脂フィルム基板面に、無電解めっき法で、予めNi又はその合金などの導電性金属シード層を形成させる工程と、
前記酸性銅めっき浴組成物中で、ストライク銅めっきなる1次銅めっきを介さずに、一段工程で湿式電気めっきさせて、このシード層上に銅導電層を厚付けめっきさせる工程と、からなる2層フレキシブル銅張積層基材の製造方法である。
That is,
A step of forming a conductive metal seed layer such as Ni or an alloy thereof in advance by electroless plating on the surface of the resin film substrate subjected to hydrophilic surface modification;
In the acidic copper plating bath composition, the process comprises wet electroplating in a one-step process without using primary copper plating as strike copper plating, and depositing a copper conductive layer on the seed layer. It is a manufacturing method of a 2 layer flexible copper clad laminated base material.

また、このような2層フレキシブル銅張積層基材の製造方法に係わって、本発明では、
(1):シード層としての導電性金属が、Ni又はその合金の何れかである2層フレキシブル銅張積層基材の製造方法を提供することができる。
(2):用いた前記樹脂フィルム基板が、無電解ニッケルめっきさせたポリイミドフィルムである2層フレキシブル銅張積層基材の製造方法を提供することができる。
(3):用いた前記酸性銅めっき浴組成物が(A)銅イオン成分、(B)有機酸及び/叉は無機酸成分、(C)塩素イオン成分、(D)有機ポリマー成分、(E)ブライトナー成分、及び(F)めっき用レベリング剤としてのジアリルジアルキルアンモニウムアルキルサルフェイトと(メタ)アクリルアミド類と二酸化イオウとの共重合体成分で構成されている2層フレキシブル銅張積層基材の製造方法を提供することができる。
(4)また、(D)有機ポリマー成分がポリエチレングリコール、ポリプロピレングリコール、プロルニック型界面活性剤、テトロニック型界面活性剤、ポリエチレングリコール・グリセリルエーテル、ポリエチレングリコール・ジアルキルエーテルの群から選ばれる少なくとも1種である2層フレキシブル銅張積層基材の製造方法を提供することができる。
(5)また、(E)ブライトナー成分がスルホアルキルスルホン酸塩、有機ジスルフィド化合物及びジチオカルバミン酸誘導体から選ばれる少なくとも1種である2層フレキシブル銅張積層基材の製造方法を提供することができる。
In addition, in connection with the method for producing such a two-layer flexible copper-clad laminate, in the present invention,
(1): A method for producing a two-layer flexible copper-clad laminate substrate in which the conductive metal as the seed layer is either Ni or an alloy thereof can be provided.
(2): The manufacturing method of the two-layer flexible copper clad laminated base material whose said resin film board | substrate used is the polyimide film plated with electroless nickel can be provided.
(3): The acidic copper plating bath composition used is (A) a copper ion component, (B) an organic acid and / or an inorganic acid component, (C) a chlorine ion component, (D) an organic polymer component, (E A two-layer flexible copper-clad laminate comprising a brightener component and (F) a copolymer component of diallyldialkylammonium alkyl sulfate, (meth) acrylamides and sulfur dioxide as a leveling agent for plating. A manufacturing method can be provided.
(4) In addition, (D) the organic polymer component is at least one selected from the group consisting of polyethylene glycol, polypropylene glycol, prolunic surfactant, tetronic surfactant, polyethylene glycol / glyceryl ether, polyethylene glycol / dialkyl ether The manufacturing method of the 2 layer flexible copper clad laminated base material which is can be provided.
(5) Moreover, the manufacturing method of the 2 layer flexible copper clad laminated base material whose (E) Brightener component is at least 1 sort (s) chosen from a sulfoalkyl sulfonate, an organic disulfide compound, and a dithiocarbamic acid derivative can be provided. .

本発明によれば、導電性金属被覆された樹脂フィルムのシード層に、ストライク銅めっきなる1次銅めっきを介さずに、厚付けめっきなる2次銅めっきを施してなる2層フレキシブル銅張積層基材は、用いた酸性銅めっき浴組成物の特性が活かされて、厚付け銅めっき層が、平滑で、光沢外観を有し、耐剥離性に優れ、しかも、ファインパターン化されやすい2層フレキシブル銅張積層基材を提供することができた。   According to the present invention, a two-layer flexible copper-clad laminate is obtained by subjecting a seed layer of a resin film coated with a conductive metal to a secondary copper plating that is a thick plating without using a primary copper plating that is a strike copper plating. The base material utilizes the characteristics of the acidic copper plating bath composition used, and the thick copper plating layer has a smooth, glossy appearance, excellent peel resistance, and is easily formed into a fine pattern. A flexible copper clad laminate substrate could be provided.

また、本発明によれば、用いた酸性銅めっき浴組成物などの特性が活かされて、シード層形成、その銅導電層の厚付けめっきなどの全工程がウエット・プロセスで、しかも、全銅付け工程が1工程で、このような平滑、光沢外観、優れた耐剥離性を発揮し、その銅被覆面がファインパターン化されやすい2層フレキシブル銅張積層基材(2層FCCL)を、簡便な装置で、ライニングコストが低く、明らかに高信頼性で、かつ高生産性で製造できる2層FCCLの製造方法を提供することができた。   Further, according to the present invention, the characteristics such as the acidic copper plating bath composition used are utilized, and all processes such as seed layer formation and thick plating of the copper conductive layer are wet processes. A two-layer flexible copper-clad laminate (two-layer FCCL) that exhibits such a smooth, glossy appearance, excellent peel resistance, and whose copper-coated surface is easy to be fine-patterned, is a simple one-step process. It was possible to provide a method for manufacturing a two-layer FCCL that can be manufactured with a simple apparatus, low lining cost, and obviously high reliability and high productivity.

以下に、本発明における2層フレキシブル銅張積層基材及びその製造方法の実施形態について、更に詳細に説明する。   Hereinafter, embodiments of the two-layer flexible copper-clad laminate and the method for producing the same according to the present invention will be described in more detail.

<本発明に用いる酸性銅めっき浴組成物>
既に説明するように、本発明に用いる酸性銅めっき浴組成物は、(A)銅イオン成分、(B)有機酸及び/叉は無機酸成分、(C)塩素イオン成分、(D)有機ポリマー成分、(E)ブライトナー成分、及び(F)めっき用レベリング剤であるジアリルジアルキルアンモニウムアルキルサルフェイトと(メタ)アクリルアミド類と二酸化イオウとの共重合体成分で構成されていることが特徴である。
<Acid copper plating bath composition used in the present invention>
As already explained, the acidic copper plating bath composition used in the present invention comprises (A) a copper ion component, (B) an organic acid and / or an inorganic acid component, (C) a chlorine ion component, and (D) an organic polymer. And (E) a brightener component, and (F) a copolymer component of diallyldialkylammonium alkyl sulfate, a (meth) acrylamide and sulfur dioxide, which is a leveling agent for plating. .

その(A)銅イオン成分としては、通常、酸性溶液において溶解する銅化合物であればよく、特に制限はない。本発明において、例えば、硫酸銅(5水和物が好ましい)、酸化銅、塩化銅、炭酸銅、ピロリン酸銅や、メタンスルホン酸銅、プロパンスルホン酸銅等のアルカンスルホン酸銅、プロパノールスルホン酸銅等のアルカノールスルホン酸銅、酢酸銅、クエン酸銅、酒石酸銅などの有機酸銅及びその塩などが挙げられる。これらの銅化合物の何れか1種の単独叉は何れか2種以上を組み合わせて適宜用いることができる。   The (A) copper ion component is not particularly limited as long as it is generally a copper compound that dissolves in an acidic solution. In the present invention, for example, copper sulfate (pentahydrate is preferred), copper oxide, copper chloride, copper carbonate, copper pyrophosphate, copper methanesulfonate, copper propanesulfonate, etc., propanolsulfonic acid Examples thereof include copper alkanol sulfonates such as copper, copper acetates, copper citrates, and organic acid coppers such as copper tartrate and salts thereof. Any one of these copper compounds or a combination of any two or more can be used as appropriate.

また、この(A)銅イオン成分の銅イオンの濃度は、酸性銅めっき浴組成物中において、好ましくは10〜75g/Lで、より好ましくは15〜65g/Lであることが好適である。特に、酸性銅めっき浴組成物がスルーホールめっき及び樹脂フィルムめっきに用いる場合は、銅イオンとして15〜30g/Lで、ブラインドビアホールめっきに用いる場合は、銅イオンとして25〜65g/Lの濃度であることが好適である。また、銅イオン源として硫酸銅5水和物を用いる場合、酸性銅めっき浴組成物中におけるその濃度は、好ましくは40〜300g/Lであることが好適である。また、スルーホール及び金属スパッタフィルムに用いる場合には、好ましくは60〜120g/Lで、ブラインドビアホールに用いる場合には、好ましくは100〜250g/Lであることが好適である。   Moreover, the concentration of the copper ion of the (A) copper ion component is preferably 10 to 75 g / L, more preferably 15 to 65 g / L in the acidic copper plating bath composition. In particular, when the acidic copper plating bath composition is used for through-hole plating and resin film plating, it is 15 to 30 g / L as copper ions, and when used for blind via-hole plating, it is at a concentration of 25 to 65 g / L as copper ions. Preferably it is. Moreover, when using a copper sulfate pentahydrate as a copper ion source, the density | concentration in an acidic copper plating bath composition becomes like this. Preferably it is 40-300 g / L. Moreover, when using for a through hole and a metal sputter film, Preferably it is 60-120 g / L, When using for a blind via hole, Preferably it is 100-250 g / L.

また、(B)有機酸及び/叉は無機酸成分としては、銅を溶解しうるものであれば特に制限はなく適宜好適に用いられる。本発明において、この有機酸叉は無機酸の好ましい具体例として、例えば、無機酸として硫酸を、また、有機酸としてメタンスルホン酸、プロパンスルホン酸等のアルカンスルホン酸類、プロパノールスルホン酸等のアルカノールスルホン酸類、クエン酸、酒石酸、ギ酸等の有機酸類などが挙げられる。これらの有機酸や無機酸の何れか1種の単独叉は何れか2種以上を組み合わせて適宜好適に用いることができる。   In addition, the organic acid and / or inorganic acid component (B) is not particularly limited as long as it can dissolve copper, and is suitably used as appropriate. In the present invention, preferred examples of the organic acid or inorganic acid include, for example, sulfuric acid as the inorganic acid, alkane sulfonic acids such as methane sulfonic acid and propane sulfonic acid, and alkanol sulfone such as propanol sulfonic acid as the organic acid. Examples thereof include organic acids such as acids, citric acid, tartaric acid, and formic acid. Any one of these organic acids and inorganic acids or a combination of any two or more can be suitably used.

また、この(B)有機酸及び/叉は無機酸成分の濃度は、酸性銅めっき浴組成物中において、好ましくは30〜300g/Lで、より好ましくは50〜250g/Lであることが好適である。特に、スルーホールめっき及び樹脂フィルムめっきに使用する場合は、150〜250g/Lで、ブラインドビアホールめっきに使用する場合は、50〜150g/Lであることが好適である。また、この酸成分が硫酸である場合、酸性銅めっき浴組成物中の濃度は、好ましくは30〜300g/Lであることが好適である。また、スルーホール及び金属スパッタフィルム用としては、好ましくは150〜250g/Lで、ブラインドビアホールとしては、好ましくは50〜150g/Lであるのが好適である。   The concentration of the (B) organic acid and / or inorganic acid component in the acidic copper plating bath composition is preferably 30 to 300 g / L, more preferably 50 to 250 g / L. It is. In particular, when used for through-hole plating and resin film plating, it is preferably 150 to 250 g / L, and when used for blind via-hole plating, it is preferably 50 to 150 g / L. Moreover, when this acid component is a sulfuric acid, it is suitable that the density | concentration in an acidic copper plating bath composition becomes like this. Preferably it is 30-300 g / L. Further, it is preferably 150 to 250 g / L for through holes and metal sputtered films, and preferably 50 to 150 g / L for blind via holes.

また、本発明に用いる酸性銅めっき浴組成物には、(C)塩素イオン成分として、その濃度が塩素イオンとして20〜100mg/Lで含有していることが好ましく、特に30〜70mg/Lで含有させることが好適である。   The acidic copper plating bath composition used in the present invention preferably contains (C) a chlorine ion component at a concentration of 20 to 100 mg / L as a chlorine ion, particularly 30 to 70 mg / L. It is suitable to contain.

また、この(D)有機ポリマー成分は、めっき液の濡れ性を向上させる湿潤剤として作用するものであり、本発明においては、例えば、ポリエチレングリコール、ポリプロピレングリコール、プルロニック型界面活性剤、テトロニック型界面活性剤、ポリエチレングリコール・グリセリルエーテル及びポリエチレングリコール・ジアルキルエーテルなどを適宜好適に挙げることができる。ここで、ポリエチレングリコールとしては、オキシエチレン重合度が10〜500の範囲、ポリプロピレングリコールとしては、オキシプロピレン重合度が1〜20の範囲にあるものが適宜好適に用いられる。   The organic polymer component (D) acts as a wetting agent that improves the wettability of the plating solution. In the present invention, for example, polyethylene glycol, polypropylene glycol, pluronic surfactant, tetronic type A surfactant, polyethylene glycol / glyceryl ether, polyethylene glycol / dialkyl ether, and the like can be suitably exemplified. Here, polyethylene glycol having a degree of oxyethylene polymerization in the range of 10 to 500 and polypropylene glycol having a degree of oxypropylene polymerization in the range of 1 to 20 are suitably used.

また、プルロニック型界面活性剤としては、例えば一般式(I)   In addition, examples of the pluronic surfactant include, for example, the general formula (I)

Figure 0005385625

[式中、aおよびcは、それぞれ1〜30の数、bは1〜100の数を示す]
で表される化合物を、テトロニック型界面活性剤としては、例えば一般式(VII)
Figure 0005385625

[Wherein, a and c each represent a number of 1 to 30, and b represents a number of 1 to 100]
As the tetronic surfactant, for example, a compound represented by the general formula (VII)

Figure 0005385625

[式中、dは1〜200の数、eは1〜40の数を示す]
で表される化合物を挙げることができる。
Figure 0005385625

[Wherein, d is a number from 1 to 200, and e is a number from 1 to 40]
The compound represented by these can be mentioned.

さらに、ポリエチレングリコール・グリセリルエーテルとしては、例えば一般式(VIII)

Figure 0005385625

[式中、f、gおよびhは、それぞれ1〜200の数を示す]
で表される化合物を挙げることができ、ポリエチレングリコール・ジアルキルエーテルとしては、例えば一般式(IX) Furthermore, as polyethylene glycol glyceryl ether, for example, general formula (VIII)
Figure 0005385625

[Wherein f, g and h each represent a number of 1 to 200]
As the polyethylene glycol dialkyl ether, for example, the general formula (IX)

Figure 0005385625

[式中、RおよびRは、それぞれ独立に水素原子または炭素数1〜5のアルキル基、iは2〜200の数を示す]
で表される化合物を挙げることができる。
Figure 0005385625

[Wherein, R 7 and R 8 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and i represents a number of 2 to 200]
The compound represented by these can be mentioned.

また、本発明において、(D)有機ポリマー成分として、これらのポリマー成分の何れか1種単独で叉は何れか2種以上を組み合わせて適宜好適に用いることができ、また、これら(D)有機ポリマー成分の濃度は、酸性銅めっき浴組成物中において、好ましくは100〜20000mg/Lでよく、特に1000〜10000mg/Lの範囲にあることが好適である。   In the present invention, as the (D) organic polymer component, any one of these polymer components may be used alone or in combination of any two or more, and these (D) organic polymer components may be suitably used. The concentration of the polymer component in the acidic copper plating bath composition is preferably 100 to 20000 mg / L, and particularly preferably in the range of 1000 to 10000 mg / L.

また、この(E)ブライトナー成分は、めっき層の結晶配列を均一化する作用を有している。本発明においては、例えば、メルカプトアルキルスルホン酸塩、有機ジスルフィド化合物及びジチオカルバミン酸誘導体などを挙げることができる。   Moreover, this (E) Brightener component has the effect | action which makes the crystal arrangement of a plating layer uniform. In the present invention, for example, mercaptoalkyl sulfonates, organic disulfide compounds, dithiocarbamic acid derivatives and the like can be mentioned.

ここで、メルカプトアルキルスルホン酸塩としては、例えば一般式(X)

Figure 0005385625

[式中、Lは炭素数1〜18の飽和または不飽和のアルキレン基、Mはアルカリ金属を示す]
で表される化合物を挙げることができる。 Here, as the mercaptoalkylsulfonate, for example, the general formula (X)
Figure 0005385625

[Wherein L 1 represents a saturated or unsaturated alkylene group having 1 to 18 carbon atoms, and M represents an alkali metal]
The compound represented by these can be mentioned.

また、有機ジスルフィド化合物としては、例えば一般式(XI)

Figure 0005385625

[式中、LおよびLは、それぞれ独立に炭素数1〜18の飽和叉は不飽和のアルキレン基、XおよびXは、それぞれ独立に硫酸塩基またはリン酸塩基を示す]
で表される化合物を挙げることができる。 Moreover, as an organic disulfide compound, for example, general formula (XI)
Figure 0005385625

[Wherein, L 2 and L 3 each independently represent a saturated or unsaturated alkylene group having 1 to 18 carbon atoms, and X 1 and X 2 each independently represent a sulfate group or a phosphate group]
The compound represented by these can be mentioned.

また、ジチオカルバミン酸誘導体としては、例えば一般式(XII)

Figure 0005385625

[式中、RおよびR10は、それぞれ独立に水素原子叉は炭素数1〜3のアルキル基、Lは炭素数3〜6のアルキレン基、Xは硫酸塩基叉はリン酸塩基を示す]
で表される化合物を挙げることができる。 Examples of the dithiocarbamic acid derivative include, for example, the general formula (XII)
Figure 0005385625

[Wherein R 9 and R 10 are each independently a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, L 4 is an alkylene group having 3 to 6 carbon atoms, X 3 is a sulfate group or a phosphate group. Show]
The compound represented by these can be mentioned.

本発明においては、これらの(E)ブライトナー成分の何れかの1種単独で叉は何れか2種以上を組み合わせて適宜好適に用いることができる。また、この(E)ブライトナー成分の濃度は、酸性銅めっき浴組成物中において、好ましくは0.02〜200mg/Lで、より好ましくは0.2〜5.0mg/Lの範囲にあることが好適である。   In the present invention, any one of these (E) Brightener components may be used singly or in combination of any two or more. The concentration of the (E) Brightener component is preferably 0.02 to 200 mg / L, more preferably 0.2 to 5.0 mg / L in the acidic copper plating bath composition. Is preferred.

また、この(F)めっき用レベリング剤は、一般式(XIII)

Figure 0005385625

[式中、R、Rは、それぞれ独立にメチル基、エチル基叉はヒドロキシエチル基で、R、Rが共にヒドロキシル基ではなく、Rはメチル基またはエチル基である]
で表される構造単位を有するジアリルジアルキルアンモニウムアルキルサルフェイトと、一般式(XIV) The leveling agent for plating (F) is represented by the general formula (XIII)
Figure 0005385625

[Wherein, R 1 and R 2 are each independently a methyl group, an ethyl group or a hydroxyethyl group, R 1 and R 2 are not hydroxyl groups, and R 3 is a methyl group or an ethyl group]
Diallyldialkylammonium alkyl sulfate having a structural unit represented by the general formula (XIV)

Figure 0005385625

[式中、Rは水素原子またはメチル基であり、R、Rは、それぞれ独立に、水素原子、もしくは水酸基を有してもよい炭素数1〜4のアルキル基、または一緒になって環内にエーテル結合を含んでもよい炭素数2〜7のアルキレン基である]
で表わされる構造単位を有する(メタ)アクリルアミド類と、
一般式(XV)
Figure 0005385625

[Wherein, R 4 represents a hydrogen atom or a methyl group, and R 5 and R 6 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms which may have a hydroxyl group, or a combination thereof. And an alkylene group having 2 to 7 carbon atoms which may contain an ether bond in the ring.
(Meth) acrylamides having a structural unit represented by:
General formula (XV)

Figure 0005385625

で表される構造単位を有する二酸化イオウとの共重合体である。
Figure 0005385625

It is a copolymer with sulfur dioxide having a structural unit represented by

これらの共重合体として、本発明において、例えば、ジアリルジアルキルアンモニウムアルキルサルフェイトとしては、ジアリルジメチルアンモニウムメチルサルフェイト、ジアリルエチルメチルアンモニウムメチルサルフェイト、ジアリルジエチルアンモニウムメチルサルフェイト、ジアリル(ヒドロキシエチル)メチルアンモニウムメチルサルフェイト、ジアリルエチル(ヒドロキシエチル)アンモニウムメチルサルフェイト、ジアリルジメチルアンモニウムエチルサルフェイト、ジアリルエチルメチルアンモニウムエチルサルフェイト、ジアリルジエチルアンモニウムエチルサルフェイト、ジアリル(ヒドロキシエチル)メチルアンモニウムエチルサルフェイト、ジアリルエチル(ヒドロキシエチル)アンモニウムエチルサルフェイトを適宜好適に挙げることができる。なお、この場合、ヒドロキシエチルは、好ましくは2−ヒドロキシエチルである。   As these copolymers, in the present invention, for example, as diallyldialkylammonium alkylsulfate, diallyldimethylammonium methylsulfate, diallylethylmethylammonium methylsulfate, diallyldiethylammonium methylsulfate, diallyl (hydroxyethyl) methyl Ammonium methyl sulfate, diallyl ethyl (hydroxyethyl) ammonium methyl sulfate, diallyl dimethyl ammonium ammonium sulfate, diallyl ethyl methyl ammonium ethyl sulfate, diallyl diethyl ammonium ammonium sulfate, diallyl (hydroxyethyl) methyl ammonium ethyl sulfate, diallyl Ethyl (hydroxyethyl) ammonium ethyl sulfate It can be cited as appropriate suitably. In this case, hydroxyethyl is preferably 2-hydroxyethyl.

また、本発明において、
(1)これらの共重合体において、反応に供せられる(メタ)アクリルアミド類としては、Rが水素原子のときはアクリルアミド類となり、一方、Rがメチル基のときは、メタクリルアミド類となる。
(2)またR、Rは、それぞれ独立に、水素原子、若しくは水酸基を有しても良い炭素数1〜4のアルキル基であるか、または一緒になってエーテル結合を含んでも良い炭素数2〜7のアルキレン基である。
(3)またR、Rがそれぞれ独立に、水素原子、若しくは水酸基を有しても良い炭素数1〜4のアルキル基の場合、R、Rは、それぞれ独立に、水素原子、炭素数1〜2のアルキル基、炭素数2〜3の2−ヒドロキシアルキル基であることが好適である。
In the present invention,
(1) In these copolymers, (meth) acrylamides subjected to the reaction are acrylamides when R 4 is a hydrogen atom, while methacrylamides are used when R 4 is a methyl group. Become.
(2) R 5 and R 6 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms which may have a hydroxyl group, or together may contain an ether bond. It is an alkylene group of formula 2-7.
(3) When R 5 and R 6 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms which may have a hydroxyl group, R 5 and R 6 are each independently a hydrogen atom, The alkyl group having 1 to 2 carbon atoms and the 2-hydroxyalkyl group having 2 to 3 carbon atoms are preferable.

そこで、(メタ)アクリルアミド類としては、例えば、アクリルアミド、N−メチルアクリルアミド、N−エチルアクリルアミド、N−(2−ヒドロキシエチル)アクリルアミド、N−(2−ヒドロキシプロピル)アクリルアミド、N,N−ジメチルアクリルアミド、N−メチル−N−エチルアクリルアミド、N,N−ジエチルアクリルアミド、N−メチル−N−(2−ヒドロキシエチル)アクリルアミド、N−メチル−N−(2−ヒドロキシプロピル)アクリルアミド、N−エチル−N−(2−ヒドロキシエチル)アクリルアミド、N−エチル−N−(2−ヒドロキシプロピル)アクリルアミド、メタクリルアミド、N−メチルメタクリルアミド、N−エチルメタクリルアミド、N−(2−ヒドロキシエチル)メタクリルアミド、N−(2−ヒドロキシプロピル)メタクリルアミド、N,N−ジメチルメタクリルアミド、N−メチル−N−エチルメタクリルアミド、N,N−ジエチルメタクリルアミド、N−メチル−N−(2−ヒドロキシプロピル)メタクリルアミド、N−エチル−N−(2−ヒドロキシプロピル)メタクリルアミドなどを挙げることができる。   Therefore, examples of (meth) acrylamides include acrylamide, N-methylacrylamide, N-ethylacrylamide, N- (2-hydroxyethyl) acrylamide, N- (2-hydroxypropyl) acrylamide, and N, N-dimethylacrylamide. N-methyl-N-ethylacrylamide, N, N-diethylacrylamide, N-methyl-N- (2-hydroxyethyl) acrylamide, N-methyl-N- (2-hydroxypropyl) acrylamide, N-ethyl-N -(2-hydroxyethyl) acrylamide, N-ethyl-N- (2-hydroxypropyl) acrylamide, methacrylamide, N-methylmethacrylamide, N-ethylmethacrylamide, N- (2-hydroxyethyl) methacrylamide, N -(2-hydroxypropyl) Methacrylamide, N, N-dimethylmethacrylamide, N-methyl-N-ethylmethacrylamide, N, N-diethylmethacrylamide, N-methyl-N- (2-hydroxypropyl) methacrylamide, N-ethyl-N- (2-hydroxypropyl) methacrylamide and the like can be mentioned.

また、R、Rが一緒になってエーテル結合を含んでも良い炭素数2〜7のアルキレン基の場合、(メタ)アクリルアミドのアミノ基部分がモルフォリノ基、ピペリジノ基、ピロリジノ基となることが好ましい。 When R 5 and R 6 are combined to form an alkylene group having 2 to 7 carbon atoms which may contain an ether bond, the amino group part of (meth) acrylamide may be a morpholino group, piperidino group or pyrrolidino group. preferable.

この場合、(メタ)アクリルアミド類としては、例えば、アクロイルモルフォリン、アクロイルピペリジン、アクロイルピロリジン、メタクロイルモルフォリン、メタクロイルピペリジン、メタクロイルピロリジンなどを挙げることができる。   In this case, examples of (meth) acrylamides include acroylmorpholine, acroylpiperidine, acroylpyrrolidine, methacryloylmorpholine, methacryloylpiperidine, and methacryloylpyrrolidine.

また、本発明におけるこれらの共重合体は、ジアリルエチルメチルアンモニウムメチルサルフェイト系共重合体を例にすると、ジアリルエチルメチルアンモニウムメチルサルフェイトとアクリルアミドと二酸化イオウとの共重合体、ジアリルエチルメチルアンモニウムメチルサルフェイトとN−メチルアクリルアミドと二酸化イオウとの共重合体、ジアリルエチルメチルアンモニウムメチルサルフェイトとN−エチルアクリルアミドと二酸化イオウとの共重合体、ジアリルエチルメチルアンモニウムメチルサルフェイトとN,N−ジメチルアクリルアミドと二酸化イオウとの共重合体、ジアリルエチルメチルアンモニウムメチルサルフェイトとN−メチルーN−エチルアクリルアミドと二酸化イオウとの共重合体、ジアリルエチルメチルアンモニウムメチルサルフェイトとN,N−ジエチルアクリルアミドと二酸化イオウとの共重合体、ジアリルエチルメチルアンモニウムメチルサルフェイトとN−(2−ヒドロキシエチル)アクリルアミドと二酸化イオウとの共重合体、ジアリルエチルメチルアンモニウムメチルサルフェイトとN−(2−ヒドロキシプロピル)アクリルアミドと二酸化イオウとの共重合体、ジアリルエチルメチルアンモニウムメチルサルフェイトとN−メチル−(2−ヒドロキシエチル)アクリルアミドと二酸化イオウとの共重合体、ジアリルエチルメチルアンモニウムメチルサルフェイトとN−メチル−(2−ヒドロキプロピル)アクリルアミドと二酸化イオウとの共重合体、ジアリルエチルメチルアンモニウムメチルサルフェイトとN−エチル−(2−ヒドロキシエチル)アクリルアミドと二酸化イオウとの共重合体、ジアリルエチルメチルアンモニウムメチルサルフェイトとN−エチル−(2−ヒドロキシプロピル)アクリルアミドと二酸化イオウとの共重合体、ジアリルエチルメチルアンモニウムメチルサルフェイトとアクロイルモルフォリンと二酸化イオウとの共重合体、ジアリルエチルメチルアンモニウムメチルサルフェイトとアクロイルピペリジンと二酸化イオウとの共重合体、ジアリルエチルメチルアンモニウムメチルサルフェイトとアクロイルピロリジンと二酸化イオウとの共重合体、ジアリルエチルメチルアンモニウムメチルサルフェイトとメタクリルアミドと二酸化イオウとの共重合体、ジアリルエチルメチルアンモニウムメチルサルフェイトとN−メチルメタクリルアミドと二酸化イオウとの共重合体、ジアリルエチルメチルアンモニウムメチルサルフェイトとN−エチルメタクリルアミドと二酸化イオウとの共重合体、ジアリルエチルメチルアンモニウムメチルサルフェイトとN,N−ジメチルメタクリルアミドと二酸化イオウとの共重合体、ジアリルエチルメチルアンモニウムメチルサルフェイトとN−メチルーN−エチルメタクリルアミドと二酸化イオウとの共重合体、ジアリルエチルメチルアンモニウムメチルサルフェイトとN,N−ジエチルメタクリルアミドと二酸化イオウとの共重合体、ジアリルエチルメチルアンモニウムメチルサルフェイトとN−(2−ヒドロキシエチル)メタクリルアミドと二酸化イオウとの共重合体、ジアリルエチルメチルアンモニウムメチルサルフェイトとN−(2−ヒドロキシプロピル)メタクリルアミドと二酸化イオウとの共重合体、ジアリルエチルメチルアンモニウムメチルサルフェイトとN−メチル−(2−ヒドロキシエチル)メタクリルアミドと二酸化イオウとの共重合体、ジアリルエチルメチルアンモニウムメチルサルフェイトとN−メチル−(2−ヒドロキプロピル)メタクリルアミドと二酸化イオウとの共重合体、ジアリルエチルメチルアンモニウムメチルサルフェイトとN−エチル−(2−ヒドロキシエチル)メタクリルアミドと二酸化イオウとの共重合体、ジアリルエチルメチルアンモニウムメチルサルフェイトとN−エチル−(2−ヒドロキシプロピル)メタクリルアミドと二酸化イオウとの共重合体、ジアリルエチルメチルアンモニウムメチルサルフェイトとメタクロイルモルフォリンと二酸化イオウとの共重合体、ジアリルエチルメチルアンモニウムメチルサルフェイトとメタクロイルピペリジンと二酸化イオウとの共重合体、ジアリルエチルメチルアンモニウムメチルサルフェイトとメタクロイルピロリジンと二酸化イオウとの共重合体などを挙げることができる。   Further, these copolymers in the present invention are, for example, diallylethylmethylammonium methylsulfate copolymer, a copolymer of diallylethylmethylammonium methylsulfate, acrylamide and sulfur dioxide, diallylethylmethylammonium. Copolymer of methylsulfate, N-methylacrylamide and sulfur dioxide, diallylethylmethylammonium methylsulfate, copolymer of N-ethylacrylamide and sulfur dioxide, diallylethylmethylammonium methylsulfate and N, N- Copolymer of dimethylacrylamide and sulfur dioxide, copolymer of diallylethylmethylammonium methylsulfate, N-methyl-N-ethylacrylamide and sulfur dioxide, diallylethylmethylan Copolymer of nium methylsulfate, N, N-diethylacrylamide and sulfur dioxide, copolymer of diallylethylmethylammonium methylsulfate, N- (2-hydroxyethyl) acrylamide and sulfur dioxide, diallylethylmethylammonium A copolymer of methylsulfate, N- (2-hydroxypropyl) acrylamide and sulfur dioxide, a copolymer of diallylethylmethylammonium methylsulfate, N-methyl- (2-hydroxyethyl) acrylamide and sulfur dioxide, A copolymer of diallylethylmethylammonium methylsulfate, N-methyl- (2-hydroxypropyl) acrylamide and sulfur dioxide, diallylethylmethylammonium methylsulfate and N-ethyl- (2-hydride) Copolymers of xyethyl) acrylamide and sulfur dioxide, copolymers of diallylethylmethylammonium methylsulfate and N-ethyl- (2-hydroxypropyl) acrylamide and sulfur dioxide, diallylethylmethylammonium methylsulfate and acroyl Copolymer of morpholine and sulfur dioxide, copolymer of diallylethylmethylammonium methylsulfate and acroylpiperidine and sulfur dioxide, copolymer of diallylethylmethylammonium methylsulfate, acroylpyrrolidine and sulfur dioxide A copolymer of diallylethylmethylammonium methylsulfate, methacrylamide and sulfur dioxide, diallylethylmethylammonium methylsulfate and N-methylmethacrylamide Copolymers with sulfur oxide, copolymers of diallylethylmethylammonium methylsulfate, N-ethylmethacrylamide and sulfur dioxide, diallylethylmethylammonium methylsulfate, N, N-dimethylmethacrylamide and sulfur dioxide Copolymer, copolymer of diallylethylmethylammonium methylsulfate, N-methyl-N-ethylmethacrylamide and sulfur dioxide, copolymer of diallylethylmethylammonium methylsulfate, N, N-diethylmethacrylamide and sulfur dioxide Polymer, copolymer of diallylethylmethylammonium methylsulfate, N- (2-hydroxyethyl) methacrylamide and sulfur dioxide, diallylethylmethylammonium methylsulfate and N- (2-hydroxyl) Propyl) copolymer of methacrylamide and sulfur dioxide, diallylethylmethylammonium methylsulfate and N-methyl- (2-hydroxyethyl) methacrylamide and sulfur dioxide, diallylethylmethylammonium methylsulfate A copolymer of N-methyl- (2-hydroxypropyl) methacrylamide and sulfur dioxide, a copolymer of diallylethylmethylammonium methylsulfate, N-ethyl- (2-hydroxyethyl) methacrylamide and sulfur dioxide, A copolymer of diallylethylmethylammonium methylsulfate, N-ethyl- (2-hydroxypropyl) methacrylamide and sulfur dioxide, diallylethylmethylammonium methylsulfate, methacryloylmorpholine, Copolymers with sulfur fluoride, copolymers of diallylethylmethylammonium methylsulfate, methacroylpiperidine and sulfur dioxide, copolymers of diallylethylmethylammonium methylsulfate, methacroylpyrrolidine and sulfur dioxide, etc. be able to.

また、その他にも前記例示したジアリルエチルメチルアンモニウムメチルサルフェイト系共重合体において、モノマーのジアリルエチルメチルアンモニウムメチルサルフェイトの換りに、ジアリルジメチルアンモニウムメチルサルフェイト、ジアリルジエチルアンモニウムメチルサルフェイト、ジアリル(ヒドロキシエチル)メチルアンモニウムメチルサルフェイト、ジアリルエチル(ヒドロキシエチル)アンモニウムメチルサルフェイト、ジアリルジメチルアンモニウムエチルサルフェイト、ジアリルエチルメチルアンモニウムエチルサルフェイト、ジアリルジエチルアンモニウムエチルサルフェイト、ジアリル(ヒドロキシエチル)メチルアンモニウムエチルサルフェイト、ジアリルエチル(ヒドロキシエチル)アンモニウムエチルサルフェイトとした共重合体なども、併せて、挙げることができる。   In addition, in the dialylethylmethylammonium methylsulfate copolymer exemplified above, diallyldimethylammonium methylsulfate, diallyldiethylammonium methylsulfate, diallyl instead of the monomer diallylethylmethylammonium methylsulfate (Hydroxyethyl) methylammonium methylsulfate, diallylethyl (hydroxyethyl) ammonium methylsulfate, diallyldimethylammonium ethylsulfate, diallylethylmethylammonium ethylsulfate, diallyldiethylammonium ethylsulfate, diallyl (hydroxyethyl) methylammonium Ethyl sulfate, diallyl ethyl (hydroxyethyl) ammonium ethyl sal Well as the copolymer was Eito, together, it may be mentioned.

これらの共重合体においては、ジアリルジアルキルアンモニウムアルキルサルフェイト/(メタ)アクリルアミド類/二酸化イオウのモノマーモル比は、得られる共重合体の安定性の観点から、通常、1/(0.001〜100)/(0.001〜1)であり、好ましくは1/(0.005〜10)/(0.005〜1)、さらに好ましくは1/(0.01〜10)/(0.01〜1)、特に好ましくは1/(0.05〜5)/(0.05〜1)、最も好ましくは1/(0.08〜3)/(0.05〜1)である。   In these copolymers, the monomer molar ratio of diallyldialkylammonium alkylsulfate / (meth) acrylamides / sulfur dioxide is usually 1 / (0.001 to 100 from the viewpoint of the stability of the resulting copolymer. ) / (0.001-1), preferably 1 / (0.005-10) / (0.005-1), more preferably 1 / (0.01-10) / (0.01- 1), particularly preferably 1 / (0.05-5) / (0.05-1), most preferably 1 / (0.08-3) / (0.05-1).

本発明の共重合体の分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法によるポリエチレングリコール換算の重量平均分子量で、通常300〜50,000、好ましくは500〜25,000、より好ましくは800〜10,000の範囲である。   The molecular weight of the copolymer of the present invention is a weight average molecular weight in terms of polyethylene glycol as measured by gel permeation chromatography (GPC), and is usually 300 to 50,000, preferably 500 to 25,000, more preferably 800 to 10. , 000.

これらの共重合体の製造方法に特に制限はないが、例えば以下に示す方法により、所望の共重合体を効率よく製造することができる。   Although there is no restriction | limiting in particular in the manufacturing method of these copolymers, For example, a desired copolymer can be manufactured efficiently by the method shown below.

すなわち、極性溶媒中において、一般式(XVI)

Figure 0005385625

[式中、R、R、Rは、それぞれ前記と同じである。]
で表されるジアリルジアルキルアンモニウムアルキルサルフェイトと、一般式(XVII
) That is, in the polar solvent, the general formula (XVI)
Figure 0005385625

[Wherein, R 1 , R 2 and R 3 are the same as defined above. ]
A diallyldialkylammonium alkyl sulfate represented by the general formula (XVII)
)

Figure 0005385625

[式中、R、R、Rは、それぞれ前記と同じである。]
で表される(メタ)アクリルアミド類と、二酸化イオウとを共重合させることにより、本発明で用いる共重合体が得られる。
Figure 0005385625

[Wherein, R 4 , R 5 and R 6 are the same as defined above. ]
The copolymer used by this invention is obtained by copolymerizing (meth) acrylamides represented by these and sulfur dioxide.

そこで、本発明において用いるジアリルジアルキルアンモニウムアルキルサルフェイトモノマーとしては、例えば、ジアリルジメチルアンモニウムメチルサルフェイト、ジアリルエチルメチルアンモニウムメチルサルフェイト、ジアリルジエチルアンモニウムメチルサルフェイト、ジアリル(ヒドロキシエチル)メチルアンモニウムメチルサルフェイト、ジアリルエチル(ヒドロキシエチル)アンモニウムメチルサルフェイト、ジアリルジメチルアンモニウムエチルサルフェイト、ジアリルエチルメチルアンモニウムエチルサルフェイト、ジアリルジエチルアンモニウムエチルサルフェイト、ジアリル(ヒドロキシエチル)メチルアンモニウムエチルサルフェイト、ジアリルエチル(ヒドロキシエチル)アンモニウムエチルサルフェイトなどが挙げられ、適宜好適に用いられる。なお、これらのモノマーのヒドロキシエチル基として、好ましくは2−ヒドロキシエチルである。   Thus, examples of diallyldialkylammonium alkylsulfate monomers used in the present invention include diallyldimethylammonium methylsulfate, diallylethylmethylammonium methylsulfate, diallyldiethylammonium methylsulfate, diallyl (hydroxyethyl) methylammonium methylsulfate. Diallylethyl (hydroxyethyl) ammonium methyl sulfate, diallyldimethylammonium ethyl sulfate, diallylethylmethylammonium ethyl sulfate, diallyl diethylammonium ethyl sulfate, diallyl (hydroxyethyl) methylammonium ethyl sulfate, diallylethyl (hydroxyethyl) ) Ammonium ethyl sulfate etc. Among them, suitably used suitably. The hydroxyethyl group of these monomers is preferably 2-hydroxyethyl.

また、ここで用いるジアリルジアルキルアンモニウムアルキルサルフェイトのモノマーは、例えばジアリルアルキルアミンとジアルキル硫酸とのアルキル化反応等によって適宜製造することができる。   Moreover, the monomer of the diallyldialkylammonium alkyl sulfate used here can be suitably manufactured, for example, by alkylation reaction of diallylalkylamine and dialkylsulfuric acid.

すなわち、
(1) ジアリルジメチルアンモニウムメチルサルフェイト、ジアリルエチルメチルアンモニウムメチルサルフェイト、ジアリル(ヒドロキシエチル)メチルアンモニウムメチルサルフェイトは、それぞれジアリルメチルアミン、ジアリルエチルアミン、ジアリル(ヒドロキシエチル)アミンにジメチル硫酸を加えて反応させるメチル化反応により製造することができる。
(2) また、ジアリルジエチルアンモニウムエチルサルフェイト、ジアリルエチルメチルアンモニウムエチルサルフェイト、ジアリルエチル(ヒドロキシエチル)アンモニウムエチルサルフェイトは、それぞれ、ジアリルエチルアミン、ジアリルメチルアミン、ジアリル(ヒドロキシエチル)アミンに、ジエチル硫酸を加えて反応させるエチル化反応により製造することができる。
That is,
(1) Diallyldimethylammonium methylsulfate, diallylethylmethylammonium methylsulfate, diallyl (hydroxyethyl) methylammonium methylsulfate are prepared by adding dimethyl sulfate to diallylmethylamine, diallylethylamine, diallyl (hydroxyethyl) amine, respectively. It can be produced by a methylation reaction.
(2) In addition, diallyl diethylammonium ethyl sulfate, diallylethylmethylammonium ethyl sulfate, diallylethyl (hydroxyethyl) ammonium ethyl sulfate, respectively, diallylethylamine, diallylmethylamine, diallyl (hydroxyethyl) amine, diethyl It can be produced by an ethylation reaction in which sulfuric acid is added and reacted.

さらに、モノマーとして用いる(メタ)アクリルアミド類に係わって、上記一般式(XVII)中、Rが水素原子のときはアクリルアミド類となり、一方、Rがメチル基のときは、メタクリルアミド類となる。また、これらR、Rは、それぞれ独立に、水素原子、若しくは水酸基を有しても良い炭素数1〜4のアルキル基であるか、または一緒になってエーテル結合を含んでも良い炭素数2〜7のアルキレン基である。R、Rが、それぞれ独立に、水素原子、若しくは水酸基を有しても良い炭素数1〜4のアルキル基の場合は、好ましくはR、Rは、それぞれ独立に、水素原子、炭素数1〜2のアルキル基、炭素数2〜3の2−ヒドロキシアルキル基であることが好適である。 Further, in relation to (meth) acrylamides used as monomers, in the above general formula (XVII), when R 4 is a hydrogen atom, it becomes an acrylamide, whereas when R 4 is a methyl group, it becomes a methacrylamide. . R 5 and R 6 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms which may have a hydroxyl group, or a carbon number which may contain an ether bond together. 2 to 7 alkylene groups. When R 5 and R 6 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms that may have a hydroxyl group, preferably R 5 and R 6 are each independently a hydrogen atom, The alkyl group having 1 to 2 carbon atoms and the 2-hydroxyalkyl group having 2 to 3 carbon atoms are preferable.

この場合、(メタ)アクリルアミド類としては、アクリルアミド、N−メチルアクリルアミド、N−エチルアクリルアミド、N−(2−ヒドロキシエチル)アクリルアミド、N−(2−ヒドロキシプロピル)アクリルアミド、N,N−ジメチルアクリルアミド、N−メチル−N−エチルアクリルアミド、N,N−ジエチルアクリルアミド、N−メチル−N−(2−ヒドロキシエチル)アクリルアミド、N−メチル−N−(2−ヒドロキシプロピル)アクリルアミド、N−エチル−N−(2−ヒドロキシエチル)アクリルアミド、N−エチル−N−(2−ヒドロキシプロピル)アクリルアミド、メタクリルアミド、N−メチルメタクリルアミド、N−エチルメタクリルアミド、N−(2−ヒドロキシエチル)メタクリルアミド、N−(2−ヒドロキシプロピル)メタクリルアミド、N,N−ジメチルメタクリルアミド、N−メチル−N−エチルメタクリルアミド、N,N−ジエチルメタクリルアミド、N−メチル−N−(2−ヒドロキシエチル)メタクリルアミド、N−メチル−N−(2−ヒドロキシプロピル)メタクリルアミド、N−エチル−N−(2−ヒドロキシエチル)メタクリルアミド、N−エチル−N−(2−ヒドロキシプロピル)メタクリルアミドなどを挙げることができる。   In this case, (meth) acrylamides include acrylamide, N-methylacrylamide, N-ethylacrylamide, N- (2-hydroxyethyl) acrylamide, N- (2-hydroxypropyl) acrylamide, N, N-dimethylacrylamide, N-methyl-N-ethylacrylamide, N, N-diethylacrylamide, N-methyl-N- (2-hydroxyethyl) acrylamide, N-methyl-N- (2-hydroxypropyl) acrylamide, N-ethyl-N- (2-hydroxyethyl) acrylamide, N-ethyl-N- (2-hydroxypropyl) acrylamide, methacrylamide, N-methylmethacrylamide, N-ethylmethacrylamide, N- (2-hydroxyethyl) methacrylamide, N- (2-hydroxypropyl) metac Rilamide, N, N-dimethylmethacrylamide, N-methyl-N-ethylmethacrylamide, N, N-diethylmethacrylamide, N-methyl-N- (2-hydroxyethyl) methacrylamide, N-methyl-N- ( 2-hydroxypropyl) methacrylamide, N-ethyl-N- (2-hydroxyethyl) methacrylamide, N-ethyl-N- (2-hydroxypropyl) methacrylamide and the like.

また、R、Rが一緒になってエーテル結合を含んでも良い炭素数2〜7のアルキレン基の場合、好ましくは(メタ)アクリルアミドのアミノ基部分がモルフォリノ基、ピペリジノ基、ピロリジノ基となることが好適である。この場合、例えば、(メタ)アクリルアミドとしては、アクロイルモルフォリン、アクロイルピペリジン、アクロイルピロリジン、メタクロイルモルフォリン、メタクロイルピペリジン、メタクロイルピロリジンなどを挙げることができる。 In the case where R 5 and R 6 are combined to form an alkylene group having 2 to 7 carbon atoms which may contain an ether bond, the amino group portion of (meth) acrylamide is preferably a morpholino group, piperidino group or pyrrolidino group. Is preferred. In this case, examples of (meth) acrylamide include acroylmorpholine, acroylpiperidine, acroylpyrrolidine, methacryloylmorpholine, methacryloylpiperidine, and methacryloylpyrrolidine.

そこで、これらの共重合体を製造する際に、用いられる極性溶媒としては、ジアリルジアルキルアンモニウムアルキルサルフェイト、(メタ)アクリルアミド類、また、二酸化イオウを溶解させる溶媒であるが、例えば、水、メチルアルコール、エチルアルコール、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミドなどがあげられ、本発明においては、これらの溶媒の何れか単独叉は何れか2種以上を混合して適宜好適に用いることができる。   Therefore, when producing these copolymers, polar solvents used are diallyldialkylammonium alkyl sulfates, (meth) acrylamides, and solvents that dissolve sulfur dioxide. For example, water, methyl Alcohol, ethyl alcohol, dimethyl sulfoxide, dimethylformamide, dimethylacetamide and the like can be mentioned. In the present invention, any one of these solvents or a mixture of two or more of them can be suitably used.

また、これらの共重合体を製造するに、ラジカル共重合反応のために用いられる重合触媒としては、ジアリルジアルキルアンモニウムアルキルサルフェイトと(メタ)アクリルアミド類と二酸化イオウとを重合し得るものであれば特に制限はないが、第三−ブチルヒドロパーオキサイド、クメンヒドロパーオキサイドのような有機過酸化物、2,2’−アゾビスイソブチロニトリルのような脂肪族アゾ化合物、過硫酸アンモニウム、過硫酸カリウムのような無機過酸化物、硝酸アンモニウム、硝酸カリウムのような硝酸塩等が挙げられる。また、空気等の酸素を含む気体、放射線、紫外線、可視光線も挙げられる。   In addition, as a polymerization catalyst used for the radical copolymerization reaction for producing these copolymers, any polymer capable of polymerizing diallyldialkylammonium alkyl sulfate, (meth) acrylamides and sulfur dioxide can be used. Although there is no particular limitation, organic peroxides such as tert-butyl hydroperoxide and cumene hydroperoxide, aliphatic azo compounds such as 2,2′-azobisisobutyronitrile, ammonium persulfate, persulfate Inorganic peroxides such as potassium, and nitrates such as ammonium nitrate and potassium nitrate. Moreover, the gas containing oxygen, such as air, a radiation, an ultraviolet-ray, and visible light are also mentioned.

また、これらの共重合体を製造するに、ジアリルジアルキルアンモニウムアルキルサルフェイト/(メタ)アクリルアミド類/二酸化イオウの仕込みモノマーモル比は、得られる共重合体の安定性の観点から、通常、1/(0.001〜100)/(0.001〜1)であり、好ましくは1/(0.005〜10)/(0.005〜1)で、さらに好ましくは1/(0.01〜10)/(0.01〜1)で、特に好ましくは1/(0.05〜5)/(0.05〜1)で、最も好ましくは1/(0.08〜3)/(0.05〜1)である。   In order to produce these copolymers, the charged monomer molar ratio of diallyldialkylammonium alkylsulfate / (meth) acrylamides / sulfur dioxide is usually 1 / (from the viewpoint of the stability of the resulting copolymer. 0.001-100) / (0.001-1), preferably 1 / (0.005-10) / (0.005-1), and more preferably 1 / (0.01-10). /(0.01-1), particularly preferably 1 / (0.05-5) / (0.05-1), most preferably 1 / (0.08-3) / (0.05- 1).

また、これらの共重合体を製造するに、通常、上記ジアリルジアルキルアンモニウムアルキルサルフェイトと(メタ)アクリルアミド類と二酸化イオウとを含む極性溶媒溶液に、上記重合触媒を加え、室温下または加熱条件下、適宜撹拌操作を加えることにより共重合が行われる。重合温度は−100℃〜80℃が好ましい。また、重合時間は1〜100時間が好ましい。また、反応終了した後、アルコールやアセトン等の共重合体を溶解させない溶媒を加えることにより、この共重合体を再沈させ、回収することもできる。   In order to produce these copolymers, the polymerization catalyst is usually added to a polar solvent solution containing the diallyldialkylammonium alkyl sulfate, (meth) acrylamides, and sulfur dioxide, and the reaction mixture is heated at room temperature or under heating conditions. The copolymerization is carried out by appropriately adding a stirring operation. The polymerization temperature is preferably -100 ° C to 80 ° C. The polymerization time is preferably 1 to 100 hours. Moreover, after completion | finish of reaction, this copolymer can also be reprecipitated and collect | recovered by adding the solvent which does not dissolve copolymers, such as alcohol and acetone.

以上から、このようにして得られた「ジアリルジアルキルアンモニウムアルキルサルフェイト」−「(メタ)アクリルアミド類」−「二酸化イオウ」との共重合体は、めっき用レベリング剤として、被めっき体表面の凸部に吸着して、凸部のめっき析出を抑制する作用に優れている。また、この共重合体は、本発明に用いる酸性銅めっき浴組成物の一成分として、ブラインドビアホールやスルーホールの内部やコーナー部のめっき付き回り性およびめっき面のレベリング性などのめっき外観のいずれにおいても優れており、かつ下地不良に対応できるなどの特性を発揮する。また、このような酸性銅めっき浴組成物を用いることにより、スルーホールやブラインドビアホールなどの微小孔を有する基板、あるいは銅などの金属を表面に被覆した樹脂フィルムに対し、高い信頼性で銅めっき処理を施すことができる。   From the above, the copolymer of “diallyldialkylammonium alkyl sulfate”-“(meth) acrylamides”-“sulfur dioxide” obtained in this way is used as a leveling agent for plating to provide a convex surface on the surface of the object to be plated. It is excellent in the action of adsorbing to the part and suppressing the plating deposition of the convex part. In addition, this copolymer is a component of the acidic copper plating bath composition used in the present invention. Any of the plating appearances such as the inside of blind via holes and through-holes, the cornering with plating and the leveling property of the plating surface can be used. In addition, it exhibits characteristics such as being able to cope with substrate defects. In addition, by using such an acidic copper plating bath composition, copper plating can be applied with high reliability to substrates having minute holes such as through-holes and blind via holes, or resin films whose surfaces are coated with a metal such as copper. Processing can be performed.

また、本発明において、酸性銅めっき浴組成物を構成している(F)めっき用レベリング剤成分の濃度は、酸性銅めっき浴組成物中、好ましくは10〜1200mg/Lで、特に好ましくは50〜500mg/Lの濃度範囲で、適宜好適に用いられる。   In the present invention, the concentration of the leveling agent component for plating (F) constituting the acidic copper plating bath composition is preferably 10 to 1200 mg / L, particularly preferably 50, in the acidic copper plating bath composition. It is suitably used suitably within a concentration range of ˜500 mg / L.

<本発明に用いるポリイミド樹脂フィルム基板>
既に詳細に説明するように、携帯電話、パソコン、テレビ、ビデオ、音楽プレーヤー、デジタルカメラ、ゲーム機等の電子機器に係わって、その技術領域は、益々薄く、高密度化、小型化及び軽量化傾向にあって、また、これらの電子機器に使用されている各種部品も高密度化及び小型化の傾向にあるのが実情である。また、それらを実装させる基板材に係わって、ポリイミド樹脂フィルムが、例えば、プリント配線板(PWB)、フレキシブルプリント配線板(FPC)、テープ自動ボンディング用(TAB)テープ、チップオンフィルム(COF)テープ等の電子部品用絶縁基板材として広く用いられている。
<Polyimide resin film substrate used in the present invention>
As already explained in detail, the technology area is increasingly thinner, more dense, smaller and lighter in relation to electronic devices such as mobile phones, personal computers, TVs, videos, music players, digital cameras, and game consoles. In fact, various parts used in these electronic devices are also tending to have higher density and smaller size. In addition, polyimide resin films, for example, printed wiring boards (PWB), flexible printed wiring boards (FPC), automatic tape bonding (TAB) tapes, and chip-on-film (COF) tapes are involved in the substrate materials on which they are mounted. It is widely used as an insulating substrate material for electronic parts.

そこで、本発明でも使用するポリイミド樹脂フィルムは、通常、芳香族化合物が直接イミド結合で連結された芳香族ポリイミドで、そのイミド結合を介して芳香族同士の共役構造を有し、この強分子間力を持つイミド結合により、ポリマー中で最も高い熱的、機械的、化学的特性を有し、本発明おいては、後述する実施例に見られるように、東レ・デュポン社製の商品名:カプトン100−ENのポリイミド樹脂フィルムを用いた。   Therefore, the polyimide resin film used in the present invention is usually an aromatic polyimide in which aromatic compounds are directly linked by an imide bond, and has a conjugated structure of aromatics via the imide bond. Due to the strong imide bond, it has the highest thermal, mechanical and chemical properties in the polymer, and in the present invention, as seen in the examples described later, trade names manufactured by Toray DuPont: A polyimide resin film of Kapton 100-EN was used.

<本発明による2層フレキシブル銅張積層基材とその製造方法>
そこで、本発明においては、ポリイミド樹脂フィルム材を用いて、2層フレキシブル銅張積層基材(2層FCCL)を、既に上記に説明した酸性銅めっき浴組成物を用いて、予めNi又はその合金などの導電性金属のシード層形成を含めて、そのシード層上に銅導電層を厚付けめっき処理する全工程を、ウエット・プロセスで、しかも、従来からの銅付けめっき法とは異なり、その全銅付け工程が1工程であることを特徴とする2層フレキシブル銅張積層基材(2層FCCL)の製造方法について、以下に説明する。
<Two-layer flexible copper-clad laminate and manufacturing method thereof according to the present invention>
Therefore, in the present invention, using a polyimide resin film material, a two-layer flexible copper-clad laminate substrate (two-layer FCCL) is used in advance using the acidic copper plating bath composition described above, and Ni or an alloy thereof in advance. Unlike the conventional copper plating method, the entire process of thick plating the copper conductive layer on the seed layer, including the formation of a conductive metal seed layer, is different from the conventional copper plating method. A method for producing a two-layer flexible copper-clad laminate (two-layer FCCL) characterized in that the all-coppering step is one step will be described below.

本発明によれば、
(1):フレキシブルで、耐熱性で、耐薬品性に優れるポリイミド樹脂フィルム面を表面改質させて親水性化させる前処理工程を施す。その表面改質法は、従来からの真空下での常圧プラズマ処理、コロナ処理、イオン照射処理とは異なって、アルカリ湿式改質法でその表面にポリアミック酸改質層を形成させる。次いで、パラジウム(Pd)系触媒で、その表面にPdイオンを吸着させた後、還元処理させて、[吸着Pdイオン]→[還元金属化]させてなる親水性の表面改質層とする。
According to the present invention,
(1): A pretreatment step is performed in which a polyimide resin film surface that is flexible, heat resistant, and excellent in chemical resistance is subjected to surface modification to make it hydrophilic. The surface modification method is different from the conventional atmospheric pressure plasma treatment, corona treatment, and ion irradiation treatment under vacuum, and a polyamic acid modified layer is formed on the surface by an alkali wet modification method. Next, after a Pd ion is adsorbed on the surface with a palladium (Pd) -based catalyst, a reduction treatment is performed to obtain a hydrophilic surface modified layer obtained by [adsorbed Pd ion] → [reduction metallization].

すなわち、このアルカリ湿式改質法による一連の変異挙動は、通常、ポリイミド樹脂はアルカリ性水溶液で処理すると、その表面の一部が加水分解を受けてイミド環の一部が開裂し、アミド基とカルボキシル基を生成する。この生成されたカルボキシル基はカチオンイオン交換をしやすいので金属イオンを吸着させることができる。   That is, a series of mutation behaviors by this alkaline wet reforming method is usually that when a polyimide resin is treated with an alkaline aqueous solution, a part of its surface is hydrolyzed and a part of the imide ring is cleaved, resulting in an amide group and a carboxyl group. Generate a group. Since the generated carboxyl group is easy to exchange cation ions, metal ions can be adsorbed.

(2):このように親水化表面改質された樹脂フィルム面に、無電解めっき法で、予めNi又はその合金などの導電性金属のめっきを施して、導電性金属のシード層を形成させる。Niの合金としては、Ni−P、Ni−Bなどの合金が挙げられる。通常、Ni-Crなどをスパッタリング法で、40〜3000Å層厚のシード層を形成させるのが一般的であるが、本発明においては、荏原ユージライト(株)製のFCCL無電解めっき工法で、10〜300nmの層厚の無電解Ni又はその合金めっきのシード層を形成させた。 (2): Conductive metal plating such as Ni or an alloy thereof is applied in advance to the resin film surface thus modified with hydrophilicity by an electroless plating method to form a conductive metal seed layer. . As the Ni alloy, Ni-P, it includes Ni- B of any alloy. Usually, a seed layer having a thickness of 40 to 3000 mm is formed by sputtering using Ni—Cr or the like, but in the present invention, by an FCCL electroless plating method manufactured by Ebara Eugelite, A seed layer of electroless Ni or alloy plating thereof having a layer thickness of 10 to 300 nm was formed.

(3):次いで、本発明による酸性銅めっき浴組成物中で、ストライク銅めっきなる1次
銅めっきを介さずに、湿式電気めっきさせて、この樹脂フィルムのシード層上に、一段工
程で自在に層厚をコントロールさせながら銅導電層を厚付けめっきさせて、本発明による
銅付け被覆厚0.05〜50μm範囲にある2層フレキシブル銅張積層基材を製造させた。
(3): Next, in the acidic copper plating bath composition according to the present invention, wet electroplating is performed without using the primary copper plating as strike copper plating, and the resin film seed layer is freely formed in one step. The copper conductive layer was thickly plated while controlling the layer thickness to produce a two-layer flexible copper-clad laminate having a copper coating thickness in the range of 0.05 to 50 μm according to the present invention.

また、表面に金属被膜形成した樹脂フィルム材に、銅めっき処理を施す方法において、例えば、厚さ12〜50μm程度のポリイミドやポリエステルなどの樹脂フィルム表面に、従来法では、真空蒸着、スパッタリング等により、4〜3000nm程度の厚さの銅、ニッケル、クロム等の金属、「ニッケル−クロム」合金などを乾式被膜させてなるシード層であるのに対して、本発明においては、上記する如くのFCCL無電解ニッケルめっき工法による湿式無電解ニッケルめっき処理して、10〜300nm程度の導電性のニッケルシード層を形成させればよい。   Moreover, in the method of performing a copper plating process on a resin film material having a metal film formed on the surface, for example, on the surface of a resin film such as polyimide or polyester having a thickness of about 12 to 50 μm, conventionally, by vacuum deposition, sputtering, or the like. In contrast to the seed layer formed by dry-coating a metal such as copper, nickel and chromium having a thickness of about 4 to 3000 nm, a “nickel-chromium” alloy, etc., in the present invention, the FCCL as described above is used. What is necessary is just to form the electroconductive nickel seed layer of about 10-300 nm by the wet electroless nickel plating process by the electroless nickel plating method.

このようにして、表面に金属被膜が形成された樹脂フィルムを、本発明における酸性銅めっき浴組成物で銅めっきを行う条件は、通常の硫酸銅めっきの条件でよい。すなわち、液温23〜27℃程度、平均陰極電流密度1〜3A/dm程度で0.1〜250分間程度めっきを行えばよい。この際のめっき厚さは、0.05〜50μm程度である。また、一般的にはエアレーション等による液攪拌下に銅めっきを行うことが好ましい。 Thus, the conditions which perform copper plating with the acidic copper plating bath composition in this invention on the resin film in which the metal film was formed in the surface may be the conditions of normal copper sulfate plating. That is, plating may be performed for about 0.1 to 250 minutes at a liquid temperature of about 23 to 27 ° C. and an average cathode current density of about 1 to 3 A / dm 2 . The plating thickness at this time is about 0.05 to 50 μm. In general, it is preferable to perform copper plating under liquid agitation such as aeration.

また、従来法の特にメタライズ法では、真空蒸着、スパッタリング等の工程で、極く薄い金属で被覆した樹脂フィルムを、しかも、従来の酸性銅めっき浴でめっきした場合、めっき厚が10μmより薄い場合は、添加剤のレベリング効果が発揮されず、表面に凸凹が多い粗い表面状態となり光沢外観が得られないという問題があったが、本発明において、用いた「酸性銅めっき浴組成物」では、このような薄いめっき厚(約3〜5μm厚さ)でも、表面が非常に細かい結晶状態となり、高い信頼性で平滑な光沢銅めっき表面を得ることができる。また、めっき厚をこれより厚くしても、良好な光沢外観が得られることはいうまでもない。   Also, in the conventional metallization method, especially when a resin film coated with a very thin metal is plated in a conventional acidic copper plating bath in a process such as vacuum deposition or sputtering, the plating thickness is less than 10 μm. The leveling effect of the additive was not exhibited, and there was a problem that a glossy appearance was not obtained with a rough surface state with many irregularities on the surface, but in the `` acidic copper plating bath composition '' used in the present invention, Even with such a thin plating thickness (about 3 to 5 μm thickness), the surface is in a very fine crystal state, and a highly reliable and smooth bright copper plating surface can be obtained. Needless to say, even if the plating thickness is thicker than this, a good gloss appearance can be obtained.

以上から、本発明による2層フレキシブル銅張積層基材(2層FCCL)の製造方法は、装置が高価で、ランニングコストが高く、また、真空工程を要して、低生産性である従来法や、特にメタライズ法(スパッタ/めっき法)による2層FCCLの製造方法に比べると、明らかに安価でインライン化が可能な無電解Niめっきによるシード層形成を含め、全工程が湿式法(オールウエットプロセス)で、しかも、得られる2層フレキシブル銅張積層基材がファインパターン化に適宜対応できることを特徴とする2層FCCLの製造方法と言える。   From the above, the method for producing a two-layer flexible copper-clad laminate (two-layer FCCL) according to the present invention is a conventional method that is low in productivity because the apparatus is expensive, the running cost is high, and a vacuum process is required. Compared with the two-layer FCCL manufacturing method by metallization method (sputtering / plating method) in particular, all processes including the formation of seed layer by electroless Ni plating that is obviously cheap and in-line can be performed by a wet method (all wet method). Process), and the obtained two-layer flexible copper-clad laminate can be said to be a method for producing a two-layer FCCL characterized by being able to cope with fine patterning as appropriate.

また、既に説明済みのように、本発明に用いた(A)銅イオン成分、(B)有機酸及び/叉は無機酸成分、(C)塩素イオン成分、(D)有機ポリマー成分、(E)ブライトナー成分、及び(F)めっき用レベリング剤としてのジアリルジアルキルアンモニウムアルキルサルフェイトと(メタ)アクリルアミド類と二酸化イオウとの共重合体成分で構成された酸性銅めっき浴組成物が、本発明による2層フレキシブル銅張積層基材の製造用のめっき処理剤として、適宜好適に提供できたことも本発明の特徴である。   Moreover, as already explained, (A) copper ion component, (B) organic acid and / or inorganic acid component, (C) chlorine ion component, (D) organic polymer component, (E) used in the present invention. An acidic copper plating bath composition comprising a brightener component and (F) a copolymer component of diallyldialkylammonium alkyl sulfate as a leveling agent for plating, (meth) acrylamides, and sulfur dioxide is the present invention. It is also a feature of the present invention that it can be suitably and suitably provided as a plating treatment agent for the production of a two-layer flexible copper-clad laminate base material.

さらには、このような酸性銅めっき浴組成物を、本発明による2層フレキシブル銅張積層基材の製造用めっき処理剤として用いることで、予め導電性金属被膜のシード層を形成させた樹脂フィルム面に、1次銅めっきを介さずに、厚付け銅めっきさせて製造される2層フレキシブル銅張積層基材(2層FCCL)が、平滑な光沢外観を呈して、しかも、後述する実施例からも明らかなように、得られた銅めっき層の耐剥離性を格段に向上させることも本発明の特徴である。   Furthermore, by using such an acidic copper plating bath composition as a plating treatment agent for producing a two-layer flexible copper-clad laminate according to the present invention, a resin film in which a seed layer of a conductive metal film is formed in advance. An example described later is a two-layer flexible copper-clad laminate base material (two-layer FCCL) produced by thick copper plating on the surface without using primary copper plating, and exhibits a smooth gloss appearance. As is clear from the above, it is a feature of the present invention that the peel resistance of the obtained copper plating layer is remarkably improved.

以下に、本発明を実施例によって更に詳細に説明するが、本発明はこれらの実施例にいささかも限定されるものではない。   The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples.

実施例1
(1)本発明に用いる「酸性銅めっき浴組成物−1」の一成分となる(F)めっき用レベリング剤である[ジアリルエチルメチルアンモニウムエチルサルフェイト]と[アクリルアミド]と[二酸化イオウ]との三元共重合体成分を以下のようにして調製した。
Example 1
(1) [Diallylethylmethylammonium ethyl sulfate], [acrylamide], and [sulfur dioxide], which are leveling agents for plating (F), which are components of “acidic copper plating bath composition-1” used in the present invention. The terpolymer component was prepared as follows.

攪拌機、温度計、ジムロート式還流冷却管を備えた1リットルの4つ口丸底セパラブルフラスコ中にジアリルメチルアミン167.1g(1.5モル)を仕込み、攪拌しながら硫酸ジエチル232.5g(1.5モル)を20〜50℃に保ちながらゆっくり滴下し、50℃で24時間反応させた後、水212.9gを加えて、濃度65質量%の「ジアリルエチルメチルアンモニウムエチルサルフェイトモノマー水溶液」を調製した。   Into a 1 liter four-necked round bottom separable flask equipped with a stirrer, a thermometer, and a Dimroth type reflux condenser, 167.1 g (1.5 mol) of diallylmethylamine was charged and 232.5 g of diethyl sulfate ( 1.5 mol) was slowly added dropwise while maintaining the temperature at 20 to 50 ° C., and the mixture was reacted at 50 ° C. for 24 hours. Then, 212.9 g of water was added, and a “diallylethylmethylammonium ethyl sulfate monomer aqueous solution having a concentration of 65% by mass was added. Was prepared.

次いで、この65質量%のジアリルエチルメチルアンモニウムエチルサルフェイトモノマー(DAEMAESモノマーと略称)水溶液(モノマー含有量1.5モル)に、モノマー濃度を60質量%に調整するための水を加えた後、氷水で冷却・攪拌しながら、二酸化イオウを、DAEMAESモノマーに対し当モル、さらに、アクリルアミド13.3g(0.19モル)を加え溶解させた。次いで、得られたDAEMAESモノマーとアクリルアミドと二酸化イオウとの混合物を60℃に維持しながら、濃度28.5質量%の過硫酸アンモニウム(APS)水溶液71.3g(全モノマーに対して4.0質量%)を分割して加えて48時間、共重合反応させて[ジアリルエチルメチルアンモニウムエチルサルフェイト]:[アクリルアミド]:[二酸化イオウ]=8:1:8のモル比になるようにして、ジアリルエチルメチルアンモニウムエチルサルフェイトとアクリルアミドと二酸化イオウとの「三元共重合体−1」である(F)めっき用レベリング剤水溶液を得た。   Next, water for adjusting the monomer concentration to 60% by mass was added to the 65% by mass diallylethylmethylammonium ethyl sulfate monomer (abbreviated as DAEMAES monomer) aqueous solution (monomer content 1.5 mol). While cooling and stirring with ice water, sulfur dioxide was dissolved in an amount equivalent to DAEMAES monomer by adding 13.3 g (0.19 mol) of acrylamide. Then, while maintaining the obtained mixture of DAEMAES monomer, acrylamide and sulfur dioxide at 60 ° C., 71.3 g of ammonium persulfate (APS) aqueous solution having a concentration of 28.5% by mass (4.0% by mass based on the total monomers) ) Was added in portions and copolymerized for 48 hours to give a molar ratio of [diallylethylmethylammonium ethyl sulfate]: [acrylamide]: [sulfur dioxide] = 8: 1: 8. An aqueous leveling agent solution for plating (F) which is “ternary copolymer-1” of methylammonium ethyl sulfate, acrylamide and sulfur dioxide was obtained.

次いで、得られた溶液の一部をアセトンで再沈殿させ、得られた白色固体をろ別し、50℃で48時間真空乾燥した。得られた白色粉末状の三元共重合体のIRスペクトルから、1320cm−1と1130cm−1に−SO−に起因する吸収、1220cm−1に硫酸エステルに起因する吸収および1680cm−1にアミドの吸収帯が見られたことから、ジアリルエチルメチルアンモニウムエチルサルフェイトとアクリルアミドと二酸化イオウとの三元共重合体(モル比8:1:8)であることを支持している。 Subsequently, a part of the obtained solution was reprecipitated with acetone, and the obtained white solid was filtered off and dried in vacuum at 50 ° C. for 48 hours. From the IR spectrum of the obtained white powdery terpolymer, -SO 2 to 1320 cm -1 and 1130 cm -1 - absorption due to amide absorption and 1680 cm -1 attributable to sulfate in 1220 cm -1 Thus, it is supported that it is a terpolymer of diallylethylmethylammonium ethyl sulfate, acrylamide and sulfur dioxide (molar ratio 8: 1: 8).

また、この三元共重合体の重量平均分子量(Mw)は、下記の方法による測定で1500であり、また、その重合収率は、下記の方法により、95.0%であった。この三元共重合体を、以下の実施例における酸性銅めっき浴組成物中のレベリング剤に供した。   Moreover, the weight average molecular weight (Mw) of this ternary copolymer was 1500 as measured by the following method, and the polymerization yield was 95.0% by the following method. This ternary copolymer was subjected to a leveling agent in the acidic copper plating bath composition in the following examples.

(2)酸性銅めっき浴組成物の組成
<酸性銅めっき浴組成物−1>
(A)銅イオン成分;硫酸銅5水和物 120g/L
(B)無機酸成分;硫酸 150g/L
(C)塩素イオン成分;塩素 50mg/L
(D)有機ポリマー成分;ポリエチレングリコール*1 2000mg/L
(E)ブライトナー成分;SPS*2 1mg/L
(F)めっき用レベリング剤成分;三元共重合体−1 500mg/L
[注]*1:HO−(CO)−H n=90
*2:NaOS−C−S−S−C−SONa
(2) Composition of acidic copper plating bath composition <Acid copper plating bath composition-1>
(A) Copper ion component; copper sulfate pentahydrate 120 g / L
(B) Inorganic acid component; sulfuric acid 150 g / L
(C) Chlorine ion component; Chlorine 50mg / L
(D) Organic polymer component; polyethylene glycol * 1 2000 mg / L
(E) Brightener component; SPS * 2 1 mg / L
(F) Leveling agent component for plating; Ternary copolymer-1 500 mg / L
[Note] * 1: HO— (C 2 H 4 O) n —H n = 90
* 2: NaO 3 S—C 3 H 6 —S—S—C 3 H 6 —SO 3 Na

(3)次いで、荏原ユージライト(株)製のFCCL無電解ニッケルめっき工法で、シード層としての無電解ニッケルめっき被覆させたポリイミドフィルム(東レ・デュポン製の商品名:カプトン100−EN)の樹脂フィルム材に、1次銅めっきを介さずに、この「酸性銅めっき浴組成物−1」を用いて、銅めっき被覆厚10μmの厚付けめっきを施した。 (3) Next, a resin of polyimide film (trade name: Kapton 100-EN manufactured by Toray DuPont) coated with electroless nickel plating as a seed layer by the FCCL electroless nickel plating method manufactured by Ebara Eugene Co., Ltd. The film material was subjected to thick plating with a copper plating coating thickness of 10 μm using this “acidic copper plating bath composition-1” without using primary copper plating.

なお、この湿式電解めっきのめっき条件は、25℃、平均陰極電流密度2A/dmで25分間、エアレーション攪拌下にて酸性銅めっきを行った。次いで、得られた2層フレキシブル銅張積層ポリイミドフィルム基材を目視観察したところ、そのフィルム面は、極めて平滑で、著しい光沢外観を呈していた。併せて、「Ni−Cu間の耐剥離性」及び「長期耐熱試験(90°ピール強度)」を測定・評価して、その結果を表1示した。
The wet electroplating was carried out under the conditions of 25 ° C. and an average cathode current density of 2 A / dm 2 for 25 minutes under acidic aeration. Subsequently, when the obtained two-layer flexible copper-clad laminated polyimide film substrate was visually observed, the film surface was extremely smooth and exhibited a remarkable gloss appearance. In addition, the and "long-term heat resistance test (90 ° peel strength)""peeling resistance between the Ni-Cu" measured and evaluated, and the results are shown in Table 1.

本発明に係わって、測定、評価した各種の物性評価法、強度測定法について、以下にそれぞれ記載した。   Various physical property evaluation methods and strength measurement methods measured and evaluated in connection with the present invention are described below.

<Ni−Cu間の耐剥離性>
銅めっき被覆樹脂フィルム材を長さ10cm、幅1cmの供試片の樹脂フィルム側を火で数秒間火あぶると、樹脂フィルム−被覆金属間に剥離が生じる。その樹脂フィルムと被覆金属とを手で引き剥がすと、通常、フィルム上に金属は残らないが、両者間に剥離を生じるものは、フィルム上にシード層のNiが残るので、この状態変化の有無を目視判断する。
<Peeling resistance between Ni-Cu>
When the resin film side of a test piece having a length of 10 cm and a width of 1 cm is fired for several seconds with fire, peeling occurs between the resin film and the coated metal. When the resin film and the coated metal are peeled off by hand, usually no metal is left on the film, but if there is peeling between the two, the seed layer Ni remains on the film, so this state change Visually judge.

<長期耐熱試験(90°ピール強度)>
<JIS C 6471>
2層FCCL樹脂フィルム材に対して10mm幅の切り込みを入れ、長期耐熱試験(150℃×168Hr)に曝した供試片を「JIS C 6471」に準拠させて、90°ピール強度N/mを測定する。なお、供試片とする樹脂フィルム材には東レ・デュポン(株)製のカプトン100−ENを用いた。
<Long-term heat resistance test (90 ° peel strength)>
<JIS C 6471>
A test piece that was cut in a 10 mm width into a two-layer FCCL resin film material and exposed to a long-term heat test (150 ° C. × 168 Hr) was made to conform to “JIS C 6471”, and 90 ° peel strength N / m taking measurement. In addition, Kapton 100-EN manufactured by Toray DuPont Co., Ltd. was used as a resin film material as a test piece.

その装置は、有効軽量範囲内のメモリで、その誤差が指示値の±1%であり、引き剥がす時の荷重が試験機の容量の15〜85%で、クロスヘッド速度を毎分約50mmに保てる引張り試験機および引き剥がし力を連続的に記録できる記録計とする。また、試料の銅箔除去面に対する銅箔の引き剥がし方向の角度を90±5°に保持するための機能を持つ指示具からなる。試料の導体幅を測定した後、引張り試験機に固定し、引張り方向と垂直方向に引き剥がし速さに同調してしゅう動することができる指示具を用いる。なお、表1に示す「平常状態(常態)とは、20〜30℃の常温・常圧空気中における測定値を示す。
The device is a memory within the effective lightweight range, the error is ± 1% of the indicated value, the load when peeling off is 15 to 85% of the capacity of the testing machine, and the crosshead speed is about 50 mm per minute. A tensile tester that can be maintained and a recorder that can continuously record the peeling force. Moreover, it consists of an indicator having a function for maintaining the angle of the peeling direction of the copper foil with respect to the copper foil removal surface of the sample at 90 ± 5 °. After measuring the conductor width of the sample, it is fixed to a tensile tester and an indicator that can be slid in synchronization with the peeling speed in the direction perpendicular to the pulling direction is used. In addition, the "normal state (normal state) " shown in Table 1 shows the measured value in the air of 20-30 degreeC normal temperature and a normal pressure.

<共重合体の重量平均分子量(Mw)>
共重合体の重量平均分子量(Mw)は、日立L−6000型高速液体クロマトグラフを使用し、ゲル・パーミエーション・クロマトグラフィー(GPC法)によって測定した。
溶離液流路ポンプは日立L−6000、検出器はショーデックスRI−101示差屈折率検出器、カラムはショーデックスアサヒパックの水系ゲル濾過タイプのGS−220HQ(排除限界分子量3,000)とGS−620HQ(排除限界分子量200万)とを直列に接続したものを用いた。サンプルは溶離液で0.5g/100mlの濃度に調製し、20μlを用いた。溶離液には、0.4モル/リットルの塩化ナトリウム水溶液を使用した。
<Weight average molecular weight of copolymer (Mw)>
The weight average molecular weight (Mw) of the copolymer was measured by gel permeation chromatography (GPC method) using Hitachi L-6000 type high performance liquid chromatograph.
The eluent flow path pump is Hitachi L-6000, the detector is a Shodex RI-101 differential refractive index detector, and the column is a water gel filtration type GS-220HQ (exclusion limit molecular weight 3,000) and GS of Shodex Asahi Pack. -620HQ (exclusion limit molecular weight 2 million) connected in series was used. Samples were prepared with an eluent to a concentration of 0.5 g / 100 ml, and 20 μl was used. As an eluent, a 0.4 mol / liter sodium chloride aqueous solution was used.

カラム温度は30℃で、流速は1.0ml/分で実施した。標準物質として、分子量106、194、440、600、1470、4100、7100、10300、12600、23000などのポリエチレングリコールを用いて較正曲線を求め、その較正曲線を基に共重合体の重量平均分子量(Mw)を求めた。   The column temperature was 30 ° C. and the flow rate was 1.0 ml / min. A calibration curve is obtained using polyethylene glycol having a molecular weight of 106, 194, 440, 600, 1470, 4100, 7100, 10300, 12600, 23000 or the like as a standard substance, and the weight average molecular weight of the copolymer ( Mw) was determined.

<共重合体の重合収率>
GPC法により得られたピーク面積比により求めた。
<Polymerization yield of copolymer>
It calculated | required from the peak area ratio obtained by GPC method.

比較例1
実施例1における「酸性銅めっき浴組成物−1」の代わりに、下記に示す「硫酸銅めっき浴組成物H−1」を用いた以外は、実施例1と同様にして、めっきを行い、めっきされた基板について外観、「Ni−Cu間の耐剥離性」の各評価を行いその結果を表1に示す。
Comparative Example 1
Instead of “acidic copper plating bath composition-1” in Example 1, plating was performed in the same manner as in Example 1 except that “copper sulfate plating bath composition H-1” shown below was used. Each appearance and “Ni-Cu peel resistance” were evaluated for the plated substrate, and the results are shown in Table 1.

<酸性銅めっき浴組成物H−1>
(A)硫酸銅5水和物 120g/L
(B)硫酸 150g/L
(C)塩素イオン 50mg/L
CU−BRITE TH−R−A*3 40ml/L
CU−BRITE TH−R−B*4 2.5ml/L
[注]*3:荏原ユージライト(株)製で、炭化水素系有機化合物および窒素系有機化合
物を主剤とする添加剤。
*4:*3と同じく荏原ユージライト(株)製で、硫黄系有機化合物を主剤とする
添加剤。
<Acid copper plating bath composition H-1>
(A) Copper sulfate pentahydrate 120 g / L
(B) Sulfuric acid 150g / L
(C) Chloride ion 50mg / L
CU-BRITE TH-R-A * 3 40ml / L
CU-BRITE TH-R-B * 4 2.5ml / L
[Note] * 3: Made by Ebara Eugene Co., Ltd., hydrocarbon organic compounds and nitrogen organic compounds
Additives based on products.
* 4: Same as * 3, manufactured by Ebara Eugene Co., Ltd., mainly based on sulfur-based organic compounds
Additive.

比較例2
実施例1における「酸性銅めっき浴組成物−1」の代わりに、下記に示す「硫酸銅めっき浴組成物H−2」を用いた以外は、実施例1と同様にして、めっきを行い、めっきされた基板について外観、「Ni−Cu間の耐剥離性」の各評価を行いその結果を表1に示す。
Comparative Example 2
Instead of “acidic copper plating bath composition-1” in Example 1, plating was performed in the same manner as in Example 1 except that “copper sulfate plating bath composition H-2” shown below was used. Each appearance and “Ni-Cu peel resistance” were evaluated for the plated substrate, and the results are shown in Table 1.

<酸性銅めっき浴組成物H−2>
(A)硫酸銅5水和物 120g/L
(B)硫酸 150g/L
(C)塩素イオン 50mg/L
CU−BRITE TH*5 5ml/L
[注]*5:*3と同じ炭化水素系有機化合物,窒素系有機化合物,硫黄系有機化合物を
主剤とする添加剤
<Acid copper plating bath composition H-2>
(A) Copper sulfate pentahydrate 120 g / L
(B) Sulfuric acid 150g / L
(C) Chloride ion 50mg / L
CU-BRITE TH * 5 5ml / L
[Note] * 5: Same hydrocarbon-based organic compound, nitrogen-based organic compound, and sulfur-based organic compound as * 3
Main additive

比較例3
実施例1における「酸性銅めっき浴組成物−1」の代わりに、下記に示す「硫酸銅めっき浴組成物H−3」を用いた以外は、実施例1と同様にして、めっきを行い、めっきされた基板について外観、「Ni−Cu間の耐剥離性」の各評価を行いその結果を表1に示す。
Comparative Example 3
Instead of “acidic copper plating bath composition-1” in Example 1, plating was performed in the same manner as in Example 1 except that “copper sulfate plating bath composition H-3” shown below was used. Each appearance and “Ni-Cu peel resistance” were evaluated for the plated substrate, and the results are shown in Table 1.

<酸性銅めっき浴組成物H−3>
(A)硫酸銅5水和物 120g/L
(B)硫酸 150g/L
(C)塩素イオン 50mg/L
(D)ポリエチレングリコール 500mg/L
(E)SPS 1mg/L
(F)レベリング剤成分;二元共重合体−2 1000mg/L
[注]*1:HO−(C O) −H n=90
2:NaO S−C −S−S−C −SO Na
:ジアリルエチルメチルアンモニウムエチルサルフェイトと二酸化イオウ
モル比が1/1の交互共重合体
<Acid copper plating bath composition H-3>
(A) Copper sulfate pentahydrate 120 g / L
(B) Sulfuric acid 150g / L
(C) Chloride ion 50mg / L
(D) Polyethylene glycol * 1 500 mg / L
(E) SPS * 2 1 mg / L
(F) Leveling agent component; binary copolymer-2 * 6 1000 mg / L
[Note] * 1: HO— (C 2 H 4 O) n —H n = 90
* 2: NaO 3 S—C 3 H 6 —S—S—C 3 H 6 —SO 3 Na
* 6: tetraethylammonium diallyl ethyl methyl Sulfate and the sulfur dioxide
Alternating copolymer with a molar ratio of 1/1

実施例2
この実施例2は、延び率(JIS Z2241)を評価するテストピースの作製である。
実施例1で用いた「酸性銅めっき浴組成物−1」とほぼ同様な成分組成からなる「酸性銅めっき浴組成物−2」を用いて、SUS板上に実施例1と同様のめっきプロセスで、銅めっき処理をさせた時の延び率(JIS Z2241)を測定評価し、その結果を表2に示した。
Example 2
Example 2 is the production of a test piece for evaluating the elongation ratio (JIS Z2241).
Using “acidic copper plating bath composition-2” having a component composition almost the same as “acidic copper plating bath composition-1” used in Example 1, a plating process similar to that of Example 1 on a SUS plate. Thus, the elongation (JIS Z2241) when the copper plating treatment was performed was measured and evaluated, and the results are shown in Table 2.

電流条件;2A/dmで60μmの製膜、温度;25℃
<酸性銅めっき浴組成物−2>
(A)銅イオン成分;硫酸銅5水和物 120g/L
(B)無機酸成分;硫酸 150g/L
(C)塩素イオン成分;塩素 50mg/L
(D)有機ポリマー成分;ポリエチレングリコール*1 2000mg/L
(E)ブライトナー成分;SPS*2 2mg/L
(F)めっき用レベリング剤成分;三元共重合体−1 *7 100mg/L
[注]*1:HO−(C O) −H n=90
*2:NaO S−C −S−S−C −SO Na
*7:ジアリルエチルメチルアンモニウムエチルサルフェイトとアクリルアミドと
二酸化イオウとのモル比が8/1/8の共重合体
Current condition: 60 μm film formation at 2 A / dm 2 , temperature: 25 ° C.
<Acid copper plating bath composition-2>
(A) Copper ion component; copper sulfate pentahydrate 120 g / L
(B) Inorganic acid component; sulfuric acid 150 g / L
(C) Chlorine ion component; Chlorine 50mg / L
(D) Organic polymer component; polyethylene glycol * 1 2000 mg / L
(E) Brightener component; SPS * 2 2 mg / L
(F) Leveling agent component for plating; Ternary copolymer-1 * 7 100 mg / L
[Note] * 1: HO— (C 2 H 4 O) n —H n = 90
* 2: NaO 3 S—C 3 H 6 —S—S—C 3 H 6 —SO 3 Na
* 7: With diallylethylmethylammonium ethyl sulfate and acrylamide
Copolymer with 8/1/8 molar ratio to sulfur dioxide

比較例4
実施例2における「酸性銅めっき浴組成物−2」に代えて、下記に示す「酸性銅めっき浴組成物H−4」を用いた以外は、実施例2と同様にして、「酸性銅めっき浴組成物H−4」の延び率(JIS Z2241)を測定評価し、その結果を表2に示した。
Comparative Example 4
In place of “acidic copper plating bath composition-2” in example 2, “acidic copper plating bath composition H-4” shown below was used in the same manner as in example 2 except that “acidic copper plating bath composition-2” was used. The elongation ratio (JIS Z2241) of the bath composition H-4 was measured and evaluated. The results are shown in Table 2.

<酸性銅めっき浴組成物H−4>
(A)硫酸銅5水和物 120g/L
(B)硫酸 150g/L
(C)塩素イオン 50mg/L
(D)ポリエチレングリコール*1 1000mg/L
[注]*1:HO−(C O) −H n=90
以上から、表1及び表2から明らかなように、本発明による全工程がウエット・プロセスである製造方法によって得られた2層フレキシブル銅張積層基材は、そのウエット工程に併せて、明らかに用いた「酸性銅めっき浴組成物」の特性が活かされて、従来法では得られない「めっき銅層」が、外観光沢で、その銅層が著しく耐剥離性に優れていることが、よく理解される。
<Acid copper plating bath composition H-4>
(A) Copper sulfate pentahydrate 120 g / L
(B) Sulfuric acid 150g / L
(C) Chloride ion 50mg / L
(D) Polyethylene glycol * 1 1000 mg / L
[Note] * 1: HO— (C 2 H 4 O) n —H n = 90
From the above, as is clear from Table 1 and Table 2, the two-layer flexible copper-clad laminate obtained by the manufacturing method in which all the steps according to the present invention are wet processes is clearly shown in the wet process. The characteristics of the “acidic copper plating bath composition” used are utilized, and the “plated copper layer” that cannot be obtained by the conventional method is glossy in appearance and the copper layer is remarkably excellent in peeling resistance. Understood.

また、特に「長期耐熱試験(90°ピール強度)」に係わって、本発明による2層フレキシブル銅張積層基材が、スパッタメッキ法又はメタライズ法による2層基板材と同等の400N/mの以上の耐熱強度(耐熱密着力)を発揮していることは、極めて有効利用の高い2層フレキシブル銅張積層基材と言える。   In particular, in connection with the “long-term heat resistance test (90 ° peel strength)”, the two-layer flexible copper-clad base material according to the present invention is equal to or more than 400 N / m equivalent to the two-layer substrate material by the sputter plating method or metallization method It can be said that it is a two-layer flexible copper-clad laminate base material that is extremely effective.

Figure 0005385625
Figure 0005385625

Figure 0005385625
Figure 0005385625

以上から、本発明によれば、新規に開発した酸性銅めっき浴組成物を用いて、FCCL無電解めっき工法で導電性のNi又はその合金シード層を形成させた金属被覆樹脂フィルムに対し、1次銅めっきを介さずに、厚付け銅めっきさせてなる2層フレキシブル銅張積層基材(2層FCCL)は、平滑な光沢外観で、しかも、耐剥離性に優れている銅金属被覆樹脂フィルム基材を提供する。   From the above, according to the present invention, a newly developed acidic copper plating bath composition is used for a metal-coated resin film in which conductive Ni or an alloy seed layer thereof is formed by an FCCL electroless plating method. Two-layer flexible copper-clad laminate (two-layer FCCL) formed by thick copper plating without using secondary copper plating is a copper metal-coated resin film with a smooth glossy appearance and excellent peel resistance A substrate is provided.

また、本発明によれば、シード層形成が無電解めっき工法と、用いる酸性銅めっき浴組成物の特性が活かされて、その導電性のNi又はその合金シード層上には、1次銅めっきを介さずに、湿式厚付け銅めっき層が、一段工程の湿式銅めっきで形成されることから、極めてファインパターン化しやすい2層フレキシブル銅張積層基材(2層FCCL)を提供する。   Further, according to the present invention, the formation of the seed layer takes advantage of the electroless plating method and the characteristics of the acidic copper plating bath composition to be used, and the primary copper plating is performed on the conductive Ni or alloy seed layer thereof. Since the wet thick copper plating layer is formed by wet copper plating in a single step without using a metal, a two-layer flexible copper-clad laminate (two-layer FCCL) that is extremely easy to form a fine pattern is provided.

また、本発明によれば、このような平滑、光沢外観、優れた耐剥離性を発揮し、その銅被覆面がファインパターン化されやすい2層フレキシブル銅張積層基材(2層FCCL)を、用いた酸性銅めっき浴組成物などの特性が活かされて、シード層形成、その銅導電層の厚付けめっきなどの全工程がウエット・プロセスで、しかも、全銅付け工程が一段工程であることから、簡便な装置で、ランニングコストが低く、明らかに高信頼性で、かつ高生産性で製造できる2層FCCLの製造方法を提供する。   In addition, according to the present invention, a two-layer flexible copper-clad laminate (two-layer FCCL) that exhibits such a smooth, glossy appearance, excellent peel resistance, and whose copper-coated surface is easily fine-patterned, Utilizing the characteristics of the acidic copper plating bath composition used, etc., all processes such as seed layer formation and thick plating of the copper conductive layer are wet processes, and the all copper plating process is a one-step process. Thus, a method of manufacturing a two-layer FCCL that can be manufactured with a simple apparatus, low running cost, clearly high reliability, and high productivity is provided.

Claims (4)

親水化表面改質されたポリイミドフィルム基板に、予め無電解めっき法で形成された、被覆厚10〜300nm範囲にあるNi又はその合金(Ni−Cuを除く)からなるニッケル・シード層の上に、酸性銅めっき浴組成物を用いて、ストライク銅めっきなる1次銅めっきを介さずに、銅めっきが0.05〜50μm範囲の被覆厚で厚付けめっきされており、
前記酸性銅めっき浴組成物が(A)銅イオン成分、(B)有機酸及び/叉は無機酸成分、(C)塩素イオン成分、(D)有機ポリマー成分、(E)ブライトナー成分、及び(F)めっき用レベリング剤としてのジアリルジアルキルアンモニウムアルキルサルフェイトと(メタ)アクリルアミド類と二酸化イオウとの共重合体成分で構成されてなることを特徴とする2層フレキシブル銅張積層基材。
On a nickel seed layer made of Ni or an alloy thereof (excluding Ni-Cu) having a coating thickness in the range of 10 to 300 nm, formed in advance by an electroless plating method on a polyimide film substrate having a hydrophilic surface modified. Using the acidic copper plating bath composition, the copper plating is thickly plated with a coating thickness in the range of 0.05 to 50 μm without using the primary copper plating that is strike copper plating ,
The acidic copper plating bath composition comprises (A) a copper ion component, (B) an organic acid and / or an inorganic acid component, (C) a chlorine ion component, (D) an organic polymer component, (E) a brightener component, and (F) A two-layer flexible copper-clad laminate comprising a copolymer component of diallyldialkylammonium alkyl sulfate as a leveling agent for plating, (meth) acrylamides and sulfur dioxide .
酸性銅めっき浴組成物とシード層としてNi又はその合金(Ni−Cuを除く)を被覆させたポリイミドフィルムとを用いて、湿式厚付けめっきさせる2層フレキシブル銅張積層基材(2層FCCL)の製造方法であって、
親水化表面改質を施したポリイミドフィルム面に、無電解めっき法でNi又はその合金(Ni−Cuを除く)からなるニッケル・シード層を被覆厚10〜300nm範囲で形成させる工程と、
前記酸性銅めっき浴組成物中で、ストライク銅めっきなる1次銅めっきを介さずに、湿式電気めっき処理して、前記シード層上に銅導電層を被覆厚0.05〜50μm範囲で厚付けめっきさせる工程と、
を含み、
前記酸性銅めっき浴組成物が(A)銅イオン成分、(B)有機酸及び/叉は無機酸成分、(C)塩素イオン成分、(D)有機ポリマー成分、(E)ブライトナー成分、及び(F)めっき用レベリング剤としてのジアリルジアルキルアンモニウムアルキルサルフェイトと(メタ)アクリルアミド類と二酸化イオウとの共重合体成分で構成されてなることを特徴とする2層フレキシブル銅張積層基材の製造方法。
Two-layer flexible copper-clad laminate (two-layer FCCL) for wet thick plating using an acidic copper plating bath composition and a polyimide film coated with Ni or an alloy thereof (excluding Ni-Cu) as a seed layer A manufacturing method of
Forming a nickel seed layer made of Ni or an alloy thereof (excluding Ni-Cu) in a coating thickness range of 10 to 300 nm by an electroless plating method on a polyimide film surface subjected to a hydrophilic surface modification;
In the acidic copper plating bath composition, wet electroplating treatment is performed without using a primary copper plating which is a strike copper plating, and a copper conductive layer is thickened in a range of 0.05 to 50 μm on the seed layer. Plating, and
Including
The acidic copper plating bath composition comprises (A) a copper ion component, (B) an organic acid and / or an inorganic acid component, (C) a chlorine ion component, (D) an organic polymer component, (E) a brightener component, and (F) Production of a two-layer flexible copper-clad laminate comprising a copolymer component of diallyldialkylammonium alkyl sulfate as a leveling agent for plating, (meth) acrylamides and sulfur dioxide Method.
前記(D)有機ポリマー成分がポリエチレングリコール、ポリプロピレングリコール、プロルニック型界面活性剤、テトロニック型界面活性剤、ポリエチレングリコール・グリセリルエーテル、ポリエチレングリコール・ジアルキルエーテルの群から選らばれる少なくとも1種である請求項に記載の2層フレキシブル銅張積層基材の製造方法。 The organic polymer component (D) is at least one selected from the group consisting of polyethylene glycol, polypropylene glycol, prolunic surfactant, tetronic surfactant, polyethylene glycol / glyceryl ether, polyethylene glycol / dialkyl ether. 2. A method for producing a two-layer flexible copper-clad laminate according to 2. 前記(E)ブライトナー成分がスルホアルキルスルホン酸塩、有機ジスルフィド化合物及びジチオカルバミン酸誘導体から選ばれる少なくとも1種である請求項に記載の2層フレキシブル銅張積層基材の製造方法。
The method for producing a two-layer flexible copper-clad laminate according to claim 3 , wherein the (E) Brightener component is at least one selected from sulfoalkyl sulfonates, organic disulfide compounds, and dithiocarbamic acid derivatives.
JP2009022636A 2008-12-08 2009-02-03 Two-layer flexible copper-clad laminate and method for producing the same Active JP5385625B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2009022636A JP5385625B2 (en) 2008-12-08 2009-02-03 Two-layer flexible copper-clad laminate and method for producing the same
PCT/JP2009/070720 WO2010067854A1 (en) 2008-12-08 2009-12-04 Two-layer flexible copper-clad laminate substrate and process for producing same
CN200980149178XA CN102245805A (en) 2008-12-08 2009-12-04 Two-layer flexible copper-clad laminate substrate and process for producing same
CN201911409524.5A CN111235555B (en) 2008-12-08 2009-12-04 Two-layer flexible copper-clad laminate substrate and method for producing same
TW098141515A TWI494470B (en) 2008-12-08 2009-12-04 Two layered flexible copper clad laminate and process for producing same
KR1020117013002A KR101634835B1 (en) 2008-12-08 2009-12-04 Two-layer flexible copper-clad laminate substrate and process for producing same
CN201610357771.5A CN106011803A (en) 2008-12-08 2009-12-04 Two-layer flexible copper-clad laminate substrate and process for producing same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008311704 2008-12-08
JP2008311704 2008-12-08
JP2009022636A JP5385625B2 (en) 2008-12-08 2009-02-03 Two-layer flexible copper-clad laminate and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010159478A JP2010159478A (en) 2010-07-22
JP5385625B2 true JP5385625B2 (en) 2014-01-08

Family

ID=42242840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009022636A Active JP5385625B2 (en) 2008-12-08 2009-02-03 Two-layer flexible copper-clad laminate and method for producing the same

Country Status (5)

Country Link
JP (1) JP5385625B2 (en)
KR (1) KR101634835B1 (en)
CN (3) CN111235555B (en)
TW (1) TWI494470B (en)
WO (1) WO2010067854A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5587567B2 (en) * 2009-07-07 2014-09-10 株式会社Jcu Copper plating method
JP5979598B2 (en) * 2012-11-26 2016-08-24 日東紡績株式会社 Quaternary cationic (meth) acrylamide-sulfur dioxide copolymer and process for producing the same
JP6350829B2 (en) 2015-10-15 2018-07-04 日東紡績株式会社 A copolymer of diallylamines and sulfur dioxide, and a method for producing the same.
JP6626129B2 (en) 2016-01-12 2019-12-25 株式会社Jcu Wet processing equipment for resin film
TWI589205B (en) * 2016-03-03 2017-06-21 Pomiran Metalization Research Co Ltd Flexible metal laminate with micro via and method of manufacturing the same
CN106513438B (en) * 2016-10-31 2017-12-22 中色奥博特铜铝业有限公司 A kind of preparation method of the high-precision rolled copper foil of lithium battery
CN112030199B (en) * 2020-08-27 2021-11-12 江苏艾森半导体材料股份有限公司 High-speed electro-coppering additive for advanced packaging and electroplating solution
CN112941514A (en) * 2021-02-05 2021-06-11 南昌航空大学 Preparation method of copper/nickel reactive nano multilayer film

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100568389B1 (en) * 2001-06-28 2006-04-05 가부시키 가이샤 닛코 마테리알즈 Surface treatment agent, and surface-treated article and electroless nickel plating method using the same
JP4027642B2 (en) * 2001-11-08 2007-12-26 日本パーカライジング株式会社 Nickel-based surface treatment film with excellent heat-resistant adhesion to resin
JP4080799B2 (en) * 2002-06-28 2008-04-23 三井金属鉱業株式会社 Method for forming polyimide film containing dielectric filler on metal material surface, method for producing copper clad laminate for forming capacitor layer for printed wiring board, and copper clad laminate obtained by the method
JP4294363B2 (en) * 2003-04-18 2009-07-08 三井金属鉱業株式会社 Two-layer flexible copper-clad laminate and method for producing the two-layer flexible copper-clad laminate
CN1329554C (en) * 2004-01-13 2007-08-01 长沙力元新材料股份有限公司 Method for chemical plating metal for non-metal substrate surface and pretreatment system used thereof
JP4872257B2 (en) 2005-07-19 2012-02-08 住友金属鉱山株式会社 Two-layer plated substrate and manufacturing method thereof
JP2007262481A (en) 2006-03-28 2007-10-11 Yoichi Haruta Surface metallizing method of polyimide resin material
JP4895734B2 (en) * 2006-09-08 2012-03-14 荏原ユージライト株式会社 Leveling agent for plating, additive composition for acidic copper plating bath, acidic copper plating bath, and plating method using the plating bath
JP4923903B2 (en) 2006-09-20 2012-04-25 住友金属鉱山株式会社 Copper-coated polyimide substrate with high heat-resistant adhesion
JP2008231459A (en) * 2007-03-16 2008-10-02 Okuno Chem Ind Co Ltd Method for forming electroconductive film on polyimide resin
CN100545305C (en) * 2007-05-29 2009-09-30 南京工业大学 A kind of activating process of nonmetal basal body chemical plating

Also Published As

Publication number Publication date
TWI494470B (en) 2015-08-01
CN106011803A (en) 2016-10-12
WO2010067854A1 (en) 2010-06-17
TW201035373A (en) 2010-10-01
JP2010159478A (en) 2010-07-22
CN111235555B (en) 2022-04-29
CN111235555A (en) 2020-06-05
KR20110099101A (en) 2011-09-06
CN102245805A (en) 2011-11-16
KR101634835B1 (en) 2016-06-29

Similar Documents

Publication Publication Date Title
JP5385625B2 (en) Two-layer flexible copper-clad laminate and method for producing the same
TWI437937B (en) Copper wiring polyimine film manufacturing method and copper wiring polyimide film
JP4895734B2 (en) Leveling agent for plating, additive composition for acidic copper plating bath, acidic copper plating bath, and plating method using the plating bath
EP0280502A1 (en) Metal coated laminate products from textured polyimide film
JP5654239B2 (en) LAMINATE, MANUFACTURING METHOD FOR LAMINATE, FLEXIBLE PRINTED WIRING BOARD, MANUFACTURING METHOD FOR FLEXIBLE PRINTED WIRING BOARD
JP2013129116A (en) Double-sided metal clad laminated sheet and method for manufacturing the same
JP4499502B2 (en) Leveling agent for plating, additive composition for acidic copper plating bath, acidic copper plating bath, and plating method using the plating bath
JP2006278371A (en) Manufacturing method of polyimide-metal layer laminate, and the polyimide-metal layer laminate obtained thereby
JP4994992B2 (en) Laminate for wiring board and flexible wiring board for COF
JP6427454B2 (en) Copper-clad laminate and printed wiring board
KR100656246B1 (en) Manufacturing method of flexible copper clad laminate using surface modification of polyimide film and its product thereby
JP5291008B2 (en) Method for manufacturing circuit wiring board
JP2006310360A (en) Substrate for flexible printed circuit
JP2006303206A (en) Substrate for flexible print circuit
JP2021195604A (en) Copper-clad laminate and manufacturing method of copper-clad laminate
JP5235079B2 (en) Multilayer laminate and method for producing flexible copper clad laminate
JP4742200B2 (en) Polyimide laminate for wiring boards
JP2006303207A (en) Substrate for flexible print circuit
JP2006303171A (en) Substrate for flexible printed circuit
JP5009714B2 (en) Laminated body for flexible wiring board and flexible wiring board for COF
JP2009154446A (en) Metal-clad laminate and its manufacturing method
JP2009066860A (en) Metal-clad laminate and its manufacturing method
JP2009154447A (en) Metal-clad laminate
JP2009184256A (en) Metal-clad laminate
JP2008091596A (en) Copper-coated polyimide substrate with smooth surface, and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131004

R150 Certificate of patent or registration of utility model

Ref document number: 5385625

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250