JP4735274B2 - Flexible wiring board and manufacturing method thereof. - Google Patents

Flexible wiring board and manufacturing method thereof. Download PDF

Info

Publication number
JP4735274B2
JP4735274B2 JP2006008008A JP2006008008A JP4735274B2 JP 4735274 B2 JP4735274 B2 JP 4735274B2 JP 2006008008 A JP2006008008 A JP 2006008008A JP 2006008008 A JP2006008008 A JP 2006008008A JP 4735274 B2 JP4735274 B2 JP 4735274B2
Authority
JP
Japan
Prior art keywords
layer
metal
wiring board
current density
metal wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006008008A
Other languages
Japanese (ja)
Other versions
JP2007189177A (en
Inventor
甚一 野口
文彦 松村
茂樹 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2006008008A priority Critical patent/JP4735274B2/en
Publication of JP2007189177A publication Critical patent/JP2007189177A/en
Application granted granted Critical
Publication of JP4735274B2 publication Critical patent/JP4735274B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Structure Of Printed Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

本発明は、各種電気機器に使用する半導体パッケージ用配線基板及びその製造方法に関するものであって、特に絶縁フィルム上の配線回路をメッキ法により形成したTAB( Tape Automated Bonding )テープ、フレキシブル配線基板及びその製造方法に関する。   TECHNICAL FIELD The present invention relates to a semiconductor package wiring board used for various electrical devices and a method for manufacturing the same, and more particularly, to a TAB (Tape Automated Bonding) tape in which a wiring circuit on an insulating film is formed by plating, a flexible wiring board, and It relates to the manufacturing method.

一般にTABテープ、フレキシブル配線基板等はポリイミドフィルム等の絶縁性樹脂フィルム上に形成された銅箔にフォトレジストを形成し、不要な銅箔をエッチングすることで配線回路を形成するが、近年、配線回路の高密度化の要求から微細配線の形成に有利なセミアディティブ法などが提案さている。
セミアディティブ法は絶縁フィルム上に形成された金属シード層の上にフォトレジストパターンを形成し、フォトレジストパターンに露出する金属シード層の表面にメッキを施すことで配線回路を形成し、その後レジストを剥離、除去し、残った金属シード層をエッチング除去するものである(例えば、特許文献1参照。)。
In general, TAB tape, flexible wiring boards, etc. form a wiring circuit by forming a photoresist on copper foil formed on an insulating resin film such as polyimide film, and etching unnecessary copper foil. A semi-additive method, which is advantageous for forming fine wiring, has been proposed because of the demand for higher circuit density.
In the semi-additive method, a photoresist pattern is formed on a metal seed layer formed on an insulating film, a wiring circuit is formed by plating the surface of the metal seed layer exposed to the photoresist pattern, and then the resist is applied. Peeling and removing are performed, and the remaining metal seed layer is removed by etching (see, for example, Patent Document 1).

以下に従来のセミアディティブ法について図4を用いて説明する。
先ず、図4(a)に示すように、ポリイミドフィルムからなる絶縁フィルム1上に第1の金属シード層2としてニッケル/クロム合金層、第2の金属シード層3として銅スパッタ層が形成された2層CCL( Cupper Claded Laminate )基材の表面に、ドライフィルムレジスト等を用いてフォトレジスト層4を形成する。
次に図4(b)に示すように、レジスト層4に所望の回路パターンを露光し、現像してフォトレジストパターン4’を形成する。このときの回路パターンマスク18は、後の工程で回路配線幅がエッチングにより細くなるため、予め回路配線幅が広くなるように補正しておく。すなわち、フォトレジストパターン4’の幅を若干狭くしておく。
次に図4(c)に示すように、フォトレジストパターン4’が除去された開口部に、硫酸銅メッキ浴などを用いて銅メッキを施し、金属配線層5’を形成する。その後フォトレジストパターン4’を剥離除去する。この時得られた金属配線層5’の幅は、最終目標値Wよりも若干広くなっている。
The conventional semi-additive method will be described below with reference to FIG.
First, as shown in FIG. 4A, a nickel / chromium alloy layer as a first metal seed layer 2 and a copper sputter layer as a second metal seed layer 3 were formed on an insulating film 1 made of a polyimide film. A photoresist layer 4 is formed on the surface of a two-layer CCL (Cupper Claded Laminate) substrate using a dry film resist or the like.
Next, as shown in FIG. 4B, a desired circuit pattern is exposed on the resist layer 4 and developed to form a photoresist pattern 4 ′. The circuit pattern mask 18 at this time is corrected so that the circuit wiring width is widened in advance because the circuit wiring width is reduced by etching in a later process. That is, the width of the photoresist pattern 4 ′ is slightly narrowed.
Next, as shown in FIG. 4C, the opening from which the photoresist pattern 4 'has been removed is subjected to copper plating using a copper sulfate plating bath or the like to form a metal wiring layer 5'. Thereafter, the photoresist pattern 4 ′ is peeled and removed. The width of the metal wiring layer 5 ′ obtained at this time is slightly wider than the final target value W.

次に図4(d)に示すように、金属配線層5’間に露出する銅スパッタ層からなる第2金属シード層3をエッチング除去する。銅スパッタ層のエッチングには硫酸及び過酸化水素からなるソフトエッチング液などが良く用いられる。このとき同時に金属配線層5’の側面のエッチングも行うため、従来の銅スパッタのみのエッチングよりも過剰にエッチングを行う。また、金属配線層上面と金属配線層側面でエッチング速度の選択性を持たせ、金属配線層側面のエッチングを進み易くさせるためにスプレーエッチングを使用することが好ましい。
また、このとき金属配線層側面がエッチングされることで金属配線層が細くなるが、ここで所望の金属配線層幅Wが得られるようにする。
次に図4(e)に示すようにニッケル/クロム合金層からなる第1の金属シード層2を市販の専用液でエッチング除去する。
その後、図4(f)に示すように、必要に応じて金属配線回路パターン上にニッケル、金、錫メッキ等の防蝕金属メッキ層7を形成した後、基板表面全体を絶縁性の封止材樹脂8で覆う。この時、金属配線層の間隔が狭くなると、金属配線層の間に空隙9が生じることがある。
また、最近では金属シード層を形成せずに、絶縁フィルム上に金属触媒層を形成し、その後レジスト形成し、メッキをして回路形成するフルアディティブ法なども検討されている(例えば、特許文献2参照。)。
特開平5−90737号公報 特開平8−181402号公報
Next, as shown in FIG. 4D, the second metal seed layer 3 made of a copper sputter layer exposed between the metal wiring layers 5 ′ is removed by etching. For etching the copper sputter layer, a soft etching solution composed of sulfuric acid and hydrogen peroxide is often used. At this time, the side surface of the metal wiring layer 5 ′ is also etched, so that the etching is performed in excess of the conventional etching using only copper sputtering. In addition, it is preferable to use spray etching in order to provide selectivity of the etching rate between the upper surface of the metal wiring layer and the side surface of the metal wiring layer and to facilitate the etching of the side surface of the metal wiring layer.
Further, at this time, the metal wiring layer is thinned by etching the side surface of the metal wiring layer, but a desired metal wiring layer width W is obtained here.
Next, as shown in FIG. 4E, the first metal seed layer 2 made of a nickel / chromium alloy layer is removed by etching with a commercially available dedicated solution.
Thereafter, as shown in FIG. 4 (f), an anticorrosive metal plating layer 7 such as nickel, gold, tin plating or the like is formed on the metal wiring circuit pattern as required, and then the entire substrate surface is insulative sealing material. Cover with resin 8. At this time, if the interval between the metal wiring layers is narrowed, a gap 9 may be generated between the metal wiring layers.
Recently, a full additive method in which a metal catalyst layer is formed on an insulating film without forming a metal seed layer, and then a resist is formed and plated to form a circuit has been studied (for example, Patent Documents). 2).
JP-A-5-90737 JP-A-8-181402

近年、フレキシブル配線基板においてはファインピッチ傾向が増加し、製品エリア内での回路配線の面積比率がますます増加している。フレキシブル配線基板製造後、ICチップとの接合となり、その後封止材樹脂により密閉されるが、その配線の面積比率が高いことによって回路配線間の間隔が狭くなり、封止材樹脂と配線基板との接合は、配線基板と直接接合する割合が少なくなり、回路配線上面での接合比率が多くなる。Pi面については、接合エリアが少なくなることから、ヒートサイクル試験を行った際、基板と封止材樹脂との密着不良が発生していた。
本発明の課題とするところは、このような上記問題点を解決し、ファインピッチ化で欠かせないトップボトム比率も確保しつつ、封止材樹脂との接合面積を増加させ、封止材樹脂の接合強度が高く、信頼性の高いフレキシブル配線基板及びその製法を提供するものである。
In recent years, the fine pitch trend has increased in flexible wiring boards, and the area ratio of circuit wiring within the product area has been increasing. After manufacturing the flexible wiring board, it is joined to the IC chip and then sealed with the encapsulant resin, but due to the high area ratio of the wiring, the interval between the circuit wirings becomes narrower, and the encapsulant resin and the wiring board In this bonding, the ratio of direct bonding to the wiring board decreases, and the bonding ratio on the upper surface of the circuit wiring increases. As for the Pi surface, since the bonding area is reduced, poor adhesion between the substrate and the sealing material resin occurred when the heat cycle test was performed.
The problem to be solved by the present invention is to solve the above-mentioned problems and increase the bonding area with the encapsulant resin while ensuring the top-bottom ratio that is indispensable for making fine pitches. The present invention provides a flexible wiring board having high bonding strength and high reliability and a method for manufacturing the same.

上記課題を解決するために本発明は、絶縁フィルムの少なくとも片側の面に金属配線層が形成された金属配線基板であって、該金属配線層の側面に窪みを有するフレキシブル配線基板とした。
このような構造のフレキシブル配線基板とすることにより、封止材樹脂の接触面積を増加させ密着強度が高く、信頼性の高いフレキシブル配線基板とすることが可能となる。
In order to solve the above-mentioned problems, the present invention is a metal wiring board in which a metal wiring layer is formed on at least one surface of an insulating film, and a flexible wiring board having a depression on a side surface of the metal wiring layer.
By using a flexible wiring board having such a structure, it is possible to increase the contact area of the encapsulant resin and to have a high adhesion strength and a highly reliable flexible wiring board.

本発明のフレキシブル配線基板においては、前記金属配線層が積層構造をなし、その中間層をなす金属が微結晶を呈し、かつ該金属微結晶からなる中間層の側面に前記窪みを有するフレキシブル配線基板とすることができる。
金属配線層部分に微結晶金属層があることで、エッチング処理により容易に窪みを形成することができるからである。
In the flexible wiring board of the present invention, the metal wiring layer has a laminated structure, the metal forming the intermediate layer exhibits microcrystals, and the recesses are formed on the side surfaces of the intermediate layer made of the metal microcrystals. It can be.
This is because the presence of the microcrystalline metal layer in the metal wiring layer portion makes it possible to easily form a depression by an etching process.

本発明のフレキシブル配線基板においては、前記金属配線層が絶縁フィルムの表面に少なくとも1層以上の金属シード層を介して銅メッキ層により形成されているのが好ましい。
基板と強固に接合した配線回路を容易に得ることができるからである。
また、本発明のフレキシブル配線基板においては、前記微結晶を呈する中間層が、絶縁フィルム又は絶縁フィルム表面の金属シード層との界面から0.1μm以上、前記金属配線層表面から0.1μm以下の間に形成されてなることが好ましい。また、前記金属配線層の側面の窪みの深さが、金属配線層の側面から0.1μm以上、金属配線層幅の25%(片側)以下であることが好ましい。
封止材樹脂の接触面積を確保し、密着強度が高い封止材樹脂を具備した信頼性の高いフレキシブル配線基板とするためである。
In the flexible wiring board of the present invention, the metal wiring layer is preferably formed of a copper plating layer on the surface of the insulating film via at least one metal seed layer.
This is because a wiring circuit firmly bonded to the substrate can be easily obtained.
Moreover, in the flexible wiring board of the present invention, the intermediate layer exhibiting microcrystals is 0.1 μm or more from the interface with the insulating film or the metal seed layer on the surface of the insulating film and 0.1 μm or less from the surface of the metal wiring layer. It is preferable to be formed between. The depth of the depression on the side surface of the metal wiring layer is preferably 0.1 μm or more and 25% (one side) or less of the metal wiring layer width from the side surface of the metal wiring layer.
This is because the contact area of the sealing material resin is ensured and a highly reliable flexible wiring board including the sealing material resin having high adhesion strength is provided.

本発明のフレキシブル配線基板の製造方法の一つは、絶縁フィルムの少なくとも片側の面にフォトレジスト層を形成し、露光、現像処理後、フォトレジストにてパターン形成された基板に銅メッキを施して金属配線層を形成する回路配線基板の製造方法において、該銅メッキ工程の中間の電流密度を前後の工程の電流密度よりも低くして銅メッキを施した後、エッチング処理を行うことにより、金属配線層の側面に窪みを形成する製造方法とした。
本発明のフレキシブル配線基板の製造方法の他の一つは、絶縁フィルムの少なくとも片側の面に少なくとも1層以上の金属シード層を形成した後フォトレジスト層を形成し、露光、現像処理後、フォトレジストにてパターン形成された基板に、銅メッキを施して金属配線層を形成する回路配線基板の製造方法において、該銅メッキ工程の中間の電流密度を前後の工程の電流密度よりも低くして銅メッキを施した後、エッチング処理を行うことにより、金属配線層の側面に窪みを形成する製造方法である。
そして、前記銅メッキ工程の電流密度をメッキ開始直後から増加させ、一旦該電流密度を下げた後再び該電流密度を増加させる製造方法を採用することができる。
このような方法とすることにより、金属配線層の中間の金属結晶が微細結晶となり、エッチングによって端面に容易に窪みを形成することができる。
One of the methods for producing a flexible wiring board of the present invention is to form a photoresist layer on at least one surface of an insulating film, and after exposing and developing, copper plating is applied to the substrate patterned with the photoresist. In the method of manufacturing a circuit wiring board for forming a metal wiring layer, a copper plating is performed by setting the current density in the middle of the copper plating step to be lower than the current density in the preceding and succeeding steps, and then etching is performed. The manufacturing method is to form a depression on the side surface of the wiring layer.
Another method for producing a flexible wiring board according to the present invention is to form at least one metal seed layer on at least one surface of an insulating film, then form a photoresist layer, and after exposure, development, In a method for manufacturing a circuit wiring board in which a metal wiring layer is formed by performing copper plating on a substrate patterned with a resist, the current density in the middle of the copper plating process is made lower than the current density in the preceding and following processes. This is a manufacturing method in which a depression is formed on the side surface of the metal wiring layer by performing an etching process after copper plating.
In addition, it is possible to employ a manufacturing method in which the current density in the copper plating step is increased immediately after the start of plating, the current density is once lowered, and then the current density is increased again.
By adopting such a method, the metal crystal in the middle of the metal wiring layer becomes a fine crystal, and a recess can be easily formed on the end face by etching.

さらに本発明のフレキシブル配線基板の製造方法は、前記製造方法に引き続き、金属配線層表面の所望の箇所に金属メッキ層を形成すること、更に、前記金属メッキ層を除く基板全面を封止材樹脂で封止することが好ましい。
このような製造方法とすれば、封止材樹脂の接触面積を確保し、密着強度が高い封止材樹脂を具備した信頼性の高いフレキシブル配線基板を、簡単な方法で確実に形成することができる。
Further, in the method for manufacturing a flexible wiring board of the present invention, following the manufacturing method, a metal plating layer is formed at a desired location on the surface of the metal wiring layer, and the entire surface of the substrate excluding the metal plating layer is encapsulated with resin. It is preferable to seal with.
With such a manufacturing method, the contact area of the encapsulant resin can be ensured, and a highly reliable flexible wiring board equipped with the encapsulant resin having high adhesion strength can be reliably formed by a simple method. it can.

上述したように本発明による配線基板は、従来の配線基板と比較して封止材樹脂の剥離不良数が減少し、信頼性の高い配線基板を提供することができる。   As described above, the wiring board according to the present invention can provide a highly reliable wiring board since the number of sealing resin peeling defects is reduced as compared with a conventional wiring board.

本発明のフレキシブル配線基板について図を用いて説明する。
図1は、本発明のフレキシブル配線基板の一例を示す断面構造図である。
図1に示す本発明のフレキシブル配線基板10は、ポリイミド樹脂等からなる絶縁フィルム1の片側表面に、Ni/Cr合金からなる第1の金属シード層2及び銅スパッタ層からなる第2の金属シード層3を介して、銅メッキ層からなる金属配線層5が形成されている。
前記金属配線層5は3層の積層構造をなしており、金属配線層5の中間部5bは銅の微結晶からなり、第2の金属シード層3との界面近傍5a及び最表面5cはメッキ析出銅の通常の結晶サイズを呈している。そして中間部5bの金属配線層の側面には窪み6を有している。金属配線層5の側面の窪み6は、後述するように封止材樹脂を食い込ませて強固な接合をさせるためのものである。
The flexible wiring board of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional structure diagram showing an example of the flexible wiring board of the present invention.
A flexible wiring board 10 of the present invention shown in FIG. 1 includes a first metal seed layer 2 made of a Ni / Cr alloy and a second metal seed made of a sputtered copper layer on one surface of an insulating film 1 made of polyimide resin or the like. A metal wiring layer 5 made of a copper plating layer is formed through the layer 3.
The metal wiring layer 5 has a three-layered structure, the intermediate portion 5b of the metal wiring layer 5 is made of copper microcrystals, and the vicinity 5a of the interface with the second metal seed layer 3 and the outermost surface 5c are plated. It exhibits the usual crystal size of precipitated copper. And it has the hollow 6 in the side surface of the metal wiring layer of the intermediate part 5b. The depression 6 on the side surface of the metal wiring layer 5 is for encroaching a sealing material resin to be firmly joined as will be described later.

図2に、本発明のフレキシブル配線基板の他の例を断面構造図で示す。
図2に示す本発明のフレキシブル配線基板11は、ポリイミド樹脂等からなる絶縁フィルム1の片側表面に、Ni/Cr合金からなる第1の金属シード層2及び銅スパッタ層からなる第2の金属シード層3を介して、銅メッキ層からなる金属配線層5が形成されている。
前記金属配線層5は3層の積層構造をなしており、金属配線層5の中間部5bは銅の微結晶からなり、第2の金属シード層3との界面近傍5a及び最表面5cはメッキ析出銅の通常の結晶サイズを呈している。そして中間部5bの金属配線層5の側面には窪み6を有している。
FIG. 2 is a sectional structural view showing another example of the flexible wiring board of the present invention.
The flexible wiring board 11 of the present invention shown in FIG. 2 has a first metal seed layer 2 made of Ni / Cr alloy and a second metal seed made of a sputtered copper layer on one surface of an insulating film 1 made of polyimide resin or the like. A metal wiring layer 5 made of a copper plating layer is formed through the layer 3.
The metal wiring layer 5 has a three-layered structure, the intermediate portion 5b of the metal wiring layer 5 is made of copper microcrystals, and the vicinity 5a of the interface with the second metal seed layer 3 and the outermost surface 5c are plated. It exhibits the usual crystal size of precipitated copper. And it has the hollow 6 in the side surface of the metal wiring layer 5 of the intermediate part 5b.

金属配線層5の表面には、腐食を防止し、かつ必要により外部リード線とのコンタクトをとるための端子部分に金属メッキ層7を形成して、さらに金属メッキ層7を除くフレキシブル配線基板全面を封止材樹脂8で覆って封止してある。
このような構造のフレキシブル配線基板とすれば、封止材樹脂8が金属配線層5の側面の窪み6に食い込んでいるので、封止材樹脂8と金属配線層5とは食い込んで強固に接合しており、封止材樹脂が剥離する恐れは極めて少なくなる。外部コンタクトのための端子部分には防蝕金属の金属メッキ層7が形成されており、金属メッキ層7を除くフレキシブル配線基板全面を封止材樹脂8で覆ってあるので、たとえ金属配線層間の封止材樹脂8に空洞9が生じた場合でも、封止材樹脂8が剥離することもなく、大気中の湿気により腐食して配線基板の性能を劣化させることもない。
On the surface of the metal wiring layer 5, a metal plating layer 7 is formed on a terminal portion for preventing corrosion and making contact with an external lead if necessary, and the entire surface of the flexible wiring board excluding the metal plating layer 7. Is covered with a sealing material resin 8 and sealed.
If the flexible wiring board having such a structure is used, the sealing material resin 8 bites into the depression 6 on the side surface of the metal wiring layer 5, so that the sealing material resin 8 and the metal wiring layer 5 bite in and firmly bond. Therefore, the possibility that the sealing material resin is peeled off is extremely reduced. A metal plating layer 7 of a corrosion-resistant metal is formed on the terminal portion for the external contact, and the entire surface of the flexible wiring board excluding the metal plating layer 7 is covered with a sealing material resin 8, so that even if the metal wiring layer is sealed Even when the cavity 9 is generated in the stopper resin 8, the sealing resin 8 is not peeled off, and the performance of the wiring board is not deteriorated by being corroded by moisture in the atmosphere.

以下に本発明におけるフレキシブル配線基板の製造方法の一例について図3に基づいて説明する。
図3は、本発明のフレキシブル配線基板の製造方法の一例を示す断面工程図である。
先ず図3(a)に示すように、例えばポリイミド樹脂等の絶縁性樹脂フィルム1の一面にニッケル/クロム合金層及び銅スパッタ層からなる2層の金属シード層2,3が形成された基板材料を用い、第2の金属シード層3をなす銅スパッタ層の表面に、ドライフィルムからなるフォトレジスト層4をラミネート法によりを形成する。
次に図3(b)に示すように、フォトレジスト層4に露光、現像を施してレジストパターン4’を形成する。このときの回路パターンマスク18は、後の工程で回路配線幅がエッチングにより細くなるため、予め回路配線幅が広くなるように補正しておく。すなわち、フォトレジストパターン4’の幅を若干狭くしておく。
Hereinafter, an example of a method for producing a flexible wiring board in the present invention will be described with reference to FIG.
FIG. 3 is a cross-sectional process diagram illustrating an example of a method for manufacturing a flexible wiring board according to the present invention.
First, as shown in FIG. 3A, for example, a substrate material in which two metal seed layers 2 and 3 made of a nickel / chromium alloy layer and a copper sputter layer are formed on one surface of an insulating resin film 1 such as polyimide resin. , A photoresist layer 4 made of a dry film is formed on the surface of the copper sputter layer forming the second metal seed layer 3 by a laminating method.
Next, as shown in FIG. 3B, the photoresist layer 4 is exposed and developed to form a resist pattern 4 '. The circuit pattern mask 18 at this time is corrected so that the circuit wiring width is widened in advance because the circuit wiring width is reduced by etching in a later process. That is, the width of the photoresist pattern 4 ′ is slightly narrowed.

次に図3(c)に示すように、レジストパターン4’の開口部に露出する第2の金属シード層3である銅スパッタ層の表面に、銅メッキを施し金属配線層5’の形成を行う。金属配線層5’の幅は、目標とする金属配線層の幅よりも少し大きくなっている。銅メッキには市販の硫酸銅メッキ浴が使用できる。
この際、銅メッキの電流密度については、メッキ初期段階では第2の金属シード層3の表面に析出させるため、抵抗値が高く高電流設定は出来ない。従ってメッキ初期段階では低電流密度でスタートし、後半になるに従って段階的に高電流密度へとステップアップしていくが、銅メッキの中間段階で一旦その前後の電流密度設定値よりも低い電流密度にしてメッキ層を形成する。
高電流密度で析出させた第2の金属シード層3との界面近傍5a及び最表面5cの銅メッキ層は、メッキ析出銅の通常の結晶サイズを呈している。一方、低電流密度で析出させた中間部5bは銅の微結晶を呈していて、脆弱なメッキ層が形成される。
Next, as shown in FIG. 3C, the surface of the copper sputter layer, which is the second metal seed layer 3 exposed at the opening of the resist pattern 4 ', is plated with copper to form a metal wiring layer 5'. Do. The width of the metal wiring layer 5 ′ is slightly larger than the target width of the metal wiring layer. A commercially available copper sulfate plating bath can be used for copper plating.
At this time, the current density of the copper plating is deposited on the surface of the second metal seed layer 3 in the initial stage of plating, so that the resistance value is high and a high current cannot be set. Therefore, it starts at a low current density at the initial stage of plating, and gradually increases to a higher current density as the latter half is reached. However, the current density is lower than the current density setting value before and after the intermediate stage of copper plating. Thus, a plating layer is formed.
The copper plating layer in the vicinity 5a of the interface with the second metal seed layer 3 deposited at a high current density and the outermost surface 5c has a normal crystal size of plated copper. On the other hand, the intermediate portion 5b deposited at a low current density exhibits copper microcrystals, and a brittle plating layer is formed.

次に図3(d)に示すように、金属配線層5’間に露出する銅スパッタ層からなる第2の金属シード層3をエッチング除去する。銅スパッタ層のエッチングには硫酸及び過酸化水素からなるソフトエッチング液などが良く用いられる。このとき同時に金属配線層5’の側面のエッチングも行うため、従来の銅スパッタのみのエッチングよりも過剰にエッチングを行う。また、金属配線層上面と金属配線層側面でエッチング速度の選択性を持たせ、金属配線層側面のエッチングを進み易くするためにスプレーエッチングを使用することが好ましい。
また、このとき金属配線層側面がエッチングされることで金属配線層の幅が細くなるが、ここで所望の金属配線層幅Wが得られるようにする。
Next, as shown in FIG. 3D, the second metal seed layer 3 made of a copper sputter layer exposed between the metal wiring layers 5 ′ is removed by etching. For etching the copper sputter layer, a soft etching solution composed of sulfuric acid and hydrogen peroxide is often used. At this time, since the side surface of the metal wiring layer 5 ′ is also etched, the etching is performed in excess of the conventional etching using only copper sputtering. In addition, it is preferable to use spray etching in order to provide selectivity of the etching rate between the upper surface of the metal wiring layer and the side surface of the metal wiring layer and to facilitate the etching of the side surface of the metal wiring layer.
At this time, the width of the metal wiring layer is reduced by etching the side surface of the metal wiring layer, but a desired metal wiring layer width W is obtained here.

次に図3(e)に示すようにニッケル/クロム合金層からなる第1の金属シード層2を市販のニッケル/クロム専用エッチング液でエッチング除去して、絶縁フィルム1を露出させる。
その後、図3(f)に示すように、塩化水素及び塩化第2鉄を主成分とする酸性エッチング液を使用して、銅メッキ層からなる金属配線層側面をスプレーエッチングする。このとき、金属配線層5の低電流密度で析出させた微結晶を呈する中間部5bは脆弱なので、通常の結晶サイズを呈している第2の金属シード層3との界面近傍5aや最表面5cよりもエッチングスピードが速いので、中間部5bには窪み6が形成される。
このようにして図1に示す耐久性に優れ信頼性の高いフレキシブル配線基板10が得られる。
Next, as shown in FIG. 3E, the first metal seed layer 2 made of a nickel / chromium alloy layer is removed by etching with a commercially available nickel / chromium etchant to expose the insulating film 1.
Thereafter, as shown in FIG. 3 (f), the side surface of the metal wiring layer made of the copper plating layer is spray-etched using an acidic etching solution mainly composed of hydrogen chloride and ferric chloride. At this time, since the intermediate portion 5b presenting the microcrystals deposited at a low current density of the metal wiring layer 5 is fragile, the interface vicinity 5a and the outermost surface 5c with the second metal seed layer 3 exhibiting a normal crystal size. Since the etching speed is faster than that, a recess 6 is formed in the intermediate portion 5b.
In this way, the flexible wiring board 10 having excellent durability and high reliability shown in FIG. 1 is obtained.

さらに、本発明のフレキシブル配線基板では、上記に引き続きさらに従来の技術同様に、必要に応じて金属配線回路のパターン上に外部配線とコンタクトをとるための端子部を設け、該端子部の金属配線回路パターン表面にニッケル、金、錫メッキ等の電気伝導性が良くて錆びにくい所望の金属のメッキを行うこともできる。端子部に金属メッキを施した後、端子部を除く基板前面を絶縁性の封止材樹脂で封止すれば、図2に示したような耐久性に優れ信頼性に高いフレキシブル配線基板11となる。   Further, in the flexible wiring board of the present invention, a terminal portion for making contact with external wiring is provided on the pattern of the metal wiring circuit as necessary, as in the prior art, following the above, and the metal wiring of the terminal portion is provided. The surface of the circuit pattern can be plated with a desired metal, such as nickel, gold, or tin plating, which has good electrical conductivity and is resistant to rust. If the front surface of the substrate excluding the terminal part is sealed with an insulating sealing resin after the terminal part is plated with metal, the flexible wiring board 11 having excellent durability and high reliability as shown in FIG. Become.

以下に本発明の実施例をあげてさらに説明する。
本実施例では図3に示す工程図に従って、図2に示す構造のフレキシブル配線基板を作成した。
本実施例においては厚さ38μmのポリイミドフィルム上にスパッタリング法で形成された厚さ170Åのニッケル/クロム層及び厚さ0.3μmの銅スパッタ層が形成された素材を用いた。
先ず、図3(a)に示すように、銅スパッタ層の表面にドライフィルムレジスト(品名RY−3215:日立化成(株))をラミネートした。
次に図3(b)に示すように、ドライフィルムレジストに照度40mJで露光し、温度30℃の1%炭酸ナトリウム水溶液にドライフィルムレジストを接触させて現像を行ない、レジストパターンの形成を行った。
The present invention will be further described with reference to the following examples.
In this example, a flexible wiring board having the structure shown in FIG. 2 was prepared according to the process diagram shown in FIG.
In this example, a material in which a nickel / chromium layer having a thickness of 170 mm and a copper sputter layer having a thickness of 0.3 μm formed by a sputtering method on a polyimide film having a thickness of 38 μm was used.
First, as shown in FIG. 3A, a dry film resist (product name RY-3215: Hitachi Chemical Co., Ltd.) was laminated on the surface of the copper sputter layer.
Next, as shown in FIG. 3B, the dry film resist was exposed at an illuminance of 40 mJ, developed by bringing the dry film resist into contact with a 1% sodium carbonate aqueous solution at a temperature of 30 ° C., and a resist pattern was formed. .

次に図3(c)に示すように、市販の硫酸銅メッキ浴を用いて銅ッキを行った。銅メッキについては、単層での積層では電気抵抗が高く、メッキ速度が遅いので生産効率が減少してしまう。そこで、メッキ槽については抵抗値が上昇しない程度に槽間距離を短くし、生産効率向上に努めた。よって、メッキ槽については12槽に分離した。メッキ初期段階では、シード層面に析出させるため電気抵抗が高く、過電流は流せない。そこで初期電流密度は0.5A/dm からスタートさせ、電流密度を3段階にステップアップして、トータル12層のメッキ層の積層構造とした。6層目以降の最大電流密度は4.0A/dmとなるが、本実施例では8層目の電流密度を、0.5A/dm にして行った。
その結果、図3(c)のように金属配線層の中間層付近に微少結晶粒層が積層された銅メッキ層が形成された。その後、ドライフィルムレジストを濃度5%の水酸化ナトリウム水溶液を用いて剥離除去した。
Next, as shown in FIG.3 (c), the copper plating was performed using the commercially available copper sulfate plating bath. With regard to copper plating, single layer lamination has high electrical resistance and slow plating speed, resulting in a reduction in production efficiency. Therefore, for the plating tank, the distance between the tanks was shortened to such an extent that the resistance value did not increase, and efforts were made to improve production efficiency. Therefore, the plating tank was separated into 12 tanks. In the initial stage of plating, since it is deposited on the seed layer surface, the electric resistance is high and an overcurrent cannot flow. Therefore, the initial current density was started from 0.5 A / dm 2 , and the current density was stepped up in three stages to obtain a laminated structure of a total of 12 plating layers. The maximum current density after the sixth layer is 4.0 A / dm 2. In this example, the current density of the eighth layer was set at 0.5 A / dm 2 .
As a result, as shown in FIG. 3C, a copper plating layer in which fine crystal grain layers were laminated in the vicinity of the intermediate layer of the metal wiring layer was formed. Thereafter, the dry film resist was peeled and removed using an aqueous sodium hydroxide solution having a concentration of 5%.

次に図3(d)に示すように、主成分が硫酸及び過酸化水素からなるソフトエッチング液(品名CPE800:菱江化学(株)製)を用いて、温度30℃、圧力0.1MPaの条件で約30sec間スプレーエッチング処理を行って、銅スパッタ層をエッチング除去した。
次に図3(e)に示すように、露出したニッケル/クロム合金層を市販のニッケル/クロム選択エッチング液(品名CH1920:メック(株))を用いて温度40℃で2min間浸漬して、ニッケル/クロム合金層を除去した。
次に図3(f)に示すように、得られた銅メッキ層の露出部分を、主成分が塩化水素及び塩化第二鉄からなる市販の酸性エッチング液(品名C−800:旭電化工業(株))を用いて、40℃、10sec間スプレーエッチング処理を行った。その結果、銅メッキ層からなる金属回路配線の中間層にある微少結晶粒層は、その部位のエッチング速度が他より早いため、側面に窪み形状が形成された。
Next, as shown in FIG. 3 (d), using a soft etching solution (product name: CPE800: manufactured by Hishie Chemical Co., Ltd.) whose main components are sulfuric acid and hydrogen peroxide, a temperature of 30 ° C. and a pressure of 0.1 MPa. Then, a spray etching process was performed for about 30 seconds to remove the copper sputtered layer by etching.
Next, as shown in FIG. 3 (e), the exposed nickel / chromium alloy layer was immersed for 2 minutes at a temperature of 40 ° C. using a commercially available nickel / chromium selective etching solution (product name CH1920: MEC), The nickel / chromium alloy layer was removed.
Next, as shown in FIG.3 (f), the exposed part of the obtained copper plating layer is made into the commercially available acidic etching liquid (Product name C-800: Asahi Denka Kogyo (product name C-800) whose main components consist of hydrogen chloride and ferric chloride. Was used, and the spray etching treatment was performed at 40 ° C. for 10 seconds. As a result, the fine crystal grain layer in the intermediate layer of the metal circuit wiring made of the copper plating layer had a depression shape on the side surface because the etching rate at that portion was faster than the others.

その後は従来の技術同様に、必要に応じて金属配線パターン上に錫メッキを施し、さらに露出する金属回路配線パターンの表面を含む基板全面に封止材樹脂からなる保護膜を形成し、フレキシブル配線基板を得た。   After that, as in the conventional technology, if necessary, tin plating is applied to the metal wiring pattern, and a protective film made of a sealing material resin is formed on the entire surface of the substrate including the exposed surface of the metal circuit wiring pattern. A substrate was obtained.

上記のようにして形成されたフレキシブル配線基板にICチップとのACF接合をした後、封止材樹脂にて、密閉絶縁処理を施した試料を、JESD22−A104−A温度サイクル試験、−65+0/−10*200+10/−0℃にて500サイクル実施したところ、従来の製法にて製造したものについては封止材樹脂と基材配線間の剥離が8/1000pcs発生していたが、本発明によるフレキシブル配線基板については、0/1000pcsと剥離不良数は減少した。金属配線側面部の窪み形状によって封止材樹脂との密着力が増加し、剥離不良数の減少したことにより信頼性の高い配線基板を提供することができた。   After performing ACF bonding with an IC chip on the flexible wiring board formed as described above, a sample subjected to hermetic insulation treatment with a sealing material resin was used as a JESD22-A104-A temperature cycle test, -65 + 0 / When 500 cycles were carried out at −10 * 200 + 10 / −0 ° C., peeling between the encapsulant resin and the substrate wiring occurred at 8/1000 pcs for those manufactured by the conventional manufacturing method. For the flexible wiring board, the number of peeling defects decreased to 0/1000 pcs. Due to the depression shape of the side surface of the metal wiring, the adhesive force with the sealing material resin was increased, and the number of defective peeling was reduced, so that a highly reliable wiring board could be provided.

本発明のフレキシブル配線基板の一例を示す断面図である。It is sectional drawing which shows an example of the flexible wiring board of this invention. 本発明のフレキシブル配線基板の他の例を示す断面図であるIt is sectional drawing which shows the other example of the flexible wiring board of this invention. 本発明のフレキシブル配線基板の製造方法を説明する断面工程図であって、(a)はフォトレジスト層を形成した図、(b)はフォトレジストパターンを形成した図、(c)はメッキにより金属配線層を形成した図、(d)は第2の金属シード層を除去した図、(e)は第1の金属シード層を除去した図、(f)は本発明のフレキシブル配線基板の完成図である。It is sectional process drawing explaining the manufacturing method of the flexible wiring board of this invention, (a) is the figure which formed the photoresist layer, (b) is the figure which formed the photoresist pattern, (c) is metal by plating. The figure which formed the wiring layer, (d) is the figure which removed the 2nd metal seed layer, (e) is the figure which removed the 1st metal seed layer, (f) is the completion figure of the flexible wiring board of this invention It is. 従来のフレキシブル配線基板の製造方法を説明する断面工程図であって、(a)はフォトレジスト層を形成した図、(b)はフォトレジストパターンを形成した図、(c)はメッキにより金属配線層を形成した図、(d)は第2の金属シード層を除去した図、(e)は第1の金属シード層を除去した図、(f)は金属メッキ層及び封止材樹脂を形成したフレキシブル配線基板の完成図である。It is sectional process drawing explaining the manufacturing method of the conventional flexible wiring board, (a) is the figure which formed the photoresist layer, (b) is the figure which formed the photoresist pattern, (c) is metal wiring by plating. The figure which formed the layer, (d) the figure which removed the 2nd metal seed layer, (e) the figure which removed the 1st metal seed layer, (f) formed the metal plating layer and the sealing material resin It is the completion drawing of the flexible wiring board which was made.

符号の説明Explanation of symbols

1 絶縁フィルム
2 第1の金属シード層
3 第2の金属シード層
4 フォトレジスト層
5 金属配線層
6 窪み
7 金属メッキ層
8 封止材樹脂
9 空隙
10、11 フレキシブル配線基板

DESCRIPTION OF SYMBOLS 1 Insulating film 2 1st metal seed layer 3 2nd metal seed layer 4 Photoresist layer 5 Metal wiring layer 6 Depression 7 Metal plating layer 8 Sealing material resin 9 Space | gap 10, 11 Flexible wiring board

Claims (8)

絶縁フィルムの少なくとも片側の面に金属配線層が形成された金属配線基板であって、
前記金属配線層が、低電流密度にて析出された中間部の銅メッキ層と前記中間部との界面が前記中間部の電流密度より高い、高電流密度で析出された銅メッキ層からなる積層構造をなし、かつ該中間部の側面に窪みを有することを特徴とするフレキシブル配線基板。
A metal wiring board having a metal wiring layer formed on at least one surface of an insulating film,
The metal wiring layer is composed of a copper plating layer deposited at a high current density, wherein the interface between the intermediate copper plating layer deposited at a low current density and the intermediate portion is higher than the current density at the middle portion. A flexible wiring board having a structure and having a depression on a side surface of the intermediate portion .
前記中間部が、絶縁フィルム又は絶縁フィルム表面の金属シード層との界面から0.1μm以上、前記金属配線層表面から0.1μm以下の間に形成されてなることを特徴とする請求項1に記載のフレキシブル配線基板。 The intermediate portion, the insulating film or the interface from 0.1μm above the metal seed layer of the insulating film surface, to claim 1, characterized by being formed during the following 0.1μm from the metal wiring layer surface The flexible wiring board as described. 前記金属配線層の側面の窪みの深さが、金属配線層の側面から0.1μm以上、金属配線層幅の25%(片側)以下であることを特徴とする請求項1又は2に記載のフレキシブル配線基板。 Depression depth of the side surface of the metal wiring layer, or 0.1μm from the side surface of the metal wiring layer, 25% of the metal wiring layer width (one side) of claim 1 or 2, wherein the less is Flexible wiring board. 絶縁フィルムの少なくとも片側の面にフォトレジスト層を形成し、露光、現像処理後、フォトレジストにてパターン形成された基板に銅メッキを施して金属配線層を形成する回路配線基板の製造方法において、該銅メッキ工程の中間の電流密度を前後の工程の電流密度よりも低くして銅メッキを施した後、エッチング処理を行うことにより、金属配線層の側面に窪みを形成することを特徴とするフレキシブル配線基板の製造方法。   In a method of manufacturing a circuit wiring board, a photoresist layer is formed on at least one surface of an insulating film, and after exposure and development, a metal wiring layer is formed by performing copper plating on a substrate patterned with a photoresist. A recess is formed on the side surface of the metal wiring layer by performing an etching process after performing copper plating by making the current density in the middle of the copper plating process lower than the current density of the preceding and succeeding processes. Manufacturing method of flexible wiring board. 絶縁フィルムの少なくとも片側の面に少なくとも1層以上の金属シード層を形成した後フォトレジスト層を形成し、露光、現像処理後、フォトレジストにてパターン形成された基板に、銅メッキを施して金属配線層を形成する回路配線基板の製造方法において、該銅メッキ工程の中間の電流密度を前後の工程の電流密度よりも低くして銅メッキを施した後、エッチング処理を行うことにより、金属配線層の側面に窪みを形成することを特徴とするフレキシブル配線基板の製造方法。   After forming at least one metal seed layer on at least one side of the insulating film, a photoresist layer is formed, and after exposure and development, the substrate patterned with photoresist is plated with copper to form a metal. In the method of manufacturing a circuit wiring board for forming a wiring layer, a metal wiring is obtained by performing an etching process after performing copper plating by lowering the current density in the middle of the copper plating process to be lower than the current density in the preceding and succeeding processes. A method for producing a flexible wiring board, comprising: forming a depression on a side surface of a layer. 前記銅メッキ工程の電流密度をメッキ開始直後から増加させ、一旦該電流密度を下げた後再び該電流密度を増加させることを特徴する請求項4又は5に記載のフレキシブル配線基板の製造方法。 The method for manufacturing a flexible wiring board according to claim 4, wherein the current density in the copper plating step is increased immediately after the start of plating, the current density is once decreased, and then the current density is increased again. 前記請求項4から6のいずれか1項に記載の製造方法に引き続き、金属配線層表面の所望の箇所に金属メッキ層を形成することを特徴とするフレキシブル配線基板の製造方法。 A method for manufacturing a flexible wiring board, comprising forming a metal plating layer at a desired location on the surface of the metal wiring layer following the manufacturing method according to any one of claims 4 to 6 . 請求項記載の製造方法に引き続き、更に、前記金属メッキ層を除く基板全面を封止材樹脂で封止することを特徴とするフレキシブル配線基板の製造方法。 The manufacturing method of the flexible wiring board characterized by sealing the board | substrate whole surface except the said metal plating layer with sealing material resin further following the manufacturing method of Claim 7 .
JP2006008008A 2006-01-16 2006-01-16 Flexible wiring board and manufacturing method thereof. Active JP4735274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006008008A JP4735274B2 (en) 2006-01-16 2006-01-16 Flexible wiring board and manufacturing method thereof.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006008008A JP4735274B2 (en) 2006-01-16 2006-01-16 Flexible wiring board and manufacturing method thereof.

Publications (2)

Publication Number Publication Date
JP2007189177A JP2007189177A (en) 2007-07-26
JP4735274B2 true JP4735274B2 (en) 2011-07-27

Family

ID=38344109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006008008A Active JP4735274B2 (en) 2006-01-16 2006-01-16 Flexible wiring board and manufacturing method thereof.

Country Status (1)

Country Link
JP (1) JP4735274B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5146774B2 (en) * 2009-02-27 2013-02-20 住友金属鉱山株式会社 Two-layer plated substrate and method for manufacturing the same
JP2013089910A (en) * 2011-10-21 2013-05-13 Fujikura Ltd Flexible printed board and manufacturing method of the same
US20210037644A1 (en) * 2017-11-29 2021-02-04 Kyocera Corporation Circuit board and light emitting device provided with same
JP7183582B2 (en) 2018-06-19 2022-12-06 凸版印刷株式会社 glass wiring board

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06252534A (en) * 1993-02-23 1994-09-09 Matsushita Electric Works Ltd Printed wiring board with sealing and its manufacture
JP2001284749A (en) * 2000-03-29 2001-10-12 Matsushita Electric Ind Co Ltd Printed wiring board
JP2002198620A (en) * 2000-12-26 2002-07-12 Matsushita Electric Ind Co Ltd Printed-wiring board and its manufacturing method, and packaging method of electronic component
JP2003086938A (en) * 2001-09-13 2003-03-20 Hitachi Chem Co Ltd Method of manufacturing printed wiring board
JP2003158364A (en) * 2001-11-22 2003-05-30 Hitachi Chem Co Ltd Method of manufacturing printed wiring board
JP2003324265A (en) * 2002-03-01 2003-11-14 Hitachi Chem Co Ltd Etching method and manufacturing method for printed wiring board using it
JP2005166917A (en) * 2003-12-02 2005-06-23 Fujikura Ltd Printed wiring board and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06252534A (en) * 1993-02-23 1994-09-09 Matsushita Electric Works Ltd Printed wiring board with sealing and its manufacture
JP2001284749A (en) * 2000-03-29 2001-10-12 Matsushita Electric Ind Co Ltd Printed wiring board
JP2002198620A (en) * 2000-12-26 2002-07-12 Matsushita Electric Ind Co Ltd Printed-wiring board and its manufacturing method, and packaging method of electronic component
JP2003086938A (en) * 2001-09-13 2003-03-20 Hitachi Chem Co Ltd Method of manufacturing printed wiring board
JP2003158364A (en) * 2001-11-22 2003-05-30 Hitachi Chem Co Ltd Method of manufacturing printed wiring board
JP2003324265A (en) * 2002-03-01 2003-11-14 Hitachi Chem Co Ltd Etching method and manufacturing method for printed wiring board using it
JP2005166917A (en) * 2003-12-02 2005-06-23 Fujikura Ltd Printed wiring board and its manufacturing method

Also Published As

Publication number Publication date
JP2007189177A (en) 2007-07-26

Similar Documents

Publication Publication Date Title
JP4253280B2 (en) Method for manufacturing printed wiring board
US7495177B2 (en) Printed wiring board, its manufacturing method, and circuit device
JP3736806B2 (en) Printed wiring board, manufacturing method thereof, and circuit device
JP5138459B2 (en) Wiring board manufacturing method
JP2008047655A (en) Wiring substrate and its manufacturing method
TWI400024B (en) Wiring substrate and its manufacturing process
JP4735274B2 (en) Flexible wiring board and manufacturing method thereof.
JP2007123622A (en) Flexible printed circuit and method of manufacturing same
JP2011198977A (en) Manufacturing method of semiconductor device
JP2007288079A (en) Wiring structure and high-density wiring board using the same
JP2010045155A (en) Multilayer laminated circuit board
JP2009277987A (en) Film-carrier tape for mounting electronic component and its manufacturing method, and semiconductor device
JP5051355B2 (en) Method for manufacturing printed wiring board
JP2009272571A (en) Printed circuit board and method of manufacturing the same
JP4658100B2 (en) Printed wiring board and circuit device
JP4345742B2 (en) Wiring board and manufacturing method thereof
JP5482017B2 (en) Circuit board and manufacturing method thereof
JP4453847B2 (en) High density wiring board
JP2008263026A (en) Cof wiring substrate and its manufacturing method
JP2007329325A (en) Method for manufacturing interconnection substrate
JP5846655B2 (en) Manufacturing method of semiconductor device
JP3925449B2 (en) Tape carrier for semiconductor device and manufacturing method thereof
JP2002270715A (en) Manufacturing method of semiconductor device, and semiconductor device therefor
JP4168798B2 (en) Method for manufacturing printed wiring board
JP4415985B2 (en) Manufacturing method of metal transfer plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110411

R150 Certificate of patent or registration of utility model

Ref document number: 4735274

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3