JPH0718356A - Copper alloy for electronic equipment, its production and ic lead frame - Google Patents

Copper alloy for electronic equipment, its production and ic lead frame

Info

Publication number
JPH0718356A
JPH0718356A JP16364093A JP16364093A JPH0718356A JP H0718356 A JPH0718356 A JP H0718356A JP 16364093 A JP16364093 A JP 16364093A JP 16364093 A JP16364093 A JP 16364093A JP H0718356 A JPH0718356 A JP H0718356A
Authority
JP
Japan
Prior art keywords
copper alloy
electronic devices
less
content
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16364093A
Other languages
Japanese (ja)
Inventor
Yoshihiro Taketsu
嘉裕 武津
Kenji Kubozono
健治 久保薗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP16364093A priority Critical patent/JPH0718356A/en
Publication of JPH0718356A publication Critical patent/JPH0718356A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To produce an excellent copper alloy for electronic equipment having excellent characteristics of both strength and electric conductivity and satisfying performance required for the recent material for electronic equipment and to provide a method for producing the same. CONSTITUTION:This copper alloy for electronic equipment is the one contg., by weight, 1.0 to 3.0% Ni, 0.06 to 0.5% Si, 0.05 to 0.5% P and 1.0 to 3.0% Zn, suitably contg. at least one or more kinds selected from the group of Sn, Cr, Mg, Mn, Co, Ti, Zr, Ag, B and Fe, and the balance copper, and in which the content of N2 is regulated to <=50ppm, H2 to <=30ppm and O2 to <=20ppm. This alloy is produced by executing a stage of rolling before final finish, heating it in the temp. range of 750 to 950 deg.C for >=1min and rapidly cooling it in water or oil and a stage of subjecting it to the subsequent heating in the temp. range of 350 to 500 deg.C for >=10min.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、集積回路(IC)のリ
ードフレーム材、コネクタ、スイッチ、リレー等に用い
られる電子機器用銅合金およびその製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper alloy for electronic equipment used in lead frame materials for integrated circuits (ICs), connectors, switches, relays, etc., and a method for manufacturing the same.

【0002】[0002]

【従来の技術】電子機器に使用される材料は、部品の小
型化や高信頼性の要求に伴い、高強度、高電導性に加
え、耐食性や耐熱性のより優れたものが望まれている。
従来の電子機器用の銅合金としては、CDA(Copper
Development Association)C19400合金や、
Cu−0.1%Sn、Cu−0.1%Feなどの高電導型の
合金、あるいはりん青銅のような高強度型の合金が主に
使われてきている。またリードフレーム用銅合金として
は、例えば特開平2−205642号公報、特開平2−
205645号公報等に提案され、リードフレーム用銅
合金の製造方法としては、例えば特公昭60−5878
3号公報等に提案されている。
2. Description of the Related Art As materials used in electronic equipment, in addition to high strength and high electrical conductivity, materials having more excellent corrosion resistance and heat resistance have been demanded along with the demand for miniaturization of parts and high reliability. .
Conventional copper alloys for electronic devices include CDA (Copper)
Develoment Association) C19400 alloy,
Highly conductive alloys such as Cu-0.1% Sn and Cu-0.1% Fe or high strength alloys such as phosphor bronze have been mainly used. Further, as the copper alloy for the lead frame, for example, JP-A-2-205642 and JP-A-2-205642.
As a method for producing a copper alloy for a lead frame, which is proposed in Japanese Patent Publication No. 205645, etc., for example, Japanese Patent Publication No. 60-5878.
It is proposed in Japanese Patent No. 3, etc.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記C
DAC19400合金等の従来の合金は、未だ電子機器
に使用される材料の小型化や高信頼性の要求に伴う高強
度、高電導性を併せもつことができないという問題点が
あった。またはんだ付け性やめっき密着性の信頼性向上
のために単に酸素含有量を制限する提案も出されている
が、これだけでは上記信頼性確保には不充分である。本
発明は、機械的強度と電気伝導率の両方に優れた特性を
もち、近来の電子機器用材に求められる性能を満足する
優れた電子機器用銅合金およびその製造方法を提供する
ことを目的とするものである。
However, the above-mentioned C
Conventional alloys such as DAC19400 alloy still have a problem that they cannot have high strength and high electrical conductivity together with the demand for miniaturization and high reliability of materials used for electronic devices. In addition, a proposal has been made to simply limit the oxygen content in order to improve the reliability of solderability and plating adhesion, but this alone is not sufficient for ensuring the above reliability. The present invention has excellent properties in both mechanical strength and electrical conductivity, and an object thereof is to provide an excellent copper alloy for electronic devices and a method for producing the same, which satisfies the performance required for materials for recent electronic devices. To do.

【0004】[0004]

【課題を解決するための手段】本発明者らは鋭意検討の
結果、上記のような従来の課題を解決することができ
た。なお、以下本明細書においては、特記しない限り、
%は重量ベースである。
As a result of earnest studies, the present inventors were able to solve the above-mentioned conventional problems. In the following description, unless otherwise specified,
% Is on a weight basis.

【0005】すなわち本発明は、(1) Ni1.0〜3.
0%、Si0.06〜0.5%、P0.05〜0.5%、Z
n1.0〜3.0%含有し、残部が銅および不可避の不純
物からなり、N2含有量が、50ppm以下、H2含有量
が30ppm以下およびO2含有量が20ppm以下で
あることを特徴とする、電子機器用銅合金を提供するも
のである。
That is, the present invention provides (1) Ni 1.0 to 3.
0%, Si 0.06 to 0.5%, P 0.05 to 0.5%, Z
containing N1.0~3.0%, the balance being copper and inevitable impurities, wherein the N 2 content, 50 ppm or less, H 2 content of 30ppm or less and O 2 content is 20ppm or less The present invention provides a copper alloy for electronic devices.

【0006】また本発明は、(2) Ni1.0〜3.0
%、Si0.06〜0.5%、P0.05〜0.5%、Zn
1.0〜3.0%含有し、さらに副成分としてSn、C
r、Mg、Mn、Co、Ti、Zr、Ag、BおよびF
eからなる群から選択された少なくとも1種または2種
以上を総量で0.001〜0.3%含有し、残部が銅およ
び不可避の不純物からなり、N2含有量が、50ppm
以下、H2含有量が30ppm以下およびO2含有量が2
0ppm以下であることを特徴とする、電子機器用銅合
金を提供するものである。
The present invention also provides (2) Ni 1.0-3.0.
%, Si 0.06 to 0.5%, P 0.05 to 0.5%, Zn
1.0 to 3.0%, and Sn and C as secondary components
r, Mg, Mn, Co, Ti, Zr, Ag, B and F
containing at least one or two or more kinds selected from the group consisting of e in a total amount of 0.001 to 0.3%, the balance consisting of copper and inevitable impurities, and having an N 2 content of 50 ppm.
Hereinafter, the H 2 content is 30 ppm or less and the O 2 content is 2
The present invention provides a copper alloy for electronic devices, which is characterized by being 0 ppm or less.

【0007】さらに本発明は、(3) 結晶粒度が20μ
m以下であることを特徴とする、前記(1)または(2)に記
載の電子機器用銅合金を提供するものである。
Further, according to the present invention, (3) the grain size is 20 μm.
The copper alloy for electronic devices according to the above (1) or (2), characterized in that the copper alloy has a thickness of m or less.

【0008】さらにまた本発明は、(4) 時効処理によ
る析出物が存在し、その析出物の大きさが2μm以下で
あることを特徴とする、前記(1)ないし(3)のいずれか1
項に記載の電子機器用銅合金を提供するものである。
Furthermore, the present invention (4) is characterized in that there is a precipitate by aging treatment, and the size of the precipitate is 2 μm or less, any one of the above (1) to (3)
And a copper alloy for electronic devices.

【0009】また本発明は、(4) 前記(1)または(2)に
記載の成分を添加し溶解した電子機器用銅合金の鋳塊の
最終仕上圧延前に、750〜950℃の温度範囲で1分
間以上加熱し、水または油中で急冷する工程と、その後
350〜500℃の温度範囲で10分間以上の加熱を施
す工程を行うことを特徴とする、電子機器用銅合金条の
製造方法を提供するものである。
The present invention also provides (4) a temperature range of 750 to 950 ° C. before the final finish rolling of the ingot of the copper alloy for electronic devices in which the components described in (1) or (2) are added and melted. Of a copper alloy strip for electronic equipment, characterized by performing a step of heating for 1 minute or more in water and quenching in water or oil, and then performing a step of heating in a temperature range of 350 to 500 ° C. for 10 minutes or more. It provides a method.

【0010】さらに本発明は、(6) 前記(1)または(2)
に記載の成分を添加し溶解した電子機器用銅合金の鋳塊
の最終仕上圧延前に、750〜950℃の温度範囲で1
分間以上加熱し、この後4℃/分以下で徐冷することを
特徴とする、電子機器用銅合金条の製造方法を提供する
ものである。
Further, the present invention is (6) above (1) or (2)
In the temperature range of 750 to 950 ° C., before the final finish rolling of the ingot of the copper alloy for electronic devices in which the components described in 1) are added and melted
The present invention provides a method for producing a copper alloy strip for electronic devices, which comprises heating for at least 1 minute and then gradually cooling at 4 ° C / minute or less.

【0011】さらにまた本発明は、(7) 前記(1)または
(2)に記載の成分を添加し溶解した電子機器用銅合金の
鋳塊の最終仕上圧延前に、750〜950℃の温度範囲
で1分間以上加熱した後、500℃までは4℃/分以上
で冷却し、500〜350℃の間で少なくとも1時間以
上保持または徐冷することを特徴とする、電子機器用銅
合金条の製造方法を提供するものである。
The present invention also provides (7) the above (1) or
Before the final finish rolling of the ingot of the copper alloy for electronic devices in which the components described in (2) are added and melted, after heating for 1 minute or more in the temperature range of 750 to 950 ° C, up to 500 ° C, 4 ° C / minute The present invention provides a method for producing a copper alloy strip for electronic devices, which comprises cooling as described above and holding or gradually cooling at a temperature of 500 to 350 ° C. for at least 1 hour or more.

【0012】また本発明は、(8) 前記(1)ないし(4)の
いずれか1項に記載の電子機器用銅合金を用いたICリ
ードフレームを提供するものである。
The present invention also provides (8) an IC lead frame using the copper alloy for electronic devices according to any one of (1) to (4) above.

【0013】[0013]

【作用】次に本発明の電子機器用銅合金を構成する合金
成分の添加理由と、その組成範囲の限定理由について説
明する。Ni、PおよびSiは、これらの元素がNi5
2やNi2Si等の金属間化合物を効率よく生成し、強度の
向上と導電率の低下の少ない範囲とし、Niの下限1.
0%は、これ未満では金属間化合物が少なく、強度の向
上が少ないためであり、3%を超えると強度水準の向上
が、配合量に比して効果が少なくなり、また加工性が劣
化するとともに、電気伝導率の低下とはんだめっきの耐
熱性が劣化する傾向にあるためである。NiとP、およ
びNiとSiの金属間化合物を効率的に生成させるため
には、重量比でNi:Pが約5:1、Ni:Siが約
4:1にあるときに、強度、電気伝導率の水準が最も優
れており、これは金属間化合物として、Ni52やNi2
Siにほぼ相当している。従ってP、Siの量は、この
重量比より範囲を定めた。Znはめっきの剥離に対する
耐熱性を向上する効果があり、下限1%未満ではその効
果が小さく、上限3%は、これを超えると、はんだ付け
性の劣化および電気伝導率の低下が大きくなるためこの
範囲を定めた。
Next, the reason for adding the alloy components constituting the copper alloy for electronic equipment of the present invention and the reason for limiting the composition range will be described. Ni, P and Si have these elements as Ni 5 P.
The lower limit of Ni is 1. In the range where intermetallic compounds such as 2 and Ni 2 Si are efficiently generated, and the strength is improved and the conductivity is not lowered.
If it is less than 0%, the amount of intermetallic compounds is small and the strength is not improved so much. If it exceeds 3%, the improvement of the strength level is less effective than the compounding amount, and the workability is deteriorated. At the same time, the electric conductivity tends to decrease and the heat resistance of the solder plating tends to deteriorate. In order to efficiently generate the intermetallic compound of Ni and P and Ni and Si, the strength and the electric property should be set when the weight ratio of Ni: P is about 5: 1 and Ni: Si is about 4: 1. It has the highest level of conductivity, which is an intermetallic compound such as Ni 5 P 2 or Ni 2.
It is almost equivalent to Si. Therefore, the amounts of P and Si are determined by this weight ratio. Zn has an effect of improving heat resistance against peeling of plating, and if the lower limit is less than 1%, the effect is small, and if it exceeds the upper limit of 3%, the solderability is deteriorated and the electrical conductivity is lowered. This range was set.

【0014】副成分として添加したSn、Co、Mgは
母材への固溶により強度向上を狙ったものであり少なく
とも1種または2種以上0.001%以上添加すると引
張強さが向上するが、0.3%を超えると導電性が低下
する。
Sn, Co, and Mg added as subcomponents are intended to improve the strength by solid solution in the base material. If at least one kind or two or more kinds are added by 0.001% or more, the tensile strength is improved. , If 0.3% is exceeded, the conductivity will decrease.

【0015】また副成分として添加したCr、Ti、Z
r、Feは少なくとも1種または2種以上0.001%
以上添加すると耐熱性が向上するが、0.3%を超える
と、未固溶として結晶粒界に分散しやすくなり、めっき
密着性等の信頼性が低下する。
Cr, Ti and Z added as auxiliary components
r and Fe are at least one kind or two or more kinds and 0.001%
If added in the above amount, the heat resistance is improved, but if it exceeds 0.3%, it becomes undissolved and easily dispersed in the grain boundaries, and the reliability such as plating adhesion is deteriorated.

【0016】さらに副成分としてAgを0.001%以
上添加すると、めっきの耐熱信頼性が向上するが、0.
3%を超えると添加量に見合う効果も得られず、コスト
が上昇するだけとなる。
Further, when 0.001% or more of Ag is added as a sub ingredient, the heat resistance reliability of the plating is improved, but
If it exceeds 3%, the effect corresponding to the added amount cannot be obtained, and the cost only increases.

【0017】あるいは副成分としてMn、Bのうち少な
くとも1種を0.001%以上添加すると、脱酸剤とし
てO2の含有量を少なくでき、はんだ付け性、めっき密
着性を向上できるが、0.3%を超えると導電率が低下
する。
Alternatively, if at least one of Mn and B is added as an accessory component in an amount of 0.001% or more, the content of O 2 as a deoxidizer can be reduced, and solderability and plating adhesion can be improved. If it exceeds 0.3%, the conductivity decreases.

【0018】[0018]

【実施例】以下、本発明を実施例によって説明する。 実施例1.(表1)に示す各組成成分を添加し溶解、鋳
造後、冷間圧延と熱処理をくり返し、最終的に厚さ0.
4mmの板状に仕上げ、その後下記の加工を施し、特性確
認を行った。なお、表1による鋳塊加工方法は下記のA
工程によった。
EXAMPLES The present invention will be described below with reference to examples. Example 1. After adding each compositional component shown in (Table 1), melting and casting, cold rolling and heat treatment were repeated, and finally the thickness was reduced to 0.
A 4 mm plate was finished, and the following processing was then performed to confirm the characteristics. In addition, the ingot processing method according to Table 1 is as follows.
It depends on the process.

【0019】(A工程)0.4mm板→焼入(800℃×
3分間、水中焼入)→時効処理(450℃×2時間)→
圧延0.25mm板。
(Process A) 0.4 mm plate → quenched (800 ° C. ×
3 minutes, quenching in water) → aging treatment (450 ° C x 2 hours) →
Rolled 0.25 mm plate.

【0020】また(表1)において、導電率は、試料の
電気抵抗を測定することにより、電気伝導率(%IAC
S)で表示した。また、めっき耐熱性とは、上記圧延後
の0.25mm板にはんだ付けした後、150℃の高温に
保持し、その後はんだ付け部について密着曲げを行い、
剥離等が生じるまでの時間を測定し、評価したものであ
る。また図1および図2において、引張強さと電気伝導
率の関係を示したもので、斜線部で示す範囲が目標とす
る特性で、電気伝導率38%以上で引張強さとのバラン
スを考えて熱処理範囲を決定した。
In (Table 1), the electric conductivity was measured by measuring the electric resistance of the sample, and the electric conductivity (% IAC) was obtained.
It is indicated by S). In addition, plating heat resistance means that after soldering to the 0.25 mm plate after rolling, it is held at a high temperature of 150 ° C., and then the soldered part is subjected to close contact bending,
The time until peeling or the like occurs was measured and evaluated. In addition, in FIG. 1 and FIG. 2, the relationship between the tensile strength and the electric conductivity is shown. The range indicated by the shaded area is the target characteristic, and the electric conductivity is 38% or more and the heat treatment is performed in consideration of the balance with the tensile strength. The range was determined.

【0021】(表1)の結果より、(No.1)と(No.9)、(N
o.5)と(No.13)の各試料を比較すると、Niが1.0%未
満では引張強さが低下し、3.0%を超えて添加すると
導電率が低下することがわかる。
From the results of (Table 1), (No. 1), (No. 9), (N
Comparing each sample of o.5) and (No. 13), it can be seen that the tensile strength decreases when Ni is less than 1.0%, and the conductivity decreases when Ni exceeds 3.0%.

【0022】また(No.2)と(No.10)、(No.6)と(No.14)の
各試料を比較すると、Pが0.05%未満では引張強
さ、導電率が低下し、Pが0.5%を超えても引張強
さ、導電率が低下することがわかる。
Further, comparing (No. 2) and (No. 10) and (No. 6) and (No. 14) samples, when P is less than 0.05%, the tensile strength and the conductivity decrease. However, even if P exceeds 0.5%, the tensile strength and the conductivity decrease.

【0023】さらに(No.3)と(No.11)、(No.7)と(No.15)
の各試料を比較すると、Siが0.06%未満では引張
強さ、導電率が低下し、Siが0.5%を超えると、導
電率が低下することがわかる。さらにまた(No.4)と(No1
2)、(No.8)と(No.16)を比較すると、Znが1.0%未満
ではめっき耐熱性が劣り、3.0%を超えると、導電率
が低下することがわかる。
Further, (No.3) and (No.11), (No.7) and (No.15)
Comparing each of the above samples, it can be seen that when Si is less than 0.06%, the tensile strength and the conductivity decrease, and when Si exceeds 0.5%, the conductivity decreases. Furthermore, (No.4) and (No1
Comparing (2), (No. 8) and (No. 16), it can be seen that the plating heat resistance is poor when Zn is less than 1.0% and the conductivity is reduced when Zn is more than 3.0%.

【0024】また(No.18)においてN2を55ppm、(No.1
7)においてH2を35ppm、(No.19)においてO2を30pp
mと残存量が多い場合、めっき耐熱性が低下する。とく
に試料に銀めっき後350℃×10分間加熱するとめっ
きの部分にフクレが発生し、めっき耐熱性の低下が認め
られる。
In (No. 18), N 2 is 55 ppm, and (No. 1)
35 ppm of H 2 in 7) and 30 pp of O 2 in (No. 19)
When m and the remaining amount are large, the plating heat resistance is reduced. In particular, when the sample is heated at 350 ° C. for 10 minutes after silver plating, blisters are generated in the plated portion, and reduction in plating heat resistance is recognized.

【0025】さらに(No.20)および(No.21)に示すように
副成分として添加したSnおよびCoは、その合計量が
0.4%に達すると引張強さは向上するが、導電率、め
っき耐熱性が低下することがわかる。
Further, as shown in (No. 20) and (No. 21), when Sn and Co added as auxiliary components, the tensile strength is improved when the total amount thereof reaches 0.4%, but the conductivity is increased. It can be seen that the plating heat resistance decreases.

【0026】また(No.22)および(No.23)に示すように副
成分として添加したSn、Mgは、その合計量が0.4
%に達すると引張強さは向上するが、導電率、めっき耐
熱性が低下することがわかる。
Further, as shown in (No. 22) and (No. 23), the total amount of Sn and Mg added as auxiliary components is 0.4.
It can be seen that when the content reaches 100%, the tensile strength is improved, but the electrical conductivity and plating heat resistance are reduced.

【0027】(No.24)および(No.29)に示すように副成分
として添加したCr、Tiは、その合計量が0.4%に
達すると引張強さは向上するが、導電率、めっき耐熱性
が低下する。
As shown in (No. 24) and (No. 29), when Cr and Ti added as auxiliary components reach a total content of 0.4%, the tensile strength is improved, but the conductivity, The plating heat resistance decreases.

【0028】(No.25)および(No.28)に示すように副成分
として添加したCr、Zrは、その合計量が0.4%に
達すると引張強さは向上するが、導電率、めっき耐熱性
が低下する。(No.27)および(No.37)に示すように副成分
として添加したCr、Feは、その合計量が0.4%に
達すると、引張強さは向上するが、導電率、めっき耐熱
性が低下する。
As shown in (No.25) and (No.28), when Cr and Zr added as auxiliary components reach a total content of 0.4%, the tensile strength is improved, but the conductivity, The plating heat resistance decreases. As shown in (No.27) and (No.37), when Cr and Fe added as subcomponents reach a total content of 0.4%, the tensile strength improves, but the electrical conductivity and plating heat resistance are improved. Sex decreases.

【0029】(No.30)および(No.31)に示すように副成分
として添加したAgは、添加量が0.4%に達するとめ
っき耐熱性は向上するが、導電率は低下する。
As shown in (No.30) and (No.31), when Ag is added as an accessory component, the plating heat resistance is improved but the conductivity is lowered when the added amount reaches 0.4%.

【0030】(No.32)および(No.33)および(No.38)に示
すように副成分として添加したMn、Bは添加しない場
合と比較し、O2の含有量を少なくしているが、合計添
加量が0.4%に達すると、導電率が低下する。
As shown in (No. 32), (No. 33) and (No. 38), the content of O 2 is reduced as compared with the case where Mn and B added as accessory components are not added. However, when the total addition amount reaches 0.4%, the conductivity decreases.

【0031】図2は、表1に示した各実施例および各比
較例において、導電率と引張強さについてプロットした
ものである。図2から、本発明の実施例は、比較例に対
して導電率および引張強さともに優れていることがわか
る。
FIG. 2 is a plot of electrical conductivity and tensile strength in each of the examples and comparative examples shown in Table 1. From FIG. 2, it can be seen that the examples of the present invention are superior to the comparative examples in both conductivity and tensile strength.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】実施例2.上記実施例1は、800℃×3
分間水中焼入後450℃×2時間の時効処理を施した各
組成成分の場合であるが、本実施例2においては、図1
に示すように焼入温度および時効処理温度を変化させて
各組成成分について導電率および引張強さを測定した。
その結果、焼入温度で750〜950℃、時効処理温度
350〜500℃の範囲であれば、引張強さおよび導電
率について最適特性が得られることがわかる。なお前記
焼入時の加熱750〜950℃は、1分間以上、前記時
効処理は10分間以上行うのが好ましい。また前記焼入
における冷却媒体は、通常のものでよく、例えば水また
は油が挙げられる。
Example 2. Example 1 above is 800 ° C. × 3
This is the case of each composition component that has been subjected to an aging treatment at 450 ° C. for 2 hours after quenching in water for 1 minute, but in Example 2 of FIG.
As shown in, the quenching temperature and the aging temperature were changed, and the electrical conductivity and tensile strength of each composition component were measured.
As a result, it can be seen that optimum properties can be obtained with respect to tensile strength and conductivity within a range of 750 to 950 ° C. for quenching temperature and 350 to 500 ° C. for aging treatment temperature. The heating at the time of quenching is preferably 750 to 950 ° C. for 1 minute or more, and the aging treatment is preferably performed for 10 minutes or more. The cooling medium in the quenching may be a usual cooling medium, and examples thereof include water and oil.

【0035】さらに、図1を参照すると、750〜95
0℃の焼入温度に対応する結晶粒径も20μm以下であ
ることがわかる。この時焼入温度750℃未満では再結
晶不十分であり、950℃を超えると結晶粒径が粗大化
し、曲げ加工において材料表面の肌荒れが出やすくな
る。また、時効温度が350℃未満では、金属間化合物
の析出が不十分で、引張強さ、導電率ともに低下し、5
00℃を超えると、軟化し、引張強さは低下する。
Further referring to FIG. 1, 750-95
It can be seen that the crystal grain size corresponding to the quenching temperature of 0 ° C. is also 20 μm or less. At this time, if the quenching temperature is less than 750 ° C., recrystallization is insufficient, and if it exceeds 950 ° C., the crystal grain size becomes coarse, and the surface of the material tends to be rough during bending. If the aging temperature is less than 350 ° C, the precipitation of intermetallic compounds will be insufficient, and the tensile strength and the conductivity will both decrease, and
If it exceeds 00 ° C, it softens and the tensile strength decreases.

【0036】実施例3.(表2)は、(表1)における
実施例1の各組成における0.4mmまで加工した板材に
ついて、その後焼鈍、圧延し、0.25mmの板材とする
までの焼鈍条件を変化させた場合の引張強さおよび導電
率の測定結果を示したものである。
Example 3. Table 2 shows the case where the plate material processed to 0.4 mm in each composition of Example 1 in (Table 1) was annealed and rolled, and the annealing conditions were changed to a plate material of 0.25 mm. It shows the measurement results of tensile strength and conductivity.

【0037】区分ア〜ウをそれぞれ比較すると判るのよ
うに、例えば800℃で2時間加熱後、最終圧延仕上前
に4℃/分以下で徐冷すれば、引張強さおよび導電率に
ついて適切な特性が得られることがわかる。また区分エ
〜クをそれぞれ比較すると判るように、例えば800℃
で2時間加熱後、500℃までは4℃/分以上で冷却
し、500〜350℃の間で1時間以上保持すれば、前
記と同様に引張強さおよび導電率について適切な特性が
得られることがわかる。
As can be seen by comparing the categories a to c, for example, after heating at 800 ° C. for 2 hours and gradually cooling at 4 ° C./min or less before the final rolling finish, the tensile strength and the conductivity are suitable. It can be seen that the characteristics can be obtained. Also, as you can see by comparing the categories d to 800 ° C, for example
After heating for 2 hours at 500 ° C., cooling to 4 ° C./min or more up to 500 ° C. and holding for 1 hour or more between 500 ° C. and 350 ° C., appropriate properties for tensile strength and conductivity are obtained as described above. I understand.

【0038】[0038]

【表3】 [Table 3]

【0039】また以上述べてきた特性の電子機器用銅合
金はICリードフレームとして最適な特性を有すること
は言うまでもない。
It goes without saying that the copper alloy for electronic devices having the characteristics described above has the optimum characteristics as an IC lead frame.

【0040】[0040]

【発明の効果】以上実施例から明らかなように、本発明
により、強度と電気伝導率の両方に優れた特性をもち、
近来の電子機器用材に求められる性能を満足する優れた
電子機器用銅合金およびその製造方法が提供されるた
め、電子機器用部品の小型化等に非常に有用である。
As is clear from the above examples, according to the present invention, it has excellent characteristics in both strength and electrical conductivity,
Since an excellent copper alloy for electronic devices and a method for producing the same that satisfy the performance required for recent electronic device materials are provided, they are very useful for downsizing of electronic device parts.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による銅合金の時効温度およ
び焼入温度を変化させた場合の特性図である。
FIG. 1 is a characteristic diagram when a aging temperature and a quenching temperature of a copper alloy according to an embodiment of the present invention are changed.

【図2】本発明方法のA工程により得られた銅合金とそ
の比較例により得られた銅合金の引張強さおよび導電率
を示す図である。
FIG. 2 is a diagram showing the tensile strength and the electrical conductivity of the copper alloy obtained in step A of the method of the present invention and the copper alloy obtained in the comparative example.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 Ni1.0〜3.0重量%、Si0.06
〜0.5重量%、P0.05〜0.5重量%、Zn1.0〜
3.0重量%含有し、残部が銅および不可避の不純物か
らなり、N2含有量が、50ppm以下、H2含有量が3
0ppm以下およびO2含有量が20ppm以下である
ことを特徴とする、電子機器用銅合金。
1. Ni 1.0 to 3.0% by weight, Si 0.06
~ 0.5 wt%, P0.05-0.5 wt%, Zn1.0-
3.0% by weight, the balance consisting of copper and unavoidable impurities, N 2 content of 50 ppm or less, H 2 content of 3
A copper alloy for electronic devices, which is 0 ppm or less and has an O 2 content of 20 ppm or less.
【請求項2】 Ni1.0〜3.0重量%、Si0.06
〜0.5重量%、P0.05〜0.5重量%、Zn1.0〜
3.0重量%含有し、さらに副成分としてSn、Cr、
Mg、Mn、Co、Ti、Zr、Ag、BおよびFeか
らなる群から選択された少なくとも1種または2種以上
を総量で0.001〜0.3重量%含有し、残部が銅およ
び不可避の不純物からなり、N2含有量が、50ppm
以下、H2含有量が30ppm以下およびO2含有量が2
0ppm以下であることを特徴とする、電子機器用銅合
金。
2. Ni 1.0 to 3.0% by weight, Si 0.06
~ 0.5 wt%, P0.05-0.5 wt%, Zn1.0-
It contains 3.0% by weight, and Sn, Cr, and
It contains at least one or two or more kinds selected from the group consisting of Mg, Mn, Co, Ti, Zr, Ag, B and Fe in a total amount of 0.001 to 0.3% by weight, and the balance copper and unavoidable. Containing impurities, N 2 content of 50ppm
Hereinafter, the H 2 content is 30 ppm or less and the O 2 content is 2
Copper alloy for electronic devices, which is 0 ppm or less.
【請求項3】 結晶粒度が20μm以下であることを特
徴とする請求項1または2に記載の電子機器用銅合金。
3. The copper alloy for electronic devices according to claim 1, wherein the crystal grain size is 20 μm or less.
【請求項4】 時効処理による析出物が存在し、その析
出物の大きさが2μm以下であることを特徴とする、請
求項1ないし3のいずれか1項に記載の電子機器用銅合
金。
4. The copper alloy for electronic devices according to claim 1, wherein precipitates due to aging treatment are present and the size of the precipitates is 2 μm or less.
【請求項5】 請求項1または2に記載の成分を添加し
溶解した電子機器用銅合金の鋳塊の最終仕上圧延前に、
750〜950℃の温度範囲で1分間以上加熱し、水ま
たは油中で急冷する工程と、その後350〜500℃の
温度範囲で10分間以上の加熱を施す工程を行うことを
特徴とする、電子機器用銅合金条の製造方法。
5. Before final finishing rolling of an ingot of a copper alloy for electronic devices, in which the component according to claim 1 or 2 is added and melted,
An electronic device characterized by performing a step of heating in a temperature range of 750 to 950 ° C for 1 minute or more and quenching in water or oil, and a step of heating in a temperature range of 350 to 500 ° C for 10 minutes or more. Manufacturing method of copper alloy strip for equipment.
【請求項6】 請求項1または2に記載の成分を添加し
溶解した電子機器用銅合金の鋳塊の最終仕上圧延前に7
50〜950℃の温度範囲で1分間以上加熱し、この後
4℃/分以下で徐冷することを特徴とする、電子機器用
銅合金条の製造方法。
6. The final ingot rolling of the ingot of the copper alloy for electronic devices in which the component according to claim 1 or 2 is added and melted.
A method for producing a copper alloy strip for electronic devices, which comprises heating in a temperature range of 50 to 950 ° C. for 1 minute or more, and then gradually cooling at 4 ° C./minute or less.
【請求項7】 請求項1または2に記載の成分を添加し
溶解した電子機器用銅合金の鋳塊の最終仕上圧延前に7
50〜950℃の温度範囲で1分間以上加熱した後、5
00℃までは4℃/分以上で冷却し、500〜350℃
の間では少なくとも1時間以上保持または徐冷すること
を特徴とする、電子機器用銅合金条の製造方法。
7. Before final finishing rolling of an ingot of a copper alloy for electronic devices, in which the component according to claim 1 or 2 is added and melted.
After heating in the temperature range of 50 to 950 ° C for 1 minute or more, 5
Cool at 4 ℃ / min or more up to 00 ℃, 500-350 ℃
The method for producing a copper alloy strip for electronic devices, characterized by holding or gradually cooling for at least 1 hour or more.
【請求項8】 請求項1ないし4のいずれか1項に記載
の電子機器用銅合金を用いたICリードフレーム。
8. An IC lead frame using the copper alloy for electronic devices according to any one of claims 1 to 4.
JP16364093A 1993-07-01 1993-07-01 Copper alloy for electronic equipment, its production and ic lead frame Pending JPH0718356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16364093A JPH0718356A (en) 1993-07-01 1993-07-01 Copper alloy for electronic equipment, its production and ic lead frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16364093A JPH0718356A (en) 1993-07-01 1993-07-01 Copper alloy for electronic equipment, its production and ic lead frame

Publications (1)

Publication Number Publication Date
JPH0718356A true JPH0718356A (en) 1995-01-20

Family

ID=15777790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16364093A Pending JPH0718356A (en) 1993-07-01 1993-07-01 Copper alloy for electronic equipment, its production and ic lead frame

Country Status (1)

Country Link
JP (1) JPH0718356A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6641930B2 (en) * 2000-05-20 2003-11-04 Stolberger Metallwerke Gmbh & Co Kg Electrically conductive metal tape and plug connector
WO2005083137A1 (en) * 2004-02-27 2005-09-09 The Furukawa Electric Co., Ltd. Copper alloy
JP2006249516A (en) * 2005-03-11 2006-09-21 Mitsubishi Electric Corp Copper alloy and its manufacturing method
JP2007070652A (en) * 2005-09-02 2007-03-22 Hitachi Cable Ltd Copper alloy material for electrical part, and its manufacturing method
JP2007070651A (en) * 2005-09-02 2007-03-22 Hitachi Cable Ltd Copper alloy material and its manufacturing method
WO2008123433A1 (en) * 2007-03-30 2008-10-16 Nippon Mining & Metals Co., Ltd. Cu-ni-si-based alloy for electronic material
KR100885824B1 (en) * 2006-03-31 2009-02-26 닛코 킨조쿠 가부시키가이샤 Copper alloy having superior hot workability and method for producing same
KR100885825B1 (en) * 2006-03-31 2009-02-26 닛코 킨조쿠 가부시키가이샤 Copper alloy having superior hot workability and method for producing same
WO2009099198A1 (en) 2008-02-08 2009-08-13 The Furukawa Electric Co., Ltd. Copper alloy material for electric and electronic components
US8430979B2 (en) 2002-07-05 2013-04-30 Gbc Metals, Llc Copper alloy containing cobalt, nickel and silicon

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02232327A (en) * 1989-03-06 1990-09-14 Nippon Mining Co Ltd High conductivity copper alloy having excellent workability and heat resistance
JPH03177548A (en) * 1989-12-04 1991-08-01 Mitsubishi Electric Corp Production of copper alloy bar for electronic equipment
JPH0456096A (en) * 1990-06-21 1992-02-24 Fuji Electric Co Ltd Power control method for direct current arc furnace

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02232327A (en) * 1989-03-06 1990-09-14 Nippon Mining Co Ltd High conductivity copper alloy having excellent workability and heat resistance
JPH03177548A (en) * 1989-12-04 1991-08-01 Mitsubishi Electric Corp Production of copper alloy bar for electronic equipment
JPH0456096A (en) * 1990-06-21 1992-02-24 Fuji Electric Co Ltd Power control method for direct current arc furnace

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6641930B2 (en) * 2000-05-20 2003-11-04 Stolberger Metallwerke Gmbh & Co Kg Electrically conductive metal tape and plug connector
US8430979B2 (en) 2002-07-05 2013-04-30 Gbc Metals, Llc Copper alloy containing cobalt, nickel and silicon
WO2005083137A1 (en) * 2004-02-27 2005-09-09 The Furukawa Electric Co., Ltd. Copper alloy
US8951371B2 (en) 2004-02-27 2015-02-10 The Furukawa Electric Co., Ltd. Copper alloy
JP4494258B2 (en) * 2005-03-11 2010-06-30 三菱電機株式会社 Copper alloy and manufacturing method thereof
JP2006249516A (en) * 2005-03-11 2006-09-21 Mitsubishi Electric Corp Copper alloy and its manufacturing method
JP2007070652A (en) * 2005-09-02 2007-03-22 Hitachi Cable Ltd Copper alloy material for electrical part, and its manufacturing method
JP4501818B2 (en) * 2005-09-02 2010-07-14 日立電線株式会社 Copper alloy material and method for producing the same
JP2007070651A (en) * 2005-09-02 2007-03-22 Hitachi Cable Ltd Copper alloy material and its manufacturing method
KR100885825B1 (en) * 2006-03-31 2009-02-26 닛코 킨조쿠 가부시키가이샤 Copper alloy having superior hot workability and method for producing same
KR100885824B1 (en) * 2006-03-31 2009-02-26 닛코 킨조쿠 가부시키가이샤 Copper alloy having superior hot workability and method for producing same
WO2008123433A1 (en) * 2007-03-30 2008-10-16 Nippon Mining & Metals Co., Ltd. Cu-ni-si-based alloy for electronic material
WO2009099198A1 (en) 2008-02-08 2009-08-13 The Furukawa Electric Co., Ltd. Copper alloy material for electric and electronic components

Similar Documents

Publication Publication Date Title
JP3550233B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
JP2002180165A (en) Copper based alloy having excellent press blanking property and its production method
JP4787986B2 (en) Copper alloy and manufacturing method thereof
JPH0741887A (en) Copper alloy for electric and electronic part and its preparation
JPH0841612A (en) Copper alloy and its preparation
JP2006009137A (en) Copper alloy
JP2001294957A (en) Copper alloy for connector and its producing method
JP4503696B2 (en) Electronic parts made of copper alloy sheets with excellent bending workability
JP3797882B2 (en) Copper alloy sheet with excellent bending workability
JP2593107B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
JP4567906B2 (en) Copper alloy plate or strip for electronic and electrical parts and method for producing the same
KR100403187B1 (en) copper alloy for electronic materials with excellent surface special and manufacturing method therefor
JPH0718356A (en) Copper alloy for electronic equipment, its production and ic lead frame
JP2006200042A (en) Electronic component composed of copper alloy sheet having excellent bending workability
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JPH0987814A (en) Production of copper alloy for electronic equipment
JP2000144284A (en) High-strength and high-conductivity copper-iron alloy sheet excellent in heat resistance
JPH0425339B2 (en)
JPH0788549B2 (en) Copper alloy for semiconductor equipment and its manufacturing method
JPH0718355A (en) Copper alloy for electronic appliance and its production
JP2007100136A (en) Copper alloy for lead frame excellent in uniform plating property
US5248351A (en) Copper Ni-Si-P alloy for an electronic device
JPS6338547A (en) High strength conductive copper alloy
JPH034612B2 (en)
JP2945208B2 (en) Method for producing copper alloy for electrical and electronic equipment