JPS6338545A - High strength conductive copper alloy - Google Patents

High strength conductive copper alloy

Info

Publication number
JPS6338545A
JPS6338545A JP18297986A JP18297986A JPS6338545A JP S6338545 A JPS6338545 A JP S6338545A JP 18297986 A JP18297986 A JP 18297986A JP 18297986 A JP18297986 A JP 18297986A JP S6338545 A JPS6338545 A JP S6338545A
Authority
JP
Japan
Prior art keywords
alloy
phosphor bronze
content
plating
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18297986A
Other languages
Japanese (ja)
Other versions
JPH0331776B2 (en
Inventor
Shoji Shiga
志賀 章二
Toru Tanigawa
徹 谷川
Yoshimasa Ooyama
大山 好正
Masato Asai
真人 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP18297986A priority Critical patent/JPS6338545A/en
Publication of JPS6338545A publication Critical patent/JPS6338545A/en
Publication of JPH0331776B2 publication Critical patent/JPH0331776B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a Cu alloy having superior solderability, adhesion to plating and resistance to stress corrosion cracking by reducing the O2 content in a phosphor bronze type Cu alloy and adding specified amounts of Cr, Fe or Co and one or more among Zn, B, Al, Mg, Si and Ti to the alloy. CONSTITUTION:A phosphor bronze type Cu alloy contg. 2-8wt% Sn and <0.2wt% P is deoxidized to <=0.0025wt% O2 content by adding Mn as a deoxidizing agent so that 0.01-0.5wt% Mn remains in the alloy and 0.05-0.5wt% Cr, 0.05-1.5wt% Fe or Co and 0.01-5wt% in total of one or more among 0.01-5% Zn, 0.01-0.1% B, 0.01-1% Al, 0.01-0.2% Mg, 0.01-0.5% Si and 0.01-0.2% Ti are added to the alloy. A high strength conductive Cu alloy having superior various characteristics and suitable for use as a lead member or a spring material for electronic and electrical apparatuses is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電子電気機器に用いられるリード部材又はバネ
部材等に適した高力伝導性鋼合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a high-strength conductive steel alloy suitable for lead members, spring members, etc. used in electronic and electrical equipment.

(従来技術) 従来、電子電気機器に用いられるコネクター、各種スイ
ッチ、電磁開閉器あるいは各種スプリング等には主にり
ん 2が使用されている。
(Prior Art) Conventionally, phosphorus 2 has been mainly used in connectors, various switches, electromagnetic switches, various springs, etc. used in electronic and electrical equipment.

りん青銅はSn3〜9wt%(以下チと略記)、PO1
05〜0.55%を含有する銅合金であり、その特徴は
Snの含有量により伝導性と引張り強さを目的に応じて
適宜選択できること及び固溶体合金として精密部品の成
形加工性に優れていることである。
Phosphor bronze contains Sn3-9wt% (hereinafter abbreviated as "chi"), PO1
It is a copper alloy containing 0.05 to 0.55% Sn, and its characteristics are that the conductivity and tensile strength can be appropriately selected depending on the purpose depending on the Sn content, and as a solid solution alloy, it has excellent moldability for precision parts. That's true.

りん青銅以外の電子電気機器用銅合金にはスピノーダル
型のCu −Ni−8n系合金、及Q= Cu −Be
系合金がある。前者は引張り強さはりん青銅より高いが
導電率が5〜7%IAGSと低く且つ加工性に乏しい、
又後者は非常に高価なため用途が限定される。
Copper alloys for electronic and electrical equipment other than phosphor bronze include spinodal type Cu-Ni-8n alloys and Q=Cu-Be
There are alloys. The former has higher tensile strength than phosphor bronze, but has a low electrical conductivity of 5 to 7% IAGS and poor workability.
Moreover, the latter is very expensive, so its uses are limited.

りん青銅の改良合金としては、熱間加工性の改良を目的
としてりん青銅にFe%CO等1 o、 5〜2%、O
r、 Zr %Ti、V等i 0.2−0.111%添
加したもの(時開527!′21211 )、りん青銅
にFe f Q、 50、03−0.09%添加したも
の(時開57メg9449)等がある。又耐食性の改良
を目的としてりん青銅にAg全005〜1%添加したも
の(時開IJ9〆75)↓17)がある。
As an improved alloy of phosphor bronze, Fe%CO, etc. 1 o, 5~2%, O, etc. are added to phosphor bronze for the purpose of improving hot workability.
r, Zr % Ti, V, etc. i 0.2-0.111% added (Jihin 527!'21211), Phosphor bronze with Fe f Q, 50,03-0.09% added (Jihin 527!'21211) 57meg9449) etc. In addition, there is a product in which 005 to 1% Ag is added to phosphor bronze for the purpose of improving corrosion resistance (time opening IJ9〆75)↓17).

(解決すべき問題点) りん青銅Ft電子電気機器の各種部材に使用する場合、
半田付は部の接合強度が経時的に劣化する現象、又は5
n1Sn−Pb等のメツキ被膜が経時的に剥離する現象
がみられる。
(Problems to be solved) When using phosphor bronze Ft for various parts of electronic and electrical equipment,
Soldering is a phenomenon in which the joint strength of parts deteriorates over time, or
A phenomenon in which the plating film such as n1Sn-Pb peels off over time is observed.

これらの現象は、りん青銅中のPがりん青銅と半田又ニ
ア1メツキ皮膜との界面に拡散濃縮して界面に生成して
いるCuとSnの化合物であるε相を一層脆化させてお
きるものである。
These phenomena occur because P in the phosphor bronze diffuses and concentrates at the interface between the phosphor bronze and the solder or near plating film, further embrittling the ε phase, which is a compound of Cu and Sn, that forms at the interface. It is something.

メツキ皮膜の剥離に対してはCu又はN1の量全り蛍 ん青銅とメツキ皮膜の間に介在させる方法(持前51〆
41222及び時開49〆10g562)が提案されて
いるが製造工程が煩雑になる等の問題がある。
For the peeling of the plating film, a method has been proposed in which the entire amount of Cu or N1 is interposed between the fluorescent bronze and the plating film (Chimae 51〆41222 and Jikai 49〆10g562), but the manufacturing process is complicated. There are problems such as.

上記のうち半田接合部の経時劣化現象は、プリント基板
実装が、スルーホール実装から半田接続が多用される高
密化面実装へ移行しつつある現状において、早急に解決
されるべき課題である。
Of the above, the aging phenomenon of solder joints is an issue that needs to be solved as soon as possible in the current situation where printed circuit board mounting is transitioning from through-hole mounting to high-density surface mounting in which solder connections are frequently used.

一方これら部品の効率的利用設計が進む中で、部材には
より過大な応力が負荷される傾向にあり、NHs 、、
Sot、NOx等の存在する腐食環境下でもジ1jれ金
主じない耐応力腐食割れ性に浸れた合金の開発が益々望
まれている。
On the other hand, as designs for the efficient use of these parts progress, there is a tendency for members to be subjected to more excessive stress, and NHs,...
It is increasingly desired to develop an alloy that is resistant to stress corrosion cracking even in a corrosive environment where SOx, NOx, etc. are present.

りん青銅が電子電気機器の部材としてより効率的により
信頼性高く利用されていくために改良されるべき点を要
約すると、(1)半田接合部の経時劣化、(2) Sn
、 5n−Pbメツキの密着性の経時劣化、(3)耐応
力腐食割れ性、(lI>熱間加工性、(5)成形加工性
To summarize the points that need to be improved in order for phosphor bronze to be used more efficiently and with higher reliability as a component of electronic and electrical equipment, they are: (1) aging deterioration of solder joints, (2) Sn
, aging deterioration of adhesion of 5n-Pb plating, (3) stress corrosion cracking resistance, (lI>hot workability, (5) moldability.

(6)機械的強度特にバネ性及び応力緩加特性、(7)
4電率等になる。
(6) Mechanical strength, especially springiness and stress relaxation properties, (7)
4 electricity rate etc.

(問題点全解決するための手段) 本発明はかかる状況に鑑みなされたもので、半田接合性
、メツキ密着性及び耐応力腐食割れ性等に優れた電子電
気機器用部拐に適した高力伝導性銅合金に関するもので
ある。
(Means for Solving All Problems) The present invention has been made in view of the above situation, and is a high-strength material suitable for demolishing electronic and electrical equipment that has excellent solder bonding properties, plating adhesion properties, stress corrosion cracking resistance, etc. It concerns conductive copper alloys.

即ち本発明はSn2−8%、P 0.2 %以下、0゜
0、 OO25%以下、Mn0.01〜0.5%、Cr
0.05〜α5%、Feまたは/およびCOtα0う〜
L5%、Zn0.01−5%、 B α01−0.1 
%、MO,01−1%、Mg0.01−0.2%、s1
α0l−05%、T10、01−0.2チの1種又は2
種以上を合計で001〜ラチ含有し残部が銅からなる高
力伝導性鋼合金でちる。
That is, the present invention contains Sn2-8%, P 0.2% or less, 0°0, OO25% or less, Mn 0.01-0.5%, Cr
0.05~α5%, Fe or/and COtα0~
L5%, Zn0.01-5%, B α01-0.1
%, MO, 01-1%, Mg0.01-0.2%, s1
One or two of α0l-05%, T10, 01-0.2chi
It is made of a high strength conductive steel alloy containing a total of 001 to 0.001 to 0.001 to 1.00%, and the balance being copper.

本発明においてSnは強度の向上に有効であるが、その
含有贋金2〜8%に限定した理由は、2%未満では引張
り強さやバネ性が十分でなく、8%を超えると均一なα
固溶体となり難く、成形加工性が低下するためである。
In the present invention, Sn is effective in improving strength, but the reason why the content is limited to 2 to 8% is that if it is less than 2%, the tensile strength and springiness are insufficient, and if it exceeds 8%, the uniform α
This is because it is difficult to form a solid solution, resulting in poor moldability.

PはFe又はGoとFe5P1FetP %FeP 、
 CotP 、 CoP 1GoPs等の化合物を生成
し微細に分布して、結晶粒の粗大化全阻止して熱間加工
性を高め、更に強度、耐熱性及び耐応力腐食割れ性を向
上させる。Pの含有量全02%以下に限定した理由は0
.2%全超えるとPは半田又はメツキ界面に拡散濃縮し
て半田接合性、メツキ密着性を低下させ又熱間加工性に
も有害なためである。
P is Fe or Go and Fe5P1FetP%FeP,
Compounds such as CotP and CoP 1GoPs are generated and finely distributed to completely prevent coarsening of crystal grains, improve hot workability, and further improve strength, heat resistance, and stress corrosion cracking resistance. The reason for limiting the total P content to 0.2% or less is 0.
.. This is because if the amount exceeds 2%, P will diffuse and concentrate at the solder or plating interface, reducing solder bonding properties and plating adhesion, and is also harmful to hot workability.

Pの含有量は特に0.0005〜0.08%としてFe
または/およびGoとの化学量論量と同等かそれ以下と
するのが望ましい。Feまたは/およびGoの含有量2
o、o5〜1.5%に限定した理由は0.05%未満で
は上記Pとの作用効果が不十分であり、L5%を超える
と導電率の低下が大きくなり且つ製造加工性、半田接合
性、メツキ密着性が低下するためである。
In particular, the P content is 0.0005 to 0.08%, and Fe
It is desirable that the amount is equal to or less than the stoichiometric amount of or/and Go. Fe or/and Go content 2
The reason why O is limited to 5 to 1.5% is that if it is less than 0.05%, the action and effect with P described above will be insufficient, and if it exceeds L5%, the conductivity will decrease significantly and the manufacturing processability and solder bonding will be reduced. This is because the properties and adhesion of plating decrease.

Olは不純物として含有されるが、その贋金α0025
%以下に限定した理由は、O,OO25%を超えると成
形加工性が著しく低下するばかりでなく、半田接合性、
メツキ密着性が低下するためである。
Ol is contained as an impurity, but its counterfeit α0025
% or less is because if O, OO exceeds 25%, not only will the moldability deteriorate significantly, but also the solderability and
This is because plating adhesion deteriorates.

Mnは脱酸作用を有し、0!量?低減する動きがある。Mn has a deoxidizing effect, and 0! amount? There is a movement to reduce this.

これの含有量をα01〜0.5%に限定した理由は0.
01%未満では0.を00025%以下に低減するのに
不十分であり、0.5%を超えると導電率の低下が大き
くなるためである。
The reason for limiting the content to α01-0.5% is 0.
0.01% or less. This is because it is insufficient to reduce the electrical conductivity to 0.025% or less, and if it exceeds 0.5%, the decrease in electrical conductivity becomes large.

Zn0.01−5%、B O,Oi −0,1%、AH
0,01〜1俤、1.1g(101〜0.2%、Si0
.01−0.5%、Ti0.01−0.2%の1種又は
2種以上を合計で5チ以下含有せしめるが、これらの元
素は前記Mnの作用を補強し成形加工性、半田接合性、
メツキ密着性全向上させる。
Zn0.01-5%, BO, Oi -0.1%, AH
0.01~1 yen, 1.1g (101~0.2%, Si0
.. 01-0.5%, Ti 0.01-0.2%, or two or more of them are contained in a total of 5% or less, but these elements reinforce the action of the Mn and improve moldability and solderability. ,
Completely improves plating adhesion.

各元素の含有量を上記のように限定した理由は、各元素
においてその含有量が下限未満では上記の効果が得られ
ず、又上限を超えては導電率の低下が大きくなり且つ製
造加工性が低下するためである。
The reason for limiting the content of each element as above is that if the content of each element is less than the lower limit, the above effects cannot be obtained, and if it exceeds the upper limit, the conductivity will decrease significantly and the manufacturing processability will be reduced. This is because the

又これらの元素の2種以上の合計を5%以下に限定した
理由は5%を超えると導電率の低下が大きくなり且つ製
造加工性が低下するためである。
The reason why the total amount of two or more of these elements is limited to 5% or less is that if it exceeds 5%, the electrical conductivity will decrease significantly and the manufacturing processability will decrease.

これら元素の特に望ましい含有量はZn0.1〜1チ、
80.03〜0.08%、MO05〜0.2%、lJg
o、02〜0.07%、510602〜02%、T10
.02〜01%である。
Particularly desirable contents of these elements are Zn0.1-1T,
80.03~0.08%, MO05~0.2%, lJg
o, 02-0.07%, 510602-02%, T10
.. 02-01%.

Orは熱間加工性、強度、耐熱性及び耐応力腐食割れ性
を向上させる。OrはFe又はCOよりGuへの固溶量
が少ないためより有効である。ここでCrの含有量i 
0.05〜0.5%に限定した理由は0.05%未満で
は前記効果が得られず、0.5%を超えると析出物が粗
大化して熱間加工性が低下するためである。Crの特に
望ましい含有量は0.15〜0.14 %である。
Or improves hot workability, strength, heat resistance, and stress corrosion cracking resistance. Or is more effective than Fe or CO because the amount of solid solution in Gu is smaller. Here, the Cr content i
The reason why it is limited to 0.05 to 0.5% is that if it is less than 0.05%, the above effects cannot be obtained, and if it exceeds 0.5%, the precipitates become coarse and hot workability deteriorates. A particularly desirable Cr content is 0.15-0.14%.

本発明の合金は従来のりん青銅と同−Sn濃度において
比較した場合強度がより犬きく、従って同一強度ではS
nの含有量全0.5〜2%節減できその分導電率を向上
させることができる。
The alloy of the present invention has higher strength when compared with conventional phosphor bronze at the same -Sn concentration, so at the same strength, S
The total n content can be reduced by 0.5 to 2%, and the electrical conductivity can be improved accordingly.

本発明の合金は通常の方法で製造することができる。即
ちCuf溶解しこれに合金元素を添加し均質化して後、
水冷鋳造法にて鋳塊となし、これを熱間圧延し、次いで
必要に応じ中間熱処理を施しなから冷間圧延して所定寸
法に加工し、更に低温焼鈍、テンションレベラー、テン
ションアニール等の処理に行い所定の材質に仕上げられ
る。
The alloys of the invention can be manufactured by conventional methods. That is, after melting Cuf, adding alloying elements to it and homogenizing it,
An ingot is formed using a water-cooled casting method, then hot rolled, then subjected to intermediate heat treatment if necessary, then cold rolled and processed to the specified dimensions, and further processed by low temperature annealing, tension leveler, tension annealing, etc. It is then finished with the specified material.

黒鉛鋳型等を用いた連続ストリップキャスティング法で
薄型鋳塊に鋳造した場合は熱間圧延せずに直接冷間圧延
して所定の寸法に加工される。
When a thin ingot is cast by a continuous strip casting method using a graphite mold or the like, the ingot is directly cold rolled to the predetermined dimensions without hot rolling.

(実施例) 以下に本発明を実施例により詳細に説明する。(Example) The present invention will be explained in detail below using examples.

第1表に示す合金を、黒鉛るつぼを用いて大気中で木炭
被覆をして溶解し、150 x 30 x 300瓢の
金型に鋳造した。この鋳塊を面側して酸化スケールを除
去して後、850℃で8醜厚に熱間圧延し、次いでα9
咽厚まで冷間圧延して後、600℃で30分間熱処理し
、更に0.3 mm厚まで冷間圧延し、最后に300℃
で15分間熱処理した。
The alloys listed in Table 1 were melted in a graphite crucible in air with a charcoal coating and cast into a 150 x 30 x 300 gourd mold. This ingot was face-faced to remove oxide scale, then hot-rolled at 850°C to a thickness of 8 mm, and then α9
After cold-rolling to a thickness of 0.3 mm, heat-treating at 600°C for 30 minutes, further cold-rolling to a thickness of 0.3 mm, and finally heat-treating at 300°C.
Heat treatment was performed for 15 minutes.

このようにして得られたサンプルについて引張強さ、伸
び、導電率、半田接合強度、耐応力腐食割れ性、Snメ
ツキ密着性を調査した。
The samples thus obtained were examined for tensile strength, elongation, electrical conductivity, solder joint strength, stress corrosion cracking resistance, and Sn plating adhesion.

半田接合強度はサンプルf 5 X 5 tarのチッ
プに切り出し、これに直径2fiの硬銅線を共晶半田付
けし、これを150℃で500時間保持して後プル試験
を行って求めた。
The solder joint strength was determined by cutting out a sample f 5 × 5 tar chip, eutectic soldering a hard copper wire with a diameter of 2 fi to it, holding it at 150° C. for 500 hours, and performing a post-pull test.

耐応力腐食割れ性はJISC8306に準じて5■01
%のI(Hm蒸気中にて破断荷重のAの荷重をかけて割
れ発生までの時間を計測した。
Stress corrosion cracking resistance is 5■01 according to JISC8306
% I (Hm) A load of A, which is a breaking load, was applied in steam and the time until cracking occurred was measured.

Snメツキ密着性はサンプルを脱脂・酸洗いしてから5
ni5μメツキしこれを120℃で1000時間保持し
て後、密着折り曲げ試験を行い曲げ部を頂微鏡で10倍
に拡大してSnメツキ層の剥離の有無を調べた。
Sn plating adhesion was determined after degreasing and pickling the sample.
After plating 5μ of Ni and holding it at 120° C. for 1000 hours, a close bending test was performed and the bent portion was magnified 10 times with a top microscope to check for peeling of the Sn plating layer.

Snメツキの浴及び条件は、5nSO+  =100 
? /11 H霊so、二50r/l、  βナフトー
ル: 1 f / t。
The bath and conditions for Sn plating are 5nSO+ = 100
? /11 H so, 250r/l, β-naphthol: 1 f/t.

ニカワ: 2 f / lx浴温度16℃、電流密度:
L5A/drr?である。
Glue: 2 f/lx bath temperature 16°C, current density:
L5A/drr? It is.

結果は第2表に示した。The results are shown in Table 2.

第2表より明らかなように本発明品(1〜5)は従来の
りん青銅(14,15)より半田接合強度、耐応力腐食
割れ性、メツキ密着性に優れており、(1,2、ヰ、5
)においては更に引張り強さが高い。
As is clear from Table 2, the products of the present invention (1 to 5) are superior to conventional phosphor bronzes (14, 15) in solder joint strength, stress corrosion cracking resistance, and plating adhesion;ヰ、5
) has even higher tensile strength.

比較品においてPが上限を超えたもの(6)は半田接合
強度、耐応力腐食割れ性、メツキ密着性に劣る。Lln
lSlが下限未満のもの(7)はOKが過剰に残り伸び
、半田接合強度、メツキ密着性が劣る。
Among the comparative products, the one (6) in which P exceeds the upper limit is inferior in solder joint strength, stress corrosion cracking resistance, and plating adhesion. Lln
In case (7) where lSl is less than the lower limit, excessive OK remains and elongates, resulting in poor solder joint strength and plating adhesion.

Mn又はFe又はCOが上限を超えたもの(8〜10)
は導電率の低下が大きい。
Those in which Mn or Fe or CO exceeds the upper limit (8 to 10)
has a large decrease in conductivity.

Znが上限金超えFe、Goが下限未満のもの(11)
は導電率、耐応力腐食割れ性が劣る。Mgが上限を超え
たもの(6)はMgの強いO8との親和力により酸化物
が鋼中にとり込1れて健全な鋳塊が得られず引張り強さ
、伸びが低く、又半田接合強度、メツキ密着性が劣る。
Items in which Zn exceeds the upper limit of gold and Fe and Go are less than the lower limit (11)
has poor electrical conductivity and stress corrosion cracking resistance. In the case where Mg exceeds the upper limit (6), oxides are incorporated into the steel due to Mg's strong affinity with O8, making it impossible to obtain a sound ingot, resulting in low tensile strength and elongation, and low solder joint strength. Poor plating adhesion.

C→;」二限を超えたもの03は導電率の低下が太きい
C→;” In case 03, which exceeds the second limit, the conductivity decreases significantly.

(本発明の効果) 本発明の合金は、従来のりん青銅より強度並びに伝導性
に優れ、半田接合性及びメツキ密着性において経時劣化
することがなく、更に耐応力腐食割れ性に優れているの
で、電子電気機器のリード部材又はバネ部材に適用して
顕著な効果を奏するものである。
(Effects of the present invention) The alloy of the present invention has superior strength and conductivity compared to conventional phosphor bronze, does not deteriorate over time in terms of solder bondability and plating adhesion, and has excellent stress corrosion cracking resistance. , it produces remarkable effects when applied to lead members or spring members of electronic and electrical equipment.

Claims (1)

【特許請求の範囲】[Claims] Sn2〜8wt%、P0.2wt%以下、O_20.0
025wt%以下、Mn0.01〜0.5wt%、Cr
0.05〜0.5wt%、Feまたは/およびCoを0
.05〜1.5wt%、Zn0.01〜5wt%、B0
.01〜0.1wt%、Al0.01〜1wt%、Mg
0.01〜0.2wt%、Si0.01〜0.5wt%
、Ti0.01〜0.2wt%の1種又は2種以上を合
計で0.01〜5wt%含有し残部が銅からなる高力伝
導性銅合金。
Sn2~8wt%, P0.2wt% or less, O_20.0
025wt% or less, Mn0.01-0.5wt%, Cr
0.05-0.5wt%, 0 Fe or/and Co
.. 05-1.5wt%, Zn0.01-5wt%, B0
.. 01-0.1wt%, Al0.01-1wt%, Mg
0.01-0.2wt%, Si0.01-0.5wt%
, 0.01 to 0.2 wt % of Ti in a total amount of 0.01 to 5 wt %, and the balance is copper.
JP18297986A 1986-08-04 1986-08-04 High strength conductive copper alloy Granted JPS6338545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18297986A JPS6338545A (en) 1986-08-04 1986-08-04 High strength conductive copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18297986A JPS6338545A (en) 1986-08-04 1986-08-04 High strength conductive copper alloy

Publications (2)

Publication Number Publication Date
JPS6338545A true JPS6338545A (en) 1988-02-19
JPH0331776B2 JPH0331776B2 (en) 1991-05-08

Family

ID=16127644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18297986A Granted JPS6338545A (en) 1986-08-04 1986-08-04 High strength conductive copper alloy

Country Status (1)

Country Link
JP (1) JPS6338545A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1061147A1 (en) * 1999-06-15 2000-12-20 Wieland-Werke AG Use of a copper-tin-iron alloy
US6346215B1 (en) 1997-12-19 2002-02-12 Wieland-Werke Ag Copper-tin alloys and uses thereof
EP1186370A3 (en) * 2000-07-28 2003-11-26 Siemens Aktiengesellschaft Process and device for producing a laser weld joint

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62182240A (en) * 1986-02-06 1987-08-10 Furukawa Electric Co Ltd:The Conductive high-tensile copper alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62182240A (en) * 1986-02-06 1987-08-10 Furukawa Electric Co Ltd:The Conductive high-tensile copper alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6346215B1 (en) 1997-12-19 2002-02-12 Wieland-Werke Ag Copper-tin alloys and uses thereof
EP1061147A1 (en) * 1999-06-15 2000-12-20 Wieland-Werke AG Use of a copper-tin-iron alloy
EP1186370A3 (en) * 2000-07-28 2003-11-26 Siemens Aktiengesellschaft Process and device for producing a laser weld joint

Also Published As

Publication number Publication date
JPH0331776B2 (en) 1991-05-08

Similar Documents

Publication Publication Date Title
KR930005072B1 (en) Copper alloy for electronic instrument and method of manufacturing the same
US5814168A (en) Process for producing high-strength, high-electroconductivity copper-base alloys
US4559200A (en) High strength and high conductivity copper alloy
US5147469A (en) Process for producing copper-based alloys having high strength and high electric conductivity
JP5950499B2 (en) Copper alloy for electrical and electronic parts and copper alloy material with Sn plating
JPS63109130A (en) Copper alloy for electronic equipment
JP2521880B2 (en) Copper alloy for electronic and electrical equipment and its manufacturing method
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JP4043118B2 (en) High strength and high conductivity Cu-Fe alloy plate for electric and electronic parts with excellent heat resistance
JPS6338547A (en) High strength conductive copper alloy
JPS6215622B2 (en)
JPS6239218B2 (en)
JPS59145746A (en) Copper alloy for lead material of semiconductor apparatus
JPH032341A (en) High strength and high conductivity copper alloy
JPH0440417B2 (en)
JPS6338545A (en) High strength conductive copper alloy
JPS6345342A (en) High strength conductive copper alloy
JPS6365038A (en) Copper alloy for electronic and electrical equipment
JPS6338544A (en) High strength conductive copper alloy
JPS6338546A (en) High strength conductive copper alloy
JPH0832935B2 (en) High strength and high toughness Cu alloy with little characteristic anisotropy
JPH0575812B2 (en)
JPH0219432A (en) High-strength and high-conductivity copper alloy for semiconductor equipment lead material or conductive spring material
JPH0230727A (en) Copper alloy having high-strength and high-conductivity for semiconductor equipment lead material or conductive spring material
JPS6345341A (en) High strength conductive copper alloy