JPH0331776B2 - - Google Patents

Info

Publication number
JPH0331776B2
JPH0331776B2 JP61182979A JP18297986A JPH0331776B2 JP H0331776 B2 JPH0331776 B2 JP H0331776B2 JP 61182979 A JP61182979 A JP 61182979A JP 18297986 A JP18297986 A JP 18297986A JP H0331776 B2 JPH0331776 B2 JP H0331776B2
Authority
JP
Japan
Prior art keywords
phosphor bronze
strength
plating
solder
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61182979A
Other languages
Japanese (ja)
Other versions
JPS6338545A (en
Inventor
Shoji Shiga
Tooru Tanigawa
Yoshimasa Ooyama
Masato Asai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP18297986A priority Critical patent/JPS6338545A/en
Publication of JPS6338545A publication Critical patent/JPS6338545A/en
Publication of JPH0331776B2 publication Critical patent/JPH0331776B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は電子電気機器に用いられるリード部材
又はバネ部材等に適した高力伝導性銅合金に関す
るものである。 (従来技術) 従来、電子電気機器に用いられるコネクター、
各種スイツチ、電磁開閉器あるいは各種スプリン
グ等には主にりん青銅が使用されている。 りん青銅はSn3〜9wt%(以下%と略記)、
P0.03〜0.35%を含有する銅合金であり、その特
徴はSnの含有量により伝導性と引張り強さを目
的に応じて適宜選択できること及び固溶体合金と
して精密部品の成形加工性に優れていることであ
る。 りん青銅以外の電子電気機器用銅合金にはスピ
ノーダル型のCu−Ni−Sn系合金、及びCu−Be
系合金がある。前者は引張り強さはりん青銅より
高いが導電率が5〜7%IACSと低く且つ加工性
に乏しい、又後者は非常に高価なため用途が限定
される。 りん青銅の改良合金としては、熱間加工性の改
良を目的としてりん青銅にFe、Co等を0.3〜2
%、Cr、Zn、Ti、V等を0.2〜0.8%添加したもの
(特開52−21211)、りん青銅にFeを0.5〜1.5%、
Znを0.005〜0.8%添加したもの(特公58−
35584)、及びりん青銅にZrを0.03〜0.09%添加し
たもの(特開57−89449)等がある。又耐食性の
改良を目的としてりん青銅にAgを0.05〜1%添
加したもの(特開49−75417)がある。 (解決すべき問題点) りん青銅を電子電気機器等の各種部材に使用す
る場合、半田付け部の接合強度が経時的に劣化す
る現象、又はSn、Sn−Pb等のメツキ被膜が経時
的に剥離する現象がみられる。 これらの現象は、りん青銅中のPがりん青銅と
半田又はメツキ皮膜との界面に拡散濃縮して界面
に生成しているCuとSnの化合物であるε相を一
層脆化させておきるものである。 メツキ皮膜の剥離に対してはCu又はNiの層を
りん青銅とメツキ皮膜の間に介在させる方法(特
公51−41222及び特開49−108562)が提案されて
いるが製造工程が煩雑になる等の問題がある。 上記のうち半田接合部の経時劣化現象は、プリ
ント基板実装が、スルーホール実装から半田接続
が多用される高密化面実装へ移行しつつある現状
において、早急に解決されるべき課題である。 一方これら部品の効率的利用設計が進む中で、
部材にはより過大な応力が負荷される傾向にあ
り、NH3、SO2、NOx等の存在する腐食環境下
でも割れを生じない耐応力腐食割れ性に優れた合
金の開発が益々望まれている。 りん青銅が電子電気機器の部材としてより効率
的により信頼性高く利用されていくために改良さ
れるべき点を要約すると、(1)半田接合部の経時劣
化、(2)Sn、Sn−Pbメツキの密着性の経時劣化、
(3)耐応力腐食割れ性、(4)熱間加工性、(5)成形加工
性、(6)機械的強度特にバネ性及び応力緩加特性、
(7)導電率等になる。 (問題点を解決するための手段) 本発明はかかる状況に鑑みなされたもので、半
田接合性、メツキ密着性及び耐応力腐食割れ性等
に優れた電子電気機器用部材に適した高力伝導性
銅合金に関するものである。 即ち本発明はSn2〜8%、P0.2%以下、
O20.0025%以下、Mn0.01〜0.5%、Cr0.05〜0.5
%、Feまたは/およびCo0.05〜1.5wt%を含み、
更にZn0.01〜5wt%、B0.01〜0.1wt%、Al0.01〜
1wt%、Mg0.01〜0.2wt%、Ti0.01〜0.2wt%の1
種又は2種以上を合計で0.01〜5%含有し残部が
銅からなる高力伝導性銅合金である。 本発明においてSnは強度の向上に有効である
が、その含有量を2〜8%に限定した理由は、2
%未満では引張り強さやバネ性が十分でなく、8
%を超えると均一なα固溶体となり難く、成形加
工性が低下するためである。 PはFe又はCoとFe3P、Fe2P、FeP、Co2P、
CoP、CoP3等の化合物を生成し微細に分布して、
結晶粒の粗大化を阻止して熱間加工性を高め、更
に強度、耐熱性及び耐応力腐食割れ性を向上させ
る。Pの含有量を0.2%以下に限定した理由は0.2
%を超えるとPは半田又はメツキ界面に拡散濃縮
して半田接合性、メツキ密着性を低下させ又熱間
加工性にも有害なためである。 Pの含有量は特に0.0005〜0.08%としてFeまた
は/およびCoとの化学量論量と同等かそれ以下
とするのが望ましい。Feまたは/およびCoの含
有量を0.05〜1.5%に限定した理由は0.05%未満で
は上記Pとの作用効果が不十分であり、1.5%を
超えると導電率の低下が大きくなり且つ製造加工
性、半田接合性、メツキ密着性が低下するためで
ある。 O2は不純物として含有されるが、その量を
0.0025%以下に限定した理由は、0.0025%を超え
ると成形加工性が著しく低下するばかりでなく、
半田接合性、メツキ密着性が低下するためであ
る。 Mnは脱酸作用を有し、O2量を低減する働きが
ある。これの含有量を0.01〜0.5%に限定した理
由は0.01%未満ではO2を0.0025%以下に低減する
のに不十分であり、0.5%を超えると導電率の低
下が大きくなるためである。 Zn0.01〜5%、B0.01〜0.1%、Al0.01〜1%、
Mg0.01〜0.2%、Ti0.01〜0.2%の1種又は2種以
上を合計で5%以下含有せしめるが、これらの元
素は前記Mnの作用を補強し成形加工性、半田接
合性、メツキ密着性を向上させる。 各元素の含有量を上記のように限定した理由
は、各元素においてその含有量が下限未満では上
記の効果が得られず、又上限を超えては導電率の
低下が大きくなり且つ製造加工性が低下するため
である。 又これらの元素の2種以上の合計を5%以下に
限定した理由は5%を超えると導電率の低下が大
きくなり且つ製造加工性が低下するためである。 これら元素の特に望ましい含有量はZn0.1〜1
%、B0.03〜0.08%、Al0.05〜0.2%、Mg0.02〜
0.07%、Ti0.02〜0.1%である。 Crは熱間加工性、強度、耐熱性及び耐応力腐
食割れ性を向上させる。CrはFe又はCoよりCuへ
の固溶量が少ないためより有効である。ここで
Crの含有量を0.05〜0.5%に限定した理由は0.05%
未満では前記効果が得られず、0.5%を超えると
析出物が粗大化して熱間加工性が低下するためで
ある。Crの特に望ましい含有量は0.15〜0.4%で
ある。 本発明の合金は従来のりん青銅と同一Sn濃度
において比較した場合強度がより大きく、従つて
同一強度ではSnの含有量を0.5〜2%節減できそ
の分導電率を向上させることができる。 本発明の合金は通常の方法で製造することがで
きる。即ちCuを溶解しこれに合金元素を添加し
均質化して後、水冷鋳造法にて鋳塊となし、これ
を熱間圧延し、次いで必要に応じ中間熱処理を施
しながら冷間圧延して所定寸法に加工し、更に低
温焼鈍、テンシヨンレベラー、テンシヨンアニー
ル等の処理を行い所定の材質に仕上げられる。 黒鉛鋳型等を用いた連続ストリツプキヤステイ
ング法で薄型鋳塊に鋳造した場合は熱間圧延せず
に直接冷間圧延して所定の寸法に加工される。 (実施例) 以下に本発明を実施例により詳細に説明する。 第1表に示す合金を、黒鉛るつぼを用いて大気
中で木炭被覆をして溶解し、150×30×300mmの金
型に鋳造した。この鋳塊を面削して酸化スケール
を除去して後、850℃で8mm厚に熱間圧延し、次
いで0.9mm厚まで冷間圧延して後、600℃で30分間
熱処理し、更に0.3mm厚まで冷間圧延し、最后に
300℃で15分間熱処理した。 このようにして得られたサンプルについて引張
強さ、伸び、導電率、半田接合強度、耐応力腐食
割れ性、Snメツキ密着性を調査した。 半田接合強度はサンプルを5×5mmのチツプに
切り出し、これに直径2mmの硬銅線を共晶半田付
けし、これを150℃で500時間保持して後プル試験
を行つて求めた。 耐応力腐食割れ性はJISC8306に準じて3Vol%
のNH3蒸気中にて破断荷重の1/2の荷重をかけて
割れ発生までの時間を計測した。 Snメツキ密着性はサンプルを脱脂・酸洗いし
てからSnを5μメツキしこれを120℃で1000時間保
持して後、密着折り曲げ試験を行い曲げ部を顕微
鏡で10倍に拡大してSnメツキ層の剥離の有無を
調べた。 Snメツキの浴及び条件は、SnSO4:100g/
、H2SO4:50g/、βナフトール:1g/
、ニカワ:2g/、浴温度16℃、電流密度:
1.5A/dm2である。 結果は第2表に示した。
(Industrial Application Field) The present invention relates to a high-strength conductive copper alloy suitable for lead members, spring members, etc. used in electronic and electrical equipment. (Prior art) Conventionally, connectors used in electronic and electrical equipment,
Phosphor bronze is mainly used for various switches, electromagnetic switches, and various springs. Phosphor bronze contains Sn3-9wt% (hereinafter abbreviated as %),
It is a copper alloy containing P0.03~0.35%, and its characteristics are that the conductivity and tensile strength can be appropriately selected depending on the purpose depending on the Sn content, and as a solid solution alloy, it has excellent moldability for precision parts. That's true. Copper alloys for electronic and electrical equipment other than phosphor bronze include spinodal type Cu-Ni-Sn alloys and Cu-Be
There are alloys. The former has a higher tensile strength than phosphor bronze, but has a low electrical conductivity of 5 to 7% IACS and poor workability, and the latter is very expensive, so its uses are limited. As an improved alloy for phosphor bronze, Fe, Co, etc. are added to phosphor bronze by 0.3 to 2 to improve hot workability.
%, 0.2 to 0.8% of Cr, Zn, Ti, V, etc. added (JP 52-21211), phosphor bronze with 0.5 to 1.5% of Fe,
Added 0.005 to 0.8% Zn (Special Publication 58-
35584), and phosphor bronze with 0.03 to 0.09% Zr added (Japanese Patent Application Laid-Open No. 57-89449). There is also a product in which 0.05 to 1% Ag is added to phosphor bronze for the purpose of improving corrosion resistance (Japanese Patent Laid-Open No. 49-75417). (Problems to be solved) When using phosphor bronze for various parts such as electronic and electrical equipment, there is a phenomenon that the joint strength of soldered parts deteriorates over time, or the plating film of Sn, Sn-Pb, etc. deteriorates over time. A phenomenon of peeling is observed. These phenomena occur because P in the phosphor bronze diffuses and concentrates at the interface between the phosphor bronze and the solder or plating film, further embrittling the ε phase, which is a compound of Cu and Sn, that forms at the interface. be. To deal with the peeling of the plating film, a method has been proposed in which a layer of Cu or Ni is interposed between the phosphor bronze and the plating film (Japanese Patent Publication No. 51-41222 and 49-108562), but the manufacturing process becomes complicated. There are other problems. Of the above, the aging phenomenon of solder joints is an issue that needs to be solved as soon as possible in the current situation where printed circuit board mounting is transitioning from through-hole mounting to high-density surface mounting in which solder connections are frequently used. Meanwhile, as the design for efficient use of these parts progresses,
As members tend to be subjected to more excessive stress, it is increasingly desirable to develop alloys with excellent stress corrosion cracking resistance that do not crack even in corrosive environments where NH 3 , SO 2 , NOx, etc. are present. There is. To summarize the points that need to be improved in order for phosphor bronze to be used more efficiently and reliably as a component of electronic and electrical equipment, the following points can be summarized: (1) Deterioration of solder joints over time, (2) Sn and Sn-Pb plating Deterioration of adhesion over time,
(3) stress corrosion cracking resistance, (4) hot workability, (5) formability, (6) mechanical strength, especially springiness and stress relaxation properties,
(7) Conductivity etc. (Means for Solving the Problems) The present invention was made in view of the above situation, and is a high-strength conductive material suitable for parts for electronic and electrical equipment having excellent solder bonding properties, plating adhesion properties, stress corrosion cracking resistance, etc. This relates to copper alloys. That is, the present invention has Sn2 to 8%, P0.2% or less,
O2 0.0025% or less, Mn0.01~0.5%, Cr0.05~0.5
%, containing Fe or/and Co0.05-1.5wt%,
Furthermore, Zn0.01~5wt%, B0.01~0.1wt%, Al0.01~
1wt%, Mg0.01~0.2wt%, Ti0.01~0.2wt% 1
It is a high-strength conductive copper alloy containing a total of 0.01 to 5% of one or more species, with the remainder being copper. In the present invention, Sn is effective in improving strength, but the reason for limiting its content to 2 to 8% is as follows:
If it is less than 8%, the tensile strength and springiness will be insufficient.
This is because if it exceeds %, it will be difficult to form a uniform α solid solution and the moldability will deteriorate. P is Fe or Co and Fe 3 P, Fe 2 P, FeP, Co 2 P,
Compounds such as CoP and CoP 3 are generated and finely distributed,
It prevents coarsening of crystal grains, improves hot workability, and further improves strength, heat resistance, and stress corrosion cracking resistance. The reason for limiting the P content to 0.2% or less is 0.2
%, P will diffuse and concentrate at the solder or plating interface, reducing solder bondability and plating adhesion, and is also harmful to hot workability. The content of P is preferably 0.0005 to 0.08%, which is equal to or lower than the stoichiometric amount of Fe and/or Co. The reason for limiting the content of Fe and/or Co to 0.05 to 1.5% is that if it is less than 0.05%, the action and effect with the above P will be insufficient, and if it exceeds 1.5%, the decrease in conductivity will be large and the manufacturing processability will be reduced. This is because the solder bondability and plating adhesion deteriorate. O 2 is contained as an impurity, but the amount
The reason why it is limited to 0.0025% or less is that if it exceeds 0.0025%, not only will the moldability deteriorate significantly, but
This is because solder jointability and plating adhesion deteriorate. Mn has a deoxidizing effect and works to reduce the amount of O2 . The reason why the content is limited to 0.01 to 0.5% is that less than 0.01% is insufficient to reduce O 2 to 0.0025% or less, and more than 0.5% causes a significant decrease in electrical conductivity. Zn0.01~5%, B0.01~0.1%, Al0.01~1%,
One or more of Mg0.01~0.2% and Ti0.01~0.2% are contained in a total of 5% or less, but these elements reinforce the effects of Mn and improve moldability, solderability, and metallization. Improves adhesion. The reason for limiting the content of each element as above is that if the content of each element is less than the lower limit, the above effects cannot be obtained, and if it exceeds the upper limit, the conductivity will decrease significantly and the manufacturing processability will be reduced. This is because the amount decreases. The reason why the total amount of two or more of these elements is limited to 5% or less is that if it exceeds 5%, the electrical conductivity will decrease significantly and the manufacturing processability will decrease. The particularly desirable content of these elements is Zn0.1~1
%, B0.03~0.08%, Al0.05~0.2%, Mg0.02~
0.07%, Ti 0.02-0.1%. Cr improves hot workability, strength, heat resistance and stress corrosion cracking resistance. Cr is more effective than Fe or Co because the amount of solid solution in Cu is smaller. here
The reason for limiting the Cr content to 0.05-0.5% is 0.05%.
If it is less than 0.5%, the above effect cannot be obtained, and if it exceeds 0.5%, the precipitates become coarse and hot workability deteriorates. A particularly desirable Cr content is 0.15-0.4%. The alloy of the present invention has higher strength when compared with conventional phosphor bronze at the same Sn concentration. Therefore, at the same strength, the Sn content can be reduced by 0.5 to 2% and the electrical conductivity can be improved accordingly. The alloys of the invention can be manufactured by conventional methods. That is, after melting Cu and adding alloying elements to it and homogenizing it, a water-cooled casting method is used to form an ingot, which is then hot-rolled, and then cold-rolled with intermediate heat treatment as necessary to form a predetermined size. The material is then processed into a desired material through low-temperature annealing, tension leveling, tension annealing, etc. When a thin ingot is cast by a continuous strip casting method using a graphite mold or the like, it is directly cold-rolled to a predetermined size without hot rolling. (Examples) The present invention will be explained in detail below using examples. The alloys shown in Table 1 were melted in a graphite crucible in the atmosphere with a charcoal coating, and cast into a mold of 150 x 30 x 300 mm. This ingot was faceted to remove oxide scale, then hot rolled at 850°C to a thickness of 8mm, then cold rolled to a thickness of 0.9mm, heat treated at 600°C for 30 minutes, and further 0.3mm thick. Cold rolled until thick and finally
Heat treatment was performed at 300°C for 15 minutes. The tensile strength, elongation, electrical conductivity, solder joint strength, stress corrosion cracking resistance, and Sn plating adhesion of the samples thus obtained were investigated. The solder joint strength was determined by cutting a sample into a 5 x 5 mm chip, eutectic soldering a hard copper wire with a diameter of 2 mm to the chip, holding the chip at 150°C for 500 hours, and performing a post-pull test. Stress corrosion cracking resistance is 3Vol% according to JISC8306
The time until cracking was measured by applying a load of 1/2 of the breaking load in NH 3 vapor. Sn plating adhesion was determined by degreasing and pickling the sample, plating it with 5 μm of Sn, holding it at 120℃ for 1000 hours, performing an adhesion bending test, magnifying the bent part 10 times with a microscope, and measuring the Sn plating layer. The presence or absence of peeling was examined. The bath and conditions for Sn plating are SnSO 4 : 100g/
, H 2 SO 4 : 50g/, β-naphthol: 1g/
, Glue: 2g/, Bath temperature 16℃, Current density:
It is 1.5A/ dm2 . The results are shown in Table 2.

【表】【table】

【表】【table】

【表】 第2表より明らかなように本発明品(2〜5)
は従来のりん青銅(14、15)より半田接合強度、
耐応力腐食割れ性、メツキ密着性に優れており、
(2、4、5)においては更に引張り強さが高い。 比較品においてPが上限を超えたもの(6)は半田
接合強度、耐応力腐食割れ性、メツキ密着性に劣
る。 Mn又はFe又はCoが上限を超えたもの(8〜
10)は導電率の低下が大きい。 Znが上限を超えFe、Coが下限未満のもの
(11)は導電率、耐応力腐食割れ性が劣る。Mg
が上限を超えたもの(12)はMgの強いO2との親
和力により酸化物が銅中にとり込まれて健全な鋳
塊が得られず引張り強さ、伸びが低く、又半田接
合強度、メツキ密着性が劣る。 Crが上限を超えたもの(13)は導電率の低下
が大きい。 (発明の効果) 本発明の合金は、従来のりん青銅より強度並び
に伝導性に優れ、半田接合性及びメツキ密着性に
おいて経時劣化することがなく、更に耐応力腐食
割れ性に優れているので、電子電気機器のリード
部材又はバネ部材に適用して顕著な効果を奏する
ものである。
[Table] As is clear from Table 2, the products of the present invention (2 to 5)
has better solder joint strength than conventional phosphor bronze (14, 15),
Excellent stress corrosion cracking resistance and plating adhesion.
(2, 4, 5) have even higher tensile strength. Among the comparative products, the one (6) in which P exceeds the upper limit is inferior in solder joint strength, stress corrosion cracking resistance, and plating adhesion. Items with Mn, Fe or Co exceeding the upper limit (8~
10) has a large decrease in conductivity. Those with Zn above the upper limit and Fe and Co below the lower limit (11) have poor electrical conductivity and stress corrosion cracking resistance. Mg
In the case of exceeding the upper limit (12), Mg's strong affinity with O 2 causes oxides to be incorporated into the copper, making it impossible to obtain a sound ingot, resulting in low tensile strength and elongation, and poor solder joint strength and plating. Poor adhesion. In the case where Cr exceeds the upper limit (13), the conductivity decreases significantly. (Effects of the Invention) The alloy of the present invention has superior strength and conductivity compared to conventional phosphor bronze, does not deteriorate over time in solder bondability and plating adhesion, and has excellent stress corrosion cracking resistance. It produces remarkable effects when applied to lead members or spring members of electronic and electrical equipment.

Claims (1)

【特許請求の範囲】[Claims] 1 Sn2〜8wt%、P0.2wt%以下、O20.0025wt%
以下、Mn0.01〜0.5wt%、Cr0.05〜0.5wt%、Fe
または/およびCo0.05〜1.5wt%を含み、更に
Zn0.01〜5wt%、B0.01〜0.1wt%、Al0.01〜1wt
%、Mg0.01〜0.2wt%、Ti0.01〜0.2wt%の1種
又は2種以上を合計で0.01〜5wt%含有し残部が
銅からなる高力伝導性銅合金。
1 Sn2~8wt%, P0.2wt% or less, O 2 0.0025wt%
Below, Mn0.01~0.5wt%, Cr0.05~0.5wt%, Fe
or/and contains Co0.05-1.5wt%, and further
Zn0.01~5wt%, B0.01~0.1wt%, Al0.01~1wt
%, Mg 0.01 to 0.2 wt %, and Ti 0.01 to 0.2 wt %, in a total of 0.01 to 5 wt %, and the balance is copper.
JP18297986A 1986-08-04 1986-08-04 High strength conductive copper alloy Granted JPS6338545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18297986A JPS6338545A (en) 1986-08-04 1986-08-04 High strength conductive copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18297986A JPS6338545A (en) 1986-08-04 1986-08-04 High strength conductive copper alloy

Publications (2)

Publication Number Publication Date
JPS6338545A JPS6338545A (en) 1988-02-19
JPH0331776B2 true JPH0331776B2 (en) 1991-05-08

Family

ID=16127644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18297986A Granted JPS6338545A (en) 1986-08-04 1986-08-04 High strength conductive copper alloy

Country Status (1)

Country Link
JP (1) JPS6338545A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19927136C1 (en) * 1999-06-15 2001-03-01 Wieland Werke Ag Use of a copper-tin-iron alloy
US6346215B1 (en) 1997-12-19 2002-02-12 Wieland-Werke Ag Copper-tin alloys and uses thereof
DE10036901C2 (en) * 2000-07-28 2002-08-01 Siemens Ag Method and device for producing a laser welded joint

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62182240A (en) * 1986-02-06 1987-08-10 Furukawa Electric Co Ltd:The Conductive high-tensile copper alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62182240A (en) * 1986-02-06 1987-08-10 Furukawa Electric Co Ltd:The Conductive high-tensile copper alloy

Also Published As

Publication number Publication date
JPS6338545A (en) 1988-02-19

Similar Documents

Publication Publication Date Title
US6132529A (en) Leadframe made of a high-strength, high-electroconductivity copper alloy
KR950004935B1 (en) Copper alloy for electronic instruments
JPS63130739A (en) High strength and high conductivity copper alloy for semiconductor device lead material or conductive spring material
EP0190386B1 (en) Copper-based alloy and lead frame made of it
JP2521880B2 (en) Copper alloy for electronic and electrical equipment and its manufacturing method
JPH0653901B2 (en) Copper alloy for electronic and electrical equipment
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JPS62182240A (en) Conductive high-tensile copper alloy
TW434324B (en) Copper alloy for electronic devices
JPH0440417B2 (en)
JPS6338547A (en) High strength conductive copper alloy
JPS6239218B2 (en)
JPS6215622B2 (en)
JPH0331776B2 (en)
JPH032341A (en) High strength and high conductivity copper alloy
JPS60152646A (en) Material for lead frame for semiconductor
JPS63125631A (en) High-tensile high-conductivity copper alloy
JPH0575812B2 (en)
JPS6365038A (en) Copper alloy for electronic and electrical equipment
JPS6345342A (en) High strength conductive copper alloy
JPS6338544A (en) High strength conductive copper alloy
JPH0219432A (en) High-strength and high-conductivity copper alloy for semiconductor equipment lead material or conductive spring material
JPS6338546A (en) High strength conductive copper alloy
JPH0230727A (en) Copper alloy having high-strength and high-conductivity for semiconductor equipment lead material or conductive spring material
JPH02129326A (en) High strength copper alloy