JPS6215622B2 - - Google Patents

Info

Publication number
JPS6215622B2
JPS6215622B2 JP58233702A JP23370283A JPS6215622B2 JP S6215622 B2 JPS6215622 B2 JP S6215622B2 JP 58233702 A JP58233702 A JP 58233702A JP 23370283 A JP23370283 A JP 23370283A JP S6215622 B2 JPS6215622 B2 JP S6215622B2
Authority
JP
Japan
Prior art keywords
weight
alloy
copper
strength
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58233702A
Other languages
Japanese (ja)
Other versions
JPS59145749A (en
Inventor
Masahiro Tsuji
Michiharu Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16959204&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPS6215622(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP23370283A priority Critical patent/JPS59145749A/en
Publication of JPS59145749A publication Critical patent/JPS59145749A/en
Publication of JPS6215622B2 publication Critical patent/JPS6215622B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はトランジスタや集積回路(IC)など
の半導体機器のリード材に適する銅合金に関する
ものである。 従来、半導体機器のリード材としては熱膨張係
数が低く、素子およびセラミツクスとの接着およ
び封着性の良好なコバール合金、42合金などの高
ニツケル合金が好んで使われてきた。しかし近年
半導体回路の集積度の向上に伴ない消費電力の高
いICが多くなつてきたことと、封止材料として
樹脂が多く使用され、かつ素子とリードフレーム
の接着もペーストが多く用いられたことにより、
使用されるリード材も放熱性のよい銅基合金が使
われるようになつてきた。しかし、リード材とし
ては熱伝導性が良い、耐熱性が良い、ハンダ付け
性・メツキ密着性が良い、強度が高い、廉価であ
る等の広範な諸条件を全て満足する必要がある。
従来より使用されている無酸素銅、すず入り銅、
りん青銅、鉄入り銅などの銅基合金は何れも一長
一短があり、必ずしも満足し得るものではない。
たとえば無酸素銅では強度、耐熱性が低く、すず
入り銅、鉄入り銅では強度的に満足できず、りん
青銅では熱伝導性、耐熱性が低いという欠点を有
している。かかる点に鑑み、従来の銅基合金のも
つ欠点を改良し、半導体機器のリード材として好
適な諸特性を有する銅合金としてCu−Ni−Si合
金が提供されているが、強度的に完全に満足でき
るものではないので、本発明はCu−Ni−Si合金
をさらに改良し、半導体機器のリード材としてよ
り優れた諸特性を有する銅合金を提供しようとす
るものである。 本発明は、 Ni;1.0超〜4.0重量%、 Si;0.3超〜1.0重量%、 Cu及び不可避不純物;残り、 からなる合金にさらに副成分としてMn0.01〜1.0
重量%及び P;0.001〜0.1重量%、 As;0.001〜0.1重量%、 Sb;0.001〜0.1重量%、 Fe;0.01〜1.0重量%、 Co;0.01〜1.0重量%、 Cr;0.01〜1.0重量%、 Sn;0.01〜1.0重量%、 Al;0.01〜1.0重量%、 Ti;0.01〜1.0重量%、 Zr;0.01〜1.0重量%、 Mg;0.01〜1.0重量%、 Be;0.01〜1.0重量%、 Zn;0.01〜1.0重量%、 からなる群より選択された1種以上を総量で
0.001〜2.0重量%添加した組成を有することを特
徴とする半導体機器のリード材用銅合金ならびに Ni;1.0超〜4.0重量%、 Si;0.3超〜1.0重量%、 Cu及び不可避不純物;残り、 からなる合金にさらに副成分としてMn0.01〜1.0
重量%及び P;0.001〜0.1重量%、 As;0.001〜0.1重量%、 Sb;0.001〜0.1重量%、 Fe;0.01〜1.0重量%、 Co;0.01〜1.0重量%、 Cr;0.01〜1.0重量%、 Sn;0.01〜1.0重量%、 Al;0.01〜1.0重量%、 Ti;0.01〜1.0重量%、 Zr;0.01〜1.0重量%、 Mg;0.01〜1.0重量%、 Be;0.01〜1.0重量%、 Zn;0.01〜1.0重量%、 からなる群より選択された1種以上を総量で
0.001〜2.0重量%添加した組成を有し、かつ合金
中に含まれるO2が10ppm以下であることを特徴
とする半導体機器のリード材用銅合金である。 以上の本発明に係る合金はリード材に要求され
る放熱性、耐熱性、強度、ハンダ付け性、さらに
メツキ密着性等に優れている。 次に本発明合金を構成する合金成分の限定理由
を説明する。Niは所定量のSiと共に添加すること
により、本発明合金の強度を高め、しかも高導電
性を維持する効果があるが、Ni含有量が1.0重量
%以下では、リードフレーム材の中でも、特に強
度を必要とするリードフレーム材においては強度
が不十分である。またNi含有量が4.0重量%を超
えると加工性およびハンダ付け性が低下して好ま
しくない。Siの含有量を0.3重量%を超え、1.0重
量%以下とする理由は、Siの含有量が0.3重量%
以下ではNiを共添してもリードフレーム材の中
で特に高強度を必要とするリードフレーム材にお
いては強度が不十分であり、Si含有量が1.0重量
%を超えると加工性が急速に悪化し、またハンダ
付け性も低下するので、上記1.0重量%を上限と
する範囲におさえる必要がある。 さらにMnが0.01%未満では高強度でかつ耐食
性の合金が得られず、また1.0重量%を超えると
導電性の低下およびハンダ付け性の低下が著しく
なる為である。またP,As,Sb,Fe,Co,
Cr,Sn,Al,Ti,Zr,Mg,Be,Znの所定量の
添加によりMnの添加による効果を向上させるこ
とができ、それらの総量が0.001重量%未満で
は、高強度でかつ耐食性のある合金が得られず、
また2.0重量%を超えると導電性の低下およびハ
ンダ付け性の低下が著しくなる為である。また、
本発明合金においては、通常不純物として
10ppmをこえる酸素が含有されているが、さら
にこの不純物として含有される酸素を10ppm以
下とした理由は、酸素含有量を10ppm以下とす
ることにより、メツキ密着性が著しく改善される
為である。 O210ppm以下とするには溶解時に銅原料とし
て10ppm以下の無酸素銅を使用し、さらに酸素
が侵入しないように大気溶解(フラツクス、木炭
等による表面被覆)、不活性雰囲気溶解、還元ガ
ス雰囲気溶解(CO等)を行い鋳造する。 又、銅原料として10ppmを超える銅を用いる
場合は、カーボン、CO等の還元性物質により溶
湯状態で脱酸をし、無酸素銅を使用したと同じ条
件にすることも可能である。 以下に本発明合金を実施例で説明する。 実施例 第1表に示される本発明合金に係る各種成分組
成のインゴツトを高周波溶解炉で大気、不活性又
は還元性雰囲気中で溶解鋳造した。次にこれを
800℃で熱間圧延し、厚さ4mmの板とした。次に
この板を通常の酸洗処理した後、冷間圧延で厚さ
1.0mmとした。さらに750℃にて5分間の焼鈍を施
した後、冷間圧延で厚さ0.4mmの板とした。最後
にこの板を450℃にて1時間熱処理し試料とし
た。このようにして調整された試料の評価とし
て、強度は引張試験、耐熱性は加熱時間30分にお
ける軟化開始温度、導電性(放熱性)は電気伝導
率(%IACS)によつて示した。ハンダ付け性は
垂直式浸漬法で230℃のハンダ浴(すず60−鉛
40)に5秒間浸漬し、ハンダのぬれの状態を目視
観察した。メツキ密着性は試料に厚さ3μのAg
メツキを施し、450℃にて5分間加熱して表面に
発生するフクレの数を目視観察した。これらの結
果を比較合金とともに第1表に示した。 第1表に示すごとく本発明に係る合金は十分な
導電性とすぐれた耐熱性、強度、ハンダ付け性お
よび耐食性を兼ね具えることが明らかであり、本
発明合金は半導体機器のリード材として最適な合
金である。
The present invention relates to a copper alloy suitable as a lead material for semiconductor devices such as transistors and integrated circuits (ICs). Conventionally, high nickel alloys such as Kovar alloy and 42 alloy have been preferred as lead materials for semiconductor devices because of their low coefficient of thermal expansion and good adhesion and sealing properties with elements and ceramics. However, in recent years, as the degree of integration of semiconductor circuits has improved, the number of ICs with high power consumption has increased, resins are often used as sealing materials, and pastes are often used to bond elements and lead frames. According to
Copper-based alloys with good heat dissipation properties have also come to be used as lead materials. However, as a lead material, it is necessary to satisfy a wide range of conditions such as good thermal conductivity, good heat resistance, good solderability and plating adhesion, high strength, and low price.
Conventionally used oxygen-free copper, tin-containing copper,
Copper-based alloys such as phosphor bronze and iron-containing copper all have advantages and disadvantages, and are not always satisfactory.
For example, oxygen-free copper has low strength and heat resistance, tin-containing copper and iron-containing copper have unsatisfactory strength, and phosphor bronze has low thermal conductivity and heat resistance. In view of this, Cu-Ni-Si alloys have been offered as copper alloys that have improved the drawbacks of conventional copper-based alloys and have various properties suitable as lead materials for semiconductor devices, but they are not perfect in terms of strength. Therefore, the present invention aims to further improve the Cu-Ni-Si alloy and provide a copper alloy having better properties as a lead material for semiconductor devices. The present invention provides an alloy consisting of Ni; more than 1.0 to 4.0% by weight, Si; more than 0.3 to 1.0% by weight, Cu and unavoidable impurities;
Weight% and P; 0.001-0.1% by weight, As; 0.001-0.1% by weight, Sb; 0.001-0.1% by weight, Fe; 0.01-1.0% by weight, Co; 0.01-1.0% by weight, Cr; 0.01-1.0% by weight. , Sn; 0.01-1.0 wt%, Al; 0.01-1.0 wt%, Ti; 0.01-1.0 wt%, Zr; 0.01-1.0 wt%, Mg; 0.01-1.0 wt%, Be; 0.01-1.0 wt%, Zn ;0.01 to 1.0% by weight, total amount of one or more selected from the group consisting of
Copper alloy for lead material of semiconductor devices characterized by having a composition containing 0.001 to 2.0% by weight of Ni; more than 1.0 to 4.0% by weight; Si; more than 0.3 to 1.0% by weight; Cu and unavoidable impurities; remainder; Furthermore, Mn0.01~1.0 is added as a subcomponent to the alloy.
Weight% and P; 0.001-0.1% by weight, As; 0.001-0.1% by weight, Sb; 0.001-0.1% by weight, Fe; 0.01-1.0% by weight, Co; 0.01-1.0% by weight, Cr; 0.01-1.0% by weight. , Sn; 0.01-1.0 wt%, Al; 0.01-1.0 wt%, Ti; 0.01-1.0 wt%, Zr; 0.01-1.0 wt%, Mg; 0.01-1.0 wt%, Be; 0.01-1.0 wt%, Zn ;0.01 to 1.0% by weight, total amount of one or more selected from the group consisting of
This is a copper alloy for lead material of semiconductor devices, which has a composition in which 0.001 to 2.0% by weight is added and O 2 contained in the alloy is 10 ppm or less. The alloy according to the present invention described above is excellent in heat dissipation, heat resistance, strength, solderability, and plating adhesion required for lead materials. Next, the reason for limiting the alloy components constituting the alloy of the present invention will be explained. By adding Ni together with a predetermined amount of Si, it is effective to increase the strength of the alloy of the present invention and maintain high conductivity. Lead frame materials that require this have insufficient strength. Moreover, if the Ni content exceeds 4.0% by weight, processability and solderability will deteriorate, which is not preferable. The reason why the Si content is more than 0.3% by weight and less than 1.0% is that the Si content is 0.3% by weight.
In the following cases, even if Ni is co-added, the strength is insufficient for lead frame materials that require particularly high strength among lead frame materials, and when the Si content exceeds 1.0% by weight, workability deteriorates rapidly. However, since the solderability also decreases, it is necessary to keep the amount within the above range of 1.0% by weight as the upper limit. Furthermore, if Mn is less than 0.01%, a high-strength and corrosion-resistant alloy cannot be obtained, and if it exceeds 1.0% by weight, the conductivity and solderability will be significantly reduced. Also P, As, Sb, Fe, Co,
The effect of Mn addition can be improved by adding predetermined amounts of Cr, Sn, Al, Ti, Zr, Mg, Be, and Zn, and when the total amount is less than 0.001% by weight, high strength and corrosion resistance can be achieved. alloy cannot be obtained,
Moreover, if it exceeds 2.0% by weight, the conductivity and solderability will be significantly reduced. Also,
In the alloy of the present invention, as an impurity,
Although more than 10 ppm of oxygen is contained, the reason why the oxygen contained as an impurity is set to 10 ppm or less is that plating adhesion is significantly improved by reducing the oxygen content to 10 ppm or less. To achieve an O 2 of 10 ppm or less, oxygen-free copper with a concentration of 10 ppm or less is used as the copper raw material during melting, and to prevent oxygen from entering, atmospheric melting (surface coating with flux, charcoal, etc.), inert atmosphere melting, or reducing gas atmosphere is required. Melt (CO, etc.) and cast. In addition, when using copper with a concentration exceeding 10 ppm as a copper raw material, it is also possible to deoxidize the molten metal with a reducing substance such as carbon or CO to create the same conditions as when oxygen-free copper is used. The alloy of the present invention will be explained below using examples. Examples Ingots having various compositions of the alloys of the present invention shown in Table 1 were melted and cast in a high-frequency melting furnace in air, an inert atmosphere, or a reducing atmosphere. then this
It was hot rolled at 800°C to form a plate with a thickness of 4 mm. Next, this plate is subjected to ordinary pickling treatment, and then cold rolled to a thickness of
It was set to 1.0mm. After further annealing at 750°C for 5 minutes, it was cold rolled into a plate with a thickness of 0.4 mm. Finally, this plate was heat treated at 450°C for 1 hour and used as a sample. As for the evaluation of the sample prepared in this way, strength was shown by a tensile test, heat resistance was shown by the softening start temperature at a heating time of 30 minutes, and electrical conductivity (heat dissipation) was shown by electrical conductivity (%IACS). Solderability was tested using the vertical immersion method in a 230°C soldering bath (tin 60-lead).
40) for 5 seconds and visually observed the state of solder wetting. The plating adhesion was determined by using a 3μ thick Ag plate on the sample.
After plating and heating at 450°C for 5 minutes, the number of blisters generated on the surface was visually observed. These results are shown in Table 1 along with comparative alloys. As shown in Table 1, it is clear that the alloy according to the present invention has sufficient electrical conductivity and excellent heat resistance, strength, solderability, and corrosion resistance, and the alloy according to the present invention is ideal as a lead material for semiconductor devices. It is an alloy.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 Ni;1.0超〜4.0重量%、 Si;0.3超〜1.0重量%、 Cu及び不可避不純物;残り からなる合金にさらに副成分としてMn;0.01〜
1.0重量%及び、 P;0.001〜0.1重量%、 As;0.001〜0.1重量%、 Sb;0.001〜0.1重量%、 Fe;0.01〜1.0重量%、 Co;0.01〜1.0重量%、 Cr;0.01〜1.0重量%、 Sn;0.01〜1.0重量%、 Al;0.01〜1.0重量%、 Ti;0.01〜1.0重量%、 Zr;0.01〜1.0重量%、 Mg;0.01〜1.0重量%、 Be;0.01〜1.0重量%、 Zn;0.01〜1.0重量%、 からなる群より選択された1種以上を総量で
0.001〜2.0重量%添加した組成を有することを特
徴とする半導体機器のリード材用銅合金。 2 Ni;1.0超〜4.0重量%、 Si;0.3超〜1.0重量%、 Cu及び不可避不純物;残り からなる合金にさらに副成分としてMn;0.01〜
1.0重量%及び、 P;0.001〜0.1重量%、 As;0.001〜0.1重量%、 Sb;0.001〜0.1重量%、 Fe;0.01〜1.0重量%、 Co;0.01〜1.0重量%、 Cr;0.01〜1.0重量%、 Sn;0.01〜1.0重量%、 Al;0.01〜1.0重量%、 Ti;0.01〜1.0重量%、 Zr;0.01〜1.0重量%、 Mg;0.01〜1.0重量%、 Be;0.01〜1.0重量%、 Zn;0.01〜1.0重量%、 からなる群より選択された1種以上を総量で
0.001〜2.0重量%添加した組成を有し、かつ合金
中に含まれるO2が10ppm以下であることを特徴
とする半導体機器のリード材用銅合金。
[Claims] 1. An alloy consisting of Ni; more than 1.0 to 4.0% by weight, Si; more than 0.3 to 1.0% by weight, Cu and unavoidable impurities;
1.0% by weight and P; 0.001-0.1% by weight, As; 0.001-0.1% by weight, Sb; 0.001-0.1% by weight, Fe; 0.01-1.0% by weight, Co; 0.01-1.0% by weight, Cr; 0.01-1.0 Weight%, Sn; 0.01-1.0% by weight, Al; 0.01-1.0% by weight, Ti; 0.01-1.0% by weight, Zr; 0.01-1.0% by weight, Mg; 0.01-1.0% by weight, Be; 0.01-1.0% by weight. , Zn; 0.01 to 1.0% by weight, the total amount of one or more selected from the group consisting of
A copper alloy for lead material of semiconductor devices, characterized by having a composition containing 0.001 to 2.0% by weight. 2 Ni: more than 1.0 to 4.0% by weight, Si: more than 0.3 to 1.0% by weight, Cu and unavoidable impurities; the rest, and Mn as a subcomponent: 0.01 to
1.0% by weight and P; 0.001-0.1% by weight, As; 0.001-0.1% by weight, Sb; 0.001-0.1% by weight, Fe; 0.01-1.0% by weight, Co; 0.01-1.0% by weight, Cr; 0.01-1.0 Weight%, Sn; 0.01-1.0% by weight, Al; 0.01-1.0% by weight, Ti; 0.01-1.0% by weight, Zr; 0.01-1.0% by weight, Mg; 0.01-1.0% by weight, Be; 0.01-1.0% by weight. , Zn; 0.01 to 1.0% by weight, the total amount of one or more selected from the group consisting of
A copper alloy for lead material of semiconductor devices, which has a composition containing 0.001 to 2.0% by weight and contains 10 ppm or less of O2 .
JP23370283A 1983-12-13 1983-12-13 Copper alloy for lead material of semiconductor apparatus Granted JPS59145749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23370283A JPS59145749A (en) 1983-12-13 1983-12-13 Copper alloy for lead material of semiconductor apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23370283A JPS59145749A (en) 1983-12-13 1983-12-13 Copper alloy for lead material of semiconductor apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP606182A Division JPS58124254A (en) 1982-01-20 1982-01-20 Copper alloy for lead material of semiconductor device

Publications (2)

Publication Number Publication Date
JPS59145749A JPS59145749A (en) 1984-08-21
JPS6215622B2 true JPS6215622B2 (en) 1987-04-08

Family

ID=16959204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23370283A Granted JPS59145749A (en) 1983-12-13 1983-12-13 Copper alloy for lead material of semiconductor apparatus

Country Status (1)

Country Link
JP (1) JPS59145749A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949293B2 (en) * 1982-06-05 1984-12-01 株式会社神戸製鋼所 Copper alloy for electrical and electronic parts and its manufacturing method
JPS61157651A (en) * 1984-12-28 1986-07-17 Hitachi Metals Ltd Copper alloy for lead frame
JPS60218440A (en) * 1984-04-13 1985-11-01 Furukawa Electric Co Ltd:The Copper alloy for lead frame
US4656003A (en) * 1984-10-20 1987-04-07 Kabushiki Kaisha Kobe Seiko Sho Copper alloy and production of the same
US4692192A (en) * 1984-10-30 1987-09-08 Ngk Insulators, Ltd. Electroconductive spring material
US4594221A (en) * 1985-04-26 1986-06-10 Olin Corporation Multipurpose copper alloys with moderate conductivity and high strength
US4606889A (en) * 1985-11-07 1986-08-19 Cabot Corporation Copper-titanium-beryllium alloy
JPS6396232A (en) * 1986-10-09 1988-04-27 Kobe Steel Ltd Copper alloy for plastic pin grid array ic lead pin and its production
US7182823B2 (en) 2002-07-05 2007-02-27 Olin Corporation Copper alloy containing cobalt, nickel and silicon

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5278621A (en) * 1975-12-26 1977-07-02 Tamagawa Kikai Kinzoku Kk Copper alloy for lead frames of semiconductor elements
JPS54402A (en) * 1977-06-02 1979-01-05 Kokusai Kikou Kk Work of protecting normal plane suitable for planting and its method of construction
JPS54100257A (en) * 1978-01-25 1979-08-07 Toshiba Corp Lead frame
JPS5616642A (en) * 1979-07-20 1981-02-17 Furukawa Kinzoku Kogyo Kk High-strength corrosion-resistant copper alloy
JPS572851A (en) * 1980-06-06 1982-01-08 Nippon Mining Co Ltd Copper alloy for lead material of semiconductor device
JPS5895850A (en) * 1981-12-02 1983-06-07 Kobe Steel Ltd Copper alloy for lead frame of integrated circuit
JPH05106A (en) * 1991-06-25 1993-01-08 Matsushita Electric Works Ltd Mirror cabinet

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5278621A (en) * 1975-12-26 1977-07-02 Tamagawa Kikai Kinzoku Kk Copper alloy for lead frames of semiconductor elements
JPS54402A (en) * 1977-06-02 1979-01-05 Kokusai Kikou Kk Work of protecting normal plane suitable for planting and its method of construction
JPS54100257A (en) * 1978-01-25 1979-08-07 Toshiba Corp Lead frame
JPS5616642A (en) * 1979-07-20 1981-02-17 Furukawa Kinzoku Kogyo Kk High-strength corrosion-resistant copper alloy
JPS572851A (en) * 1980-06-06 1982-01-08 Nippon Mining Co Ltd Copper alloy for lead material of semiconductor device
JPS5895850A (en) * 1981-12-02 1983-06-07 Kobe Steel Ltd Copper alloy for lead frame of integrated circuit
JPH05106A (en) * 1991-06-25 1993-01-08 Matsushita Electric Works Ltd Mirror cabinet

Also Published As

Publication number Publication date
JPS59145749A (en) 1984-08-21

Similar Documents

Publication Publication Date Title
JP3550233B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
JPS6239213B2 (en)
JPS6314056B2 (en)
JPS5834537B2 (en) High-strength conductive copper alloy with good heat resistance
JPS6215622B2 (en)
JPS6215621B2 (en)
JPS6239218B2 (en)
JPS59170231A (en) High tension conductive copper alloy
JPS6231059B2 (en)
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JPH02163331A (en) High strength and high conductivity copper alloy having excellent adhesion for oxidized film
JPS594493B2 (en) Copper alloy for lead material of semiconductor equipment
JPS6256937B2 (en)
JPS6157379B2 (en)
JPH0218376B2 (en)
JPS6311418B2 (en)
JPS5853700B2 (en) Copper alloy for lead material of semiconductor equipment
JPS59145748A (en) Copper alloy for lead material of semiconductor apparatus
JPH0230727A (en) Copper alloy having high-strength and high-conductivity for semiconductor equipment lead material or conductive spring material
JPH02129326A (en) High strength copper alloy
JPS6393835A (en) Copper alloy for lead material of semiconductor equipment
JPH0219432A (en) High-strength and high-conductivity copper alloy for semiconductor equipment lead material or conductive spring material
JP2534917B2 (en) High strength and high conductivity copper base alloy
JPS6338545A (en) High strength conductive copper alloy
JP3273193B2 (en) High-strength, high-conductivity copper-based alloy with excellent resistance to solder heat release