JPH0356294B2 - - Google Patents

Info

Publication number
JPH0356294B2
JPH0356294B2 JP61028184A JP2818486A JPH0356294B2 JP H0356294 B2 JPH0356294 B2 JP H0356294B2 JP 61028184 A JP61028184 A JP 61028184A JP 2818486 A JP2818486 A JP 2818486A JP H0356294 B2 JPH0356294 B2 JP H0356294B2
Authority
JP
Japan
Prior art keywords
less
alloy
strength
mixture
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61028184A
Other languages
Japanese (ja)
Other versions
JPS62185847A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2818486A priority Critical patent/JPS62185847A/en
Publication of JPS62185847A publication Critical patent/JPS62185847A/en
Publication of JPH0356294B2 publication Critical patent/JPH0356294B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は電気・電子機器や熱交換器に用いられ
る熱・電気高伝導用高力銅合金とその製造法に関
し、特に電気・熱の高伝導性と高い機械的高度を
有し、小型・高密化された半導体のリード材等に
適した銅合金を提供するものである。 〔従来の技術〕 半導体のリードの外コネクター、スイツチリレ
ー等の導電ばね、各種端子には強度と熱・電気伝
導性(以下伝導性と略記)とを有する銅合金、例
えばリン青銅(Sn4〜8wt%以下、P0.6wt%以
下、残部Cu)(以下wt%を%と略記)が用いられ
ていたが、最近機器の小型化、高密化に伴つて発
熱量の増大から放熱性の必要が高まり、更にプリ
ント基板等に半田付けしたり、プラスチツクモー
ルドを行なうなど、半田付け性、メツキ性、スケ
ール密着性、耐食性が不可欠の条件となつてき
た。リン青銅は50〜65Kg/mm2の強度を有し、加工
性に優れているが、導電率は10〜20%IACSと低
く、高価なSnを4〜8%も含むもので、半田接
合強度がい経時劣化を起すばかりか、応力腐食割
れが感受性も高い欠点がある。このためCu−Be
合金Cu−Fe合金が用いられるようになつた。 〔発明が解決しようとする問題点〕 Cu−Be合金は100Kg/mm以上の強度を示すも、
非常に高価なためにその使用は特殊な用途に限ら
れている。また、Cu−Fe合金、例えばC−195合
金(1.5%Fe.Co08%、Sn0.6%、P0.1%、残部
Cu)は比較的安価でリードフレーム等にかなり
使用され、高度は45〜55Kg/mm2、導電率は50〜65
%IACSの特性を示すも、多量のFexPやFeの析
出物を含むため、加工性、半田接合強度、メツキ
性などが劣る。その他のCu−Cr合金やイコルソ
ン合金(Cu−Ni−Si系合金)が知られているが、
Cu−Cr合金は80%IACS級の高伝導率を示すも強
度が不十分であり、コルソン合金は特性が不安定
なばかりか、半田接合強度の劣化が大きく、Sn
やSn−Pb合金(半田)メツキの剥離を起し易く、
電子・電気機器等の用途では重大な障害となつて
いる。 このように増々顕在化しつつある高性能化合金
のニーズに答えるための改良された合金が要求さ
れており、このような合金には次の特性が要求さ
れる。 (1) 強度、耐熱性及び耐食性が優れていること。 (2) 加工性の均質性及び伝導性とその安定性が良
いこと。 (3) 半田接合強度が高く、経時劣化が少なく、メ
ツキ性が良いこと。 (4) 酸化スケールの密着性が良いこと。 〔問題点を解決するための手段〕 本発明はこれに鑑み種々検討の結果、伝導性、
強度、半田接合強度、メツキ性、酸化スケールの
密着性及び耐食性等の優れた熱・電気高伝導用高
力銅合金とその製造法を開発したものである。即
ち本発明合金の一つは、Ni,Co又はこれ等の混
合物を0.4〜4%とSiを0.1〜1%含み、更に各々
1%以下のTa,Nb、ミツシユメタル(以下MM
と略記)、0.05%未満のAgからなる群より選択さ
れた何れか1種又は2種以上を合計で0.01〜1%
含み、残部Cuと不可避的不純物からなることを
特徴とするものである。本発明合金の他の一つ
は、Ni,Co又はこれ等の混合物を0.4〜4%とSi
を0.1〜1%含み、更に各々1%以下のTa,Nb,
MM0.05%未満のAgからなる群より選択された
何れか1種又は2種以上を合計0.01〜1%含み、
更にMn0.5wt%以下、Zn5%以下、Sn5%以下の
範囲内で何れか1種又は2種以上を含み、残部
Cuと不可避的不純物からなることを特等とする
ものである。 また本発明製造法は、Ni,Co又はこれ等の混
合物を0.4〜4%とSiを0.1〜1%含み、更に各々
1%以下のTa,Nb,MM0.05未満のAgからなる
群より選定された何れか1種又は2種以上を合計
で0.01〜1%含み、又はこれにMn0.5%以下、
Zn5%以下、Sn5%以下の範囲内で何れか1種又
は2種以上を含み、残部Cuと不可避的不純物か
らなる合金を650℃以上で熱間加工し、直ちに10
℃/sec以上の速度で350℃以下まで冷却した後、
70%以上の冷間加工を行なつてから400〜600℃で
熱処理することを特徴とするものである。 本発明は常法により上記合金組成に配合して溶
解し、水冷金型鋳造法等により鋳造したインゴツ
トを650℃以上、望ましくは700℃以上で熱間加工
し、加工直ちに水冷又風冷により冷却する。次に
ミーリングや酸洗等により表面を洗浄化してから
70%以上の冷間加工を加え、しかる後400〜600℃
望ましくは450〜550℃で1分〜24時間熱処理して
仕上げる。尚必要に応じて冷間加工と熱処理を繰
返すこともできる。 〔作用〕 本発明において、Ni,Co又はこれ等の混合物
とSiの添加は金属間化合物Ni2Si又は/及び
Co2Siを熱処理析出させて強度を向上させると共
に導電率(伝導性)の回復を計つたものでNi,
Co又はこれ等の混合物の含有量を0.4〜4%、Si
含有量を0.1〜1%と限定したのは、何れも含有
量が下限未満では十分な効果が得られず、上限を
越えると導電率を低下させるばかりか、加工性を
損なうためである。尚Ni2Si及びCo2Siの化学量
理論比は5.2:1であり、Ni、Co又はこれ等の混
合物とSiの配合比を上記組成範囲内において化学
量論比に近ずけることが望ましく、過剰のNi、
Co又はSiは導電率を低下させ、かつ加工性や半
田接続強度の低下をまねく。 Ta,Nb,MMを各0.01〜1%、Agを0.01〜
0.05%のうち何れか1種又は2種状の添加は、更
に強度を向上させるとと共に、特性を安定化させ
るためで、これ等の1種又は2種以上の合計含有
量を0.01〜1%と限定したのは、含有量が下限未
満では十分な効果が得られず、上限を越えると導
電率を低下するばかりか、コストを上昇し、加工
性を損なう等の不都合を生ずる。即ちNi2Si又
は/及びCo2Siの析出は合金組成や熱処理条件の
みでなく、加工条件なども複雑に関与し、実際上
の特性を不安定にするが、Ta,Nb,MM,Ag
は特性の安定化に働く。その作用機構は明らかで
はないが、これ等はSiと化合し、未反応のSiを消
費して強度向上に働くものと考えられる。またこ
れ等は結晶の微細化に働き、製造時に加工性を高
める。特にMMはプレス成型性を向上し、Ag,
MMは耐熱性を向上する。 またMn,Zn,Snの内何れか1種又は2種以上
の添加は、上記添加元素の作用効果を一層高め、
強度を向上して特性を一層安定化させるためであ
り、Mn含有量を0.5%以下、Zn含有量を5%以
下、Sn含有量を5%以下と限定したのは、何れ
もこれ越えて含有せしめると導電率を著しく低下
するためである。更にこれ等の添加は上記作用効
果の外にMnは半田接合強度の向上と熱間加工性
の向上に有効であり、Znは半田接合強度の向上
に有効であり、Snは高度加工性の外耐熱性の向
上に有効である。添加元素の増加は導電性を低下
するので特に実用上Mn0.3%以下、Zn2%以下、
Sn2%以下が有用である。 以上の本発明合金は650℃以上、望ましくは700
℃〜950℃で熱間加工し、直ちに10℃/sec以上の
速度で350℃以下まで冷却した後、70%以上の冷
間加工を行なつてから400〜600℃、望ましくは
450〜550℃で熱処理することにより、特性を最大
限に実現する。本発明合金を650℃以上で熱間加
工し、直ちに10℃/sec以上の速度で350℃以下ま
で冷却するのは、粗大な析出を抑止するためであ
る。次に70%以上の冷間加工を行なつてから400
〜600℃熱処理するのは加工歪みを加えた状態で
熱処理することにより、微細な析出を均一に分散
析出させるためで、70%未満の冷間加工では均一
な分散析出が得られない。また熱処理温度が40℃
未満では析出に長時間を要し、析出粒子も超微粒
子となつて、加工性や半田接合強度が不安定にな
り、600℃を越えると粗大不均一析出となるばか
りか導電率などの特性が劣化する。また熱処理
後、必要に応じて冷間加工と再熱処理を繰返すこ
ともできる。即ち熱処理後所望サイズまで冷間加
工した後、250〜350℃で熱処理することにより加
工歪の一部を解放し、伸びや成型加工性を向上す
る。 〔実施例〕 第1表に示す組成の合金を溶解し、合金に鋳造
して機械切削により幅80mm、厚さ50mm、長さ300
mmのインゴツトとした。これを870℃に加熱して
熱間圧延し、約730℃で板厚50mmとし、直ちに350
℃まで冷却(水冷、風例、炉冷)してから酸洗し
た。これを第1冷間圧延してから熱処理し、一部
第2冷間圧延を加えてから再熱処理した。これ等
の製造条件を第2表に示す。 上記板上について引張強さ、伸び、導電率、耐
熱性、半田接合強度、スケール密着性、メツキ性
及び耐食性を試験し、その結果を従来の7/3黄
銅(Zn29.7%、残部Cu)、リン青銅(Sn6.1%、
P0.15%、残部Cu)、C195(Fe1.6%、Co0.8%、
Sn0.6%、P0.05%、残部Cu)と比較して第3表
に示した。耐熱性は500℃で1分間加熱後の硬度
を測定し、半田接合強度は直径5mmの半田接合を
150℃で300時間加熱してからプルテストを行なつ
た。スケール密着性は大気中250〜400℃のホツト
プレート上で加熱した後、テープ剥離テストを行
なつて剥離を始めた最小膜厚を求めた。膜厚はカ
ーソド還元法で測定した。メツキ性はH2SO4
H2O混合液により表面を厚さ約0.3μエツチングし
た後、厚さ3μのイシアン銀メツを行ない、これ
を470℃で5分間加熱して表面のフクレ有無を40
倍の実体顕微鏡により試べた。耐食性は
JISC8306に基づき、3Vol1%のNHガス中で30
Kg/mmm2の定荷量を加え、破断するまでの時間を
調べた。尚、表中耐熱性と半田接合強度の( )
内は試験前の測定値である。
[Industrial Application Field] The present invention relates to a high-strength copper alloy for high thermal/electrical conductivity used in electric/electronic equipment and heat exchangers, and a method for producing the same. The present invention provides a copper alloy suitable for use as lead materials for small, high-density semiconductors. [Prior art] Copper alloys that have strength and thermal and electrical conductivity (hereinafter abbreviated as conductivity), such as phosphor bronze (Sn4~8wt), are used for external connectors of semiconductor leads, conductive springs such as switch relays, and various terminals. % or less, P0.6wt% or less, balance Cu) (hereinafter wt% is abbreviated as %), but recently, as devices become smaller and more dense, the need for heat dissipation increases due to the increase in heat generation. Furthermore, solderability, plating performance, scale adhesion, and corrosion resistance have become essential conditions for soldering to printed circuit boards and plastic molding. Phosphor bronze has a strength of 50 to 65 Kg/ mm2 and is excellent in workability, but its conductivity is low at 10 to 20% IACS, and it contains 4 to 8% of expensive Sn, resulting in poor solder joint strength. Not only does it cause deterioration over time, but it also has the disadvantage of being highly susceptible to stress corrosion cracking. Therefore, Cu−Be
The alloy Cu-Fe alloy came into use. [Problems to be solved by the invention] Although the Cu-Be alloy exhibits a strength of over 100 kg/mm,
Due to its high cost, its use is limited to special applications. In addition, Cu-Fe alloys, such as C-195 alloy (1.5%Fe.Co08%, Sn0.6%, P0.1%, balance
Cu) is relatively cheap and is widely used in lead frames, etc., with an altitude of 45 to 55 Kg/mm 2 and a conductivity of 50 to 65.
%IACS, but it contains a large amount of Fe x P and Fe precipitates, resulting in poor workability, solder joint strength, plating properties, etc. Other Cu-Cr alloys and Icorson alloys (Cu-Ni-Si alloys) are known, but
Although Cu-Cr alloy shows high conductivity of 80% IACS class, its strength is insufficient.Corson alloy not only has unstable properties but also has a large deterioration in solder joint strength.
or Sn-Pb alloy (solder) plating is likely to peel off,
It has become a serious hindrance in applications such as electronic and electrical equipment. There is a need for improved alloys to meet the ever-increasing needs for high-performance alloys, and such alloys are required to have the following properties. (1) Excellent strength, heat resistance, and corrosion resistance. (2) Good homogeneity of workability, conductivity, and stability. (3) High solder joint strength, little deterioration over time, and good plating properties. (4) Good adhesion of oxide scale. [Means for solving the problem] In view of this, the present invention has been developed as a result of various studies,
We have developed a high-strength copper alloy for high thermal and electrical conductivity with excellent strength, solder joint strength, plating properties, oxide scale adhesion, and corrosion resistance, as well as a method for producing the same. That is, one of the alloys of the present invention contains 0.4 to 4% of Ni, Co, or a mixture thereof, and 0.1 to 1% of Si, and further contains Ta, Nb, and Mitsushi Metal (hereinafter referred to as MM) of 1% or less each.
), one or more selected from the group consisting of less than 0.05% Ag, totaling 0.01 to 1%
It is characterized by the fact that it contains Cu and the remainder consists of unavoidable impurities. Another alloy of the present invention contains 0.4 to 4% of Ni, Co or a mixture thereof and Si.
Contains 0.1 to 1% of Ta, Nb, and 1% or less of each.
Contains a total of 0.01 to 1% of any one or two or more selected from the group consisting of Ag with less than MM0.05%,
Furthermore, it contains one or more of Mn 0.5wt% or less, Zn 5% or less, Sn 5% or less, and the remainder
It is special in that it consists of Cu and unavoidable impurities. In addition, the manufacturing method of the present invention includes 0.4 to 4% of Ni, Co, or a mixture thereof, 0.1 to 1% of Si, and furthermore, selected from the group consisting of 1% or less of Ta, Nb, and MM of less than 0.05 Ag. Contains a total of 0.01 to 1% of one or more of the following, or Mn 0.5% or less,
An alloy containing one or more of Zn 5% or less and Sn 5% or less, with the remainder Cu and unavoidable impurities, is hot worked at 650°C or higher and immediately
After cooling down to 350℃ or less at a rate of ℃/sec or more,
It is characterized by cold working of 70% or more and then heat treatment at 400 to 600°C. In the present invention, the above alloy composition is blended and melted by a conventional method, and an ingot is cast by a water-cooled mold casting method, etc., and then hot worked at a temperature of 650°C or higher, preferably 700°C or higher, and immediately cooled by water cooling or air cooling. do. Next, the surface is cleaned by milling, pickling, etc.
70% or more cold working, then 400~600℃
It is preferably finished by heat treatment at 450 to 550°C for 1 minute to 24 hours. Note that cold working and heat treatment can be repeated as necessary. [Function] In the present invention, the addition of Ni, Co or a mixture thereof and Si is an intermetallic compound Ni 2 Si or/and
Co 2 Si is precipitated by heat treatment to improve strength and recover electrical conductivity.
The content of Co or a mixture thereof is 0.4-4%, Si
The reason why the content is limited to 0.1 to 1% is because if the content is less than the lower limit, a sufficient effect cannot be obtained, and if the content exceeds the upper limit, not only the conductivity decreases but also processability is impaired. The stoichiometric ratio of Ni 2 Si and Co 2 Si is 5.2:1, and it is desirable that the blending ratio of Ni, Co, or a mixture thereof and Si be close to the stoichiometric ratio within the above composition range. , excess Ni,
Co or Si lowers electrical conductivity and also causes a decrease in workability and solder connection strength. Ta, Nb, MM 0.01~1% each, Ag 0.01~
The addition of one or two of these 0.05% is to further improve the strength and stabilize the properties, and the total content of one or more of these is 0.01 to 1%. The reason for this limitation is that if the content is less than the lower limit, a sufficient effect cannot be obtained, and if the content exceeds the upper limit, not only will the conductivity decrease, but also the cost will increase and processability will be impaired. In other words, the precipitation of Ni 2 Si and/or Co 2 Si is complicated not only by alloy composition and heat treatment conditions but also by processing conditions, making the actual properties unstable.
works to stabilize the characteristics. The mechanism of action is not clear, but it is thought that they combine with Si and consume unreacted Si to improve strength. These also work to make crystals finer and improve workability during manufacturing. In particular, MM improves press formability, and Ag,
MM improves heat resistance. Furthermore, the addition of one or more of Mn, Zn, and Sn further enhances the effects of the above-mentioned additive elements.
This is to improve the strength and further stabilize the properties, and the reason why the Mn content is limited to 0.5% or less, the Zn content to 5% or less, and the Sn content to 5% or less is that the content exceeds these limits. This is because if the temperature is increased, the conductivity will be significantly lowered. Furthermore, in addition to the above effects, Mn is effective in improving solder joint strength and hot workability, Zn is effective in improving solder joint strength, and Sn is effective in improving workability. Effective in improving heat resistance. Increasing the amount of added elements decreases the conductivity, so for practical purposes it is especially recommended to use Mn below 0.3%, Zn below 2%,
Sn2% or less is useful. The above alloy of the present invention has a temperature of 650°C or higher, preferably 700°C.
After hot working at ℃ to 950℃, immediately cooling to 350℃ or less at a rate of 10℃/sec or more, cold working to 70% or more, and then heating to 400 to 600℃, preferably
The properties are maximized by heat treatment at 450-550℃. The reason why the alloy of the present invention is hot worked at 650°C or higher and immediately cooled to 350°C or lower at a rate of 10°C/sec or higher is to suppress coarse precipitation. Next, after performing cold working of 70% or more,
The reason why heat treatment is performed at ~600°C is to uniformly disperse and precipitate fine precipitates by heat treating with processing strain applied, and cold working of less than 70% does not result in uniformly dispersed precipitates. Also, the heat treatment temperature is 40℃
If the temperature is below 600℃, precipitation will take a long time and the precipitated particles will become ultra-fine particles, making processability and solder joint strength unstable. to degrade. Further, after the heat treatment, cold working and reheat treatment can be repeated as necessary. That is, after heat treatment and cold working to a desired size, heat treatment is performed at 250 to 350°C to release some of the processing strain and improve elongation and moldability. [Example] An alloy having the composition shown in Table 1 was melted, cast into an alloy, and machined into a material with a width of 80 mm, a thickness of 50 mm, and a length of 300 mm.
mm ingot. This was heated to 870℃ and hot rolled to a plate thickness of 50mm at about 730℃, and then immediately rolled to 350℃.
After cooling to ℃ (water cooling, air cooling, furnace cooling), pickling was performed. This was first cold rolled and then heat treated, and then partially subjected to second cold rolling and then reheated. These manufacturing conditions are shown in Table 2. The above board was tested for tensile strength, elongation, electrical conductivity, heat resistance, solder joint strength, scale adhesion, plating property, and corrosion resistance, and the results were compared to conventional 7/3 brass (Zn 29.7%, balance Cu). , phosphor bronze (Sn6.1%,
P0.15%, balance Cu), C195 (Fe1.6%, Co0.8%,
Table 3 shows a comparison between Sn0.6%, P0.05%, balance Cu). Heat resistance was determined by measuring the hardness after heating at 500℃ for 1 minute, and solder joint strength was determined by measuring a solder joint with a diameter of 5 mm.
A pull test was conducted after heating at 150°C for 300 hours. The scale adhesion was determined by heating on a hot plate at 250 to 400°C in the atmosphere and then performing a tape peeling test to determine the minimum film thickness at which peeling started. The film thickness was measured by the cursor reduction method. Plating property is H 2 SO 4
After etching the surface to a thickness of approximately 0.3 μm with a H 2 O mixture, a 3 μm thick Isian silver plate was applied, and this was heated at 470°C for 5 minutes to check for blisters on the surface.
It was tested using a stereoscopic microscope. Corrosion resistance
Based on JISC8306, 30 in 3Vol1% NH gas
A constant load of Kg/mmm 2 was applied, and the time until breakage was investigated. In addition, the heat resistance and solder joint strength in the table ( )
The values inside are the measured values before the test.

【表】【table】

【表】【table】

【表】【table】

〔発明の効果〕〔Effect of the invention〕

このように本発明合金は、強度・伝導率を始め
電気・電子機器や熱交換器に要求される各種特性
を満足するもので、半導体を初め、各種電気・電
子機器に用い、該機器の小型化、高密度化を可能
にする等工業上顕著な効果を奏するものである。
In this way, the alloy of the present invention satisfies various properties required for electrical/electronic equipment and heat exchangers, including strength and conductivity, and can be used in various electrical/electronic equipment, including semiconductors, to reduce the size and size of such equipment. It has remarkable industrial effects such as making it possible to increase the density and increase the density.

Claims (1)

【特許請求の範囲】 1 Ni,Co又はこれ等の混合物を0.4〜4wt%と
Siを0.1〜1wt%を含み、更に各々1wt%以下の
Ta,Nb、ミツシユメタル、0.05wt%未満のAg
からなる群より選択された何れか1種又は2種以
上を合計で0.01〜1wt%含み、残部Cuと不可避的
不純物からなる熱・電気高伝導用高力銅合金。 2 Ni,Co又はこれ等の混合物を0.4〜4wt%と
Siを0.1〜1wt%を含み、更に各々1wt%以下の
Ta,Nb、ミツシユメタル、0.05wt%未満のAg
からなる群より選定された何れか1種又は2種以
上を合計で0.01〜1wt%含み、更にMn0.5wt%以
下、Zn5wt%以下、Sn5wt%以下の範囲内で何れ
か1種又は2種以上を含み、残部Cuと不可避的
不純物からなる熱・電気高伝導用高力銅合金。 3 Ni,Co又はこれ等の混合物を0.4〜4wt%と
Siを0.1〜1wt%を含み、更に各々1wt%以下の
Ta,Nb、ミツシユメタル、0.05wt%未満のAg
からなる群より選定された何れか1種又は2種以
上を合計で0.01〜1wt%含み、又はこれに
Mn0.5wt%以下、Zn5wt%以下、Sn5wt%以下の
範囲内で何れか1種又は2種以上を含み、残部
Cuと不可避的不純物からなる合金を650℃以上で
熱間加工し、直ちに10℃/sec以上の速度で350℃
以下まで冷却した後、70%以上の冷間加工を行な
つてから400〜600℃で熱処理することを特徴とす
る熱・電気高伝導用高力銅合金の製造法。
[Claims] 1 Ni, Co or a mixture thereof at 0.4 to 4 wt%
Contains 0.1 to 1wt% of Si, and further contains less than 1wt% of each
Ta, Nb, Mitsushi Metal, Ag less than 0.05wt%
A high-strength copper alloy for high thermal and electrical conductivity, comprising a total of 0.01 to 1 wt% of one or more selected from the group consisting of, and the balance being Cu and unavoidable impurities. 2 Ni, Co or a mixture thereof at 0.4 to 4 wt%
Contains 0.1 to 1wt% of Si, and further contains less than 1wt% of each
Ta, Nb, Mitsushi Metal, Ag less than 0.05wt%
Contains a total of 0.01 to 1 wt% of one or more selected from the group consisting of, and further contains one or more of Mn 0.5 wt% or less, Zn 5 wt% or less, Sn 5 wt% or less. A high-strength copper alloy for high thermal and electrical conductivity, with the remainder being Cu and unavoidable impurities. 3 Ni, Co or a mixture thereof at 0.4 to 4 wt%
Contains 0.1 to 1wt% of Si, and further contains less than 1wt% of each
Ta, Nb, Mitsushi Metal, Ag less than 0.05wt%
Contains a total of 0.01 to 1 wt% of one or more selected from the group consisting of, or
Contains one or more of Mn 0.5wt% or less, Zn 5wt% or less, Sn 5wt% or less, and the remainder
An alloy consisting of Cu and unavoidable impurities is hot worked at 650℃ or higher, and then immediately heated to 350℃ at a rate of 10℃/sec or higher.
A method for producing a high-strength copper alloy for high thermal and electrical conductivity, which comprises cooling to a temperature below, cold-working 70% or more, and then heat-treating at 400 to 600°C.
JP2818486A 1986-02-12 1986-02-12 High strength copper alloy for high thermal and electric conductivity use and its production Granted JPS62185847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2818486A JPS62185847A (en) 1986-02-12 1986-02-12 High strength copper alloy for high thermal and electric conductivity use and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2818486A JPS62185847A (en) 1986-02-12 1986-02-12 High strength copper alloy for high thermal and electric conductivity use and its production

Publications (2)

Publication Number Publication Date
JPS62185847A JPS62185847A (en) 1987-08-14
JPH0356294B2 true JPH0356294B2 (en) 1991-08-27

Family

ID=12241616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2818486A Granted JPS62185847A (en) 1986-02-12 1986-02-12 High strength copper alloy for high thermal and electric conductivity use and its production

Country Status (1)

Country Link
JP (1) JPS62185847A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5833920A (en) * 1996-02-20 1998-11-10 Mitsubishi Denki Kabushiki Kaisha Copper alloy for electronic parts, lead-frame, semiconductor device and connector
KR100644510B1 (en) * 2005-03-17 2006-11-10 한국기계연구원 High strength lead-frame material Cu-Ni-Mn-Si-Sn-Ms alloy with good hot-workability and good anti-softening and it's manufacturing method
WO2009096546A1 (en) * 2008-01-31 2009-08-06 The Furukawa Electric Co., Ltd. Copper alloy material for electric/electronic component and method for manufacturing the copper alloy material
JP5144814B2 (en) * 2009-08-10 2013-02-13 古河電気工業株式会社 Copper alloy material for electrical and electronic parts
JP5400877B2 (en) * 2009-12-02 2014-01-29 古河電気工業株式会社 Copper alloy sheet and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5570494A (en) * 1978-11-18 1980-05-27 Futoshi Matsumura Wire rod for copper welding excelling in electric conductivity, thermal conductivity and welding performance
JPS6274037A (en) * 1985-09-26 1987-04-04 Furukawa Electric Co Ltd:The High strength copper alloy having high electric conductivity

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5570494A (en) * 1978-11-18 1980-05-27 Futoshi Matsumura Wire rod for copper welding excelling in electric conductivity, thermal conductivity and welding performance
JPS6274037A (en) * 1985-09-26 1987-04-04 Furukawa Electric Co Ltd:The High strength copper alloy having high electric conductivity

Also Published As

Publication number Publication date
JPS62185847A (en) 1987-08-14

Similar Documents

Publication Publication Date Title
KR950004935B1 (en) Copper alloy for electronic instruments
JPS6045698B2 (en) Lead material for semiconductor equipment
JPH0641660A (en) Cu alloy steel having fine structure for electric and electronic parts
JP3418301B2 (en) Copper alloy for electrical and electronic equipment with excellent punching workability
JP2516623B2 (en) Copper alloy for electronic and electrical equipment and its manufacturing method
JPS62182240A (en) Conductive high-tensile copper alloy
JPS59170231A (en) High tension conductive copper alloy
JPH0356294B2 (en)
JPS63149345A (en) High strength copper alloy having high electrical conductivity and improved heat resistance
JPS6256937B2 (en)
JPS6338547A (en) High strength conductive copper alloy
JPS6142772B2 (en)
JPH0551673A (en) High-strength and high-conductivity copper alloy for electronic equipment excellent in bendability and stress relaxation property
JPH0575812B2 (en)
JPH0551674A (en) High-strength and high-conductivity copper alloy for electronic equipment excellent in bendability and stress relaxation property
JP2945208B2 (en) Method for producing copper alloy for electrical and electronic equipment
JPS5939492B2 (en) High strength copper alloy for conductive use with softening resistance
JPH0469217B2 (en)
JP2576853B2 (en) Copper alloy for electronic equipment with excellent solder joint strength and its manufacturing method
JPS63192835A (en) Lead material for ceramic package
JP3391492B2 (en) High-strength, high-conductivity copper alloy for lead materials of semiconductor equipment and conductive spring materials
JPH0816255B2 (en) Copper alloy for electronic devices
JPH0830233B2 (en) High strength and high conductivity copper alloy
JPH0542488B2 (en)
JPS60194031A (en) Copper alloy for lead material for semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees