JPS63307232A - Copper alloy - Google Patents

Copper alloy

Info

Publication number
JPS63307232A
JPS63307232A JP14061687A JP14061687A JPS63307232A JP S63307232 A JPS63307232 A JP S63307232A JP 14061687 A JP14061687 A JP 14061687A JP 14061687 A JP14061687 A JP 14061687A JP S63307232 A JPS63307232 A JP S63307232A
Authority
JP
Japan
Prior art keywords
alloy
copper alloy
strength
content
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14061687A
Other languages
Japanese (ja)
Inventor
Juichi Shimizu
寿一 清水
Kimine Kimura
木村 仁根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP14061687A priority Critical patent/JPS63307232A/en
Publication of JPS63307232A publication Critical patent/JPS63307232A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a copper alloy having high strength and high electricconductivity at low cost by specifying the compsn. consisting of Co, Si, Mg and Cu and the compositional relationships thereamong. CONSTITUTION:The copper alloy consists of, be weight, 0.4-1.6% Co, 0.1-0.5% Si, 0.01-0.5% Mg, furthermore, as needed <=1% Sn and/or <=1% Zn and the balance Cu with inevitable impurities, the weight ratio of Si/Co being regulated to 0.2-0.3. In said alloy, the content of expensive Co is decreased, and high strength, high electricconductivity and inexpensiveness are provided thereto. The alloy furthermore combines excellent heat resistance, solderability, plating adhesion, workability, etc. Said copper alloy can be obtd. by melting and casting each alloy component by atmospheric melting or vacuum melting in such a manner that they form the above-mentioned compsn., executing hot working to the obtd. ingot and, if required, thereafter subjecting it to suitable cold working and heat treatment.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体素子のリードフレーム材や電子機器の
コネクタ材などに用いられる銅合金に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a copper alloy used for lead frame materials for semiconductor devices, connector materials for electronic devices, and the like.

〔従来の技術及び発明が解決しようとする問題点〕従来
、半導体素子のリードフレーム材としては、42A1 
toy (Fe−42%(重量%。以下、単に%と称す
。)Ni合金)等の鉄系合金やCDA194(Cu−2
,4%F e −0,12%Zn−P合金)、りん青銅
等の銅合金が使用されているが、近年半導体集積回路の
高集積化や小型化さらGこ番ま低価格化の要求から、高
強度、高導電性を有し且つ安価であるリードフレーム用
合金が求められている。
[Prior art and problems to be solved by the invention] Conventionally, 42A1 was used as a lead frame material for semiconductor devices.
Iron-based alloys such as toy (Fe-42% (weight %, hereinafter simply referred to as %) Ni alloy) and CDA194 (Cu-2
, 4% Fe-0, 12% Zn-P alloy), phosphor bronze, and other copper alloys are used, but in recent years there has been a demand for higher integration, smaller size, and lower prices of semiconductor integrated circuits. Therefore, there is a need for an alloy for lead frames that has high strength, high conductivity, and is inexpensive.

しかし、上述の如き現用のリードフレーム用合金は、例
えばCDA194は導電性が高いものの強度が低く、4
2A11oyやりん青銅は強度が高いものの導電性が低
く且つ価格も高いといったように、高強度、高導電性、
低価格という条件を完全に満たしているものはない。
However, current lead frame alloys such as those mentioned above, such as CDA194, have high conductivity but low strength;
2A11oy and phosphor bronze have high strength but low conductivity and high price.
There is no such thing that completely satisfies the condition of low price.

又、COを2〜4%程度、StをCOの約25%含有さ
せたCu−Co、Si型のコルソン合金は、高導電性、
高強度を示す合金として周知であるが、高価なCoを比
較的多量に用いることから、リードフレーム材として工
業的に利用するには価格的に難点があった。
In addition, Cu-Co, Si-type Corson alloy containing about 2 to 4% CO and about 25% St of CO has high conductivity,
Although it is well known as an alloy that exhibits high strength, it is difficult to use it industrially as a lead frame material because it uses a relatively large amount of expensive Co.

本発明は、上記問題点に鑑み、高強度、高導電性を有し
且つ安価である銅合金を提供することを目的とする。
In view of the above problems, the present invention aims to provide a copper alloy that has high strength, high conductivity, and is inexpensive.

〔問題点を解決するための手段及び作用〕本発明による
銅合金は、周知のCLI−CO2Si合金にMgだけ或
はMg並びにSn及び/又はZnを添加することにより
Co含有量が低くても高強度が得られ而も高導電性のま
まであるようにしたものである。
[Means and effects for solving the problems] The copper alloy according to the present invention has a high Co content even if the Co content is low by adding only Mg or Mg and Sn and/or Zn to the well-known CLI-CO2Si alloy. It is designed to provide strength while remaining highly conductive.

即ち、本発明による第1の銅合金は、Co 0.4〜1
.6%、SiO,1〜0.5%、Mg0.01〜0.5
%、残部Cu及び不可避不純物から成り、81700重
量比0.2〜0.3であることを特徴としている。又、
第2の銅合金は、Co 0.4〜1.6%、SiO,1
〜0.5%、Mg0.01〜0.5%、Sn1%以下及
び/又はZn1%以下、残部Cu及び不可避不純物から
成り、S i / Co重量比0.2〜0.3であるこ
とを特徴としている。
That is, the first copper alloy according to the present invention has Co 0.4-1
.. 6%, SiO, 1-0.5%, Mg0.01-0.5
%, the balance being Cu and unavoidable impurities, and is characterized by having a weight ratio of 0.2 to 0.3. or,
The second copper alloy contains 0.4-1.6% Co, SiO,1
0.5%, Mg 0.01-0.5%, Sn 1% or less and/or Zn 1% or less, the balance consisting of Cu and unavoidable impurities, and the Si/Co weight ratio is 0.2-0.3. It is a feature.

次に、本発明銅合金における各成分の添加理由とその組
成範囲の限定理由を説明する。
Next, the reason for adding each component in the copper alloy of the present invention and the reason for limiting the composition range will be explained.

QoはSiと共にCO□Siという化合物析出物を形成
することによって合金の強度・耐熱性を向上させるが、
COの含有量を0.4〜1.6%と限定した理由は、C
o含有量が0.4%未満では析出する化合物の量が不十
分でSt、Mg、Sn、Znを添加しても期待する強度
、耐熱性が得られず、逆にCo含有量が1.6%を超え
ると強度の上昇が飽和する傾向を示し、而もCo含有量
の増加により合金価格が上昇してしまうからである。又
、Siの含有量を0.1〜0.5%とした理由は、Si
含有量が0.1%未満ではSi含有による特性の向上が
得られず、逆にSi含有量が0.5%を超えても特性の
向上が飽和し、而も導電性が低下するがらである。又、
Mgは固溶型の元素であって、合金に固溶させることに
よって合金の導電性をあまり下げずに強度を上昇させる
ことができるが、Mgの含有量を0.01〜0.5%と
した理由は、Mg含有量が0.01%未満では期待され
る強度が得られず、逆に0.5%を超えると合金の鋳造
性、熱間加工性が低下するからである。又1、′第2の
銅合金におけるSn、ZnはMgと同様に固溶型の元素
であって、第1の銅合金に含有させることにより第1の
銅合金の強度を更に上昇させることができるが、Snの
含有量を1%以下とした理由は、Sn含有量が1%を超
えると合金の強度は高くなるが導電性の低下が大きくな
るからであり、Znの含有量を1%以下としたのはZn
含有量が1%を超えると合金の半田付は性が低下するか
らである。又、S i / Co重量比を0.2〜0.
3とした理由は、先に述べたCo2Siという化合物析
出物のStとCOの重量比が1 : 4.2 (#0.
24)であり、この比から大きく外れてCoとSiを添
加すると、化合物形成にあずからない過剰のCOもしく
はSlが合金中に固溶して導電性の大きな低下をもたら
すからである。
Qo improves the strength and heat resistance of the alloy by forming a compound precipitate called CO□Si together with Si.
The reason for limiting the CO content to 0.4-1.6% is that C
When the Co content is less than 0.4%, the amount of precipitated compounds is insufficient, and even if St, Mg, Sn, and Zn are added, the expected strength and heat resistance cannot be obtained. This is because if it exceeds 6%, the increase in strength tends to be saturated, and the price of the alloy increases due to the increase in Co content. Also, the reason why the Si content is set to 0.1 to 0.5% is that Si
If the content is less than 0.1%, no improvement in properties due to Si content will be obtained, and conversely, if the Si content exceeds 0.5%, the improvement in properties will be saturated, while the conductivity will decrease. be. or,
Mg is a solid solution type element, and by incorporating it into an alloy, the strength can be increased without significantly lowering the conductivity of the alloy. The reason for this is that if the Mg content is less than 0.01%, the expected strength cannot be obtained, whereas if it exceeds 0.5%, the castability and hot workability of the alloy will deteriorate. Further, 1, 'Sn and Zn in the second copper alloy are solid solution elements like Mg, and by incorporating them into the first copper alloy, the strength of the first copper alloy can be further increased. However, the reason why the Sn content is set to 1% or less is that if the Sn content exceeds 1%, the strength of the alloy increases but the conductivity decreases significantly. The following is Zn
This is because if the content exceeds 1%, the soldering properties of the alloy will deteriorate. Further, the Si/Co weight ratio is set to 0.2 to 0.
3 is because the weight ratio of St and CO in the precipitated compound of Co2Si mentioned above is 1:4.2 (#0.
24), and if Co and Si are added in a ratio that greatly deviates from this ratio, excess CO or Sl that does not participate in compound formation will become solid solution in the alloy, resulting in a significant decrease in electrical conductivity.

次に、本発明による銅合金の製造方法について説明する
Next, a method for manufacturing a copper alloy according to the present invention will be explained.

まず、本発明の合金組成になるように溶解鋳造して鋳塊
を得る。この際、溶解は通常の大気溶解もしくは真空溶
解を採用すればよい。又、脱酸剤としでは、Si、Mg
、Mnなどを使用すれば良い。
First, an ingot is obtained by melting and casting to obtain the alloy composition of the present invention. At this time, ordinary atmospheric melting or vacuum melting may be used for melting. In addition, as a deoxidizing agent, Si, Mg
, Mn, etc. may be used.

このようにして得られた鋳塊は、必要に応じて熱間加工
を加えた後、適当な冷間加工と熱処理を組合わせて行う
ことにより、所望の形状、特性を持った製品にまで加工
される。
The ingots obtained in this way are processed into products with the desired shape and characteristics by applying hot working as necessary and then performing a combination of appropriate cold working and heat treatment. be done.

〔実施例〕〔Example〕

通常のピース状電気銅を高周波溶解炉で大気溶解し、目
的値に応じたC O、S i、 Mg +  S n及
びZnを夫々銅との中間合金(Co10%、5i15%
、Mg50%)及び粒状の金属錫、金属亜鉛の状態で加
えた後、鋳型に通常の鋳造法で鋳込んで鋳塊を得た。試
料の組成は下記表の通りであった。これらの鋳塊を95
0℃で加熱した後熱間圧延により12mm厚の板とした
。次に、板を片面11ずつ固剤してlQmm厚とした後
、0.25 m厚まで冷間圧延した。これをCo含有量
が0.6%を超える合金の場合には500°Cで1時間
、又Co含有量が0.6%以下の場合には450℃で1
時間焼鈍して試料とした。
Ordinary piece-shaped electrolytic copper is melted in the atmosphere in a high-frequency melting furnace, and CO, Si, Mg + Sn, and Zn are respectively mixed into intermediate alloys with copper (Co10%, 5i15%) according to the target values.
, Mg 50%) and granular metallic tin and metallic zinc, and then cast into a mold by a normal casting method to obtain an ingot. The composition of the sample was as shown in the table below. 95 of these ingots
After heating at 0° C., a plate having a thickness of 12 mm was obtained by hot rolling. Next, the plate was solidified 11 times on each side to a thickness of 1Q mm, and then cold rolled to a thickness of 0.25 m. In the case of alloys with Co content exceeding 0.6%, this is done at 500°C for 1 hour, and in the case of Co content below 0.6%, this is done at 450°C for 1 hour.
The sample was annealed for a period of time.

このようにして作製された試料の評価として強度は引張
り試験によって求め、導電性は導電率(%IAC3)を
測定し、加工性は引張り試験における破断伸びによって
評価した。又、耐熱性は、試料をアルゴン雰囲気中で一
時間加熱した後引張試験を行い、強度の低下が20%を
示す温度を軟化点として評価した。又、半田付は性は、
前処理としてスコッチブライトによる研磨及び酸洗を行
った後ロジン系フラックスを用いて5n−40%pb半
田浴に浸漬した試料について、その表面が均一に濡れて
いるかどうかを観察することにより評価した。又、メッ
キ密着性は半田付は性試験と同様の前処理を行った後3
μmのAgメッキを施した試料について、450 ’c
、5分間の加熱を行ってふくれの有無を観察することに
より評価した。
As for the evaluation of the samples thus produced, the strength was determined by a tensile test, the electrical conductivity was measured by electrical conductivity (%IAC3), and the workability was evaluated by the elongation at break in the tensile test. Furthermore, heat resistance was evaluated by heating the sample in an argon atmosphere for one hour, then performing a tensile test, and evaluating the temperature at which the strength decreased by 20% as the softening point. Also, the nature of soldering is
After polishing with Scotchbrite and pickling as pretreatment, samples were immersed in a 5N-40% PB solder bath using rosin flux, and the samples were evaluated by observing whether the surface was uniformly wet. In addition, the plating adhesion was determined by soldering after performing the same pretreatment as in the sex test.
For the sample with μm Ag plating, 450'c
The evaluation was made by heating for 5 minutes and observing the presence or absence of blistering.

これらの結果を、同様な工程で作製し評価した比較例と
共に下記表に示した。
These results are shown in the table below along with comparative examples produced and evaluated using similar steps.

上記表に示した如く、例えば実施例隘2と比較例11h
lo或は実施例隘1と比較例隘9を比較すれば、本発明
による銅合金はCo含有量が同じでありながら、従来の
Cu−Co、St型金合金比べ非常に高い強度を示し、
而も導電率はほぼ同程度であることが明らかである。従
って、同程度の強度を得るためにはCo含有量が少なく
て済むので、価格が非常に安くなる。又、本発明による
銅合金は、42Alloyやりん青銅などの従来の高強
度型合金に比べてほぼ同程度の強度と極めて高い導電率
を示し、而も優れた耐熱性、半田付は性。
As shown in the table above, for example, Example No. 2 and Comparative Example No. 11h.
Comparing Example No. 1 and Comparative Example No. 9, the copper alloy according to the present invention has the same Co content but exhibits much higher strength than conventional Cu-Co and St-type gold alloys,
However, it is clear that the conductivities are approximately the same. Therefore, in order to obtain the same level of strength, less Co content is required, resulting in a very low price. In addition, the copper alloy according to the present invention exhibits almost the same strength and extremely high conductivity as compared to conventional high-strength alloys such as 42 Alloy and phosphor bronze, and has excellent heat resistance and solderability.

メッキ密着性、加工性を兼ね備えていることが明らかで
ある。
It is clear that it has both good plating adhesion and workability.

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明による銅合金は、従来の高強度、高
導電性を示す合金であるコルソン合金に比べCo含有量
が少ないにもかかわらずほぼ同程度の強度と導電率を有
している。即ち高強度、高導電性を有し且つ安価である
という実用上極めて重要な利点を有しており、工業的価
値は大である。
As mentioned above, the copper alloy according to the present invention has almost the same strength and conductivity as the Corson alloy, which is a conventional alloy showing high strength and high conductivity, despite having a lower Co content. . That is, it has extremely important practical advantages of high strength, high conductivity, and low cost, and has great industrial value.

Claims (2)

【特許請求の範囲】[Claims] (1)Co0.4〜1.6重量%、Si0.1〜0.5
重量%、Mg0.01〜0.5重量%、残部Cu及び不
可避不純物から成り、Si/Co重量比0.2〜0.3
である銅合金。
(1) Co0.4-1.6% by weight, Si0.1-0.5
% by weight, Mg 0.01-0.5% by weight, remainder Cu and unavoidable impurities, Si/Co weight ratio 0.2-0.3
copper alloy.
(2)Co0.4〜1.6重量%、Si0.1〜0.5
重量%、Mg0.01〜0.5重量%、Sn1重量%以
下及び/又はZn1重量%以下、残部Cu及び不可避不
純物から成り、Si/Co重量比0.2〜0.3である
銅合金。
(2) Co0.4-1.6% by weight, Si0.1-0.5
A copper alloy consisting of 0.01 to 0.5% by weight of Mg, 1% or less of Sn and/or 1% or less of Zn, the remainder being Cu and unavoidable impurities, and having a Si/Co weight ratio of 0.2 to 0.3.
JP14061687A 1987-06-04 1987-06-04 Copper alloy Pending JPS63307232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14061687A JPS63307232A (en) 1987-06-04 1987-06-04 Copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14061687A JPS63307232A (en) 1987-06-04 1987-06-04 Copper alloy

Publications (1)

Publication Number Publication Date
JPS63307232A true JPS63307232A (en) 1988-12-14

Family

ID=15272850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14061687A Pending JPS63307232A (en) 1987-06-04 1987-06-04 Copper alloy

Country Status (1)

Country Link
JP (1) JPS63307232A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452034A (en) * 1987-08-19 1989-02-28 Mitsubishi Electric Corp Copper alloy for terminal and connector
JP2008056977A (en) * 2006-08-30 2008-03-13 Mitsubishi Electric Corp Copper alloy and its production method
WO2008041696A1 (en) * 2006-10-03 2008-04-10 Nippon Mining & Metals Co., Ltd. Method for production of copper alloy for electronic material
WO2009057697A1 (en) * 2007-11-01 2009-05-07 The Furukawa Electric Co., Ltd. Conductor material for electronic device and electric wire for wiring using the same
WO2009096546A1 (en) 2008-01-31 2009-08-06 The Furukawa Electric Co., Ltd. Copper alloy material for electric/electronic component and method for manufacturing the copper alloy material
WO2009116649A1 (en) 2008-03-21 2009-09-24 古河電気工業株式会社 Copper alloy material for electric and electronic components
WO2010013790A1 (en) 2008-07-31 2010-02-04 古河電気工業株式会社 Copper alloy material for electrical and electronic components, and manufacturing method therefor
WO2010016428A1 (en) * 2008-08-05 2010-02-11 古河電気工業株式会社 Copper alloy material for electrical/electronic component
WO2010016429A1 (en) 2008-08-05 2010-02-11 古河電気工業株式会社 Copper alloy material for electrical/electronic component
JP2011017070A (en) * 2009-07-10 2011-01-27 Furukawa Electric Co Ltd:The Copper alloy material for electric and electronic component

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452034A (en) * 1987-08-19 1989-02-28 Mitsubishi Electric Corp Copper alloy for terminal and connector
JP2008056977A (en) * 2006-08-30 2008-03-13 Mitsubishi Electric Corp Copper alloy and its production method
WO2008041696A1 (en) * 2006-10-03 2008-04-10 Nippon Mining & Metals Co., Ltd. Method for production of copper alloy for electronic material
JP2008088512A (en) * 2006-10-03 2008-04-17 Nikko Kinzoku Kk Method for producing copper alloy for electronic material
EP2219193A1 (en) * 2007-11-01 2010-08-18 The Furukawa Electric Co., Ltd. Conductor material for electronic device and electric wire for wiring using the same
WO2009057697A1 (en) * 2007-11-01 2009-05-07 The Furukawa Electric Co., Ltd. Conductor material for electronic device and electric wire for wiring using the same
JP5006405B2 (en) * 2007-11-01 2012-08-22 古河電気工業株式会社 Conductor wire for electronic equipment and wiring wire using the same
EP2219193A4 (en) * 2007-11-01 2012-07-04 Furukawa Electric Co Ltd Conductor material for electronic device and electric wire for wiring using the same
WO2009096546A1 (en) 2008-01-31 2009-08-06 The Furukawa Electric Co., Ltd. Copper alloy material for electric/electronic component and method for manufacturing the copper alloy material
EP2248921A1 (en) * 2008-01-31 2010-11-10 The Furukawa Electric Co., Ltd. Copper alloy material for electric/electronic component and method for manufacturing the copper alloy material
EP2248921A4 (en) * 2008-01-31 2011-03-16 Furukawa Electric Co Ltd Copper alloy material for electric/electronic component and method for manufacturing the copper alloy material
JPWO2009116649A1 (en) * 2008-03-21 2011-07-21 古河電気工業株式会社 Copper alloy material for electrical and electronic parts
WO2009116649A1 (en) 2008-03-21 2009-09-24 古河電気工業株式会社 Copper alloy material for electric and electronic components
JP5065478B2 (en) * 2008-03-21 2012-10-31 古河電気工業株式会社 Copper alloy material for electric and electronic parts and manufacturing method
WO2010013790A1 (en) 2008-07-31 2010-02-04 古河電気工業株式会社 Copper alloy material for electrical and electronic components, and manufacturing method therefor
WO2010016429A1 (en) 2008-08-05 2010-02-11 古河電気工業株式会社 Copper alloy material for electrical/electronic component
WO2010016428A1 (en) * 2008-08-05 2010-02-11 古河電気工業株式会社 Copper alloy material for electrical/electronic component
EP2333127A1 (en) * 2008-08-05 2011-06-15 The Furukawa Electric Co., Ltd. Copper alloy material for electrical/electronic component
JPWO2010016428A1 (en) * 2008-08-05 2012-01-19 古河電気工業株式会社 Copper alloy material for electrical and electronic parts
EP2333127A4 (en) * 2008-08-05 2012-07-04 Furukawa Electric Co Ltd Copper alloy material for electrical/electronic component
JP2011017070A (en) * 2009-07-10 2011-01-27 Furukawa Electric Co Ltd:The Copper alloy material for electric and electronic component

Similar Documents

Publication Publication Date Title
US4559200A (en) High strength and high conductivity copper alloy
US4732731A (en) Copper alloy for electronic instruments and method of manufacturing the same
JP2670670B2 (en) High strength and high conductivity copper alloy
US5021105A (en) Copper alloy for electronic instruments
JP2006283120A (en) Cu-Ni-Si-Co-Cr BASED COPPER ALLOY FOR ELECTRONIC MATERIAL, AND ITS PRODUCTION METHOD
JP3383615B2 (en) Copper alloy for electronic materials and manufacturing method thereof
JPS6045698B2 (en) Lead material for semiconductor equipment
JPS61183426A (en) High strength, highly conductive heat resisting copper alloy
JPS63307232A (en) Copper alloy
JPS5834537B2 (en) High-strength conductive copper alloy with good heat resistance
JP2521879B2 (en) Copper alloy for electronic and electrical equipment and its manufacturing method
JPS6160846A (en) Lead material of copper alloy for semiconductor device
JP3772319B2 (en) Copper alloy for lead frame and manufacturing method thereof
US4710349A (en) Highly conductive copper-based alloy
JPS6142772B2 (en)
JPH02129326A (en) High strength copper alloy
JPH01165733A (en) High strength and high electric conductive copper alloy
JP2597773B2 (en) Method for producing high-strength copper alloy with low anisotropy
JPS64449B2 (en)
JP3407527B2 (en) Copper alloy materials for electronic equipment
JPS6311418B2 (en)
JPH01263238A (en) High strength and high electric conductive copper alloy
JPH01165735A (en) Copper alloy for lead frame
JPH02129325A (en) High strength copper alloy
JPH02129324A (en) High strength copper alloy