JPH01263238A - High strength and high electric conductive copper alloy - Google Patents

High strength and high electric conductive copper alloy

Info

Publication number
JPH01263238A
JPH01263238A JP8826688A JP8826688A JPH01263238A JP H01263238 A JPH01263238 A JP H01263238A JP 8826688 A JP8826688 A JP 8826688A JP 8826688 A JP8826688 A JP 8826688A JP H01263238 A JPH01263238 A JP H01263238A
Authority
JP
Japan
Prior art keywords
alloy
strength
copper alloy
conductivity
conductive copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8826688A
Other languages
Japanese (ja)
Inventor
Keizo Kazama
風間 敬三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP8826688A priority Critical patent/JPH01263238A/en
Publication of JPH01263238A publication Critical patent/JPH01263238A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title Cu alloy suitable as a lead frame of a semiconductor device or the like by incorporating specific amounts of Mg, P and Sn and one or more kinds of transition metals among Fe, Co, Ni, etc. CONSTITUTION:The Cu alloy to which, by weight, 0.05-0.3% Mg, 0.05-0.2% P and 0.05-0.5% Sn are incorporated in such a manner that the weight ratio of Mg/P is regulated to >=1.18 and to which total 0.01-0.03% of one or more kinds of transition metals among Fe, Ni, Co, etc., are added is manufactured. The Cu alloy having excellent high strength and electric conductivity and suitable as the material for a lead frame can be obtd. at low cost.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体機器のリードフレームなどに使われる高
強度高導電性合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a high-strength, high-conductivity alloy used for lead frames of semiconductor devices.

(従来の技術) 従来、半導体機器のリードフレーム材として42合金(
Fe−42%Ni合金:以下垂量%を単に%と記す)な
どの鉄系合金や、錫入り銅、CDA 194 (CIJ
 −2、4%Fe−0,12%Zn−P合金)、りん青
銅等の銅合金か使用されている。近年、半導体集積回路
の高集積化や小型化、更には、低価格化の要求から高強
度高導電性で、且つ安価であるリードフレーム用の合金
か求められている。しかし、上述のような現用リードフ
レーム用合金は、例えは、錫入り別や、CDAl94の
ように導電性の高いものは強度が低く、42合金やりん
青銅のように強度の高いものは導電性か低く、且つ価格
も高いといったように、高強度高導電性・低価格という
条件を完全に満たしているものはない。
(Prior art) Conventionally, 42 alloy (
Iron-based alloys such as Fe-42%Ni alloy (hereinafter referred to as %), tinned copper, CDA 194 (CIJ
Copper alloys such as -2.4% Fe-0.12% Zn-P alloy) and phosphor bronze are used. In recent years, in response to demands for higher integration and smaller size of semiconductor integrated circuits, as well as lower prices, there has been a demand for alloys for lead frames that are high in strength, highly conductive, and inexpensive. However, among the alloys currently used for lead frames as mentioned above, those with high conductivity such as tin-containing and CDAl94 have low strength, and those with high strength such as 42 alloy and phosphor bronze have low conductivity. There is no material that completely satisfies the requirements of high strength, high conductivity, and low price, such as low conductivity and high price.

(発明か解決しようとしている課題) 本発明の目的は、かかる点に鑑み、半導体機器のリード
フレーム等に好適な高強度高導電性且つ低価格な合金を
提供することにある。
(Problems to be Solved by the Invention) In view of the above, an object of the present invention is to provide a high-strength, high-conductivity, and low-cost alloy suitable for lead frames of semiconductor devices and the like.

(課題を解決するための手段) 本発明者等は、上記目的を達成するために種々検討を加
えた結果、本発明に到達した。ずなわち、本発明の高強
度高導電性合金は、Mg:0.05〜0.3%と、Pr
o、05〜0.2%と、Sn:0.05〜0.5%とを
含み、更にCo、Fe。
(Means for Solving the Problems) The present inventors have made various studies to achieve the above object, and as a result, have arrived at the present invention. That is, the high-strength, high-conductivity alloy of the present invention contains 0.05 to 0.3% Mg and Pr.
o, 05 to 0.2%, and Sn: 0.05 to 0.5%, and further includes Co and Fe.

Niからなる鮮から選ばれた1種以上の遷移金属を合計
で0.01〜0.3%含み、残部がCu及び不可避的不
純物からなり、且つMg/P重量比が1.18を超える
ことを特徴とするものである。
Contains a total of 0.01 to 0.3% of one or more transition metals selected from the group consisting of Ni, with the remainder consisting of Cu and unavoidable impurities, and the Mg/P weight ratio exceeds 1.18. It is characterized by:

(作用) 次に本発明合金を構成する合金成分の添加理由と、その
組成範囲の限定理由を説明する。
(Function) Next, the reason for adding the alloy components constituting the alloy of the present invention and the reason for limiting the composition range will be explained.

(1)Mgの含有量を0.05〜0,3%と限定した理
由。
(1) Reason for limiting the Mg content to 0.05-0.3%.

MgはPとともにM g s P 2という化合物析出
物を形成することによって、合金の強度・耐熱性を向上
させるが、Mg含有量0.05%未満では析出する化合
物の量が不十分で、期待する強度・耐熱性が得られず、
逆にMg含有量か0.3%を超えると強度が飽和し、且
つ粗大な第2相が出現して、メツキ性、はんだ付は性が
低下する。
Mg improves the strength and heat resistance of the alloy by forming compound precipitates called M g s P 2 together with P, but if the Mg content is less than 0.05%, the amount of precipitated compounds is insufficient and the expected results are not met. strength and heat resistance cannot be obtained,
On the other hand, if the Mg content exceeds 0.3%, the strength will be saturated and a coarse second phase will appear, resulting in poor plating and soldering properties.

(2)Pの含有量を0.05〜0.2%とした理由。(2) Reason for setting the P content to 0.05 to 0.2%.

P含有量か0.05%未満ではP含有による特性の向上
か得られず、逆にP含有量か0.2%を超えると、熱間
加工性が低下し、且つ粗大な第2相か出現して、メy’
f性・はんた付は性が低下する。
If the P content is less than 0.05%, no improvement in properties can be obtained due to the P content, and conversely, if the P content exceeds 0.2%, hot workability decreases and a coarse second phase is formed. Appear, May'
The f-ability and soldering quality decreases.

(3)Snの含有量を0.05〜0.5%とした理由。(3) Reason for setting the Sn content to 0.05 to 0.5%.

Snは固溶型の元素で合金に固溶させることによって、
合金の導電性をあまり下げずに強度を上昇させることが
できるか、Sn含有量が0.05%未満では期待する強
度が得られず、逆に0.5%を超えると導電率の低下が
大きくなる。
Sn is a solid solution type element, and by making it a solid solution in the alloy,
Is it possible to increase the strength without significantly reducing the conductivity of the alloy? If the Sn content is less than 0.05%, the expected strength will not be obtained, and if it exceeds 0.5%, the conductivity will decrease. growing.

(4)Co、Fe、Niの量を合計で0.01〜0.3
%とした理由。
(4) The total amount of Co, Fe, and Ni is 0.01 to 0.3
Reason for %.

Co、Fe、Niを添加すると1合金の導電率をあまり
下げずに強度と耐熱性を向上できるが、総合有量が0.
01%未満では強度・耐熱性の向上か不十分であり、逆
に0.3%を超えると導電率の低下が大きくなる。
Adding Co, Fe, and Ni can improve the strength and heat resistance of the alloy without significantly lowering its electrical conductivity, but the total content is 0.
If it is less than 0.01%, the strength and heat resistance will be insufficiently improved, and if it exceeds 0.3%, the electrical conductivity will decrease significantly.

(5)Mg/P重量比を1..18より大きくした理由
(5) Mg/P weight ratio is 1. .. Reason for making it larger than 18.

先に述べたM g 3P 2化合物析出物を形成するM
gとPの重量比か1.1.8:1であり、この比率に対
し濾過剰側で、すなわちMg/P重量比が1.18より
も小さくなりすぎるようにMgとPを添加すると、化合
物形成にあずからない過剰のPか合金中に固溶し、大き
な導電率低下をもたらす。
M forming the M g 3P 2 compound precipitate mentioned above
The weight ratio of g to P is 1.1.8:1, and if Mg and P are added on the excessive filtration side of this ratio, that is, so that the Mg / P weight ratio becomes too small than 1.18, Excess P that does not participate in compound formation becomes a solid solution in the alloy, resulting in a large decrease in electrical conductivity.

(実施例) 通常のピース状電気別を高周波溶解炉で大気溶解し、目
的値に応じたマグネシウム、りん、錫、コバルト、鉄、
ニッケルをそれぞれ租との中間合金(マグネシウム50
%、りん15%、コバル1−10%、ニッケル30%)
及び純金属片(錫、鉄)の形で加えた後、鋳鉄製の合わ
せ鋳型に通常の鋳造法で鋳込んで鋳塊(厚さ35mm、
幅80mm、長さ160mm、ffiさ4.Okg)を
得た。試料の組成は第1表の通りであった。尚、同様に
して得た比較合金の鋳塊試料の組成も第1表に示す。
(Example) Ordinary piece-shaped metal parts are melted in the atmosphere in a high-frequency melting furnace to produce magnesium, phosphorus, tin, cobalt, iron, etc. according to the target values.
Intermediate alloy with nickel (magnesium 50
%, phosphorus 15%, cobal 1-10%, nickel 30%)
and pure metal pieces (tin, iron), and then cast into a cast iron mold using the usual casting method to form an ingot (thickness: 35 mm,
Width 80mm, length 160mm, ffi size 4. Okg) was obtained. The composition of the sample was as shown in Table 1. Table 1 also shows the composition of a comparative alloy ingot sample obtained in the same manner.

これらの鋳埋を850℃で加熱後、熱間圧延により15
mm厚の板とした。
After heating these castings at 850℃, hot rolling
It was made into a plate with a thickness of mm.

第1表 次にこの板を片面1mmずつ固剤し13mm7gとした
後、冷間圧延と中間焼鈍を繰り返し行い、最終圧下率6
0%で0.25mm厚さの板を得な。
Table 1 Next, this plate was solidified by 1 mm on each side to a thickness of 13 mm and 7 g, and then cold rolling and intermediate annealing were repeated, and the final rolling reduction was 6.
Obtain a plate with a thickness of 0.25 mm at 0%.

この板を270°C1時間で歪取焼鈍し、試料とした。This plate was strain-relief annealed at 270°C for 1 hour and used as a sample.

この様にして作製した試料の評価として、強度を引張り
試験によって求めた。 導電性は導電率(%1.A、C
,S、)によって示した。
As an evaluation of the sample prepared in this way, the strength was determined by a tensile test. Electrical conductivity is electrical conductivity (%1.A, C
,S,).

加工性は引張り試験における破断伸びによって評価した
Processability was evaluated by elongation at break in a tensile test.

耐熱性は試料をアルゴン雰囲気中1時間加熱した後、引
張り試験を行い強度の低下が20%を示す温度を軟化点
として評価した。
Heat resistance was evaluated by heating the sample in an argon atmosphere for 1 hour, then performing a tensile test, and evaluating the temperature at which the strength decreased by 20% as the softening point.

はんだ付は性は、前処理として脱脂及び酸洗を行った後
、ロジン系フラックスを用い5n−40%pbはんだ浴
に浸漬した試料について、その表面か均一に濡れている
かどうかを観察することにより評価した。
Solderability was determined by degreasing and pickling as pretreatment, then immersing the sample in a 5N-40% PB solder bath using rosin flux, and observing whether the surface was uniformly wet. evaluated.

メツキの密着性は、はんだ付は試験と同様の前処理を行
った後、3μmのAgメツキを施した試料について、4
50°C5分間の加熱を行い、ふくれの有無をfl!察
することにより評価した。
The adhesion of the plating was measured using a sample with a 3 μm Ag plating after the same pretreatment as in the test for soldering.
Heat at 50°C for 5 minutes and check for blisters! The evaluation was made by observing the results.

これらの結果を同様な工程で作成し、評価した比較合金
と共に第2表に示した。更に、従来材として、錫入り%
] (Cu−0,15%5n−P)、CDA194  
(Cu−0,24%Fe−0、12%Zn、−P)、り
ん1?銅2種(Cu−6%5n−P)、42合金(Fe
−42%Ni)を同様に評価し、第2表に示した。
These results are shown in Table 2 together with comparative alloys prepared and evaluated using the same process. Furthermore, as a conventional material, tin content%
] (Cu-0,15%5n-P), CDA194
(Cu-0, 24%Fe-0, 12%Zn, -P), phosphorus 1? Copper type 2 (Cu-6%5n-P), 42 alloy (Fe
-42%Ni) was similarly evaluated and shown in Table 2.

(この頁以下余白) (注)1)従来材  No、17  錫入り1(Cu−
0,15Sn−P)Noi8  CDA194(Cu−
0,24Fe−0,122n−P)N019  りん青
@2種(Cu−6Sn−P)NO,2042A I I
 o y(Fe−42Ni)2)はんだ付は性について
は、はんだか浸漬面全面に均一に濡れている場合をOl
それ以外を×とした。
(Margins below this page) (Note) 1) Conventional material No. 17 Tin-filled 1 (Cu-
0,15Sn-P) Noi8 CDA194(Cu-
0,24Fe-0,122n-P) N019 Phosphorus blue @ type 2 (Cu-6Sn-P) NO, 2042A I I
o y (Fe-42Ni) 2) Regarding soldering properties, it is considered that the entire dipped surface is uniformly wet with solder.
Others were marked as ×.

3)メツキ密着性については、加熱後ふくれか観察され
なかった場合○、それ以外を×とした。
3) Regarding plating adhesion, if no blistering was observed after heating, it was rated as ○, otherwise it was rated as ×.

第2表に示すごとく本発明合金は比較合金や従来合金よ
りも優れていた。すなわち、例えば、比較合金No、 
9〜11に示すごとく、本発明の範囲に対し各元素の量
が不十分なものは強度もしくは耐熱性か低く、比較合金
No、 12〜15に示すごとく、各元素の量が過剰な
ものは、はんだ付は性、メツキ性もしくは導電性が低く
、比較合金No、16に示すごと<Mg/P重量比か1
未満のものは導電率が低いといったように比較合金の特
性は不十分であった。これに対し、本発明に係る合金か
優れた強度、導電率、耐熱性だけでなく、良好なはんだ
付は性、メツキ性、加工性をも示すことが明らかである
As shown in Table 2, the alloy of the present invention was superior to the comparative and conventional alloys. That is, for example, comparative alloy No.
As shown in Nos. 9 to 11, those in which the amount of each element is insufficient relative to the scope of the present invention have low strength or heat resistance, and those in which the amount of each element is in excess as shown in Comparative Alloy Nos. and 12 to 15 are poor in strength or heat resistance. , soldering properties, plating properties, or conductivity are low, as shown in Comparative Alloy No. 16 <Mg/P weight ratio or 1
Comparative alloys with less than 10% had insufficient electrical conductivity. On the other hand, it is clear that the alloy according to the invention not only exhibits excellent strength, electrical conductivity, and heat resistance, but also exhibits good soldering properties, plating properties, and processability.

(発明の効果) 以上から明らかな様に本発明によれは、半導体機器のリ
ードフレーム等に好適な合金を提供することが可能であ
り、本発明の工業的価値は大である。
(Effects of the Invention) As is clear from the above, according to the present invention, it is possible to provide an alloy suitable for lead frames of semiconductor devices, etc., and the industrial value of the present invention is great.

Claims (1)

【特許請求の範囲】[Claims] Mg:0.05〜0.3重量%、P:0.05〜0.2
重量%、Sn:0.05〜0.5重量%、を含み、さら
にCo、Fe、Niからなる群から選ばれた1種以上の
遷移金属を合計で0.01〜0.3重量%含み、残部が
Cu及び不可避的不純物からなり、且つMg/P重量比
が1.18を超えることを特徴とする高強度高導電性合
金。
Mg: 0.05-0.3% by weight, P: 0.05-0.2
wt%, Sn: 0.05 to 0.5 wt%, and further contains a total of 0.01 to 0.3 wt% of one or more transition metals selected from the group consisting of Co, Fe, and Ni. , the balance being Cu and unavoidable impurities, and having an Mg/P weight ratio of more than 1.18.
JP8826688A 1988-04-12 1988-04-12 High strength and high electric conductive copper alloy Pending JPH01263238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8826688A JPH01263238A (en) 1988-04-12 1988-04-12 High strength and high electric conductive copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8826688A JPH01263238A (en) 1988-04-12 1988-04-12 High strength and high electric conductive copper alloy

Publications (1)

Publication Number Publication Date
JPH01263238A true JPH01263238A (en) 1989-10-19

Family

ID=13938088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8826688A Pending JPH01263238A (en) 1988-04-12 1988-04-12 High strength and high electric conductive copper alloy

Country Status (1)

Country Link
JP (1) JPH01263238A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1063309A2 (en) * 1999-06-07 2000-12-27 Waterbury Rolling Mills, Inc. Copper alloy
EP1482063A1 (en) * 2003-05-27 2004-12-01 Fisk Alloy Wire, Inc. Processing copper-magnesium alloys and improved copper alloy wire
JP2006265593A (en) * 2005-03-23 2006-10-05 Dowa Mining Co Ltd Copper alloy material and production method therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1063309A2 (en) * 1999-06-07 2000-12-27 Waterbury Rolling Mills, Inc. Copper alloy
US6241831B1 (en) * 1999-06-07 2001-06-05 Waterbury Rolling Mills, Inc. Copper alloy
EP1063309A3 (en) * 1999-06-07 2002-09-18 Waterbury Rolling Mills, Inc. Copper alloy
US6689232B2 (en) 1999-06-07 2004-02-10 Waterbury Rolling Mills Inc Copper alloy
EP1482063A1 (en) * 2003-05-27 2004-12-01 Fisk Alloy Wire, Inc. Processing copper-magnesium alloys and improved copper alloy wire
JP2006265593A (en) * 2005-03-23 2006-10-05 Dowa Mining Co Ltd Copper alloy material and production method therefor
JP4692727B2 (en) * 2005-03-23 2011-06-01 Dowaメタルテック株式会社 Copper alloy material

Similar Documents

Publication Publication Date Title
US4559200A (en) High strength and high conductivity copper alloy
JP2670670B2 (en) High strength and high conductivity copper alloy
JP3383615B2 (en) Copper alloy for electronic materials and manufacturing method thereof
CN103898353A (en) Copper alloy with high strength and high conductivity and preparation method thereof
JP4813814B2 (en) Cu-Ni-Si based copper alloy and method for producing the same
JPS5834537B2 (en) High-strength conductive copper alloy with good heat resistance
JPS63307232A (en) Copper alloy
JPS6160846A (en) Lead material of copper alloy for semiconductor device
JP3772319B2 (en) Copper alloy for lead frame and manufacturing method thereof
JPH01263238A (en) High strength and high electric conductive copper alloy
JPS6215621B2 (en)
JPS6215622B2 (en)
JP2001279347A (en) High strength copper alloy excellent in bending workability and heat resistance and its producing method
JPH0635633B2 (en) Copper alloy for electric and electronic parts and method for producing the same
JPH0718355A (en) Copper alloy for electronic appliance and its production
JPH02129326A (en) High strength copper alloy
JP4132451B2 (en) High strength and high conductivity copper alloy with excellent heat resistance
JPH01165733A (en) High strength and high electric conductive copper alloy
JPS6142772B2 (en)
JPS63213628A (en) Copper alloy for fuse
JPH0469217B2 (en)
JP3407527B2 (en) Copper alloy materials for electronic equipment
JPS5821018B2 (en) Copper alloy for high strength conductivity with good heat resistance
JP3779830B2 (en) Copper alloy for semiconductor lead frames
JP2756021B2 (en) Copper alloy with low constant mass temperature coefficient of electrical resistance