JPS63317635A - Copper alloy for electronic equipment and its production - Google Patents

Copper alloy for electronic equipment and its production

Info

Publication number
JPS63317635A
JPS63317635A JP12283488A JP12283488A JPS63317635A JP S63317635 A JPS63317635 A JP S63317635A JP 12283488 A JP12283488 A JP 12283488A JP 12283488 A JP12283488 A JP 12283488A JP S63317635 A JPS63317635 A JP S63317635A
Authority
JP
Japan
Prior art keywords
alloy
strength
copper alloy
workability
electric conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12283488A
Other languages
Japanese (ja)
Inventor
Shoji Shiga
志賀 章二
Toru Tanigawa
徹 谷川
Masato Asai
真人 浅井
Yoshimasa Oyama
大山 好正
Shigeo Shinozaki
篠崎 重雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP12283488A priority Critical patent/JPS63317635A/en
Publication of JPS63317635A publication Critical patent/JPS63317635A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To improve electric conductivity, strength, and isostatic workability, by specifying the respective contents of Cr, Ni, Co, Sn, P and O2 in copper. CONSTITUTION:An alloy ingot having a composition consisting of, by weight, 0.05-0.85% Cr, 0.05-0.4% Ni or Co, 0.02-0.27% Sn, <=0.15% P, <=0.005% O2, and the balance Cu is used. This alloy ingot is hot worked at >=600 deg.C, cooled down to 450 deg.C at >=1 deg.C/sec cooling rate, and then subjected to cold working including single or more heat treatments so as to be formed into the desired copper alloy. This copper alloy has superior electric conductivity and strength and also high-degree isostatic press formability and is particularly suitable for compact and highly concentrated semiconductor frames. When Cr content is below the lower limit, strength is insufficient, and, when it exceeds the upper limit, workability is deteriorated. When Ni or Co is below the lower limit, strengthening is insufficient, and, when it exceeds the upper limit, electric conductivity is deteriorated. When Sn is below the lower limit, strengthening-, elomgation-, and workability-improving effects cannot be produced, and when it exceeds the upper limit, electric conductivity is remarkably deteriorated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電気機器用コネクター、スイッチ用ばね、端子
、半導体リードフレーム、リード線等に用いられる電子
機器用銅合金とその製造法に関し、特に小型高密度な半
導体リードフレームとして好適な銅合金を提供するもの
である。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a copper alloy for electronic equipment used in electrical equipment connectors, switch springs, terminals, semiconductor lead frames, lead wires, etc., and a method for manufacturing the same. The present invention provides a copper alloy suitable for use in small, high-density semiconductor lead frames.

〔従来の技術〕[Conventional technology]

一般に電気機器用コネクター、スイッチ用ばね、端子、
半導体リードフレーム、リード線等には、Cu−8n系
のリン青銅が用いられている。この合金は強度及び加工
性が−れているも、導電率が70〜25%lAC3と低
いため、電気特性や放熱特性が劣る欠点がある。このた
め半導体リードフレームにはC1,l−Fe系(7)C
194(CLJ −2,4wt%F e 〜0.12w
t%7n−P合金)(以下wt%を%と略記)やC19
5(Cu −1,5%Fe−o、a%Co〜0.6%S
 n −))合金)が用いられている。この合金は強度
45〜55 Kg i′mrA、導電率50〜65%l
AC3の特性を示す。
Generally used for electrical equipment connectors, switch springs, terminals,
Cu-8n-based phosphor bronze is used for semiconductor lead frames, lead wires, and the like. Although this alloy has good strength and workability, it has a low electrical conductivity of 70 to 25% lAC3, so it has the disadvantage of poor electrical properties and heat dissipation properties. Therefore, C1, l-Fe system (7)C is used in semiconductor lead frames.
194 (CLJ -2,4wt%Fe ~0.12w
t%7n-P alloy) (hereinafter wt% is abbreviated as %) and C19
5(Cu-1,5%Fe-o, a%Co~0.6%S
n-)) alloy) is used. This alloy has a strength of 45-55 Kg i'mrA and a conductivity of 50-65%l.
The characteristics of AC3 are shown.

近年電子煎器の小型高密度化が著しく進展し、必要とさ
れる合金の特性も高性能化している。
In recent years, there has been significant progress in the miniaturization and density of electronic decovers, and the properties of the required alloys have also improved.

この傾向は半導体において最も顕著であり、工業的にも
重要な地位を占めるようになった。即ち量産型のプラス
チックモールド半導体では前記C194やC195がD
IP型700m11ピツチの2方向リードを有するフレ
ームに大量に使用されている。
This trend is most noticeable in semiconductors, which have come to occupy an important position in industry. That is, in mass-produced plastic molded semiconductors, the C194 and C195 are D.
It is used in large quantities in IP type frames with 700m11 pitch two-way leads.

(発明が解決しようとする課題〕 これに対し、より小型化できる面実装型の新しい半導体
パッケージとして、SOP、FP。
(Problems to be Solved by the Invention) In response to this, SOP and FP are new surface-mount semiconductor packages that can be made smaller.

PLCCが強く求められている。PLCCは50m11
ピツヂの4方向リードを出したフレームを使用するもの
であり、SOPやF Pも50mを(ピッチの細かい2
方向リードを用いる面実装で、従来のDIPに比べ大巾
な高密実装が可能となる。これ等に代表される新規な電
子+a器用銅合金部何に対して、導電率の一層の向上と
同時に強度と加工四のバランスが要求される。更に重要
なことは機械的特性の等方性であり、板条の圧延方向と
巾方向による特性、特に加工持・1)■の差異は高精密
性を必要とづるPLCGなどのリードフレームに致命的
欠陥となる。
PLCC is strongly required. PLCC is 50m11
It uses Pituji's frame with four-way leads, and the SOP and FP are also 50m long (2 with fine pitch).
Surface mounting using directional leads enables higher density mounting over a wider area than conventional DIP. For new electronic and mechanical copper alloy parts such as these, a balance between strength and workability is required at the same time as further improvement in electrical conductivity. What is even more important is the isotropy of the mechanical properties, and the difference in properties depending on the rolling direction and width direction of the strip, especially the processing strength and 1) ■, is critical for lead frames such as PLCG that require high precision. It becomes a defect.

前記リン青、銅やCu−[”e系合金は上記の要求特性
を満足することができず、このためC150(Cu 〜
0.1%Zr合金)やCu−2%5n〜0.1%Or合
金が使用されているが、前者は90%lAC3程度の高
導電性を示すも強度は40Kg1−程度であり、後者は
55 Kg /−程度の強度を示すも、導電率は30〜
40%lAC3と低い。
The above-mentioned phosphor blue, copper, and Cu-["e-based alloys cannot satisfy the above-mentioned required characteristics, and therefore C150 (Cu ~
0.1%Zr alloy) and Cu-2%5n~0.1%Or alloy are used, but the former shows high conductivity of about 90%lAC3, but the strength is about 40kg1-, and the latter Although it shows a strength of about 55 Kg/-, the electrical conductivity is 30~
It is as low as 40% lAC3.

このように電子機器用銅合金としては、導電率と強度が
優れ、かつ等方向な高度の加工性即ちプレス成型性を有
する¥FT現な合金部材が求められ、更には面実装部品
の信頼性に重要な半田接合強度や開化スケールの密着性
についての改善も要求されている。
As described above, copper alloys for electronic devices are required to have excellent electrical conductivity and strength, as well as high isodirectional workability, that is, press formability, and are also required to have high reliability for surface mount components. There is also a need to improve the solder joint strength and the adhesion of the opening scale, both of which are important for this purpose.

(課題を解決するための手段) 本発明はこれに鑑み種々検討の結果、上記諸特性を満足
する電子機器用銅合金とその製造法を開発したものであ
る。
(Means for Solving the Problems) In view of this, and as a result of various studies, the present invention has developed a copper alloy for electronic devices that satisfies the above-mentioned properties and a method for producing the same.

即ち本発明鋼合金は、crを0.05〜0.85%、N
i又はCoを0.05〜0.4%、3nを0.02〜0
、27%、P ヲ0.15% jX 不含ミ、02含有
70、005%以下、残部Cuからなることを特徴とす
るものである。
That is, the steel alloy of the present invention contains 0.05 to 0.85% cr, N
i or Co 0.05-0.4%, 3n 0.02-0
, 27%, P 0.15% j

また本発明製造法は、crを0.05〜0.85%、N
i又はCOを0.05〜0.4%、3nを0.02〜0
.27%、Pを0.15%以下含み、02含有担が0.
005%以下、残部CUからなる合金鋳塊を600℃以
上で熱間加工した後、450℃以下まで1℃/ sec
以−Fの速度で冷却し、しかる後生なくとも1回の熱処
理を含む冷間加工を施すことを特徴とするものである。
In addition, in the production method of the present invention, cr is 0.05 to 0.85%, N
i or CO 0.05-0.4%, 3n 0.02-0
.. 27%, contains 0.15% or less of P, and contains 0.02.
After hot working an alloy ingot consisting of 0.005% or less and the remainder CU at 600°C or higher, it is heated at 1°C/sec to 450°C or lower.
It is characterized in that it is cooled at a rate of -F or less, and then subjected to cold working including at least one heat treatment.

【作用〕[Effect]

本発明によれば導電率80〜85%lAC3,強度45
〜55匈/−の等方向性均質な機械的性質を有する合金
部材が得られる。しかして合金組成を上記の如く限定し
たのは下記の理由によるものである。
According to the present invention, the electrical conductivity is 80-85% lAC3, and the strength is 45%.
An alloy member with isotropic homogeneous mechanical properties of ~55/- is obtained. The reason why the alloy composition is limited as described above is as follows.

Cr gイj口を0.05〜0.85%と限定したのは
、Crはマトリックス中に析出して高い導電率を保らな
から合金部材を強化するも、含すJ量が(Co5%未満
では強度か不足し、0.85%を越えるとCrの析出が
過剰となって製造工程及び製品の加工性を損なうためで
あり、特に精密h(′IIするようなものではOr含有
量を0.2〜0.5%とすることが望ましい。Ni又は
Co含有量を0.05〜0.4%と限定したのは、これ
等−は何れも合金部材を更に強化するためで、持にPど
の共存においてN + P、COP化合物を組成して有
効に強化し、更に重要なことはCr析出粒子の分散性を
高めて加工性を向上するも、含有iii ′/J70、
05%未満では十分な効果が得られず、0.4%を越え
ると導電率の低下が8しくなるためて必る。Sn含tT
mを0.02〜0.27%と限定したのは、3 nは固
溶元素で合金部材を強化すると共に伸びや加工性を向上
し、更にCu−Cr系合金の焼入れ感受性を抑止づるも
、含イj量が0.02%未満では上記効果が実用上発揮
することができず、0.27%を越えると導電率の低下
が著しく、かつ酸化スケールの密着性にも有害となるた
めである。
The reason for limiting the Cr content to 0.05 to 0.85% is that Cr precipitates in the matrix and does not maintain high conductivity. If it is less than 0.85%, the strength will be insufficient, and if it exceeds 0.85%, the precipitation of Cr will be excessive, impairing the manufacturing process and the workability of the product. It is desirable to set the Ni or Co content to 0.2 to 0.5%.The reason why the Ni or Co content is limited to 0.05 to 0.4% is that both of these are intended to further strengthen the alloy member. In addition, in the coexistence of P, N + P, COP compounds are composed to effectively strengthen the steel, and more importantly, the dispersibility of Cr precipitated particles is improved to improve workability.
If it is less than 0.05%, a sufficient effect cannot be obtained, and if it exceeds 0.4%, the conductivity will necessarily decrease by 8 degrees. Sn-containing tT
The reason why m is limited to 0.02 to 0.27% is because 3n is a solid solution element that strengthens the alloy member, improves elongation and workability, and also suppresses the quenching sensitivity of Cu-Cr alloys. If the content is less than 0.02%, the above effect cannot be achieved in practice, and if it exceeds 0.27%, the conductivity will drop significantly and it will also be harmful to the adhesion of oxide scale. It is.

更にPを()、15%以下の範囲内に含有せしめるのは
、PはCrやNi又はCOと化合物を形成し、均一に分
散して析出硬化プるは′かりか、脱酸剤として作用する
ため合金の溶解&h造を容易にする。しかして含有相が
0.15%を越えると導電率を低下するばかりか、鋳塊
状態で粗大な化合物を形成lるなとの不都合を起すよう
になるためである。また02含右mを0゜005%以下
と限定したのは、含有量が0.005%を越えると酸化
物やCu2Oを発生して加工性を低下するばかりか、過
剰のSnと同様に酸化スケールの密着性や半田付は性な
どの電子機器用特有の諸性性を損なうためであり、望ま
しくは0.003%以下とする。
Furthermore, the reason why P is contained within the range of 15% or less is that P forms a compound with Cr, Ni or CO, is uniformly dispersed and hardens by precipitation, or acts as a deoxidizing agent. This facilitates the melting and fabrication of alloys. However, if the phase content exceeds 0.15%, not only will the electrical conductivity decrease, but there will also be problems such as the formation of coarse compounds in the ingot state. In addition, the reason why the 02 content is limited to 0°005% or less is because if the content exceeds 0.005%, it not only generates oxides and Cu2O and reduces workability, but also oxidizes as well as excessive Sn. This is because scale adhesion and soldering impair properties specific to electronic devices, such as performance, and the content is desirably 0.003% or less.

本発明合金部材は上記組成範囲の合金鋳塊を600℃以
上、望ましくは700〜′900℃で熱間加工した後、
450’C以下まで1℃/ SeC以上の速度で冷却す
る。これに少なくとも1回の熱処理を含む冷間加工を施
すことにより造られる。この製造工程において、熱間加
工後、少なくとも450℃までは1℃/ SeC以上の
速度で冷却するのは、相当部分のCrを固溶状態に留め
、Cr等の粗大析出を防止するためであり、冷却速度が
1℃/ SeC未満ではcr等の粗大析出を起し、強度
を低下するばかりか、等方向な特性が得ら′れず、好ま
しくは5℃/ 5(3C以上の速度で冷却することが望
ましい。次に少なくとも1回の熱処理(450〜650
℃)を含む冷間加工を施すのは、冷間加工歪、望ましく
は70%以上の加工歪の作用により、第1回の熱処理(
おい′て微細に分散した析出物とするためである。しか
して第1回の熱処理温度を450〜650℃としたのは
、450℃未満では析出に長時間を要し、650℃を越
えるとCrの一部が再固溶するためである。
The alloy member of the present invention is produced by hot working an alloy ingot having the above-mentioned composition range at a temperature of 600°C or higher, preferably 700 to 900°C.
Cool down to 450'C or less at a rate of 1°C/SeC or more. It is produced by subjecting this to cold working including at least one heat treatment. In this manufacturing process, the reason for cooling at a rate of 1°C/SeC or higher until at least 450°C after hot working is to keep a considerable portion of Cr in solid solution and prevent coarse precipitation of Cr, etc. If the cooling rate is less than 1°C/SeC, coarse precipitates such as Cr will occur, which will not only reduce the strength but also make it impossible to obtain isotropic properties. Next, at least one heat treatment (450 to 650
Cold working including cold working (℃) is performed due to the effect of cold working strain, preferably 70% or more.
This is to form finely dispersed precipitates. However, the reason why the first heat treatment temperature is set to 450 to 650°C is that if it is lower than 450°C, precipitation will take a long time, and if it exceeds 650°C, a part of Cr will be solid-dissolved again.

このようにして第1回の熱処理を施したものは、再び冷
間加工を施して加工硬化作用により機械的性質を向上し
、所望の寸法に仕上げる。必要に応じて中間熱処理を繰
返すこともできる。第1回熱51!X理以降の加工率は
95%以下に抑える必要があり、過剰の加工は析出物、
特にCrが加工方向に変形配向し、方向性を有づるよう
になる。
The material that has been subjected to the first heat treatment is then cold worked again to improve its mechanical properties through work hardening and to achieve desired dimensions. The intermediate heat treatment can also be repeated as necessary. 1st heat 51! The processing rate after X-processing must be kept below 95%.
In particular, Cr is deformed and oriented in the processing direction and has directionality.

このように本発明は前記合金組成と加工条件との結合に
より達成したもので、Crの均一微細な析出と分散が導
電率、強度、加工性及びその等方性の第1条件であり、
本発明のCr溌度とSn、Ni、Coなどとの共存効果
において、熱間加工工程や熱処理と共に冷間加工率の制
約によって可能にしたものである。更に電子機器、特に
今後ますます微細高密化する半導体の高精密なリードフ
レームには、上記特性と共に酸化スケールの密着性や半
EE接合性が重視されるが、本発明部材はこれを十分満
足することができるものである。
In this way, the present invention was achieved by combining the alloy composition and processing conditions, and uniform and fine precipitation and dispersion of Cr are the first conditions for electrical conductivity, strength, workability, and isotropy.
The coexistence effect of Cr permeability with Sn, Ni, Co, etc. of the present invention is made possible by the restriction of the cold working rate as well as the hot working process and heat treatment. Furthermore, for electronic devices, especially high-precision lead frames for semiconductors that will become increasingly finer and denser in the future, in addition to the above characteristics, oxide scale adhesion and semi-EE bonding properties are important, and the members of the present invention fully satisfy these requirements. It is something that can be done.

また本発明部材の合金組成は上記組成と残部は実質的に
Cuからなるも、通常の不純物の存在は特性上何ら有害
とはならない。更に銅合金の特性向上に通常利用されて
いる微量の添加元素、例えばTi、zr、Mg、Aq、
Ca、Zn、Mn、B、Feなどを添加することも有効
であり、これ等は結晶微細化、強化及び脱酸などの作用
に起因するもので、0.5%以下で十分な効果を奏する
Further, although the alloy composition of the member of the present invention is the above-mentioned composition and the remainder is substantially Cu, the presence of ordinary impurities does not have any detrimental effect on the properties. Furthermore, trace amounts of additive elements that are normally used to improve the properties of copper alloys, such as Ti, zr, Mg, Aq,
It is also effective to add Ca, Zn, Mn, B, Fe, etc., and these are caused by effects such as crystal refinement, strengthening, and deoxidation, and a sufficient effect is achieved at 0.5% or less. .

〔実施例) 第1表に示す組成の合金を水冷鋳造してから、850℃
に加熱して厚さ5.0.まで熱間圧延し、加工上り温度
と圧延後の冷却速度を測定した。
[Example] An alloy having the composition shown in Table 1 was water-cooled and then cast at 850°C.
Heat to a thickness of 5.0. After hot rolling, the finishing temperature and cooling rate after rolling were measured.

次にミーリングにより面削して厚さ4.6aとし、これ
を厚さ0.858まで冷間圧延した。その後第1回の熱
処理を施してから冷間圧延し、一部に中間熱処理を加え
て所望板厚に仕上げ、一部について低温焼鈍を加えて電
子機器用銅合金材を製造した。第2表に加工条件を示す
Next, the surface was milled to a thickness of 4.6a, and this was cold rolled to a thickness of 0.858. Thereafter, a first heat treatment was performed, followed by cold rolling, a portion was subjected to an intermediate heat treatment to obtain a desired thickness, and a portion was subjected to low-temperature annealing to produce a copper alloy material for electronic devices. Table 2 shows the processing conditions.

次に上記部材について導電率、引張強さ、伸びを測定す
ると共に加工性、半田接合強度及び酸化スケールの密着
11を調べた。これ等の結果を従来の0570  (C
u−5,2%3n〜0.12%P合金、厚さ0.2M>
とC195(厚さ0,25姻)と比較して第3表に示す
Next, the electrical conductivity, tensile strength, and elongation of the above members were measured, and the workability, solder joint strength, and oxide scale adhesion 11 were also examined. These results are compared to the conventional 0570 (C
u-5, 2% 3n~0.12% P alloy, thickness 0.2M>
Table 3 shows a comparison between C195 and C195 (thickness 0.25 mm).

尚加工性については、90°V溝型ダイに各種先端半径
(R)のポンチを組合せた曲げ試験器により曲げ加工し
、曲げ部におけるミクロンクラックの有無を検鏡し、最
少曲げ半径(R)とと板厚(1)との比(R/l)を求
めた。また半田接合強度は一定広さに共晶半田接合した
黄銅線について、半田付は初期と150℃,500hr
のエージング後について引張試験により求めた。
Regarding workability, bending is performed using a bending tester that combines a 90° V-groove die with punches with various tip radii (R), and the presence or absence of micron cracks at the bent part is examined with a microscope to determine the minimum bending radius (R). The ratio (R/l) between and plate thickness (1) was determined. In addition, the solder joint strength was determined for the brass wires that were eutectic soldered to a certain width, and the soldering was performed at the initial stage and at 150°C for 500 hours.
It was determined by a tensile test after aging.

更に酸化スケールの密着性については、450℃に1分
と60分加熱したものについてセロテープ剥離試験を行
なった。
Furthermore, regarding the adhesion of oxide scale, a cellophane tape peeling test was conducted on the samples heated at 450° C. for 1 minute and 60 minutes.

第1表〜第3表から明らかなように、本発明合金N0.
1〜7は導電率80〜85%lAC3,引張強ざ45〜
55に3/7、伸び6〜70%を示し、従来材料rci
ルc195(No、13> 、C570(No、14>
と比較し、総合的に優れていることが判る。即ちnOI
性及び等方均貿性を示すR/lも小さく、半田接合強度
の異常減少も少なく、酸化スケールの密着性も優れてい
ることが判る。
As is clear from Tables 1 to 3, the alloy of the present invention No.
1 to 7 have electrical conductivity of 80 to 85%lAC3 and tensile strength of 45 to 85%.
55 to 3/7 and elongation of 6 to 70%, conventional material rci
Le c195 (No, 13>, C570 (No, 14>
Compared to the above, it can be seen that it is overall superior. That is, nOI
It can be seen that R/l, which indicates the stability and isotropic tradeability, is small, there is little abnormal decrease in solder joint strength, and the adhesion of oxide scale is excellent.

これに対しNi又は3nを欠く比較合金No。In contrast, comparative alloy No. lacking Ni or 3n.

6では当方均質性が低下し、またCr、Ni又はCo、
3n又はPを過剰に含む比較合金No。
6, the homogeneity decreased, and Cr, Ni or Co,
Comparative alloy No. containing excessive 3n or P.

7〜70′cは導電率及び等方均質性を低下するばかり
か、半田接合強度と酸化スケールの密着性の何れかを低
下する。更に本発明の合金組成範囲内のものでも熱間圧
延後の冷却速度が遅い比較合金N O,11及び第1回
熱処理前の加工率が小さく、第1回熱処理後の加工率を
過大にした比較合金N 0.12では等方均貿性が劣る
ことが判る。
7 to 70'c not only lowers the electrical conductivity and isotropic homogeneity, but also lowers either the solder joint strength or the adhesion of the oxide scale. Furthermore, even for alloys within the alloy composition range of the present invention, comparative alloy NO,11 had a slow cooling rate after hot rolling, and the processing rate before the first heat treatment was small and the processing rate after the first heat treatment was excessive. It can be seen that the comparative alloy N 0.12 has poor isotropic tradeability.

[発明の効果〕 このように本発明によれば電子機器、特にその中心を占
める半導体リードフレームに好適の特性を経詩的に実現
づるものであり、小型?:1密化した面実装型のリード
フレームとして最適の性能を保有する等工業上顕茗な効
果を奏するものでおる。
[Effects of the Invention] As described above, according to the present invention, characteristics suitable for electronic equipment, especially the semiconductor lead frame that occupies the center thereof, can be achieved in a poetic manner, and the electronic equipment can be compact. : It has excellent industrial effects, such as having optimal performance as a one-density surface-mount lead frame.

Claims (4)

【特許請求の範囲】[Claims] (1)Crを0.05〜0.85wt%、Ni又はCo
を0.05〜0.4wt%、Snを0.02〜0.27
wt%、Pを0.15wt%以下含み、O_2含有量が
0.005wt%以下、残部Cuからなる電子機器用銅
合金。
(1) 0.05 to 0.85 wt% Cr, Ni or Co
0.05 to 0.4 wt%, Sn 0.02 to 0.27
A copper alloy for electronic devices, containing 0.15 wt% or less of P, 0.005 wt% or less of O_2 content, and the balance being Cu.
(2)Crを0.05〜0.85wt%、Ni又はCo
を0.05〜0.4wt%、Snを0.02〜0.27
wt%、Pを0.15wt%以下含み、O_2含有量が
0.005wt%以下、残部Cuからなる合金鋳塊を6
00℃以上で熱間加工した後、450℃以下まで1℃/
sec以上の速度で冷却し、しかる後少なくとも1回の
熱処理を含む冷間加工を施すことを特徴とする電子機器
用銅合金とその製造法。
(2) 0.05 to 0.85 wt% Cr, Ni or Co
0.05 to 0.4 wt%, Sn 0.02 to 0.27
wt%, containing 0.15 wt% or less of P, O_2 content of 0.005 wt% or less, and the balance consisting of Cu.
After hot working at 00°C or higher, 1°C/1°C down to 450°C or lower
A copper alloy for electronic devices and a method for producing the same, characterized in that the copper alloy is cooled at a rate of 1.5 seconds or more, and then subjected to cold working including at least one heat treatment.
(3)第1回の熱処理を450〜650℃で行なう特許
請求の範囲第2項記載の電子機器用銅合金の製造法。
(3) The method for producing a copper alloy for electronic devices according to claim 2, wherein the first heat treatment is performed at 450 to 650°C.
(4)第1回の熱処理前の冷間加工率を70%以上とし
、第1回の熱処理以降の総冷間加工率を95%以下とす
る特許請求の範囲第2項又は第3項記載の電子機器用銅
合金の製造法。
(4) Claim 2 or 3 states that the cold working rate before the first heat treatment is 70% or more, and the total cold working rate after the first heat treatment is 95% or less. A method for producing copper alloys for electronic devices.
JP12283488A 1988-05-19 1988-05-19 Copper alloy for electronic equipment and its production Pending JPS63317635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12283488A JPS63317635A (en) 1988-05-19 1988-05-19 Copper alloy for electronic equipment and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12283488A JPS63317635A (en) 1988-05-19 1988-05-19 Copper alloy for electronic equipment and its production

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP99686A Division JPS62158840A (en) 1986-01-07 1986-01-07 Copper alloy for electronic equipment and its production

Publications (1)

Publication Number Publication Date
JPS63317635A true JPS63317635A (en) 1988-12-26

Family

ID=14845791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12283488A Pending JPS63317635A (en) 1988-05-19 1988-05-19 Copper alloy for electronic equipment and its production

Country Status (1)

Country Link
JP (1) JPS63317635A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017222041A1 (en) * 2016-06-23 2017-12-28 三菱マテリアル株式会社 Copper alloy, copper alloy ingot, copper alloy solution forming material, copper alloy trolley wire and method for producing copper alloy trolley wire
JP2018003154A (en) * 2016-06-23 2018-01-11 三菱マテリアル株式会社 Copper alloy, copper alloy ingot, and copper alloy solution material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50147420A (en) * 1974-05-20 1975-11-26
JPS52145328A (en) * 1976-05-31 1977-12-03 Furukawa Metals Co Copper alloy with anti softening property
JPS5751253A (en) * 1980-09-11 1982-03-26 Kobe Steel Ltd Manufacture of copper alloy with high electric conductivity
JPS59193233A (en) * 1983-04-15 1984-11-01 Toshiba Corp Copper alloy
JPS60218440A (en) * 1984-04-13 1985-11-01 Furukawa Electric Co Ltd:The Copper alloy for lead frame

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50147420A (en) * 1974-05-20 1975-11-26
JPS52145328A (en) * 1976-05-31 1977-12-03 Furukawa Metals Co Copper alloy with anti softening property
JPS5751253A (en) * 1980-09-11 1982-03-26 Kobe Steel Ltd Manufacture of copper alloy with high electric conductivity
JPS59193233A (en) * 1983-04-15 1984-11-01 Toshiba Corp Copper alloy
JPS60218440A (en) * 1984-04-13 1985-11-01 Furukawa Electric Co Ltd:The Copper alloy for lead frame

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017222041A1 (en) * 2016-06-23 2017-12-28 三菱マテリアル株式会社 Copper alloy, copper alloy ingot, copper alloy solution forming material, copper alloy trolley wire and method for producing copper alloy trolley wire
JP2018003154A (en) * 2016-06-23 2018-01-11 三菱マテリアル株式会社 Copper alloy, copper alloy ingot, and copper alloy solution material
EP3476958A4 (en) * 2016-06-23 2020-09-02 Mitsubishi Materials Corporation Copper alloy, copper alloy ingot, copper alloy solution forming material, copper alloy trolley wire and method for producing copper alloy trolley wire

Similar Documents

Publication Publication Date Title
KR102126731B1 (en) Copper alloy sheet and method for manufacturing copper alloy sheet
KR100622320B1 (en) Cu-Ni-Si ALLOY AND ITS PRODUCTION METHOD
JP2001207229A (en) Copper alloy for electronic material
JP4393663B2 (en) Copper-based alloy strip for terminal and manufacturing method thereof
CN111996411A (en) High-strength high-conductivity copper alloy material and preparation method and application thereof
JP2021523977A (en) Cu-Co-Si-Fe-P copper alloy with excellent bending workability and its manufacturing method
JP3511648B2 (en) Method for producing high-strength Cu alloy sheet strip
US20020029827A1 (en) High-strength and high-conductivity Cu-(Ni, Co, Fe)-Si copper alloy for use in leadframes and method of making the same
JP2007246931A (en) Copper alloy for electrical and electronic equipment parts having excellent electric conductivity
JP2006200042A (en) Electronic component composed of copper alloy sheet having excellent bending workability
JPS62182240A (en) Conductive high-tensile copper alloy
JP2732355B2 (en) Manufacturing method of high strength and high conductivity copper alloy material for electronic equipment
JPH10152737A (en) Copper alloy material and its production
JPS63317635A (en) Copper alloy for electronic equipment and its production
JP2007100136A (en) Copper alloy for lead frame excellent in uniform plating property
JPH10324935A (en) Copper alloy for lead frame, and its production
JP4175920B2 (en) High strength copper alloy
JP2514926B2 (en) Copper alloy for electronic equipment with excellent solder joint strength and its manufacturing method
JPH0219433A (en) Copper alloy for electronic equipment
JPS62158840A (en) Copper alloy for electronic equipment and its production
JPH10298679A (en) High strength and high conductivity copper alloy
JP2576853B2 (en) Copper alloy for electronic equipment with excellent solder joint strength and its manufacturing method
JPH0356294B2 (en)
JP2673781B2 (en) Method for producing high strength and high conductivity copper alloy material for electronic equipment
US20030155050A1 (en) High-strength and high-conductivity Cu-(Ni, Co, Fe)-Si copper alloy for use in leadframes