JPH10298679A - High strength and high conductivity copper alloy - Google Patents

High strength and high conductivity copper alloy

Info

Publication number
JPH10298679A
JPH10298679A JP10598297A JP10598297A JPH10298679A JP H10298679 A JPH10298679 A JP H10298679A JP 10598297 A JP10598297 A JP 10598297A JP 10598297 A JP10598297 A JP 10598297A JP H10298679 A JPH10298679 A JP H10298679A
Authority
JP
Japan
Prior art keywords
weight
conductivity
copper alloy
strength
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10598297A
Other languages
Japanese (ja)
Other versions
JP3379380B2 (en
Inventor
Yoshinori Yamamoto
佳紀 山本
Hajime Sasaki
元 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP10598297A priority Critical patent/JP3379380B2/en
Publication of JPH10298679A publication Critical patent/JPH10298679A/en
Application granted granted Critical
Publication of JP3379380B2 publication Critical patent/JP3379380B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a high strength and high conductivity copper alloy by adding a steel with a specified amounts of Fe and Ni and furthermore with P, Co, Sn, Mn, Ag, Cd, Pb, Zn, Be, In, Te, Y, Cr, Ti, Zr, Mg and B. SOLUTION: This copper alloy is the one having a compsn. in which the total content of Fe and Ni is regulated to, by weight, 1 to 4.5%, the content of P is regulated to 0.1 to 0.8%, and the balance subtantial copper, the total content of Fe and Ni is 3 to 10 times the content of P, and also, Fe/Ni=0.8 to 1.2 is satisfied. This copper alloy is moreover incorporated with one or more kinds of elements selected from the ranges of 0.01 to 1% Co, Sn, Mn, Ag, Cd, Pb and Zn, 0.01 to 0.5% Be, In, Te and Y, 0.01 to 0.2% Cr, Ti, Zr and Mg and 0.001 to 0.1% B in the total range of <=3%. The strength of the copper alloy is equal to that of 42 alloys, and its electric conductivity is regulated to >=50% IACS.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体機器のリー
ド材,端子,コネクタ等に使用される高強度・高導電性
銅合金に関し、特に、低コストで、42合金とほぼ同等
の強度を有しながら、導電率が50%IACS以上の高
強度・高導電性銅合金に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength, high-conductivity copper alloy used for lead materials, terminals, connectors and the like of semiconductor devices, and in particular, has a low cost and a strength substantially equal to that of 42 alloy. Meanwhile, the present invention relates to a high-strength, high-conductivity copper alloy having a conductivity of 50% IACS or more.

【0002】[0002]

【従来の技術】従来、半導体装置のリード材には、鉄系
では42合金、銅合金ではコルソン系と称するCu−N
i−Si系合金,Cu−Sn系合金あるいはCu−Cr
系合金が使用されている。銅系材料は鉄系材料に比べて
高導電性であるため、熱放散性に優れるという特徴を有
しているが、比較的強度が低かったため強度を高める組
成が開発されてきた。これは、特に、最近200ピンを
超えるようなLSI(Large Scale Integrated Circui
t)パッケージが製造されるようになり、リード材をよ
り薄く、インナーリード,アウターリードの幅はより狭
くという傾向が強く現れてくるようになり、リードその
ものの強度が重要視されてきたからである。
2. Description of the Related Art Conventionally, a lead material of a semiconductor device has been made of a Cu-N alloy called a 42 alloy for iron and a Corson for copper alloy.
i-Si alloy, Cu-Sn alloy or Cu-Cr
A series alloy is used. A copper-based material has a feature of being superior in heat dissipation because it has higher conductivity than an iron-based material. However, a relatively low strength has led to the development of a composition for increasing the strength. This is especially true for LSIs (Large Scale Integrated Circuits) that have recently exceeded 200 pins.
t) As packages have been manufactured, the tendency of thinner lead materials and narrower widths of inner and outer leads has become more pronounced, and the strength of the leads themselves has been emphasized. .

【0003】近年のIC(Integrated Circuit)やLS
Iの高集積化,高速化の潮流は当然のことながら半導体
チップの発熱量の増大を促すこととなり、現在、半導体
パッケージの合理的な放熱が課題の一つとなっている。
半導体パッケージの放熱経路としては、絶縁モールドを
通しての放散や、積極的にヒートシンクを付けるといっ
た方法のほか、リード材を通した配線基板への放熱も考
えられる。
[0003] Recent ICs (Integrated Circuits) and LSs
Naturally, the trend of high integration and high speed of I will increase the heat generation of the semiconductor chip, and at present, one of the issues is the rational heat dissipation of the semiconductor package.
As a heat radiation path of the semiconductor package, in addition to a method of dissipating through an insulating mold and a method of actively attaching a heat sink, a method of dissipating heat to a wiring board through a lead material is also conceivable.

【0004】この場合、リード材の材質自体の熱伝導率
(導電率の値で置き換えることができる)が高いこと
が、直接、半導体パッケージの放熱性に影響してくるこ
とになる。この点に関し、従来の42合金は約3%IA
CS(International AnnealedCopper Standard)とい
う極めて低い導電率であり、半導体パッケージの設計
上、大きな問題となっている。従って、MOS−IC
(Metal Oxide Semiconductor Integrated Circuit)の
半導体パッケージでは鉄系から銅系への材質の転換が行
われており、より一層導電率の高い材料を指向する傾向
にある。この場合、銅系の材料に要求される特性として
は、一般的なリード材としての特性を持ち合わせている
こと、および、42合金とほぼ同等の強度を有すること
があげられる。このことから、現在は、主に、Cu−N
i−Si系,Cu−Sn系あるいはCu−Cr系の銅合
金が使用されている。
In this case, the high thermal conductivity (which can be replaced by the value of the conductivity) of the material itself of the lead material directly affects the heat dissipation of the semiconductor package. In this regard, the conventional 42 alloy has about 3% IA
It has an extremely low electrical conductivity of CS (International Annealed Copper Standard), which is a major problem in designing semiconductor packages. Therefore, MOS-IC
In a semiconductor package of (Metal Oxide Semiconductor Integrated Circuit), the material is changed from an iron-based material to a copper-based material, and there is a tendency to use a material having higher conductivity. In this case, the characteristics required for the copper-based material include having characteristics as a general lead material and having a strength substantially equal to that of the 42 alloy. From this, at present, mainly Cu-N
An i-Si-based, Cu-Sn-based, or Cu-Cr-based copper alloy is used.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
銅合金によると、Cu−Ni−Si系では導電率が50
%IACS程度、Cu−Sn系ではSnをCuに固溶さ
せて強度を上げているため30%IACS程度にしかな
らない。また、Cu−Cr系では導電率が70%IAC
S以上と高導電性を達成できるが、強度の点でやや不十
分であること、Crが難溶解材であること、および、耐
火材であるカーボンと反応しやすいことから溶解,鋳造
が難しく高コスト化するという問題がある。
However, according to the conventional copper alloy, the electric conductivity of Cu-Ni-Si is 50%.
In the case of Cu-Sn system, Sn is dissolved in Cu to increase the strength, so that the strength is only about 30% IACS. In the case of Cu-Cr, the conductivity is 70% IAC.
Although high conductivity can be achieved as high as S or more, it is difficult to melt and cast because Cr is a material that is difficult to dissolve and that it easily reacts with carbon which is a refractory material because strength is somewhat insufficient. There is a problem of cost increase.

【0006】[0006]

【発明の目的】従って、本発明の目的は、低コストで、
42合金とほぼ同等の強度を有しながら、導電率が50
%IACS以上の高強度・高導電性銅合金を提供するこ
とにある。
OBJECTS OF THE INVENTION Accordingly, an object of the present invention is to provide a low cost,
42 while having a strength almost equivalent to that of the alloy No. 42 and a conductivity of 50.
An object of the present invention is to provide a high-strength and high-conductivity copper alloy having a value of not less than% IACS.

【0007】[0007]

【課題を解決するための手段】本発明は、上記目的を達
成するために、FeとNiを合計で1〜4.5重量%、
Pを0.1〜0.8重量%含有してなる銅合金におい
て、FeとNiの重量%の合計がPの重量%の3〜10
倍であり、かつ、FeとNiのそれぞれの重量%の比が
Fe/Ni=0.8〜1.2の範囲にあることを特徴と
する高強度・高導電性銅合金を提供するものである。
According to the present invention, in order to achieve the above object, a total of 1 to 4.5% by weight of Fe and Ni is used.
In a copper alloy containing 0.1 to 0.8% by weight of P, the total of the weight percentages of Fe and Ni is 3 to 10% of the weight percentage of P.
The present invention provides a high-strength and high-conductivity copper alloy characterized in that the weight ratio of Fe to Ni is in the range of 0.8 to 1.2. is there.

【0008】また、本発明は、上記目的を達成するため
に、FeとNiを合計で1〜4.5重量%、Pを0.1
〜0.8重量%含有してなる銅合金において、FeとN
iの重量%の合計がPの重量%の3〜10倍であり、か
つ、FeとNiのそれぞれの重量%の比がFe/Ni=
0.8〜1.2の範囲にあり、更に、 Co,Sn,Mn,Ag,Cd,Pb,Zn:0.01
〜1.0重量% Be,In,Te,Y:0.01〜0.5重量% Cr,Ti,Zr,Mg:0.01〜0.2重量% B:0.001〜0.1重量% の範囲から選択した1種以上の元素を合計3重量%以下
の範囲で含有することを特徴とする高強度・高導電性銅
合金を提供するものである。
In order to achieve the above object, the present invention provides a total of 1 to 4.5% by weight of Fe and Ni, and 0.1% by weight of P.
Fe and N in a copper alloy containing
The sum of the weight percentages of i is 3 to 10 times the weight percentage of P, and the ratio of each weight percentage of Fe and Ni is Fe / Ni =
0.8-1.2, Co, Sn, Mn, Ag, Cd, Pb, Zn: 0.01
-1.0% by weight Be, In, Te, Y: 0.01-0.5% by weight Cr, Ti, Zr, Mg: 0.01-0.2% by weight B: 0.001-0.1% by weight % Of at least one element selected from the range of 3% by weight or less.

【0009】更に、本発明は、上記目的を達成するため
に、FeとNiを合計で1〜4.5重量%、Pを0.1
〜0.8重量%、Znを0.05〜2重量%含有してな
る銅合金の合金元素組成範囲で、FeとNiの重量%の
合計がPの重量%の3〜10倍であり、かつ、FeとN
iのそれぞれの重量%の比がFe/Ni=0.8〜1.
2の範囲にあることを特徴とする高強度・高導電性銅合
金を提供するものである。
Further, in order to achieve the above object, the present invention provides a total of 1 to 4.5% by weight of Fe and Ni, and 0.1% by weight of P.
In the alloying element composition range of the copper alloy containing 0.8 to 0.8% by weight and 0.05 to 2% by weight of Zn, the total of the weight percentages of Fe and Ni is 3 to 10 times the weight percentage of P, And Fe and N
i is in the range of Fe / Ni = 0.8 to 1.
The present invention provides a high-strength and high-conductivity copper alloy characterized by being in the range of 2.

【0010】以上に述べたように、本発明の第1の特徴
は、銅中にFe,Ni,Pをある特定の組成比で添加
し、強度と導電率を好ましい値に調整した点にある。
As described above, the first feature of the present invention resides in that Fe, Ni, and P are added to copper at a specific composition ratio, and strength and conductivity are adjusted to preferable values. .

【0011】今までにも、例えば、特開平2−1943
3号公報には、リードフレーム用、電子装置用としてC
u−Ni−Fe−P系の銅合金が提案されている。しか
し、これらの銅合金では、Pが0.1%以下ではFeと
Niに基づく強度と導電率の向上が充分でなく、0.8
%以上では導電率が低下し、また、FeとNiの配合比
が1対1を外れると、強度と導電率の向上のバランスが
崩れ、更に、Ni,Fe,Pの配合比に関係なくはんだ
処理を施されたときは、はんだ耐候性が充分でないこと
が判明した。そこで、まず、銅中にFe,Ni,Pをあ
る特定の組成比で添加し、強度と導電率を好ましい値に
調整した。
Until now, for example, Japanese Patent Application Laid-Open No.
No. 3 discloses that C for lead frames and electronic devices is used.
A u-Ni-Fe-P-based copper alloy has been proposed. However, in these copper alloys, if P is 0.1% or less, the strength and conductivity based on Fe and Ni are not sufficiently improved, and 0.8% or less.
% Or more, the conductivity decreases, and if the compounding ratio of Fe and Ni deviates from 1 to 1, the balance between the strength and the improvement in the conductivity is lost, and furthermore, the solder does not depend on the compounding ratio of Ni, Fe, and P. When the treatment was performed, it was found that the solder weather resistance was not sufficient. Therefore, first, Fe, Ni, and P were added to copper at a specific composition ratio, and the strength and the electrical conductivity were adjusted to preferable values.

【0012】まず、Fe,Ni,Pの組成範囲である
が、FeとNiはそれぞれPと共添されると燐化物を形
成し、銅の強度および導電率を向上させる。このとき、
FeとNiが合計で1%以下ではこの効果は小さく、ま
た4.5%以上ではその効果は飽和してしまう。この組
成範囲でFeとNiを熱処理し効果的に燐化物を形成さ
せるためには、0.1〜0.8%のPが必要となる。
0.1%以下では、燐化物の形成が不十分となり、0.
8%以上では、余剰のPが銅中に固溶し導電率を低下さ
せる。
First, regarding the composition range of Fe, Ni, and P, when Fe and Ni are each co-added with P, phosphide is formed, and the strength and conductivity of copper are improved. At this time,
If the total of Fe and Ni is 1% or less, this effect is small, and if it is 4.5% or more, the effect is saturated. In order to effectively form a phosphide by heat-treating Fe and Ni in this composition range, 0.1 to 0.8% of P is required.
If it is 0.1% or less, the formation of phosphide becomes insufficient, so
If it is 8% or more, excess P forms a solid solution in copper and lowers the conductivity.

【0013】更に、上記の組成範囲の中でFeとNiの
合計量とPの量との比率には最適範囲が存在しており、
FeとNiの重量%の合計がPの重量%の3〜10倍の
範囲であることが必要である。これが3倍以下ではPが
過剰となり、10倍以上ではFe,Niが過剰となり、
それぞれ導電率を害する結果となる。また、4〜6倍の
範囲にあればより好ましい特性が期待できる。
Further, in the above composition range, the ratio of the total amount of Fe and Ni to the amount of P has an optimum range,
It is necessary that the sum of the weight percentages of Fe and Ni is in the range of 3 to 10 times the weight percentage of P. If this is 3 times or less, P becomes excessive, and if it is 10 times or more, Fe and Ni become excessive,
Each results in a loss of conductivity. Further, if the ratio is in the range of 4 to 6 times, more preferable characteristics can be expected.

【0014】次に、Fe量とNi量の比率にも最適範囲
が存在する。FeとNiは強度と導電率に対し、同様の
効果を期待して添加するものであるが、Feを添加した
場合、強度向上に対する効果は少ないが導電率は高めの
ものが得られやすい。一方、Niは強度向上に効果は高
いがFeと比べると導電率は高めのものを得にくい。従
って、半導体機器のリード材としての強度と導電率の双
方において調和のとれた材料を設計しようとするとき、
FeとNiを合計で1〜4.5%の範囲でそれぞれ1対
1の配合比とすることが必要になる。実際の量産での溶
解,鋳造では、完全に1対1とすることはほとんど不可
能であるため、支障のないと思われる範囲として、本発
明ではFe/Ni=0.8〜1.2の配合比を設定し
た。この比率が0.8以下ではNiが過剰となって導電
率不足となり、1.2以上ではFeが過剰となって強度
不足となり調和のとれた材料を得ることができなくな
る。
Next, there is an optimum range for the ratio between the amount of Fe and the amount of Ni. Fe and Ni are added with the expectation of the same effect on strength and electrical conductivity. However, when Fe is added, the effect on strength improvement is small, but one with higher electrical conductivity is easily obtained. On the other hand, Ni is highly effective in improving strength, but it is difficult to obtain a material having higher conductivity than Fe. Therefore, when designing a material that is harmonized in both strength and electrical conductivity as a lead material for semiconductor equipment,
It is necessary to set the mixing ratio of Fe and Ni to 1 to 1 in a range of 1 to 4.5% in total. In actual melting and casting in mass production, it is almost impossible to make the ratio completely one-to-one. The mixing ratio was set. If the ratio is 0.8 or less, Ni becomes excessive and the conductivity becomes insufficient. If the ratio is 1.2 or more, Fe becomes excessive and the strength becomes insufficient and a harmonized material cannot be obtained.

【0015】また、本発明の第2の特徴は、上記の元素
に加えてCo,Sn,Mn,Ag,Cd,Pb,Zn,
Be,In,Te,Y,Cr,Ti,Zr,Mg,Bの
中から選択される1種以上の元素を添加した点にある。
The second feature of the present invention is that, in addition to the above elements, Co, Sn, Mn, Ag, Cd, Pb, Zn,
The point is that at least one element selected from Be, In, Te, Y, Cr, Ti, Zr, Mg, and B is added.

【0016】これらの元素のうち、Mn,Ag,Cd,
Zn,Mgは脱酸,脱硫効果があり、酸素と結びつきや
すいPの含有量を安定させる効果や熱間加工性の改善効
果が高い。また、Co,Sn,Y,Cr,Ti,Zrは
結晶粒を微細化させ延性を改善する効果を持つととも
に、固溶硬化,析出硬化によって強度を向上させる効果
が高い。更に、Pb,Be,In,Te,Bは快削性の
向上効果が高く、リード材成形時のプレス加工性を改善
する。これらの元素は単独で添加しても有効であるが、
その働きに応じ2種以上を組み合わせて添加することに
より、さらに有効な効果を期待することができる。
Of these elements, Mn, Ag, Cd,
Zn and Mg have deoxidizing and desulfurizing effects, and have a high effect of stabilizing the content of P, which is easily linked to oxygen, and an effect of improving hot workability. In addition, Co, Sn, Y, Cr, Ti, and Zr have an effect of making crystal grains fine and improving ductility, and have a high effect of improving strength by solution hardening and precipitation hardening. Further, Pb, Be, In, Te, and B have a high effect of improving the free-cutting property, and improve the press workability at the time of forming the lead material. Although these elements are effective even if added alone,
A more effective effect can be expected by adding two or more kinds in combination according to the function.

【0017】ただし、これらの添加元素は、過剰に添加
すると導電率の劣化を引き起こすという問題がある。ま
た、Cr,Ti等の難溶解材は添加量が多くなると鋳造
が難しくなる。そこで、それぞれ1元素あたりの添加量
を、Co,Sn,Mn,Ag,Cd,Pb,Znについ
ては0.01〜1.0重量%、Be,In,Te,Yに
ついては0.01〜0.5重量%、Cr,Ti,Zr,
Mgについては0.01〜0.2重量%、Bについては
0.001〜0.1重量%とし、かつ、2種以上の元素
を添加する場合は、その合計量を3重量%以下にするよ
う添加量の範囲を規定する。この範囲より少ない量では
各元素の添加効果を期待することが難しく、この範囲を
超える量では導電率の劣化をはじめとして、延性の低
下、はんだ付け性やめっき性の劣化等の悪影響が生じや
すくなる。
However, there is a problem that when these additional elements are added excessively, the conductivity is deteriorated. In addition, if the amount of the hardly soluble material such as Cr and Ti is large, casting becomes difficult. Therefore, the addition amount per element is 0.01 to 1.0% by weight for Co, Sn, Mn, Ag, Cd, Pb and Zn, and 0.01 to 0% for Be, In, Te and Y. 0.5% by weight, Cr, Ti, Zr,
Mg is 0.01 to 0.2% by weight, B is 0.001 to 0.1% by weight, and when two or more elements are added, the total amount is 3% by weight or less. The range of the amount to be added. If the amount is less than this range, it is difficult to expect the effect of adding each element, and if the amount exceeds this range, adverse effects such as deterioration in conductivity, ductility, solderability and plating property are likely to occur. Become.

【0018】更に、本発明の第3の特徴は、Cu−Ni
−Fe−P系の銅合金に、Znをある特定の組成比で添
加し、はんだ耐候性を向上させるようにした点にある。
Further, a third feature of the present invention is that Cu—Ni
Another feature of the present invention is that Zn is added to an Fe-P-based copper alloy at a specific composition ratio to improve solder weather resistance.

【0019】Znは、例えば、半導体装置のリード材が
基板にはんだ付けされ、ある温度で化学変化を受けてい
く過程ではんだが剥離する現象を防止する効果、いわゆ
る、はんだ耐候性を向上させる元素である。従って、Z
nは効果を及ぼす最小の添加量として0.05%以上と
し、導電性に悪影響を及ぼすため最大2%の範囲で添加
するようにした。
Zn is, for example, an element that prevents solder from peeling off in a process in which a lead material of a semiconductor device is soldered to a substrate and undergoes a chemical change at a certain temperature, that is, an element that improves so-called solder weather resistance. It is. Therefore, Z
n is set to 0.05% or more as a minimum addition amount that exerts an effect, and is added in a maximum range of 2% to adversely affect conductivity.

【0020】以上の各添加元素は、いずれも活性な元素
ではなく容易に溶解,鋳造が可能なものであるため、低
コストで供給が可能である。
Since each of the above-mentioned additional elements is not an active element and can be easily dissolved and cast, it can be supplied at low cost.

【0021】[0021]

【実施例】【Example】

〔実施例1〕溶解原材料として、純銅、純鉄、純ニッケ
ル,銅−燐母合金および各副成分元素を用意して試料と
し、これらの試料を高周波溶解炉で木炭を被覆しながら
所定の配合成分となるように溶解,鋳造した。表1に試
料の組成を示す。
[Example 1] Pure copper, pure iron, pure nickel, a copper-phosphorus alloy and each of the subcomponent elements were prepared as melting raw materials to prepare samples, and these samples were mixed with charcoal in a high-frequency melting furnace in a predetermined mixing ratio. It was melted and cast to become a component. Table 1 shows the composition of the sample.

【表1】 [Table 1]

【0022】次に、この鋳塊を2mmの板厚まで熱間圧
延した後、表面の酸化物を除去し、0.7mmまで冷間
圧延した。ここで、900℃で30分間加熱し水冷する
溶体化処理を行った。引き続き、500℃で1時間の時
効処理を行い、0.5mmまで再び冷間圧延を行い性能
試験に供した。この性能試験の結果を表2に示す。
Next, the ingot was hot-rolled to a thickness of 2 mm, oxides on the surface were removed, and cold-rolled to 0.7 mm. Here, a solution treatment of heating at 900 ° C. for 30 minutes and cooling with water was performed. Subsequently, aging treatment was performed at 500 ° C. for 1 hour, cold-rolled again to 0.5 mm, and subjected to a performance test. Table 2 shows the results of the performance test.

【表2】 [Table 2]

【0023】表2から明らかなように、本発明の銅合金
(No.1〜No.13)では導電率が50%IACS
以上、硬さも150Hv以上とバランスのとれた性能が
得られていることがわかる。一方、比較合金(No.1
4〜No.23)をみると、Fe/Ni比の小さいN
o.14では導電率が不足し、逆にFe/Ni比の大き
いNo.17,No.19では硬さが不足している。
(Fe+Ni)/P比では、これが小さいNo.15や
No.18、また逆に大きいNo.20は導電率が極め
て低い値となっている。更に、Fe+Niが5.0重量
%と高いNo.16はFe+NiとPの比を適切な値に
しても良好な特性は得られていない。No.21〜N
o.23は副成分の量が過剰であるが、いずれの場合も
導電率が低くなっている。
As is clear from Table 2, the copper alloy (No. 1 to No. 13) of the present invention has a conductivity of 50% IACS.
From the above, it can be seen that a well-balanced hardness of 150 Hv or more was obtained. On the other hand, the comparative alloy (No. 1)
4-No. Looking at 23), it was found that N with a small Fe / Ni ratio
o. No. 14 lacks conductivity, and conversely, No. 14 has a large Fe / Ni ratio. 17, No. In 19, the hardness is insufficient.
In the (Fe + Ni) / P ratio, this is small. 15 and No. 18, and conversely, large No. 20 has an extremely low conductivity. Further, when the content of Fe + Ni was as high as 5.0 wt% In No. 16, good characteristics were not obtained even when the ratio of Fe + Ni to P was set to an appropriate value. No. 21-N
o. In No. 23, the amount of the subcomponent is excessive, but the conductivity is low in each case.

【0024】〔実施例2〕溶解原材料として、純銅、純
鉄、純ニッケル,銅−燐母合金を用意して試料とし、こ
れらの試料を高周波溶解炉で木炭を被覆しながら所定の
配合成分となるように溶解,鋳造した。表3に試料の組
成を示す。
Example 2 Pure copper, pure iron, pure nickel, and a copper-phosphorus alloy were prepared as melting raw materials to prepare samples, and these samples were coated with charcoal in a high-frequency melting furnace and mixed with predetermined components. It was melted and cast as it was. Table 3 shows the composition of the sample.

【表3】 [Table 3]

【0025】次に、この鋳塊を2mmの板厚まで熱間圧
延した後、表面の酸化物を除去し、0.7mmまで冷間
圧延した。ここで、900℃で30分間加熱し水冷する
溶体化処理を行った。引き続き、500℃で1時間の時
効処理を行い、0.5mmまで再び冷間圧延を行い性能
試験に供した。この性能試験の結果を表4に示す。
Next, the ingot was hot-rolled to a thickness of 2 mm, oxides on the surface were removed, and cold-rolled to 0.7 mm. Here, a solution treatment of heating at 900 ° C. for 30 minutes and cooling with water was performed. Subsequently, aging treatment was performed at 500 ° C. for 1 hour, cold-rolled again to 0.5 mm, and subjected to a performance test. Table 4 shows the results of the performance test.

【表4】 [Table 4]

【0026】表4から明らかなように、本発明の銅合金
(No.31〜No.33)では導電率が50%IAC
S以上、硬さも150Hv以上とバランスのとれた性能
が得られていることがわかる。一方、比較合金(No.
34〜No.41)をみると、Fe/Ni比の小さいN
o.34では導電率が不足し、逆にFe/Ni比の大き
いNo.39,No.41では硬さが不足している。
(Fe+Ni)/P比では、これが小さいNo.35や
No.38、また逆に大きいNo.40は導電率が極め
て低い値となっている。更に、Fe+Niが5.0重量
%と高いNo.36はFe+Ni/Pの比を適切な値に
しても良好な特性は得られておらず、Znを2.5%と
したNo.38では導電率が低くなっている。
As apparent from Table 4, the copper alloy (No. 31 to No. 33) of the present invention has a conductivity of 50% IAC.
It can be seen that a balanced performance of S or more and hardness of 150 Hv or more was obtained. On the other hand, the comparative alloy (No.
34-No. Looking at 41), it was found that N with a small Fe / Ni ratio
o. No. 34, the conductivity was insufficient, and conversely, No. 34 having a large Fe / Ni ratio. 39, no. 41 has insufficient hardness.
In the (Fe + Ni) / P ratio, this is small. No. 35 or No. No. 38, and conversely, a large No. 40 has an extremely low conductivity. Further, when the content of Fe + Ni was as high as 5.0 wt% In No. 36, good characteristics were not obtained even when the ratio of Fe + Ni / P was set to an appropriate value. At 38, the conductivity is low.

【0027】なお、上記の実施例1および実施例2の製
造工程では、溶体化処理後直ちに時効処理する工程とな
っているが、両工程の間に冷間圧延を施しても良いし、
冷間圧延をはさんで2段の時効処理を行うようにしても
良い。
Although the aging treatment is carried out immediately after the solution treatment in the manufacturing steps of the above-mentioned first and second embodiments, cold rolling may be performed between the two steps.
Two-stage aging treatment may be performed with cold rolling interposed.

【0028】[0028]

【発明の効果】以上述べたように、本発明の高強度・高
導電性銅合金によれば、FeとNiを合計で1〜4.5
重量%、Pを0.1〜0.8重量%含有してなる銅合金
において、FeとNiの重量%の合計をPの重量%の3
〜10倍とし、かつ、FeとNiのそれぞれの重量%の
比をFe/Ni=0.8〜1.2の範囲としたので、低
コストで、42合金とほぼ同等の強度を有しながら、導
電率が50%IACS以上の高強度・高導電性銅合金を
提供することができる。従って、42合金の代替合金と
して半導体装置用のリード材として使用することができ
る。その結果、ICやLSIの高速化,高集積化に大き
く寄与することができる。
As described above, according to the high-strength and highly-conductive copper alloy of the present invention, the total amount of Fe and Ni is 1 to 4.5.
% Of P and 0.1 to 0.8% by weight of P, the sum of Fe and Ni by weight is 3% of P
10 to 10 times, and the ratio of each weight% of Fe and Ni is in the range of Fe / Ni = 0.8 to 1.2, so that it is low cost and has almost the same strength as 42 alloy. In addition, a high-strength and high-conductivity copper alloy having a conductivity of 50% IACS or more can be provided. Therefore, it can be used as a lead material for a semiconductor device as an alternative alloy to the 42 alloy. As a result, it is possible to greatly contribute to high speed and high integration of ICs and LSIs.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】FeとNiを合計で1〜4.5重量%、P
を0.1〜0.8重量%含有してなる銅合金において、 FeとNiの重量%の合計がPの重量%の3〜10倍で
あり、かつ、FeとNiのそれぞれの重量%の比がFe
/Ni=0.8〜1.2の範囲にあることを特徴とする
高強度・高導電性銅合金。
1. A total of 1 to 4.5% by weight of Fe and Ni,
In a copper alloy containing 0.1 to 0.8% by weight, the total of the weight percentages of Fe and Ni is 3 to 10 times the weight percentage of P, and the total weight of Fe and Ni is The ratio is Fe
/Ni=0.8-1.2, high strength and high conductivity copper alloy.
【請求項2】FeとNiを合計で1〜4.5重量%、P
を0.1〜0.8重量%含有してなる銅合金において、 FeとNiの重量%の合計がPの重量%の3〜10倍で
あり、かつ、FeとNiのそれぞれの重量%の比がFe
/Ni=0.8〜1.2の範囲にあり、更に、 Co,Sn,Mn,Ag,Cd,Pb,Zn:0.01
〜1.0重量% Be,In,Te,Y:0.01〜0.5重量% Cr,Ti,Zr,Mg:0.01〜0.2重量% B:0.001〜0.1重量% の範囲から選択した1種以上の元素を合計3重量%以下
の範囲で含有してなることを特徴とする高強度・高導電
性銅合金。
2. A total of 1 to 4.5% by weight of Fe and Ni,
In a copper alloy containing 0.1 to 0.8% by weight, the total of the weight percentages of Fe and Ni is 3 to 10 times the weight percentage of P, and the total weight of Fe and Ni is The ratio is Fe
/Ni=0.8-1.2, Co, Sn, Mn, Ag, Cd, Pb, Zn: 0.01
-1.0% by weight Be, In, Te, Y: 0.01-0.5% by weight Cr, Ti, Zr, Mg: 0.01-0.2% by weight B: 0.001-0.1% by weight % Of at least one element selected from the range of 3% by weight or less.
【請求項3】FeとNiを合計で1〜4.5重量%、P
を0.1〜0.8重量%、Znを0.05〜2重量%含
有してなる銅合金の合金元素組成範囲で、FeとNiの
重量%の合計がPの重量%の3〜10倍であり、かつ、
FeとNiのそれぞれの重量%の比がFe/Ni=0.
8〜1.2の範囲にあることを特徴とする高強度・高導
電性銅合金。
3. A total of 1 to 4.5% by weight of Fe and Ni,
0.1 to 0.8% by weight and 0.05 to 2% by weight of Zn in the alloy element composition range of the copper alloy, and the sum of the weight percentages of Fe and Ni is 3 to 10% by weight of P. Double, and
The ratio of each weight% of Fe and Ni is Fe / Ni = 0.
A high-strength and high-conductivity copper alloy characterized by being in the range of 8 to 1.2.
JP10598297A 1997-04-23 1997-04-23 High strength and high conductivity copper alloy Expired - Fee Related JP3379380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10598297A JP3379380B2 (en) 1997-04-23 1997-04-23 High strength and high conductivity copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10598297A JP3379380B2 (en) 1997-04-23 1997-04-23 High strength and high conductivity copper alloy

Publications (2)

Publication Number Publication Date
JPH10298679A true JPH10298679A (en) 1998-11-10
JP3379380B2 JP3379380B2 (en) 2003-02-24

Family

ID=14421961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10598297A Expired - Fee Related JP3379380B2 (en) 1997-04-23 1997-04-23 High strength and high conductivity copper alloy

Country Status (1)

Country Link
JP (1) JP3379380B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002016751A1 (en) * 2000-08-24 2002-02-28 Mitsubishi Denki Kabushiki Kaisha Exhaust gas recirculation valve controller
US6558617B2 (en) 2000-05-25 2003-05-06 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Copper alloy for use in electric and electronic parts
US6639374B2 (en) 2001-03-06 2003-10-28 Kokusan Denki Co., Ltd. Method and device for controlling DC servomotor for driving rotating load
KR100885824B1 (en) * 2006-03-31 2009-02-26 닛코 킨조쿠 가부시키가이샤 Copper alloy having superior hot workability and method for producing same
KR100885825B1 (en) 2006-03-31 2009-02-26 닛코 킨조쿠 가부시키가이샤 Copper alloy having superior hot workability and method for producing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6558617B2 (en) 2000-05-25 2003-05-06 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Copper alloy for use in electric and electronic parts
WO2002016751A1 (en) * 2000-08-24 2002-02-28 Mitsubishi Denki Kabushiki Kaisha Exhaust gas recirculation valve controller
US6639374B2 (en) 2001-03-06 2003-10-28 Kokusan Denki Co., Ltd. Method and device for controlling DC servomotor for driving rotating load
KR100885824B1 (en) * 2006-03-31 2009-02-26 닛코 킨조쿠 가부시키가이샤 Copper alloy having superior hot workability and method for producing same
KR100885825B1 (en) 2006-03-31 2009-02-26 닛코 킨조쿠 가부시키가이샤 Copper alloy having superior hot workability and method for producing same

Also Published As

Publication number Publication date
JP3379380B2 (en) 2003-02-24

Similar Documents

Publication Publication Date Title
JP3465108B2 (en) Copper alloy for electric and electronic parts
KR950004935B1 (en) Copper alloy for electronic instruments
JPH0741887A (en) Copper alloy for electric and electronic part and its preparation
JP3797736B2 (en) High strength copper alloy with excellent shear processability
JP4459067B2 (en) High strength and high conductivity copper alloy
JP3379380B2 (en) High strength and high conductivity copper alloy
JP3900733B2 (en) Manufacturing method of high strength and high conductivity copper alloy material
JP2956696B1 (en) High strength and high conductivity copper alloy and its processing method
JPS63149345A (en) High strength copper alloy having high electrical conductivity and improved heat resistance
JPH09157775A (en) Copper alloy for electronic equipment
JPH0534409B2 (en)
JPH0718355A (en) Copper alloy for electronic appliance and its production
JPH0219433A (en) Copper alloy for electronic equipment
JPS6250426A (en) Copper alloy for electronic appliance
JP3407527B2 (en) Copper alloy materials for electronic equipment
JPH06172896A (en) High-strength and high-conductivity copper alloy
JP3755272B2 (en) Manufacturing method of high strength and high conductivity copper alloy
JPH06184666A (en) High strength and high electric conductivity copper alloy
JPH10298680A (en) High strength and high conductivity copper alloy
JPH0356294B2 (en)
JPS63192835A (en) Lead material for ceramic package
JPH0219432A (en) High-strength and high-conductivity copper alloy for semiconductor equipment lead material or conductive spring material
JP3391492B2 (en) High-strength, high-conductivity copper alloy for lead materials of semiconductor equipment and conductive spring materials
JPH06184676A (en) High strength and high electric conductivity copper alloy
JPH06235035A (en) High tensile strength and high conductivity copper alloy

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20081213

LAPS Cancellation because of no payment of annual fees