JP4459067B2 - High strength and high conductivity copper alloy - Google Patents

High strength and high conductivity copper alloy Download PDF

Info

Publication number
JP4459067B2
JP4459067B2 JP2005014075A JP2005014075A JP4459067B2 JP 4459067 B2 JP4459067 B2 JP 4459067B2 JP 2005014075 A JP2005014075 A JP 2005014075A JP 2005014075 A JP2005014075 A JP 2005014075A JP 4459067 B2 JP4459067 B2 JP 4459067B2
Authority
JP
Japan
Prior art keywords
particles
copper alloy
mass
conductivity
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005014075A
Other languages
Japanese (ja)
Other versions
JP2006200014A (en
Inventor
良一 尾崎
康博 有賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005014075A priority Critical patent/JP4459067B2/en
Publication of JP2006200014A publication Critical patent/JP2006200014A/en
Application granted granted Critical
Publication of JP4459067B2 publication Critical patent/JP4459067B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、リードフレーム、端子、コネクタなどの電気・電子部品に用いられる高強度・高導電性銅合金に関し、特に、プレス打抜き加工等のせん断加工性に優れた高強度・高導電性銅合金に関する。   The present invention relates to a high-strength, high-conductivity copper alloy used for electrical and electronic parts such as lead frames, terminals, connectors, etc., and in particular, a high-strength, high-conductivity copper alloy excellent in shear workability such as press punching. About.

従来、上記のような各種電気・電子部品には、一般に高強度・高導電性及び曲げ加工性などの特徴を具備することが要求されることから、これらの特性を有するCu−Fe−P系等の銅合金が多く用いられている。例えば、C19210合金(Fe:0.05〜0.15質量%、P:0.025〜0.040質量%)は、銅合金の中でも、強度、導電性に優れていることから、標準的な合金として多く使用されている。   Conventionally, various electric / electronic parts as described above are generally required to have characteristics such as high strength, high conductivity, and bending workability. Therefore, Cu—Fe—P system having these characteristics is required. Many copper alloys are used. For example, C19210 alloy (Fe: 0.05 to 0.15 mass%, P: 0.025 to 0.040 mass%) is a standard because it is excellent in strength and conductivity among copper alloys. Many are used as alloys.

最近の各種電気・電子機器の軽薄短小化に伴い、それに用いられる電気・電子部品はますますその小型化が求められている。例えば、IC等の半導体素子に用いられるリードフレームでは、小型化のためにリード幅やリード間距離の縮小及びその寸法精度の向上が強く求められている。このように小型化した部品を寸法精度よく打抜き加工できる技術や材料の要求は、端子、コネクタなどの電気・電子部品においても同様である。さらには、プレス打抜き加工の生産性向上のために、打抜き加工に用いられる金型の磨耗が少なく金型寿命を延長できる材料が強く求められている。   With recent reductions in the size and size of various electrical and electronic devices, the electrical and electronic components used therefor are increasingly required to be miniaturized. For example, lead frames used in semiconductor elements such as ICs are strongly required to reduce lead widths and lead-to-lead distances and improve their dimensional accuracy for miniaturization. The requirements for technology and materials that enable punching of such miniaturized parts with high dimensional accuracy are the same for electrical and electronic parts such as terminals and connectors. Furthermore, in order to improve the productivity of the press punching process, there is a strong demand for a material that can reduce the wear of the mold used for the punching process and extend the life of the mold.

しかし、上記のような高強度・高導電性銅合金(例えばC19210合金)は、高導電性(導電率:90%IACS程度)を確保するために、異種元素の添加を極力抑えた純銅に近い組成を有することから、延性に富むという特徴を有している。しかし、打抜き加工の場合にはこのことが逆に作用してせん断率(切断面におけるせん断面の面積比率)が大きくなるため、リード幅やリード間距離の縮小及び寸法精度の向上を目的に、打抜き金型のクリアランスを縮小すると、「だれ」や「ばり」が発生しやすくなり、逆に寸法精度の低下を招くという不具合が生じる場合があった。また、打抜き加工時のせん断率が大きいために、材料と金型との接触時間が長くなり、そのため金型磨耗が大きくなり、金型寿命が短くなる等の不具合が発生する場合もあった。   However, the high-strength and high-conductivity copper alloy (for example, C19210 alloy) as described above is close to pure copper in which the addition of different elements is suppressed as much as possible in order to ensure high conductivity (conductivity: about 90% IACS). Since it has a composition, it has the feature of being rich in ductility. However, in the case of punching processing, this acts reversely and the shear rate (the area ratio of the shear surface in the cut surface) increases, so that the lead width and the distance between the leads are reduced and the dimensional accuracy is improved. When the clearance of the punching die is reduced, “sag” and “burr” are likely to occur, and on the contrary, there may be a problem that the dimensional accuracy is lowered. In addition, since the shear rate at the time of punching is large, the contact time between the material and the mold becomes long, so that there is a case in which problems such as increased mold wear and shortened mold life occur.

上記のような不具合が発生した場合には、C19400合金(Fe:2.1〜2.6%、P:0.015〜0.15%。Zn:0.05〜0.20%)やC50715合金(Fe:0.05〜0.15%、P:0.025〜0.040%、Sn:1.5〜2.5%)等の異種元素量の多い材料への変更等で対応する場合があった。これらの合金はC19210合金に比べて異種元素量が多いため延性が小さく、その結果、打抜き加工時のせん断率が小さくなり、リード幅やリード間距離の縮小や寸法精度の向上及び金型摩耗の減少には対応できる。しかし、その反面、異種元素量が多いことから必然的に導電率の大幅低下(C19400合金:導電率65%IACS程度,C19210合金:導電率35%IACS程度)は避けられなかった。   When the above problems occur, C19400 alloy (Fe: 2.1 to 2.6%, P: 0.015 to 0.15%, Zn: 0.05 to 0.20%) or C50715 Responding to changes to materials with a large amount of different elements such as alloys (Fe: 0.05 to 0.15%, P: 0.025 to 0.040%, Sn: 1.5 to 2.5%) There was a case. Since these alloys have a large amount of different elements compared to C19210 alloy, the ductility is small, and as a result, the shear rate during punching is small, the lead width and the distance between leads are reduced, the dimensional accuracy is improved, and the mold wear is reduced. Can handle the decline. However, on the other hand, since the amount of different elements is large, inevitably a significant decrease in conductivity (C19400 alloy: conductivity 65% IACS, C19210 alloy: conductivity 35% IACS) is unavoidable.

以上のような状況から、Cu−Fe−P系銅合金のせん断加工性を改善するために、下記特許文献1,2に示す提案がなされている。しかし、下記特許文献1では、Snを比較的高濃度で添加しているためせん断加工性は向上するが、必然的に導電率の低下が生じる。また、下記特許文献2は、高導電率を確保した状態でせん断加工性を向上しようする提案であるが、そのためにPbの添加を容認している。確かにPbはせん断加工性を有効に向上できる元素であるが、環境面からは望ましくない。
そのほか、下記特許文献3〜7に示すように、種々の提案がなされている。しかし、これらについても、特許文献3,4,7ではせん断率を下げる作用は不十分と推測され、特許文献5では析出物を粗大に成長させる工程が複雑でコスト高となり、特許文献6ではせん断率を下げるには比較的多量の合金成分を添加する必要があり同じくコスト高となる。
From the above situation, in order to improve the shear workability of the Cu—Fe—P based copper alloy, proposals shown in the following Patent Documents 1 and 2 have been made. However, in Patent Document 1 described below, since Sn is added at a relatively high concentration, the shear workability is improved, but the conductivity is inevitably lowered. Moreover, although the following patent document 2 is a proposal which tries to improve shear workability in the state which ensured high electrical conductivity, the addition of Pb is permitted for it. Certainly, Pb is an element that can effectively improve the shear workability, but it is not desirable from the environmental viewpoint.
In addition, various proposals have been made as shown in Patent Documents 3 to 7 below. However, in these patent documents 3, 4 and 7, it is presumed that the action of lowering the shear rate is insufficient, and in patent document 5, the process of coarsely growing the precipitate is complicated and expensive. In order to reduce the rate, it is necessary to add a relatively large amount of alloy components, which also increases the cost.

特開昭62−164843号公報JP-A-62-164843 特開平2−209441号公報JP-A-2-209441 特開昭62−96630号公報JP-A 62-96630 特開平6−33170号公報JP-A-6-33170 特開平10−130755号公報Japanese Patent Laid-Open No. 10-130755 特開平11−256255号公報JP 11-256255 A 特開2000−328158号公報JP 2000-328158 A

従って、本発明は、リードフレーム、端子、コネクタなどの電気・電子部品に用いられるCu−Fe−P系銅合金において、高強度、高導電性及び曲げ加工性などの特性を維持しながら、そのプレス打抜き加工等のせん断加工性を向上させることを目的とする。具体的には、打抜き加工を行った場合のせん断率が小さい高強度・高導電性銅合金を提供することを目的とする。また、このような銅合金を低コストで提供することも本発明の目的の1つである。なお、本発明においてせん断率とは、切断面におけるせん断面の面積比率を意味する。   Therefore, the present invention provides a Cu-Fe-P-based copper alloy used for electrical and electronic parts such as lead frames, terminals, connectors, etc. while maintaining characteristics such as high strength, high conductivity and bending workability. The purpose is to improve shear workability such as press punching. Specifically, an object is to provide a high-strength, high-conductivity copper alloy having a low shear rate when punching is performed. It is also an object of the present invention to provide such a copper alloy at a low cost. In addition, in this invention, a shear rate means the area ratio of the shear surface in a cut surface.

本発明に係る高強度高導電性銅合金は、Fe:0.01〜0.5質量%、P:0.01〜0.3質量%、及びMg,Si,Cr,Ti,Zr,Alのうちの少なくとも1種の元素を0.001〜0.1質量%を含有し、FeとPとの質量比であるFe/Pが0.5〜6.0であり、残部Cu及び不可避不純物からなり、銅合金組織中にMg,Si,Cr,Ti,Zr,Alのうちの少なくとも1種の酸化物を主体とする粒子が含まれ、そのうち長径が0.1μm以上の粒子の分布密度が0.1〜100個/100μmであり、かつ長径が10μmを越える粒子の分布密度が、0.001個/100μm以下であることを特徴とする。長径が10μmを越える粒子の分布密度は、0個/100μmであることが望ましい。上記銅合金は、さらにZn:0.005〜0.5質量%及び/又はSn:0.001〜0.5質量%を含有することもできる。 The high-strength and high-conductivity copper alloy according to the present invention includes Fe: 0.01 to 0.5 mass%, P: 0.01 to 0.3 mass%, and Mg, Si, Cr, Ti, Zr, and Al. 0.001 to 0.1% by mass of at least one element among them, Fe / P being a mass ratio of Fe and P is 0.5 to 6.0, and the balance is from Cu and inevitable impurities. In the copper alloy structure, particles mainly containing at least one oxide of Mg, Si, Cr, Ti, Zr, and Al are included, and the distribution density of particles having a major axis of 0.1 μm or more is 0. 0.1 to 100 particles / 100 μm 2 , and the distribution density of particles having a major axis exceeding 10 μm is 0.001 particles / 100 μm 2 or less. The distribution density of particles having a major axis exceeding 10 μm is preferably 0/100 μm 2 . The said copper alloy can also contain Zn: 0.005-0.5 mass% and / or Sn: 0.001-0.5 mass% further.

本発明によれば、リードフレーム、端子、コネクタなどの電気・電子部品に用いられるCu−Fe−P系銅合金において、高強度、高導電性及び曲げ加工性などの特性を維持しながら、そのプレス打抜き加工等のせん断加工性を向上(せん断率を低下)させることができる。せん断加工性が向上することにより、「だれ」や「ばり」が発生しにくく、小型化した部品でも寸法精度よく打抜き加工ができるようになる。また、打抜き金型の磨耗が少なくなり、金型寿命を延長することができ、その生産性の向上にも寄与するという利点を有する。
また、本発明の銅合金は合金成分が少なく、溶解鋳造後の圧延及び熱処理等は通常の方法で行うことができ、特に複雑な工程を要しないため、低コストで製造できる利点がある。
According to the present invention, while maintaining characteristics such as high strength, high conductivity and bending workability in Cu-Fe-P based copper alloys used for electrical and electronic parts such as lead frames, terminals and connectors, Shear processability such as press punching can be improved (shear rate is reduced). By improving the shear workability, it is difficult for “sag” and “burr” to occur, and it is possible to perform punching with high dimensional accuracy even for miniaturized parts. Further, there is an advantage that the wear of the punching die is reduced, the die life can be extended, and the productivity is improved.
Further, the copper alloy of the present invention has few alloy components, and rolling and heat treatment after melting and casting can be performed by a usual method, and there is an advantage that it can be manufactured at a low cost because it does not require a complicated process.

本発明に係る銅合金において、その組成及び組織を上記のように限定した理由を以下に説明する。
(Fe:0.01〜0.5質量%)
Feは、銅合金中に、微細な析出物粒子として析出して、強度や耐熱性を向上させるのに必要な元素である。0.01%未満の含有では微細な析出物粒子が不足するため、高強度化などの効果を有効に発揮させるには、0.01%以上の含有が必要である。但し、0.5%を超えて過剰に含有させると、高導電率化が達成できない。また、高導電率化のために、析出物粒子の析出量を増やそうとすると、析出粒子の粗大化を招き、却って、微細な析出物粒子が不足する。このため、強度が低下し、高強度化と高導電率化が両立できない。従って、Feの含有量は0.01〜0.5質量%の範囲とする。なお、さらに高導電率を追求するためには、Feの含有量は0.25質量%以下とすることがより好ましい。
The reason why the composition and structure of the copper alloy according to the present invention are limited as described above will be described below.
(Fe: 0.01 to 0.5% by mass)
Fe is an element necessary for improving strength and heat resistance by precipitating as fine precipitate particles in a copper alloy. If the content is less than 0.01%, fine precipitate particles are insufficient. Therefore, the content of 0.01% or more is necessary to effectively exhibit the effect of increasing the strength. However, if the content exceeds 0.5%, an increase in electrical conductivity cannot be achieved. Further, if it is attempted to increase the precipitation amount of the precipitate particles in order to increase the conductivity, the precipitation particles are coarsened, and on the contrary, the fine precipitate particles are insufficient. For this reason, intensity | strength falls and high intensity | strength and high electrical conductivity cannot be made compatible. Therefore, the Fe content is in the range of 0.01 to 0.5 mass%. In order to further increase the electrical conductivity, the Fe content is more preferably 0.25% by mass or less.

(P:0.01〜0.3質量%)
Pは、脱酸作用を有するほか、上記Feと析出物を形成して、銅合金の強度や耐熱性を向上させるのに必要な元素である。0.01%未満の含有では微細な析出物粒子が不足するため、高強度化などの効果を有効に発揮させるには、0.01%以上の含有が必要である。但し、0.3%を超えて過剰に含有させると、導電率が低下し、高導電率化が達成できない。また、熱間加工性も低下する。従って、Pの含有量は0.01〜0.3質量%の範囲とする。なお、さらに高導電率を追求するためには、Pの含有量は0.15質量%以下とすることがより好ましい。
(P: 0.01 to 0.3% by mass)
P is an element necessary for improving the strength and heat resistance of the copper alloy by forming a precipitate with Fe, in addition to having a deoxidizing action. If the content is less than 0.01%, fine precipitate particles are insufficient. Therefore, the content of 0.01% or more is necessary to effectively exhibit the effect of increasing the strength. However, if it exceeds 0.3% and is contained excessively, the electrical conductivity is lowered, and a high electrical conductivity cannot be achieved. Moreover, hot workability also falls. Therefore, the P content is in the range of 0.01 to 0.3% by mass. In order to further increase the electrical conductivity, the P content is more preferably 0.15% by mass or less.

(Fe/P:0.5〜6.0)
微細な析出物粒子を有効に析出させ、高強度化と高導電率化を実現するためには、FeとPの個々の含有範囲だけではなく、FeとPとの質量比(Fe/P)も併せて規定する必要がある。Fe/Pが0.5未満では、Pが過剰となって、銅マトリックスの中に固溶して、導電率が低下し、高導電率化が達成できない。一方、Fe/Pが6.0を超えた場合、逆にFeが過剰となって、単体のFe粒子として粗大に生成するため、強度が低下する。従って、Fe/Pは0.5〜6.0の範囲とする。なお、さらに高導電率を追求するためには、Fe/Pは2.0〜4.0の範囲とすることがより好ましい。
(Fe / P: 0.5-6.0)
In order to effectively deposit fine precipitate particles and achieve high strength and high conductivity, not only the individual content ranges of Fe and P but also the mass ratio of Fe and P (Fe / P) Must also be specified. If Fe / P is less than 0.5, P becomes excessive and is dissolved in the copper matrix, the conductivity is lowered, and high conductivity cannot be achieved. On the other hand, when Fe / P exceeds 6.0, on the contrary, Fe becomes excessive and coarsely generated as single Fe particles, so that the strength decreases. Therefore, Fe / P is set to a range of 0.5 to 6.0. In order to further increase the electrical conductivity, Fe / P is more preferably in the range of 2.0 to 4.0.

(Mg,Si,Cr,Ti,Zr,Alのうちの少なくとも1種の元素:0.001〜0.1質量%)
Mg,Si,Cr,Ti,Zr,Alは、いずれも溶解鋳造時に溶銅中のO(酸素)と反応して酸化物を主体とする粒子となり銅合金組織中に分散したり、熱間圧延中に母材中の溶存O(酸素)と反応して酸化物を主体とする粒子として生成し、プレス打抜き性を向上させる効果を有する。これらの酸化物を主体とする粒子が銅合金組織中に分散されていると、せん断加工時に受ける応力でのミクロクラックの発生源となり、効果的にせん断加工性を向上させることができる。すなわち、破断しやくなり、せん断率が小さくなる。Mg,Si,Cr,Ti,Zr,Alの量は、0.001%未満では酸化物を主体とする粒子の生成個数が不足するため、プレス打抜き性向上効果を有効に発揮させるには0.001%以上の含有が必要である。ただし、0.1質量%を越えて過剰に含有させると、溶銅中のO(酸素)と反応せずに固溶状態となる元素量が増加し、導電率を低下させるという不具合を生じる。従って、Mg,Si,Cr,Ti,Zr,Alの含有量は0.001〜0.1質量%とする。
(At least one element of Mg, Si, Cr, Ti, Zr, Al: 0.001 to 0.1% by mass)
Mg, Si, Cr, Ti, Zr, and Al all react with O (oxygen) in the molten copper at the time of melting and casting to become particles mainly composed of oxide, and are dispersed in the copper alloy structure or hot rolled. It reacts with dissolved O (oxygen) in the base material to produce particles mainly composed of oxide, and has the effect of improving press punchability. When these oxide-based particles are dispersed in the copper alloy structure, it becomes a source of microcracks due to stress applied during shearing, and the shear workability can be effectively improved. That is, it becomes easy to break and the shear rate becomes small. If the amount of Mg, Si, Cr, Ti, Zr, Al is less than 0.001%, the number of particles mainly composed of oxide is insufficient. It is necessary to contain 001% or more. However, if the content exceeds 0.1% by mass, the amount of elements that are in a solid solution state without reacting with O (oxygen) in the molten copper increases, resulting in a decrease in conductivity. Therefore, the content of Mg, Si, Cr, Ti, Zr, and Al is set to 0.001 to 0.1% by mass.

(Zn:0.005〜0.5質量%)
Znは電子部品の接合に用いられるはんだや、電気接点の信頼性確保に用いられるSnめっきの耐熱密着性を改善し、熱剥離を抑制するのに有効な元素である。このような効果を有効に発揮させるには、0.005%以上含有することが好ましい。しかし、0.5%を超えて過剰に含有すると、却ってはんだや溶融Snの濡れ広がり性を劣化させるのだけでなく、導電率を低下させる。従って、Znは0.005〜0.5質量%の範囲で、選択的に含有させる。なお、さらに高導電率を追求するためには、Znの含有量は0.2質量%以下とすることがより好ましい。
(Zn: 0.005 to 0.5 mass%)
Zn is an element effective in improving the heat-resistant adhesion of solder used for joining electronic components and Sn plating used for ensuring the reliability of electrical contacts and suppressing thermal delamination. In order to exhibit such an effect effectively, it is preferable to contain 0.005% or more. However, if it exceeds 0.5% and is contained excessively, it not only deteriorates the wetting and spreading properties of solder and molten Sn but also decreases the conductivity. Therefore, Zn is selectively contained in the range of 0.005 to 0.5 mass%. In order to further increase the electrical conductivity, the Zn content is more preferably 0.2% by mass or less.

(Sn:0.001〜0.5質量%)
Snは、銅合金の強度とせん断加工性の向上に寄与する。このような効果を有効に発揮させるには、0.001%以上含有することが好ましい。しかし、0.5%を超えて過剰に含有すると、導電率を大きく低下させる。従って、Snは0.001〜0.5質量%の範囲で、選択的に含有させる。なお、さらに高導電率を追求するためには、Snの含有量は0.2質量%以下とすることがより好ましい。
(Sn: 0.001 to 0.5 mass%)
Sn contributes to the improvement of the strength and shear workability of the copper alloy. In order to exhibit such an effect effectively, it is preferable to contain 0.001% or more. However, if the content exceeds 0.5%, the electrical conductivity is greatly reduced. Therefore, Sn is selectively contained in the range of 0.001 to 0.5 mass%. In order to further increase the electrical conductivity, the Sn content is more preferably 0.2% by mass or less.

その他の、例えば、Ni,Co,Mnなどの元素は不純物元素であり、粗大な晶・析出物が生成し易くなるほか、導電率の低下も引き起こし易くなる。従って、総量で0.5質量%以下、さらに0.1質量%以下の極力少ない含有量に抑えることが好ましい。このほか、銅合金中に微量に含まれているB、C、Na、S、Ca、As、Se、Cd、In、Sb、Pb、Bi、MM(ミッシュメタル)等の元素も、導電率の低下を引き起こし易くなるので、これらの総量で0.1質量%以下の極力少ない含有量に抑えることが好ましい。特に、As、Cd、Pbは環境面において有害な元素であることから、それぞれ単独で0.005%以下とすることが好ましく、さらには0.001%以下とすることがより好ましい。   Other elements such as Ni, Co, and Mn are impurity elements, which easily generate coarse crystals / precipitates, and easily cause a decrease in conductivity. Therefore, it is preferable to suppress the content to a minimum amount of 0.5% by mass or less and further 0.1% by mass or less as much as possible. In addition, elements such as B, C, Na, S, Ca, As, Se, Cd, In, Sb, Pb, Bi, and MM (Misch Metal) contained in a small amount in the copper alloy also have conductivity. Since it tends to cause a decrease, it is preferable to suppress the total content to 0.1% by mass or less as much as possible. In particular, As, Cd, and Pb are harmful elements in terms of the environment, and are each independently preferably 0.005% or less, and more preferably 0.001% or less.

(銅合金組織条件)
本発明で言うMg,Si,Cr,Ti,Zr,Alの酸化物を主体とする粒子とは、銅合金材料の断面組織をSEM観察(倍率:1000〜10000倍程度)した際に容易に確認できる程度の大きさの粒子であり、Mg−O,Si−O,Cr−O,Ti−O,Zr−O,Al−Oを主体とした化合物であり、これらに合金成分中のPや不可避不純物であるSなどが加わって複合化合物となる場合もあるが、本発明では、これらを含めて酸化物を主体とする粒子とする。
このような酸化物を主体とする粒子は、銅合金の製造に際し、例えば、溶解鋳造時に溶銅中のO(酸素)と反応して銅合金組織中に分散したり、熱間圧延中に母材中の溶存酸素と反応して生成する場合などがある。
(Copper alloy structure condition)
The particles mainly composed of oxides of Mg, Si, Cr, Ti, Zr, and Al in the present invention are easily confirmed when the cross-sectional structure of the copper alloy material is observed by SEM (magnification: about 1000 to 10000 times). Particles of a size as large as possible, and are compounds mainly composed of Mg—O, Si—O, Cr—O, Ti—O, Zr—O, and Al—O. These include P in the alloy components and unavoidable In some cases, S, which is an impurity, is added to form a composite compound. However, in the present invention, particles including these are mainly composed of oxides.
In the production of a copper alloy, such oxide-based particles, for example, react with O (oxygen) in molten copper at the time of melt casting and disperse in the copper alloy structure or during hot rolling. In some cases, it reacts with dissolved oxygen in the material.

本発明では、このような酸化物を主体とする粒子の内、その粒径(長径)が0.1μm以上の粒子が、銅合金板材の断面観察において0.1〜100個/100μmの分布密度で分散し、かつ粒径が10μmを越える粒子が、0.001個/100μm以下の分布密度に抑えられていることを特徴とする。なお、酸化物を主体とする粒子は真円とならないことが多いことから、ここで言う粒径は粒子の長径とする。 In the present invention, among such particles mainly composed of oxide, particles having a particle size (major axis) of 0.1 μm or more have a distribution of 0.1 to 100/100 μm 2 in the cross-sectional observation of the copper alloy sheet. Particles dispersed by density and having a particle size exceeding 10 μm are suppressed to a distribution density of 0.001 / 100 μm 2 or less. In addition, since the particle | grains which have an oxide as a main body often do not become a perfect circle, the particle size said here is made into the major axis of a particle | grain.

このような酸化物を主体とする粒子の粒径(長径)が0.1μm未満の場合は、せん断加工時に受ける応力でのミクロクラックの発生源となる効果が小さく、有効にせん断加工性を向上させることができない。従って、本発明では酸化物を主体とする粒子の粒径(長径)の下限を0.1μm以上と規定する。
また、酸化物を主体とする粒子のうち粒径が0.1μm以上の粒子の分布密度が0.1個/100μm未満では、効果を発揮すべき粒子の数が不足し、有効にせん断加工性を向上させることができない。一方、粒径が0.1μm以上の粒子の分布密度が100個/100μmを越える場合は、せん断加工性の向上効果が飽和するとともに、曲げ加工性を阻害する要因となる。従って、本発明では、酸化物を主体とする粒子のうち粒径が0.1μm以上の粒子の分布密度を、0.1〜100個/100μmと規定する。
When the particle size (major axis) of such an oxide-based particle is less than 0.1 μm, the effect of generating microcracks due to the stress applied during shearing is small, and the shear workability is effectively improved. I can't let you. Accordingly, in the present invention, the lower limit of the particle size (major axis) of the particles mainly composed of oxide is defined to be 0.1 μm or more.
Moreover, if the distribution density of particles having a particle size of 0.1 μm or more among particles mainly composed of oxide is less than 0.1 particles / 100 μm 2 , the number of particles to be effective is insufficient and effective shearing is performed. Can not improve. On the other hand, when the distribution density of particles having a particle size of 0.1 μm or more exceeds 100 particles / 100 μm 2 , the effect of improving the shear workability is saturated and the bending workability is hindered. Therefore, in the present invention, the distribution density of particles having a particle size of 0.1 μm or more among particles mainly composed of oxide is defined as 0.1 to 100 particles / 100 μm 2 .

一方、酸化物を主体とする粒子の粒径が10μmを越える場合は、ミクロクラックの発生源とはなるものの、その他の特性としての曲げ加工性を阻害する要因となる。従って、酸化物を主体とする粒子のうち粒径が10μmを越える粒子は存在しないことが望ましく、存在する場合でもその分布密度は0.001個/100μm以下に制限される。
なお、本発明においては、酸化物を主体とする粒子のうち、その粒径(長径)が0.1μm以上である粒子の分布密度を規定しているが、この規定を満足すれば、粒径が0.1μm未満の酸化物を主体とする粒子が、適宜銅合金組織中に存在することは許容される。
On the other hand, when the particle size of the oxide-based particles exceeds 10 μm, it becomes a source of microcracks, but becomes a factor that hinders bending workability as another characteristic. Accordingly, it is desirable that particles having a particle size of more than 10 μm do not exist among particles mainly composed of oxide, and even if they exist, the distribution density is limited to 0.001 particles / 100 μm 2 or less.
In the present invention, among the particles mainly composed of oxide, the distribution density of particles having a particle size (major axis) of 0.1 μm or more is specified. It is permissible for particles mainly composed of oxides of less than 0.1 μm to be present in the copper alloy structure as appropriate.

本発明で言う酸化物を主体とする粒子の粒径(長径)とは、銅合金材料の断面組織を走査型電子顕微鏡(SEM)等で観察した際に認められる、酸化物を主体とする粒子の最大直径のことであり、その分布密度とはSEM等による観察(倍率:1000〜10000倍程度)で計測された個数を、100μm当りの測定個数として平均化したものであり、勿論複数視野を観察して平均化することがより好ましい。 The particle size (major axis) of the oxide-based particles referred to in the present invention is a particle mainly composed of oxides that is recognized when the cross-sectional structure of the copper alloy material is observed with a scanning electron microscope (SEM) or the like. The distribution density is the average of the number measured by observation with SEM (magnification: about 1000 to 10000 times) as the number measured per 100 μm 2. It is more preferable to observe and average.

(製造方法)
次に、銅合金組織を上記本発明規定の組織とするための、好ましい製造条件について以下に説明する。ここにおいて、上記した、Mg,Si,Cr,Ti,Zr,Alの酸化物を主体とする粒子の内、粒径が0.1μm以上の粒子が0.1〜100個/100μmであり、かつ粒径が10μmを越える粒子が0.001個/100μm以下の分布密度で分散した形態となるよう制御するには、製造に当って下記の条件で溶解鋳造を行うことが有効である。
(Production method)
Next, preferable manufacturing conditions for setting the copper alloy structure to the structure defined in the present invention will be described below. Here, among the above-described particles mainly composed of oxides of Mg, Si, Cr, Ti, Zr, and Al, particles having a particle size of 0.1 μm or more are 0.1 to 100 particles / 100 μm 2 . In order to control particles having a particle size exceeding 10 μm to be dispersed with a distribution density of 0.001 / 100 μm 2 or less, it is effective to perform melt casting under the following conditions in production.

前記の通り、本発明における酸化物を主体とする粒子は、溶解鋳造時に溶銅中のO(酸素)と反応して銅合金組織中に分散する化合物相が主体となる。このような化合物相を適度な大きさで均一に分散させるためには、酸化物の母体となる成分(Mg,Si,Cr,Ti,Zr,Al)を添加する前の溶銅中のO(酸素)量を、20〜100ppm程度に制御する。通常、銅合金の溶解鋳造は、溶銅中のO(酸素)量を極力少ない状態(20ppm未満)に保ち、添加成分が酸化消耗しないように行うが、本発明では酸化物を主体とする粒子を生成するため、適度なO(酸素)量を保った状態で酸化物の母体となる成分(Mg,Si,Cr,Ti,Zr,Al)を添加することが有効となる。酸化物の母体となる成分(Mg,Si,Cr,Ti,Zr,Al)を添加する前の溶銅中のO(酸素)量が20ppm未満では、効果を発揮すべき酸化物を主体とする粒子の数が不足し、有効にせん断加工性を向上させることができない。また、溶銅中のO(酸素)量が100ppmを越える場合は、酸化物を主体とする粒子の粒径が10μmを越えるものが生成したり、粒径が0.1μm以上の酸化物を主体とする粒子の分布密度が100個/100μmを越える状況が生じ、曲げ加工性を阻害する要因となるためである。 As described above, the oxide-based particles in the present invention are mainly composed of a compound phase that reacts with O (oxygen) in molten copper and is dispersed in the copper alloy structure during melt casting. In order to uniformly disperse such a compound phase in an appropriate size, O (O) in molten copper before adding components (Mg, Si, Cr, Ti, Zr, Al) which are base materials of oxides is added. (Oxygen) amount is controlled to about 20 to 100 ppm. Usually, the melting casting of a copper alloy is performed so that the amount of O (oxygen) in the molten copper is kept as low as possible (less than 20 ppm) so that the additive components are not oxidized and consumed. Therefore, it is effective to add components (Mg, Si, Cr, Ti, Zr, Al) which are base materials of oxides while maintaining an appropriate amount of O (oxygen). When the component (Mg, Si, Cr, Ti, Zr, Al) that is the base material of the oxide is less than 20 ppm in the molten copper before adding the component (Mg, Si, Cr, Ti, Zr, Al), the oxide that should exhibit the effect is mainly used. The number of particles is insufficient, and the shear processability cannot be improved effectively. Also, when the amount of O (oxygen) in the molten copper exceeds 100 ppm, particles mainly composed of oxides with a particle size exceeding 10 μm are formed, or oxides having a particle size of 0.1 μm or more are mainly composed. This is because a situation occurs in which the distribution density of the particles exceeds 100 particles / 100 μm 2, which is an obstacle to bending workability.

より具体的には、木炭被覆下で銅を溶解した後、Fe及びPを添加することにより、溶銅中のO(酸素)濃度を20〜100ppmに制御し、その状態で酸化物の母体となる成分(Mg,Si,Cr,Ti,Zr,Al)を添加する。また、酸化物の母体となる成分の添加及び鋳造までの工程において、当該成分を添加する際に、あくまで溶銅中のOと反応させるべく、溶銅中に押し込むこと(溶銅上に浮遊すると大気中のOと反応し、粗大な酸化物粒子が生成するため)、及び当該成分を添加した後は、5分以上静置(緩やかな攪拌は可)した後、溶銅表面のノロ(酸化物層)を巻き込まないように鋳造することが重要である。5分以上の静置は、粗大な酸化物粒子を溶銅表面に浮上させ、適度な大きさの酸化物を主体とする粒子を分散させる効果がある。   More specifically, after dissolving copper under a charcoal coating, Fe and P are added to control the O (oxygen) concentration in the molten copper to 20 to 100 ppm. The following components (Mg, Si, Cr, Ti, Zr, Al) are added. In addition, in the process up to the addition of the component that becomes the base of the oxide and the casting, when the component is added, it is pushed into the molten copper to react with O in the molten copper (if it floats on the molten copper) It reacts with O in the atmosphere to produce coarse oxide particles), and after adding the component, it is allowed to stand for 5 minutes or longer (slow stirring is possible), and then the surface of the molten copper is oxidized (oxidized). It is important to cast so as not to entrain the material layer. The standing for 5 minutes or more has an effect of allowing coarse oxide particles to float on the surface of the molten copper and dispersing particles mainly composed of an appropriate size of oxide.

上記溶解鋳造後の製造工程については大きく変えることは不要で、常法と同じ工程で製造できる。即ち、上記の方法で製作した鋳塊を加熱または均質化熱処理した後に熱間圧延し、熱延後の板を水冷する。その後、中延べと言われる一次冷間圧延を行い、焼鈍、洗浄後、更に仕上げ(最終)冷間圧延を行って、製品板厚の銅合金板などとする。   It is not necessary to change the manufacturing process after the melt casting, and the manufacturing process can be performed in the same process as that of a conventional method. That is, the ingot produced by the above method is heated or homogenized and then hot-rolled, and the hot-rolled plate is water-cooled. Thereafter, primary cold rolling, which is said to be intermediate, is performed, and after annealing and washing, finish (final) cold rolling is performed to obtain a copper alloy sheet having a product thickness.

以下に本発明の実施例を説明する。表1に示す各組成の銅合金を鋳造して銅合金板を製造し、各特性を評価した。   Examples of the present invention will be described below. A copper alloy plate was produced by casting a copper alloy having each composition shown in Table 1, and each characteristic was evaluated.

Figure 0004459067
Figure 0004459067

具体的な銅合金板の製造方法としては、クリプトル炉にて木炭被覆下で溶銅を製作し、Fe及びPを添加した後、各種成分を添加してブックモールドに鋳造し、厚さが50mm、幅が70mm、長さが200mmの鋳塊を得た。なお、各種成分を添加する際には、溶銅中のO(酸素)濃度が20〜100ppmの範囲内になるようにした。また、各種成分の添加に際しては溶銅中に押し込み、添加後は5分以上の静置を行った。
そして、各鋳塊を面削後、900℃の温度で熱間圧延し厚さが15mmで水冷した。その後、この圧延板表面を面削して酸化スケールを除去した後、冷間圧延→焼鈍→冷間圧延を行い、厚さが0.15mmの銅合金板を得た。
As a concrete method for producing a copper alloy plate, molten copper is manufactured under charcoal coating in a kryptor furnace, Fe and P are added, various components are added, and cast into a book mold, and the thickness is 50 mm. An ingot having a width of 70 mm and a length of 200 mm was obtained. In addition, when adding various components, it was made for the O (oxygen) density | concentration in molten copper to be in the range of 20-100 ppm. Moreover, when adding various components, it pushed in the molten copper, and after addition, it left still for 5 minutes or more.
And after chamfering each ingot, it hot-rolled at the temperature of 900 degreeC, and water-cooled by 15 mm in thickness. Then, after chamfering the surface of this rolled plate to remove the oxide scale, cold rolling → annealing → cold rolling was performed to obtain a copper alloy plate having a thickness of 0.15 mm.

このようにして得た銅合金板に対して、各例とも、銅合金板から試料を切り出し、断面組織観察により、酸化物を主体とする粒子の粒径(長径)と分布密度(個/100μm)の測定、引張強さ、硬さ、導電率の測定、及びせん断加工性(せん断率)と曲げ加工性の調査を行った。これらの結果を表2に示す。 With respect to the copper alloy plate thus obtained, in each example, a sample was cut out from the copper alloy plate, and the particle size (major axis) and distribution density (particles / 100 μm) of particles mainly composed of oxide were observed by cross-sectional structure observation. 2 ) Measurement, tensile strength, hardness, electrical conductivity measurement, shear workability (shear rate) and bending workability were investigated. These results are shown in Table 2.

組織観察は前記した測定方法により、銅合金組織を2000倍の走査型電子顕微鏡で観察した際の、粒径(長径)が0.1μm以上である粒子の個数を任意の3視野で測定し、その結果を平均化することにより分布密度(個/100μm)を算出した。
引張試験は、圧延方向に平行に切り出したJIS−5号試験片を作成して行なった。硬さ試験は、マイクロビッカース硬度計にて、0.5kgの荷重を加えて行なった。
導電率は、ミーリングにより、幅10mm×長さ300mmの短冊状の試験片を加工し、ダブルブリッジ式抵抗測定装置により電気抵抗を測定し、平均断面積法により算出した。
In the structure observation, the number of particles having a particle size (major axis) of 0.1 μm or more when the copper alloy structure is observed with a 2000-fold scanning electron microscope is measured with an arbitrary three visual fields by the measurement method described above. The distribution density (pieces / 100 μm 2 ) was calculated by averaging the results.
The tensile test was performed by creating a JIS-5 test piece cut out parallel to the rolling direction. The hardness test was performed with a load of 0.5 kg using a micro Vickers hardness tester.
The electrical conductivity was calculated by an average cross-sectional area method by processing a strip-shaped test piece having a width of 10 mm and a length of 300 mm by milling, measuring the electrical resistance with a double bridge resistance measuring device.

せん断率は、打ち抜きプレス(クリアランス:5%)により、図1に示すように、幅1mm×長さ10mmのリードを、長さ方向が銅合金板1の圧延方向に対し垂直に向くように打抜き、打抜き穴2の中心を長さ方向に沿って切断し(切断箇所を破線3で示す)、打抜き穴2の切断面を矢印4の方向から観察し、光学式マイクロスコープを用いた切断面の表面写真から画像解析で求めた。せん断率は切断面におけるせん断面の面積比率(せん断面の面積/切断面の面積)であり、切断面の面積は銅合金板の板厚0.15mm×測定幅0.5mmとし、せん断面の面積は測定幅0.5mmの範囲内のせん断面の面積とした。1試料につき穴を3箇所打ち抜き、各穴で3箇所ずつ測定し(合計9箇所)、その平均値を求めた。   As shown in FIG. 1, the shear rate is punched by a punching press (clearance: 5%) so that a lead having a width of 1 mm × a length of 10 mm is perpendicular to the rolling direction of the copper alloy sheet 1. The center of the punched hole 2 is cut along the length direction (the cut portion is indicated by a broken line 3), the cut surface of the punched hole 2 is observed from the direction of the arrow 4, and the cut surface using an optical microscope is observed. It was determined by image analysis from surface photographs. The shear rate is the area ratio of the shear plane in the cut plane (the area of the shear plane / the area of the cut plane). The area of the cut plane is the thickness of the copper alloy sheet 0.15 mm × measured width 0.5 mm, The area was the area of the shear plane within the measurement width of 0.5 mm. Three holes were punched out for each sample, and three holes were measured for each hole (total of 9 points), and the average value was obtained.

曲げ加工性は、伸銅協会標準JBMA−T307に規定されるW曲げ試験[R(曲げ半径)/t(板厚)=2,圧延方向に垂直方向)]を行い、曲げ部の表面観察により、5段階(A:しわなし,B:しわ小,C:しわ大,D:割れ小,E:割れ大)で評価した。A〜Cが合格レベルで、D〜Eは不合格レベルである。   The bending workability is determined by conducting a W bending test [R (bending radius) / t (plate thickness) = 2, perpendicular to the rolling direction)] stipulated in the Japan Copper and Brass Association Standard JBMA-T307 and observing the surface of the bent portion. Evaluation was made in five stages (A: no wrinkle, B: small wrinkle, C: large wrinkle, D: small crack, E: large crack). A to C are acceptable levels, and D to E are unacceptable levels.

Figure 0004459067
Figure 0004459067

表1及び表2に示す実施例のうち、No.1〜20が本発明例であり、No.21〜32は比較例である。本実施例においては、いずれも基本成分であるFeは0.1質量%、Pは0.03質量%として、その他の各種成分濃度を変化させた。   Of the examples shown in Tables 1 and 2, No. 1 to 20 are examples of the present invention. 21 to 32 are comparative examples. In this example, the basic component Fe was 0.1% by mass and P was 0.03% by mass, and the concentrations of various other components were varied.

No.1〜3,4〜6,7〜9,16〜18は、それぞれMg,Si、Cr、Alの成分濃度を変化させた場合の本発明例であるが、各成分の濃度が増加するとともに、粒径が0.1μm以上の各成分の酸化物を主体とする粒子の分布密度が増加し、それに伴ってプレス打抜きによるせん断率が低下し、せん断加工性が向上することが分かる。
また、各成分濃度の増加とともに導電率は低下するが、最も濃度の高い例(No.3,6,9,18)においても、80%IACS程度の導電率を維持することが可能であり、W曲げ加工性もC評価で合格レベルを維持できた。
No. 1-3, 4-6, 7-9, 16-18 are examples of the present invention when the component concentrations of Mg, Si, Cr, and Al are changed, respectively, but the concentration of each component increases, It can be seen that the distribution density of particles mainly composed of oxides of each component having a particle size of 0.1 μm or more increases, and accordingly, the shear rate by press punching decreases, and the shear processability is improved.
In addition, the conductivity decreases as the concentration of each component increases, but even in the highest concentration examples (No. 3, 6, 9, 18), it is possible to maintain a conductivity of about 80% IACS, The W bending workability was also maintained at an acceptable level in the C evaluation.

No.10〜12,13〜15は、それぞれTi,Zrの成分濃度を変化させた場合の本発明例であるが、上記と同様に、各成分の濃度が増加するとともに、粒径が0.1μm以上の各成分の酸化物を主体とする粒子の分布密度が増加し、それに伴ってプレス打抜きによるせん断率が低下し、せん断加工性が向上することが分かる。
また、最も濃度の高い例(No.12,15)においても、90%IACSに近い導電率と、合格レベルのW曲げ加工性を維持できた。
No. 10 to 12 and 13 to 15 are examples of the present invention when the component concentrations of Ti and Zr are changed, respectively, and the concentration of each component is increased and the particle size is 0.1 μm or more as described above. It can be seen that the distribution density of particles mainly composed of oxides of each of the above increases, the shear rate by press punching decreases accordingly, and the shear workability improves.
Moreover, also in the example (No.12,15) with the highest density | concentration, the electrical conductivity close | similar to 90% IACS and the W bending workability of the acceptable level were able to be maintained.

No.19,20は、No.2(Mgを0.01質量%含有)をベースに、それぞれ選択元素としてのZnとSnを単独で0.1質量%添加した場合の本発明例である。No.19のZn添加材は、No.2に比べて若干の強度アップと導電率低下を生じる以外に大きな特性変化はなく、はんだやSnめっきの耐熱密着性を向上させる目的で適量を選択的に添加することに何ら問題はない。No.20のSn添加材は、No.2に比べて強度とせん断加工性の向上に有効であることから選択的に添加してよいが、その反面、導電率と曲げ加工性が低下しやすいことから、適量とすることが好ましい。   No. 19 and 20 are No. This is an example of the present invention in which Zn and Sn as selective elements are each added in an amount of 0.1% by mass based on 2 (containing 0.01% by mass of Mg). No. No. 19 Zn additive is No. Compared to 2, there is no significant change in properties other than causing a slight increase in strength and a decrease in conductivity, and there is no problem in selectively adding an appropriate amount for the purpose of improving the heat-resistant adhesion of solder and Sn plating. No. No. 20 Sn additive is No. Although it may be selectively added since it is effective in improving the strength and shearing workability compared to 2, it is preferable to make it an appropriate amount because the electrical conductivity and bending workability are liable to decrease.

No.21,23,25,27,29,31は、それぞれMg,Si,Cr,Ti,Zr,Alの成分濃度が本発明の下限を下回り、各成分の酸化物を主体とする粒子の分布密度が本発明の下限を下回った場合の比較例であり、いずれも酸化物を主体とする粒子の分布密度が本発明の規定より小さいことにより、せん断率が大きく、せん断加工性に劣ることがわかる。   No. 21, 23, 25, 27, 29, and 31 have component concentrations of Mg, Si, Cr, Ti, Zr, and Al below the lower limit of the present invention, respectively, and the distribution density of particles mainly composed of oxides of the respective components is It is a comparative example in the case where the lower limit of the present invention is exceeded, and it can be seen that the shear density is large and the shear workability is inferior when the distribution density of the particles mainly composed of oxide is smaller than that of the present invention.

これに対して、No.22,24,26,28,30,32は、それぞれMg,Si,Cr,Ti,Zr,Alの成分濃度が本発明の上限を超え、かつそれぞれの酸化物を主体とする粒子の分布密度が本発明の上限を超えた場合の比較例であり、いずれもせん断率が低く、せん断加工性に優れることが認められるものの、W曲げ加工性についてはいずれもD評価で、不合格レベルとなることがわかる。また、成分濃度が高いため導電率も大幅に低下し、70%IACSを下回るものも認められる。
なお、本発明例であるNo.1〜20及び比較例であるNo.21,23,25,27,29,31では、10μmを越える粒径の酸化物を主体とする粒子の分布密度は0個/100μmであり、比較例であるNo.22,24,26,28,30,32でも、0.001個/100μm以下のごく低レベルであった。
In contrast, no. 22, 24, 26, 28, 30, and 32 have Mg, Si, Cr, Ti, Zr, and Al component concentrations exceeding the upper limit of the present invention, and the distribution density of particles mainly composed of the respective oxides. Although it is a comparative example when exceeding the upper limit of the present invention, both are found to have a low shear rate and excellent shear workability, all of the W bending workability are D evaluations and fail levels. I understand. Moreover, since the component concentration is high, the conductivity is greatly reduced, and some of the components are less than 70% IACS.
In addition, No. which is an example of the present invention. 1-20 and No. 1 as a comparative example. Nos. 21, 23, 25, 27, 29, and 31 have a particle distribution density of 0 particles / 100 μm 2 mainly composed of an oxide having a particle diameter exceeding 10 μm. Even 22, 24, 26, 28, 30, and 32 were very low levels of 0.001 piece / 100 μm 2 or less.

せん断率の測定方法を説明する図である。It is a figure explaining the measuring method of a shear rate.

符号の説明Explanation of symbols

1 銅合金板
2 打抜き穴
3 切断箇所
1 Copper alloy plate 2 Punched hole 3 Cut location

Claims (3)

Fe:0.01〜0.5質量%、P:0.01〜0.3質量%、及びMg,Si,Cr,Ti,Zr,Alのうちの少なくとも1種の元素を0.001〜0.1質量%を含有し、FeとPとの質量比であるFe/Pが0.5〜6.0であり、残部Cu及び不可避不純物からなり、銅合金組織中にMg,Si,Cr,Ti,Zr,Alのうちの少なくとも1種の酸化物を主体とする粒子が含まれ、そのうち長径が0.1μm以上の粒子の分布密度が0.1〜100個/100μmであり、かつ長径が10μmを越える粒子の分布密度が0.001個/100μm以下であることを特徴とする高強度高導電性銅合金。 Fe: 0.01 to 0.5 mass%, P: 0.01 to 0.3 mass%, and at least one element of Mg, Si, Cr, Ti, Zr, and Al is 0.001 to 0 0.1 mass%, Fe / P which is a mass ratio of Fe and P is 0.5 to 6.0, and is composed of the balance Cu and inevitable impurities, and Mg, Si, Cr, Particles mainly containing at least one oxide of Ti, Zr, and Al are included, and the distribution density of particles having a major axis of 0.1 μm or more is 0.1 to 100/100 μm 2 , and the major axis A high-strength, high-conductivity copper alloy characterized by having a distribution density of particles exceeding 10 μm of 0.001 particles / 100 μm 2 or less. 前記銅合金が、さらにZn:0.005〜0.5質量%を含有することを特徴とする請求項1に記載された高強度高導電性銅合金。 The said copper alloy contains Zn: 0.005-0.5 mass% further, The high intensity | strength highly conductive copper alloy described in Claim 1 characterized by the above-mentioned. 前記銅合金が、さらにSn:0.001〜0.5質量%を含有することを特徴とする請求項1又は2に記載された高強度高導電性銅合金。 The said copper alloy contains Sn: 0.001-0.5 mass% further, The high intensity | strength highly conductive copper alloy described in Claim 1 or 2 characterized by the above-mentioned.
JP2005014075A 2005-01-21 2005-01-21 High strength and high conductivity copper alloy Active JP4459067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005014075A JP4459067B2 (en) 2005-01-21 2005-01-21 High strength and high conductivity copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005014075A JP4459067B2 (en) 2005-01-21 2005-01-21 High strength and high conductivity copper alloy

Publications (2)

Publication Number Publication Date
JP2006200014A JP2006200014A (en) 2006-08-03
JP4459067B2 true JP4459067B2 (en) 2010-04-28

Family

ID=36958272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005014075A Active JP4459067B2 (en) 2005-01-21 2005-01-21 High strength and high conductivity copper alloy

Country Status (1)

Country Link
JP (1) JP4459067B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5236205B2 (en) * 2007-04-16 2013-07-17 新日鐵住金株式会社 High-strength steel sheet forming equipment line
KR101310167B1 (en) * 2011-08-12 2013-09-24 주식회사 풍산 Copper alloy material for pipe of high strength and high conductivity and the method for production same
JP6026935B2 (en) * 2013-03-27 2016-11-16 株式会社神戸製鋼所 Copper alloy strip for LED lead frame
CN109923224A (en) * 2016-11-07 2019-06-21 住友电气工业株式会社 Bonder terminal wire rod
JP6835636B2 (en) * 2017-03-21 2021-02-24 Jx金属株式会社 Copper alloy plate with excellent strength and conductivity
CN108754218B (en) * 2018-09-10 2019-09-10 江西理工大学 A kind of high-strength highly-conductive Cu-Cr-Fe-Mg-P alloy wire and preparation method thereof

Also Published As

Publication number Publication date
JP2006200014A (en) 2006-08-03

Similar Documents

Publication Publication Date Title
US8715431B2 (en) Copper alloy plate for electric and electronic parts having bending workability
JP4950584B2 (en) Copper alloy with high strength and heat resistance
JP4006460B1 (en) Copper alloy excellent in high strength, high conductivity and bending workability, and method for producing the same
JP5367999B2 (en) Cu-Ni-Si alloy for electronic materials
JP3962751B2 (en) Copper alloy sheet for electric and electronic parts with bending workability
JP4959141B2 (en) High strength copper alloy
JP4041803B2 (en) High strength and high conductivity copper alloy
WO2010126046A1 (en) Cu-Ni-Si-Mg-BASED ALLOY HAVING IMPROVED ELECTRICAL CONDUCTIVITY AND BENDABILITY
JP2004225093A (en) Copper-base alloy and manufacturing method therefor
JP5153949B1 (en) Cu-Zn-Sn-Ni-P alloy
JP2002180165A (en) Copper based alloy having excellent press blanking property and its production method
JP2007100111A (en) Cu-Ni-Sn-P-BASED COPPER ALLOY EXCELLENT IN PRESS-PUNCHING PROPERTY, AND ITS PRODUCTION METHOD
JP4787986B2 (en) Copper alloy and manufacturing method thereof
JP5619389B2 (en) Copper alloy material
JP2004149874A (en) Easily-workable high-strength high-electric conductive copper alloy
JP4887851B2 (en) Ni-Sn-P copper alloy
JP4459067B2 (en) High strength and high conductivity copper alloy
JP4006468B1 (en) Copper alloy with high strength, high conductivity, and excellent bending workability
JP2004307905A (en) Cu ALLOY, AND ITS PRODUCTION METHOD
JP4006467B1 (en) Copper alloy with high strength, high conductivity, and excellent bending workability
JP5468798B2 (en) Copper alloy sheet
JP5291494B2 (en) High strength high heat resistance copper alloy sheet
JP2009068114A (en) Copper alloy excellent in press-punching property and its production method
KR101537151B1 (en) Cu-Zn-Sn-Ca ALLOY FOR ELECTRICAL AND ELECTRONIC DEVICE
JP2007100136A (en) Copper alloy for lead frame excellent in uniform plating property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100209

R150 Certificate of patent or registration of utility model

Ref document number: 4459067

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4