JPH02243733A - Copper alloy wire rod - Google Patents

Copper alloy wire rod

Info

Publication number
JPH02243733A
JPH02243733A JP6269789A JP6269789A JPH02243733A JP H02243733 A JPH02243733 A JP H02243733A JP 6269789 A JP6269789 A JP 6269789A JP 6269789 A JP6269789 A JP 6269789A JP H02243733 A JPH02243733 A JP H02243733A
Authority
JP
Japan
Prior art keywords
wire
copper alloy
copper
wire rod
alloy wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6269789A
Other languages
Japanese (ja)
Other versions
JPH0477060B2 (en
Inventor
Akito Kurosaka
昭人 黒坂
Haruo Tominaga
晴夫 冨永
Kazuhiko Tomomatsu
友松 和彦
Mamoru Aoyanagi
青▲やなぎ▼ 守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP6269789A priority Critical patent/JPH02243733A/en
Publication of JPH02243733A publication Critical patent/JPH02243733A/en
Publication of JPH0477060B2 publication Critical patent/JPH0477060B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate semisoftening treatment and to improve the mechanical strength and electrical conductivity in the wire rod by specifying the contents of Ag, Zr, Cu and oxygen. CONSTITUTION:The copper alloy wire rod is formed with the compsn. constituted of, by weight, 0.05 to 0.2% Ag, 0.003 to 0.01% Zr and the balance Cu. Then, the content of oxygen is regulated to <=10ppm. The above copper alloy wire rod has excellent mechanical strength and electrical conductivity and is preferably used for an extra fine wire of <=0.1mm wire diameter.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は銅細線又は磁気ヘッド用巻線芯線等として使用
される銅合金線材に関し、特に、機械的強度、導電性及
び耐熱性が優れていると共に、伸線加工時のダイスの摩
耗が軽減され、線径がθ、l龍以下の極細線用として好
適の銅合金線材に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a copper alloy wire used as a thin copper wire or a winding core wire for a magnetic head, and in particular, to a copper alloy wire material having excellent mechanical strength, conductivity, and heat resistance. The present invention also relates to a copper alloy wire material that reduces die wear during wire drawing and is suitable for use in ultra-fine wires having a wire diameter of θ, 1 or less.

[従来の技術] 近時、電子機器の発達に伴い、銅細線及び磁気ヘッド用
巻線芯線(マグネットワイヤ用芯線)の分野においては
、線径が0.1w以下の極細銅線、特に50μm以下の
極細銅線に対する需要が急増している。
[Prior Art] Recently, with the development of electronic equipment, in the field of fine copper wire and winding core wire for magnetic heads (core wire for magnet wire), ultrafine copper wire with a wire diameter of 0.1 W or less, especially 50 μm or less, has been developed. Demand for ultra-fine copper wire is rapidly increasing.

ところで、銅線の極細線化に伴い、巻線時に断線が発生
しやすくなる。このため、極細銅線(aSdrawn)
には通常の銅細線に要求される優れた導電性及び適度の
軟かさ(伸び)に加え、破断強度が高いことが要求され
ている。
By the way, as copper wires become thinner, wire breakage becomes more likely to occur during winding. For this reason, ultrafine copper wire (aSdrawn)
In addition to the excellent conductivity and appropriate softness (elongation) required of ordinary thin copper wires, it is also required to have high breaking strength.

従来、適度の伸びと高い破断強度を得るために、引抜後
の極細銅線に半軟化処理を施している。この場合、極細
銅線の完全軟化温度が低いと、後工程で極細銅線の周面
にエナメルを焼き付けるときに、極細銅線の組成が半軟
化状態から完全軟化状態に変化してしまう。従って、所
望の破断強度を得ることができない。
Conventionally, in order to obtain appropriate elongation and high breaking strength, ultrafine copper wire has been subjected to semi-softening treatment after being drawn. In this case, if the complete softening temperature of the ultra-fine copper wire is low, the composition of the ultra-fine copper wire will change from a semi-softened state to a completely softened state when enamel is baked on the circumferential surface of the ultra-fine copper wire in a subsequent process. Therefore, desired breaking strength cannot be obtained.

このため、従来、極細銅線としてはZrを含有した銅合
金線材、Ag又はsb等を含有した銅合金線材、Sn等
を含有した銅合金線材及びCr銅等の析出型銅合金線材
等の完全軟化温度が高い銅合金線材が使用されている。
For this reason, conventional ultrafine copper wires include copper alloy wires containing Zr, copper alloy wires containing Ag or sb, etc., copper alloy wires containing Sn, etc., and precipitated copper alloy wires such as Cr copper. Copper alloy wire with a high softening temperature is used.

[発明が解決しようとする課題] しかしながら、上述の銅合金線材には下記に示す問題点
がある。
[Problems to be Solved by the Invention] However, the above-mentioned copper alloy wire has the following problems.

先ず、Zrを含有した銅合金線材の場合は、完全軟化温
度が高過ぎるため、半軟化特性を得るための焼鈍が困難
である。
First, in the case of a copper alloy wire containing Zr, the complete softening temperature is too high, so annealing to obtain semi-softening characteristics is difficult.

また、Ag又はsb等を含有した銅合金線材の場合は、
適度の完全軟化温度ではあるが、半軟化状態が得られる
焼鈍温度域が狭いため、半軟化処理後の半軟化特性にバ
ラツキが発生しやすい。
In addition, in the case of copper alloy wire containing Ag or sb, etc.
Although the complete softening temperature is appropriate, the annealing temperature range in which a semi-softened state can be obtained is narrow, so variations in the semi-softening characteristics after the semi-softening treatment are likely to occur.

更に、Sn等を含有した銅合金の場合は、所望の導電性
(95%IAC!S以上)を得ることが困難である。
Furthermore, in the case of a copper alloy containing Sn or the like, it is difficult to obtain the desired conductivity (95% IAC!S or more).

更にまた、Cr銅等の析出型銅合金の場合は、完全軟化
させて伸びやすいものに改質しても、破断強度は高いも
のの、伸線加工に使用するダイスの摩耗が激しく、また
、所望の導電性を得ることが困難である。
Furthermore, in the case of precipitated copper alloys such as Cr copper, even if they are completely softened and modified to make them easier to stretch, their breaking strength is high, but the dies used for wire drawing are subject to severe wear, and It is difficult to obtain conductivity of

本発明はかかる問題点に鑑みてなされたものであって、
半軟化処理が容易であり、処理後の破断強度及び伸び等
の機械的特性が優れていると共に、導電性が優れており
、更に、伸線加工時のダイスの摩耗を純銅の場合と同程
度に抑制できる銅合金線材を提供することを目的とする
The present invention has been made in view of such problems, and includes:
It is easy to undergo semi-softening treatment, has excellent mechanical properties such as breaking strength and elongation after treatment, and has excellent electrical conductivity.Furthermore, die wear during wire drawing is comparable to that of pure copper. The purpose of the present invention is to provide a copper alloy wire material that can suppress

[課題を解決するための手段] 本発明に係る銅合金線材は、Agを0.05乃至0.2
重量%、Zrを0.003乃至0.01重量%の割合で
含有し、残部がCu及び不可避不純物であり、酸素含有
量を10ppm以下に規制する。
[Means for Solving the Problems] The copper alloy wire according to the present invention contains Ag from 0.05 to 0.2.
Zr is contained in a proportion of 0.003 to 0.01% by weight, the remainder being Cu and unavoidable impurities, and the oxygen content is regulated to 10 ppm or less.

[作用] 前述の如<、Ag含有銅合金からなる極細銅線は破断強
度及び伸び等の機械的強度が優れていると共に優れた導
電性を有している。しかし、この極細銅線は半軟化処理
が可能な焼鈍条件の範囲が極めて狭い。即ち、焼鈍温度
を一定にすると適正な焼鈍時間範囲が極めて狭く、また
、焼鈍時間を一定にすると適正な焼鈍温度範囲が極めて
狭くなる。このため、半軟化処理のための焼鈍工程で品
質のバラツキが発生しやすい。
[Function] As mentioned above, the ultrafine copper wire made of an Ag-containing copper alloy has excellent mechanical strength such as breaking strength and elongation, and also has excellent electrical conductivity. However, the range of annealing conditions under which this ultra-fine copper wire can be semi-softened is extremely narrow. That is, when the annealing temperature is held constant, the appropriate annealing time range is extremely narrow, and when the annealing time is held constant, the appropriate annealing temperature range is extremely narrow. For this reason, variations in quality are likely to occur during the annealing process for semi-softening treatment.

一方、Zr含有銅合金からなる極細銅線は半軟化処理の
適正焼鈍条件範囲は広いという利点を有する。しかし、
前述の如く完全軟化温度が高過ぎるため、半軟化処理の
ための焼鈍温度を高くするか又は焼鈍時間を長くする必
要がある。
On the other hand, an ultrafine copper wire made of a Zr-containing copper alloy has the advantage that the range of appropriate annealing conditions for semi-softening treatment is wide. but,
As mentioned above, since the complete softening temperature is too high, it is necessary to increase the annealing temperature or lengthen the annealing time for semi-softening treatment.

本願発明者等は上述のAg含有銅合金を基に、その欠点
を解消すべく、適正焼鈍条件範囲を広くする効果を有す
るZrを添加し、その添加量が異なる各種の銅合金材か
ら線径が30μmの極細銅線を形成して、焼鈍実験を繰
り返し行った。その結果、特許請求の範囲に記載の含有
量でAgを含有する銅合金に、同様に特許請求の範囲に
記載の含有量のZrを添加して得た合金は、Ag含有銅
合金の優れた機械的特性及び導電性を損うことなく、半
軟化処理のための適正焼鈍条件範囲が広くなることを見
出した。本発明はこのようにAg及びZrの両元素を所
定の組成で添加することにより両元素のもつ特性を補完
し合うようにしたものである。
Based on the above-mentioned Ag-containing copper alloy, in order to eliminate its drawbacks, the present inventors added Zr, which has the effect of widening the range of appropriate annealing conditions. An ultrafine copper wire with a diameter of 30 μm was formed and annealing experiments were repeated. As a result, the alloy obtained by adding Zr in the content described in the claims to a copper alloy containing Ag in the content described in the claims also has the superior properties of the Ag-containing copper alloy. It has been found that the range of appropriate annealing conditions for semi-softening treatment can be widened without impairing mechanical properties and electrical conductivity. In this way, the present invention is designed to complement the characteristics of both Ag and Zr by adding both elements in a predetermined composition.

次に、本発明に係る銅合金材の各成分の組成限定理由に
ついて説明する。
Next, the reasons for limiting the composition of each component of the copper alloy material according to the present invention will be explained.

L Agの含有量が0.05重量%未満の場合、完全軟化温
度の上昇効果を得ることができず、半軟化処理後のエナ
メル焼付時に完全軟化状態になってしまうため、所望の
破断強度を得ることができない。
L If the Ag content is less than 0.05% by weight, the effect of increasing the complete softening temperature cannot be obtained, and the enamel will be in a completely softened state when baked after semi-softening treatment, so it will be difficult to achieve the desired breaking strength. can't get it.

一方、Agの含有量が0.2重量%を超えると、Agの
コストが著しく上昇すると共に、極細銅線の導電性が劣
化する。このため、Agの含有量は0.05乃至0.2
重量%とする。
On the other hand, when the Ag content exceeds 0.2% by weight, the cost of Ag increases significantly and the conductivity of the ultrafine copper wire deteriorates. Therefore, the Ag content is 0.05 to 0.2
Weight%.

7、x Zrの含有量が0.003重量%未満の場合は、Zrの
添加効果が得られず、適正焼鈍条件範囲を拡大できない
。一方、Zrの含有量が0.01重量%を超えると、極
細銅線の導電性が劣化すると共に、焼鈍温度が高くなっ
て焼鈍が困難になる。これにより、Zrの含有量は0.
003乃至0.01重量%とする。
7.x If the Zr content is less than 0.003% by weight, the effect of Zr addition cannot be obtained and the range of appropriate annealing conditions cannot be expanded. On the other hand, when the Zr content exceeds 0.01% by weight, the conductivity of the ultrafine copper wire deteriorates and the annealing temperature becomes high, making annealing difficult. As a result, the Zr content is 0.
0.003 to 0.01% by weight.

酸! 酸素の含有量が]Oppmを超えると、合金線材中のZ
r等と結合してZ r O2等の酸化物が多くなり、極
細銅線に伸線加工する工程で断線が発生しやすくなる。
acid! When the oxygen content exceeds ]Oppm, Z in the alloy wire
When combined with r, oxides such as Z r O2 increase, and wire breakage tends to occur during the process of wire drawing into ultra-fine copper wire.

このため、酸素の含有量は10ppm以下に規制する。For this reason, the oxygen content is regulated to 10 ppm or less.

[実施例] 次に、本発明の実施例について説明する。[Example] Next, examples of the present invention will be described.

下記第1表に示す成分の銅合金を真空中又は大気中で溶
解し、直径が20+amの銅合金ロッドを得た。
A copper alloy having the components shown in Table 1 below was melted in vacuum or in the atmosphere to obtain a copper alloy rod having a diameter of 20+ am.

第1表 この実施例1乃至3及び比較例1乃至6のロッドを伸線
加工して、極細銅線を形成した。その結果、実施例1乃
至3及び比較例1乃至5の銅合金ロッドは断線すること
なく、1kgのロッドから線径が30μmの極細銅線を
連続して伸線加工することができた。一方、比較例6の
銅合金ロッドの場合は、1kgのロッドを線径が50μ
mの極細銅線に伸線加工するときに4回断線が発生した
Table 1 The rods of Examples 1 to 3 and Comparative Examples 1 to 6 were drawn to form ultrafine copper wires. As a result, the copper alloy rods of Examples 1 to 3 and Comparative Examples 1 to 5 could be continuously drawn into ultrafine copper wires with a wire diameter of 30 μm from 1 kg rods without breaking. On the other hand, in the case of the copper alloy rod of Comparative Example 6, the wire diameter of the 1 kg rod was 50 μm.
When drawing an ultra-fine copper wire of 500 m, wire breakage occurred four times.

また、このときの実施例1乃至3及び比較例1乃至6の
銅合金線材の伸線時におけるダイスの摩耗は純銅の場合
と同程度であった。
Furthermore, the wear of the die during drawing of the copper alloy wires of Examples 1 to 3 and Comparative Examples 1 to 6 was comparable to that of pure copper.

次に、線径が30μmである実施例1乃至3及び比較例
1乃至5の極細銅線に対して繰り返し焼鈍実験を行い、
破断強度が32kgf/−以上であり、伸び率が10%
以上という機械的強度が得られる焼鈍温度を調べた。
Next, repeated annealing experiments were conducted on the ultrafine copper wires of Examples 1 to 3 and Comparative Examples 1 to 5, each having a wire diameter of 30 μm.
Breaking strength is 32kgf/- or more and elongation rate is 10%
The annealing temperature at which the above mechanical strength can be obtained was investigated.

但し、このとき炉長が90cmの加熱炉を使用し、この
加熱炉内に実施例1乃至3及び比較例1乃至5の極細銅
線を60m/分の線速で挿通させた。
However, at this time, a heating furnace with a furnace length of 90 cm was used, and the ultrafine copper wires of Examples 1 to 3 and Comparative Examples 1 to 5 were inserted into the heating furnace at a wire speed of 60 m/min.

この結果、前述の所望の機械的強度が得られる焼鈍温度
範囲を下記第2表に示す。また、この焼鈍により得た半
軟化状態の極細銅線の導電率を第2表に併せて示す。
As a result, the annealing temperature range in which the above-mentioned desired mechanical strength can be obtained is shown in Table 2 below. Further, the electrical conductivity of the semi-softened ultrafine copper wire obtained by this annealing is also shown in Table 2.

第2表 半軟化状態が得られる焼鈍温度は、低過ぎると後工程に
おいて完全軟化状態となり、高過ぎると処理が困難であ
るため、400乃至500°Cの温度範囲内で30°C
以上の温度幅があることが好ましい。
Table 2: The annealing temperature to obtain a semi-softened state is 30°C within the temperature range of 400 to 500°C.
It is preferable that there is a temperature range greater than or equal to the above.

また、導電率は95%lAC3以上であることが好まし
い。実施例1乃至3はいずれもこの所望の条件を満たし
ており、極めて優れた機械的特性及び電気的特性を確実
に得ることができた。
Moreover, it is preferable that the conductivity is 95%lAC3 or more. Examples 1 to 3 all satisfied these desired conditions, and were able to reliably obtain extremely excellent mechanical and electrical properties.

一方、本発明の特許請求の範囲から外れる比較例1乃至
6は、伸線加工性、適正焼鈍温度、処理温度幅及び導電
率のいずれか一項目以上が満足できるものではなかった
On the other hand, Comparative Examples 1 to 6, which fall outside the scope of the claims of the present invention, were not satisfactory in any one or more of wire drawability, appropriate annealing temperature, processing temperature range, and electrical conductivity.

[発明の効果] 以上説明したように本発明に係る銅合金線材は、0.0
5乃至0.2重量%以上のAg及び0.003乃至0.
01重量%のZrを含をし、酸素台を量をIOppm以
下に規制したから、半軟化処理を容易に行うことができ
る。これにより、破断強度及び伸び等の機械的強度並び
に導電性が優れた極細銅線を得ることができる。また、
極細銅線を伸線加工するためのダイスの摩耗も極めて少
ない。
[Effect of the invention] As explained above, the copper alloy wire according to the present invention has a
5 to 0.2% by weight or more of Ag and 0.003 to 0.2% by weight.
Since it contains 0.1% by weight of Zr and the amount of oxygen is regulated to IOppm or less, semi-softening treatment can be easily performed. As a result, an ultrafine copper wire having excellent mechanical strength such as breaking strength and elongation as well as electrical conductivity can be obtained. Also,
There is also extremely little wear on the dies used to draw ultra-fine copper wire.

Claims (1)

【特許請求の範囲】[Claims] (1) 0.05乃至0.2重量%のAg及び0.00
3乃至0.01重量%のZrを含有し、残部がCu及び
不可避不純物であり、酸素含有量を10ppm以下に規
制した組成を有することを特徴とする銅合金線材。
(1) 0.05 to 0.2% by weight of Ag and 0.00% by weight
A copper alloy wire material having a composition containing 3 to 0.01% by weight of Zr, the remainder being Cu and unavoidable impurities, and controlling the oxygen content to 10 ppm or less.
JP6269789A 1989-03-15 1989-03-15 Copper alloy wire rod Granted JPH02243733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6269789A JPH02243733A (en) 1989-03-15 1989-03-15 Copper alloy wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6269789A JPH02243733A (en) 1989-03-15 1989-03-15 Copper alloy wire rod

Publications (2)

Publication Number Publication Date
JPH02243733A true JPH02243733A (en) 1990-09-27
JPH0477060B2 JPH0477060B2 (en) 1992-12-07

Family

ID=13207747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6269789A Granted JPH02243733A (en) 1989-03-15 1989-03-15 Copper alloy wire rod

Country Status (1)

Country Link
JP (1) JPH02243733A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105518165A (en) * 2013-09-06 2016-04-20 古河电气工业株式会社 Copper alloy wire material and method for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5840234B2 (en) 2012-07-02 2016-01-06 古河電気工業株式会社 Copper alloy wire and method for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193233A (en) * 1983-04-15 1984-11-01 Toshiba Corp Copper alloy
JPS6120694A (en) * 1984-07-06 1986-01-29 Toshiba Corp Bonding wire
JPS61224213A (en) * 1985-03-28 1986-10-04 住友電気工業株式会社 Stabilizing material for superconducting composite body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193233A (en) * 1983-04-15 1984-11-01 Toshiba Corp Copper alloy
JPS6120694A (en) * 1984-07-06 1986-01-29 Toshiba Corp Bonding wire
JPS61224213A (en) * 1985-03-28 1986-10-04 住友電気工業株式会社 Stabilizing material for superconducting composite body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105518165A (en) * 2013-09-06 2016-04-20 古河电气工业株式会社 Copper alloy wire material and method for producing same
CN105518165B (en) * 2013-09-06 2017-08-18 古河电气工业株式会社 Copper alloy wire and its manufacture method

Also Published As

Publication number Publication date
JPH0477060B2 (en) 1992-12-07

Similar Documents

Publication Publication Date Title
JP2002121629A (en) Super-extra-fine copper-alloy wire, copper-alloy stranded-wire conductor, extra-fine coaxial cable, and method for manufacturing super-extra-fine copper-alloy wire
JPS633936B2 (en)
JPS607701B2 (en) Manufacturing method of highly conductive heat-resistant aluminum alloy
JP3856073B2 (en) Method for producing Cu-Ag alloy
JPH02243733A (en) Copper alloy wire rod
JPH02267811A (en) Copper composite wire material for extra fine wire
JPS6164834A (en) Copper alloy having high strength, heat resistance and electric conductivity
JPH02270212A (en) Copper alloy composite wire rod for extremely thin wire
JP3718036B2 (en) Extra fine copper wire and method for producing the same
JPH1180861A (en) High strength and high conductivity copper alloy wire rod and its production
JPH06279992A (en) High purity ag for vapor deposition
JPS6026822B2 (en) High tensile strength Au alloy thin wire
JPH01180931A (en) Copper alloy wire
JPH02263939A (en) High conductivity and high heat-resistant copper alloy and its manufacture
US3107998A (en) Copper-zirconium-arsenic alloys
JPH03230415A (en) Copper alloy wire rod
JPS5989743A (en) High-strength copper alloy with high electric conductivity
JPS62253745A (en) Ultrafine cu alloy wire having satisfactory drawability and electric conductivity
JPH04301046A (en) Heat resisting aluminum alloy material for electrification
JPH1096036A (en) High strength and high conductivity copper alloy wire rod
JP3858861B2 (en) Copper wire for overhead distribution lines and method for manufacturing the same
JPS6017039A (en) Copper alloy with superior heat resistance, mechanical characteristic, workability and electric conductivity
JPH01208430A (en) Copper alloy wire rod
KR830001139B1 (en) Soft copper alloy conductors
JPS6075541A (en) Copper alloy having superior heat resistance, mechanical characteristic and electric conductivity

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees