JPH02267811A - Copper composite wire material for extra fine wire - Google Patents
Copper composite wire material for extra fine wireInfo
- Publication number
- JPH02267811A JPH02267811A JP8992589A JP8992589A JPH02267811A JP H02267811 A JPH02267811 A JP H02267811A JP 8992589 A JP8992589 A JP 8992589A JP 8992589 A JP8992589 A JP 8992589A JP H02267811 A JPH02267811 A JP H02267811A
- Authority
- JP
- Japan
- Prior art keywords
- wire
- copper
- copper alloy
- part consisting
- core wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 39
- 239000010949 copper Substances 0.000 title claims abstract description 32
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 26
- 239000002131 composite material Substances 0.000 title claims abstract description 12
- 239000000463 material Substances 0.000 title claims abstract description 8
- 229910000881 Cu alloy Inorganic materials 0.000 claims abstract description 27
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 7
- 239000001301 oxygen Substances 0.000 claims abstract description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 6
- 230000001105 regulatory effect Effects 0.000 claims abstract description 5
- 239000012535 impurity Substances 0.000 claims abstract description 3
- 229910052709 silver Inorganic materials 0.000 claims description 5
- 239000011248 coating agent Substances 0.000 abstract description 6
- 238000000576 coating method Methods 0.000 abstract description 6
- 238000012545 processing Methods 0.000 abstract description 2
- 238000005299 abrasion Methods 0.000 abstract 2
- 238000000137 annealing Methods 0.000 description 22
- 238000005491 wire drawing Methods 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 239000000956 alloy Substances 0.000 description 2
- 210000003298 dental enamel Anatomy 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 150000001879 copper Chemical class 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- ALKZAGKDWUSJED-UHFFFAOYSA-N dinuclear copper ion Chemical compound [Cu].[Cu] ALKZAGKDWUSJED-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
Landscapes
- Conductive Materials (AREA)
- Non-Insulated Conductors (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明は銅細線又は磁気ヘッド用巻線芯線等として使用
され、機械的強度、導電性及び耐熱性が優れていると共
に、伸線加工時のダイスの摩耗が軽減され、線径が0
、1 mm以下の極細線用として好適の極細線用銅複合
線材に関する。[Detailed Description of the Invention] [Industrial Field of Application] The present invention is used as a thin copper wire or a winding core wire for magnetic heads, etc., and has excellent mechanical strength, electrical conductivity, and heat resistance, and is easy to use during wire drawing. The wear of the die is reduced, and the wire diameter is reduced to 0.
, relates to a copper composite wire material for ultra-fine wires suitable for ultra-fine wires of 1 mm or less.
[従来の技術]
近時、電子機器の発達に伴い、銅細線及び磁気ヘッド用
巻線芯線(マグネットワイヤ用芯線)等の分野において
は、線径が0 、1 mm以下の極細銅線、特に50μ
m以下の極細銅線に対する需要が急増している。[Prior Art] Recently, with the development of electronic devices, in the field of copper fine wire and winding core wire for magnetic heads (core wire for magnet wire), ultra-fine copper wire with a wire diameter of 0 mm or less, especially 50μ
Demand for ultra-fine copper wire of less than 100 ft (m) in diameter is rapidly increasing.
ところで、銅線の極細線化に伴い、巻線工程時に断線が
発生しやすくなる。このため、極細銅線には通常の銅細
線に要求される優れた導電性及び適度の軟かさ(伸び)
に加え、破断強度が高いことが要求されている。By the way, as copper wires become finer, wire breakage becomes more likely to occur during the winding process. For this reason, ultra-fine copper wire has the excellent conductivity and appropriate softness (elongation) required for ordinary thin copper wire.
In addition, high breaking strength is required.
従来、適度の伸びと高い破断強度を得るために、引抜後
(as drawn)の極細銅線に半軟化処理を施して
いる。この場合に、極細銅線が銅線材により構成されて
いる場合のようにその完全軟化温度が低いと、後工程で
極細銅線の周面にエナメルを焼き付けるときに、極細銅
線が半軟化状態から完全軟化状態に変化してしまう。従
って、所望の破断強度を得ることができない。Conventionally, in order to obtain appropriate elongation and high breaking strength, semi-softening treatment has been applied to ultrafine copper wire as drawn. In this case, if the complete softening temperature of the ultra-fine copper wire is low, such as when the ultra-fine copper wire is made of copper wire material, the ultra-fine copper wire will be in a semi-softened state when enamel is baked on the circumferential surface of the ultra-fine copper wire in a later process. It changes from to completely softened state. Therefore, desired breaking strength cannot be obtained.
このため、従来、極細銅線としてはZrを含有した銅合
金線材、Ag又はsb等を含有した銅合金線材、Sn等
を含有した銅合金線材及びCr銅等の析出型銅合金線材
等の完全軟化温度が高い銅合金線材が使用されている。For this reason, conventional ultrafine copper wires include copper alloy wires containing Zr, copper alloy wires containing Ag or sb, etc., copper alloy wires containing Sn, etc., and precipitated copper alloy wires such as Cr copper. Copper alloy wire with a high softening temperature is used.
[発明が解決しようとする課題]
しかしながら、上述の銅合金線材はいずれも硬度が高い
ため、純銅の場合に比して伸線加工時に使用するダイス
の摩耗が激しいという欠点がある。[Problems to be Solved by the Invention] However, since the above-mentioned copper alloy wires all have high hardness, they have the disadvantage that the dies used during wire drawing are more abraded than in the case of pure copper.
また、いずれの銅合金線材も純銅に比して導電性が低い
という欠点もある。更に、各銅合金線材には固有の欠点
がある。例えば、Zrを含をした銅合金線材の場合は、
完全軟化温度が高過ぎるため、半軟化特性を得るための
焼鈍処理が困難である。Furthermore, all copper alloy wires also have the disadvantage of having lower conductivity than pure copper. Additionally, each copper alloy wire has its own drawbacks. For example, in the case of Zr-containing copper alloy wire,
Since the complete softening temperature is too high, annealing treatment to obtain semi-softening properties is difficult.
また、Ag又はsb等を含有した銅合金線材の場合は、
導電性が純銅と同様に優れていると共に、適度の完全軟
化温度を有しているが、半軟化状態が得られる焼鈍温度
域が狭いため、半軟化処理により所望の機械的強度を得
るということが困難である。In addition, in the case of copper alloy wire containing Ag or sb, etc.
It has excellent electrical conductivity similar to pure copper and has a moderate complete softening temperature, but the annealing temperature range in which a semi-softened state can be obtained is narrow, so the desired mechanical strength can be obtained by semi-softening treatment. is difficult.
本発明はかかる問題点に鑑みてなされたものであって、
半軟化処理が容易であり、処理後の破断強度及び伸び等
の機械的特性が優れていると共に、導電性が優れており
、更に、伸線加工時のダイスの摩耗を純銅の場合と同程
度に抑制できる極細線用銅複合線材を提供することを目
的とする。The present invention has been made in view of such problems, and includes:
It is easy to undergo semi-softening treatment, has excellent mechanical properties such as breaking strength and elongation after treatment, and has excellent electrical conductivity.Furthermore, die wear during wire drawing is comparable to that of pure copper. The purpose of the present invention is to provide a copper composite wire material for ultra-fine wires that can suppress the
[課題を解決するための手段]
本発明に係る極細線用銅複合線材は、0.05乃至0.
3重量%のAg及び0.003乃至0.01重量%のZ
rを含有し、残部がCu及び不可避的不純物であり、酸
素含有量を10ppm以下に規制した銅合金からなる芯
線部と、純度が99.9重量%以上のCuからなり前記
芯線部を40%以下の断面面積比率で被覆する被覆部と
を有することを特徴とする。[Means for Solving the Problems] The copper composite wire for ultrafine wire according to the present invention has a wire rod of 0.05 to 0.05.
3% by weight Ag and 0.003-0.01% by weight Z
A core wire portion made of a copper alloy containing r, the remainder being Cu and unavoidable impurities, and the oxygen content regulated to 10 ppm or less, and a core wire portion made of Cu with a purity of 99.9% by weight or more and 40% of the core wire portion. It is characterized by having a covering portion covering the following cross-sectional area ratios.
[作用]
前述の如<、Ag含有銅合金からなる極細銅線は破断強
度及び伸び等の機械的強度が優れていると共に、優れた
導電性を有している。しかし、この極細銅線は半軟化処
理が可能な焼鈍条件の範囲が極めて狭い。即ち、焼鈍温
度を一定にすると適正な焼鈍時間範囲が極めて狭く、ま
た、焼鈍時間を一定にすると適正な焼鈍温度範囲が極め
て狭くなる。このため、半軟化処理のための焼鈍工程で
品質のバラツキが発生しやすい。[Function] As mentioned above, the ultrafine copper wire made of an Ag-containing copper alloy has excellent mechanical strength such as breaking strength and elongation, and also has excellent electrical conductivity. However, the range of annealing conditions under which this ultra-fine copper wire can be semi-softened is extremely narrow. That is, when the annealing temperature is held constant, the appropriate annealing time range is extremely narrow, and when the annealing time is held constant, the appropriate annealing temperature range is extremely narrow. For this reason, variations in quality are likely to occur during the annealing process for semi-softening treatment.
一方、Zr含有銅合金からなる極細銅線は半軟化処理の
適正焼鈍条件範囲が広いという利点を有している。しか
し、前述の如く完全軟化温度が高過ぎるため、半軟化処
理のための焼鈍処理自体が困難である。On the other hand, an ultrafine copper wire made of a Zr-containing copper alloy has the advantage that the range of appropriate annealing conditions for semi-softening treatment is wide. However, as mentioned above, since the complete softening temperature is too high, the annealing process itself for semi-softening process is difficult.
本願発明者等は上述のAg含有銅合金を基に、その欠点
を解消すべく、適正焼鈍条件範囲を広くする作用を有す
るZrを添加し、その添加量が異なる種々の銅合金材を
製造し、この銅合金材から線径が30μmの極細銅線を
加工し、この極細銅線に対して焼鈍実験を繰り返し行っ
た。その結果、Ag及びZrを所定量添加して得た銅合
金線材は、Ag含有銅合金線材の優れた機械的特性及び
導電性を損うことなく、半軟化処理のための適正焼鈍条
件範囲が広くなることを見出した。また、このAg及び
Zrを含有する銅合金線材を芯線とし、その周面に純銅
を被覆した複合線材は、上述の特性を維持すると共に、
伸線加工時におけるダイスの劣化が純銅の場合と同程度
に軽微であることを見出した。本発明はこのような知見
に基づいてなされたものである。In order to eliminate the drawbacks of the above-mentioned Ag-containing copper alloy, the present inventors added Zr, which has the effect of widening the range of appropriate annealing conditions, and manufactured various copper alloy materials with different amounts of Zr added. An ultra-fine copper wire with a wire diameter of 30 μm was processed from this copper alloy material, and annealing experiments were repeatedly performed on this ultra-fine copper wire. As a result, the copper alloy wire obtained by adding a predetermined amount of Ag and Zr has an appropriate range of annealing conditions for semi-softening treatment without impairing the excellent mechanical properties and conductivity of the Ag-containing copper alloy wire. I found it to be wider. In addition, a composite wire in which the copper alloy wire containing Ag and Zr is used as a core wire and the surrounding surface is coated with pure copper maintains the above-mentioned characteristics, and
It was found that the deterioration of the die during wire drawing was as slight as in the case of pure copper. The present invention has been made based on such knowledge.
次に、本発明に係る極細線用銅複合線材の芯線部の各成
分の組成限定理由について説明する。Next, the reason for limiting the composition of each component of the core wire portion of the copper composite wire for ultra-fine wire according to the present invention will be explained.
K■
Agの含有量が0.05重量%未0の場合は、銅合金の
完全軟化温度を必要十分にして破断強度を高めるという
効果が得られず、半軟化処理後のエナメル焼付時に完全
軟化状態になってしまう。このため、所望の破断強度を
得ることができない。K■ If the Ag content is less than 0.05% by weight, the effect of increasing the breaking strength by raising the complete softening temperature of the copper alloy to the necessary and sufficient level will not be achieved, and complete softening will not occur during enamel baking after semi-softening treatment. It becomes a state. For this reason, desired breaking strength cannot be obtained.
方、Agの含有量が0.3重量%を超えると、高価なA
gの添加により製造コストが著しく上昇すると共に、芯
線部の導電性が劣化する。このため、Agの含有量は0
.05乃至0.3重量%とする。On the other hand, if the Ag content exceeds 0.3% by weight, expensive A
The addition of g significantly increases the manufacturing cost and deteriorates the conductivity of the core wire portion. Therefore, the Ag content is 0
.. 05 to 0.3% by weight.
、ZJL
Zrの含有量が0.003重量%未溝0場合は、Zrの
添加による適正焼鈍条件範囲の拡大効果が得られない。, ZJL If the Zr content is 0.003% by weight and no grooves are present, the effect of expanding the range of appropriate annealing conditions due to the addition of Zr cannot be obtained.
一方、zrの含有量が0.01重量%を超えると、芯線
部の導電性が劣化すると共に、焼鈍温度が高くなって焼
鈍が困難になる。これによリ、Zrの含有量は0.00
3乃至0.01重量%とする。On the other hand, when the content of zr exceeds 0.01% by weight, the conductivity of the core wire portion deteriorates and the annealing temperature becomes high, making annealing difficult. As a result, the Zr content is 0.00
3 to 0.01% by weight.
葭i
酸素の含有量が10ppmを超えると、この酸素が芯線
部中のZr等と結合してZrO□等の酸化物が多くなり
、極細線に伸線加工する工程で断線が発生しやすくなる
。このため、酸素の含有量は10ppm以下に規制する
。If the oxygen content exceeds 10 ppm, this oxygen will combine with Zr, etc. in the core wire, increasing the amount of oxides such as ZrO□, making wire breakage more likely to occur during the wire drawing process into ultra-fine wire. . For this reason, the oxygen content is regulated to 10 ppm or less.
次いで、被覆部の組成及びその被覆率の限定理由につい
て説明する。Next, the composition of the coating portion and the reasons for limiting the coverage will be explained.
° の の′(
被覆部を構成する純銅の純度が99.9重量%未満であ
ると、芯線部に半軟化処理を施した後に被覆部の硬度が
高くなるため、伸線加工時にダイスの摩耗が著しくなる
。従って、被覆部の純銅の純度は99.9重量%以上と
する。° no' (If the purity of the pure copper constituting the sheath is less than 99.9% by weight, the hardness of the sheath will increase after semi-softening treatment is applied to the core wire, resulting in die wear during wire drawing.) Therefore, the purity of pure copper in the coated portion is set to 99.9% by weight or more.
の1 に
芯線部のAg−Zr−Cu合金に半軟化処理を施すと、
被覆部の純銅は完全軟化状態になる。このため、被覆部
の芯線部に対する被覆率が断面面積比率で40%を超え
ると、得られる極細線の破断強度が低くなり、所望の機
械的特性を得ることができない。従って、被覆部の被覆
率は断面面積比率で複合線材全体の40%以下とする。When semi-softening treatment is applied to the Ag-Zr-Cu alloy of the core wire part 1,
The pure copper in the coating becomes completely softened. For this reason, if the coverage ratio of the covering portion to the core wire portion exceeds 40% in terms of cross-sectional area ratio, the breaking strength of the resulting ultrafine wire will be low, making it impossible to obtain desired mechanical properties. Therefore, the coverage of the covering portion is set to 40% or less of the entire composite wire in terms of cross-sectional area ratio.
[実施例コ 次に、本発明の実施例について説明する。[Example code] Next, examples of the present invention will be described.
先ず、直径が20+u+であり、下記第1表に示す成分
及び被覆率の銅−銅合金複合材ロッドを製造した。First, a copper-copper alloy composite rod having a diameter of 20+u+ and having the components and coverage shown in Table 1 below was manufactured.
次に、中間熱処理及び伸線加工を繰り返し行うことによ
り、このロッドから線径が30μmの極細線を形成した
。その結果、比較例9は伸線加工中に断線が多発した。Next, by repeatedly performing intermediate heat treatment and wire drawing, an ultrafine wire with a wire diameter of 30 μm was formed from this rod. As a result, in Comparative Example 9, wire breakage occurred frequently during wire drawing.
このため、比較例9については以後の評価を行なうこと
ができなかった。Therefore, Comparative Example 9 could not be evaluated further.
次いで、線径が30μmである実施例1乃至3及び比較
例1乃至8の各極細線に対して繰り返し焼鈍実験を行い
、破断強度が32kg f /−以上であり、伸び率が
10%以上という機械的強度が得られる焼鈍温度を調べ
た。Next, repeated annealing experiments were performed on each of the ultrafine wires of Examples 1 to 3 and Comparative Examples 1 to 8, each having a wire diameter of 30 μm, and the results showed that the breaking strength was 32 kg f /- or more and the elongation was 10% or more. The annealing temperature at which mechanical strength was obtained was investigated.
但し、このとき炉長が90c■の加熱炉を使用し、この
加熱炉内に実施例1乃至3及び比較例1乃至8の極細線
を60m/分の線速で挿通させた。However, at this time, a heating furnace with a furnace length of 90 cm was used, and the ultrafine wires of Examples 1 to 3 and Comparative Examples 1 to 8 were inserted into this heating furnace at a line speed of 60 m/min.
この結果、比較例1は所望の機械的強度を得ることがで
きなかった。従って、この比較例1を除いて、実施例1
乃至3及び比較例2乃至8における所望の機械的強度が
得られた焼鈍温度範囲を下記第2表に示す。また、この
焼鈍により得た半軟化状態の極細線の導電率も第2表に
併せて示す。As a result, Comparative Example 1 could not obtain the desired mechanical strength. Therefore, except for this comparative example 1, Example 1
The annealing temperature range in which the desired mechanical strength was obtained in Comparative Examples 2 to 3 and Comparative Examples 2 to 8 is shown in Table 2 below. Further, the electrical conductivity of the semi-softened ultrafine wire obtained by this annealing is also shown in Table 2.
更に、ダイス径が30μmのダイスを使用して、ダイス
径が伸線加工時の摩耗により 1μm拡大するまでに伸
線加工することができた極細線の量を測定することによ
りダイスの摩耗の程度を評価した。Furthermore, using a die with a die diameter of 30 μm, we measured the amount of ultra-fine wire that could be drawn until the die diameter increased by 1 μm due to wear during wire drawing to determine the degree of die wear. was evaluated.
そして、伸線加工できた極細線の量が30kg以上の場
合をQ120kg未満の場合を×で表わしてダイス摩耗
の評価結果を第2表に併せて示す。The evaluation results of die wear are also shown in Table 2, with cases where the amount of extra-fine wire drawn was 30 kg or more represented by Q and cases where the amount was less than 120 kg.
第2表
半軟化状態が得られる焼鈍温度は、低過ぎると後工程に
おいて完全軟化状態となり、高過ぎると処理が困難であ
るため、400乃至500 ’Cの温度範囲内で30°
C以上の温度幅があることが好ましい。Table 2: The annealing temperature to obtain a semi-softened state is 30°C within the temperature range of 400 to 500'C.
It is preferable that there is a temperature range of C or more.
また、導電率は95%IACS以上であるこ七が好まし
い。実施例1乃至3はいずれもこの所望の条件を満たし
ており、極めて優れた機械的特性及び電気的特性を確実
に得ることができた。Further, it is preferable that the conductivity is 95% IACS or higher. Examples 1 to 3 all satisfied these desired conditions, and were able to reliably obtain extremely excellent mechanical and electrical properties.
一方、本発明の特許請求の範囲から外れる比較例1乃至
9は、伸線加工性、適正焼鈍温度、処理温度幅、導電率
及びダイスの摩耗のいずれか一項目以上が満足できるも
のではなかった。On the other hand, Comparative Examples 1 to 9, which fall outside the scope of the claims of the present invention, were not satisfactory in any one or more of wire drawability, appropriate annealing temperature, processing temperature range, electrical conductivity, and die wear. .
[発明の効果コ
以上説明したように本発明に係る極細線用銅複合線材は
、0.05乃至0.3重量%のAg及び0.003乃至
0.01重量%のZrを含有し、酸素含有量を10pp
m以下に規制した銅合金からなる芯線部と、この芯線部
の周面を40%以下の断面面積率で被覆する純度が99
.9重量%以上の純銅からなる被M部とを有しているか
ら、半軟化処理を容易に行うことができる。これにより
、破断強度及び伸び等の機械的強度並びに導電性が優れ
た極細線を得ることができる。また、この極細線用銅複
合線材を伸線加工するためのダイスの摩耗も極めて少な
い。[Effects of the Invention] As explained above, the copper composite wire for ultrafine wires according to the present invention contains 0.05 to 0.3% by weight of Ag and 0.003 to 0.01% by weight of Zr, and contains oxygen. Content 10pp
A core wire made of a copper alloy regulated to a purity of 99.
.. Since the M portion is made of 9% by weight or more of pure copper, the semi-softening treatment can be easily performed. This makes it possible to obtain an ultrafine wire with excellent mechanical strength such as breaking strength and elongation, as well as electrical conductivity. Furthermore, the wear of dies for wire drawing of this copper composite wire material for ultra-fine wires is extremely small.
Claims (1)
乃至0.01重量%のZrを含有し、残部がCu及び不
可避的不純物であり、酸素含有量を10ppm以下に規
制した銅合金からなる芯線部と、純度が99.3重量%
以上のCuからなり前記芯線部を40%以下の断面面積
比率で被覆する被覆部とを有することを特徴とする極細
線用銅複合線材。(1) 0.05 to 0.3 wt% Ag and 0.003
A core wire portion made of a copper alloy containing 0.01% by weight of Zr, the remainder being Cu and unavoidable impurities, and the oxygen content regulated to 10 ppm or less, and a purity of 99.3% by weight.
A copper composite wire material for ultra-fine wires, comprising a covering part made of the above-mentioned Cu and covering the core part with a cross-sectional area ratio of 40% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8992589A JPH0644412B2 (en) | 1989-04-10 | 1989-04-10 | Copper composite wire for extra fine wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8992589A JPH0644412B2 (en) | 1989-04-10 | 1989-04-10 | Copper composite wire for extra fine wire |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02267811A true JPH02267811A (en) | 1990-11-01 |
JPH0644412B2 JPH0644412B2 (en) | 1994-06-08 |
Family
ID=13984276
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8992589A Expired - Lifetime JPH0644412B2 (en) | 1989-04-10 | 1989-04-10 | Copper composite wire for extra fine wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0644412B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6627009B1 (en) * | 1999-11-19 | 2003-09-30 | Hitachi Cable Ltd. | Extrafine copper alloy wire, ultrafine copper alloy wire, and process for producing the same |
US6674011B2 (en) * | 2001-05-25 | 2004-01-06 | Hitachi Cable Ltd. | Stranded conductor to be used for movable member and cable using same |
WO2007071355A1 (en) * | 2005-12-20 | 2007-06-28 | Nkt Cables Gmbh | Composite electrical conductor and method for producing it |
CN101950602A (en) * | 2010-08-23 | 2011-01-19 | 江苏河阳线缆有限公司 | Gradient copper-based alloy cable conductor and manufacturing method thereof |
JP2014148749A (en) * | 2013-01-11 | 2014-08-21 | Sh Copper Products Corp | Copper alloy material, power distribution member for electric car, and power distribution member for hybrid car |
JP2015206075A (en) * | 2014-04-21 | 2015-11-19 | 株式会社Shカッパープロダクツ | Copper alloy material, power distribution member for electric car, and power distribution member for hybrid car |
-
1989
- 1989-04-10 JP JP8992589A patent/JPH0644412B2/en not_active Expired - Lifetime
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6627009B1 (en) * | 1999-11-19 | 2003-09-30 | Hitachi Cable Ltd. | Extrafine copper alloy wire, ultrafine copper alloy wire, and process for producing the same |
US6674011B2 (en) * | 2001-05-25 | 2004-01-06 | Hitachi Cable Ltd. | Stranded conductor to be used for movable member and cable using same |
WO2007071355A1 (en) * | 2005-12-20 | 2007-06-28 | Nkt Cables Gmbh | Composite electrical conductor and method for producing it |
US7786387B2 (en) | 2005-12-20 | 2010-08-31 | Nkt Cables Gmbh | Composite electrical conductor and method for producing it |
CN101950602A (en) * | 2010-08-23 | 2011-01-19 | 江苏河阳线缆有限公司 | Gradient copper-based alloy cable conductor and manufacturing method thereof |
JP2014148749A (en) * | 2013-01-11 | 2014-08-21 | Sh Copper Products Corp | Copper alloy material, power distribution member for electric car, and power distribution member for hybrid car |
JP2015206075A (en) * | 2014-04-21 | 2015-11-19 | 株式会社Shカッパープロダクツ | Copper alloy material, power distribution member for electric car, and power distribution member for hybrid car |
Also Published As
Publication number | Publication date |
---|---|
JPH0644412B2 (en) | 1994-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1179606A2 (en) | Silver containing copper alloy | |
JP2002121629A (en) | Super-extra-fine copper-alloy wire, copper-alloy stranded-wire conductor, extra-fine coaxial cable, and method for manufacturing super-extra-fine copper-alloy wire | |
JP2008041447A (en) | Conductor for cable, manufacturing method of the same, and flex-resistant cable using the same | |
US5972131A (en) | Ag-Cu alloy for a sliding contact | |
JPH02267811A (en) | Copper composite wire material for extra fine wire | |
JP2006307307A (en) | Wiring cable for moving part in robot | |
JP2021509934A (en) | Copper-zinc alloy | |
US3097965A (en) | Conductive wire coating alloys, wires coated therewith and process for improving solderability therefor | |
JP3856073B2 (en) | Method for producing Cu-Ag alloy | |
JPS6058291B2 (en) | Copper alloy soft conductor and its manufacturing method | |
JP2001234309A (en) | Method for producing extra-fine copper alloy stranded wire | |
JPH02270212A (en) | Copper alloy composite wire rod for extremely thin wire | |
JPS60215751A (en) | Manufacture of high-strength aluminum alloy wire for electric conduction | |
JP3050554B2 (en) | Magnet wire | |
JPH0477060B2 (en) | ||
JPH0689621A (en) | Manufacture of high conductivity and high strength stranded wire | |
JP2001269820A (en) | Method of manufacturing electrode wire for wire electric discharge machining | |
JP2008115423A (en) | Conductor for flexible cable, its manufacturing method, and flexible cable using the conductor | |
JP2000169918A (en) | Extra-thin wire and its production | |
JPH03230415A (en) | Copper alloy wire rod | |
JPH0416534B2 (en) | ||
JP6951999B2 (en) | Copper alloy strip, its manufacturing method and flat cable using it | |
JPH01290729A (en) | Copper alloy wire rod | |
JPH07156021A (en) | Electrode wire for electric discharge machining | |
JPH01275728A (en) | Copper alloy wire rod |