JP2006307307A - Wiring cable for moving part in robot - Google Patents

Wiring cable for moving part in robot Download PDF

Info

Publication number
JP2006307307A
JP2006307307A JP2005134307A JP2005134307A JP2006307307A JP 2006307307 A JP2006307307 A JP 2006307307A JP 2005134307 A JP2005134307 A JP 2005134307A JP 2005134307 A JP2005134307 A JP 2005134307A JP 2006307307 A JP2006307307 A JP 2006307307A
Authority
JP
Japan
Prior art keywords
weight
cable
wiring cable
conductor
robot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005134307A
Other languages
Japanese (ja)
Inventor
Kazuma Kuroki
一真 黒木
Hiromitsu Kuroda
洋光 黒田
Masayoshi Aoyama
正義 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2005134307A priority Critical patent/JP2006307307A/en
Publication of JP2006307307A publication Critical patent/JP2006307307A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manipulator (AREA)
  • Conductive Materials (AREA)
  • Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wiring cable for moving part in a robot which satisfies high tensile strength, high buckling resistance and high electric conductivity and has good productivity. <P>SOLUTION: The wiring cable 10 for moving part in the robot related to this invention comprises an insulating layer around the cable conducting body 11, and the cable conducting body 11 is constituted with a copper alloy material containing 0.25-1.0 wt.% ratio of the total of Sn and In in the copper based material containing 0.001-0.1 wt.% (10-1000 wt.ppm) oxygen. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、産業ロボットなどの電子機器可動部に配線されるロボット可動部用配線ケーブルに関するものである。   The present invention relates to a wiring cable for a robot movable part that is wired to an electronic apparatus movable part such as an industrial robot.

一般に、産業ロボットなどの電子機器可動部に配線される可動部用配線ケーブルは、その性質上、過酷な曲げ、捻り、引張などの応力を繰り返し受ける。特に、可動部用配線ケーブルの心線を構成する導体には優れた耐屈曲性と引張強度が要求される。   Generally, a movable part wiring cable wired to a movable part of an electronic device such as an industrial robot is repeatedly subjected to stress such as severe bending, twisting, and tension due to its nature. In particular, the conductor constituting the core wire of the movable part wiring cable is required to have excellent bending resistance and tensile strength.

そのため、最近では、可動部用配線ケーブルの心線に使用される導体として、軟銅線単独からなるものではなく、Cuに適量のSnを添加して引張強度及び耐屈曲性を向上させたCu合金が開発され、一部実用化にいたっている。   Therefore, recently, as a conductor used for the core wire of the movable part wiring cable, it does not consist of an annealed copper wire alone, but a Cu alloy with an appropriate amount of Sn added to Cu to improve tensile strength and flex resistance. Has been developed and partly put to practical use.

一方、近年の電子機器の小型化、軽量化、高性能化の要請を受け、可動部用配線ケーブルにおいては、小型化、軽量化のための細径化と、情報伝送量の増大に伴う高導電性が要求されてきている。そこで、これらの要求を満足する導体として、高強度、かつ、高導電率の銅合金導体が求められてきている。   On the other hand, in response to the recent demands for smaller, lighter, and higher performance electronic devices, movable cable cables are becoming smaller due to smaller diameters and lighter weights, and the increase in information transmission volume. There has been a demand for conductivity. Therefore, a copper alloy conductor having high strength and high conductivity has been demanded as a conductor that satisfies these requirements.

高強度の銅合金導体としては、主に、固溶強化型合金及び析出強化型合金の2つが挙げられる。例えば、固溶強化型合金としては、Cu-Sn合金などが(特許文献1参照)、析出強化型合金としては、Cu-Cr系合金、Cu-Zr系合金、Cu-Fe-P系合金などが挙げられる。   As the high-strength copper alloy conductor, there are mainly two types: a solid solution strengthened alloy and a precipitation strengthened alloy. For example, as a solid solution strengthening type alloy, a Cu-Sn alloy or the like (see Patent Document 1), and as a precipitation strengthening type alloy, a Cu-Cr based alloy, a Cu-Zr based alloy, a Cu-Fe-P based alloy, etc. Is mentioned.

特開平6−240426号公報JP-A-6-240426

ところで、固溶強化型合金を導体材料として用いた場合、細径化に伴う引張強度や耐屈曲性の向上を図るために、固溶強化元素の含有量、例えばSn含有量を多くする必要がある。しかしながら、固溶強化元素の含有量を多くすると、導電率が著しく低下してしまうといった問題があった。   By the way, when a solid solution strengthened alloy is used as a conductor material, it is necessary to increase the content of the solid solution strengthening element, for example, the Sn content, in order to improve the tensile strength and the bending resistance accompanying the diameter reduction. is there. However, when the content of the solid solution strengthening element is increased, there is a problem that the electrical conductivity is remarkably lowered.

一方、析出強化型合金を導体材料として用いた場合、優れた導電性及び耐屈曲性を有するものの、伸線後に所定の機械的特性を得るために調質を行う必要がある。この調質には、長時間の熱処理(時効処理)を要することから、生産性が良好でないという問題があった。   On the other hand, when a precipitation-strengthened alloy is used as a conductor material, although it has excellent conductivity and bending resistance, it is necessary to perform tempering in order to obtain predetermined mechanical characteristics after wire drawing. This tempering requires a long-time heat treatment (aging treatment), and thus has a problem of poor productivity.

以上の事情を考慮して創案された本発明の目的は、高引張強度、高耐屈曲性、及び高導電性を満足し、かつ、生産性が良好なロボット可動部用配線ケーブルを提供することにある。   The object of the present invention created in view of the above circumstances is to provide a wiring cable for a movable part of a robot that satisfies high tensile strength, high bending resistance, and high conductivity, and has good productivity. It is in.

上記目的を達成すべく本発明に係るロボット可動部用配線ケーブルは、ケーブル導体の周りに絶縁層を有するロボット可動部用配線ケーブルにおいて、ケーブル導体を、酸素を0.001〜0.1重量%(10〜1000重量ppm)含む銅母材に、SnとInを合計0.25〜1.0重量%の割合で含有させた銅合金材で構成したものである。   In order to achieve the above object, the robot movable part wiring cable according to the present invention is a robot movable part wiring cable having an insulating layer around the cable conductor, and the cable conductor is composed of oxygen in an amount of 0.001 to 0.1% by weight (10 to 1000%). It is composed of a copper alloy material containing Sn and In in a proportion of 0.25 to 1.0% by weight in total in a copper base material containing (ppm by weight).

ここで、Sn及びInの他に、P又はBを0.01重量%(100重量ppm)以下の割合で含有させてもよい。また、Sn及びInの他に、P及びBを合計0.02重量%(200重量ppm)以下の割合で含有させてもよい。   Here, in addition to Sn and In, P or B may be contained in a proportion of 0.01% by weight (100 ppm by weight) or less. Further, in addition to Sn and In, P and B may be contained in a total proportion of 0.02% by weight (200 ppm by weight) or less.

ケーブル導体は、結晶組織を構成する結晶粒の平均粒径が100μm以下であり、かつ、結晶組織のマトリックスに、上記Sn及びInの酸化物の80%以上が平均粒径1μm以下の微小酸化物として分散されたものである。   The cable conductor is a fine oxide in which the average grain size of the crystal grains constituting the crystal structure is 100 μm or less, and 80% or more of the Sn and In oxides in the matrix of the crystal structure are 1 μm or less in average grain size As distributed.

ケーブル導体は、素線径が0.08mm以下の極細素線を複数本撚り合わせてなる撚線を、少なくとも3本撚り合わせてなる。   The cable conductor is formed by twisting at least three stranded wires formed by twisting a plurality of ultrafine strands having a strand diameter of 0.08 mm or less.

ケーブル導体の導電率は70%IACS以上である。   The conductivity of the cable conductor is more than 70% IACS.

本発明によれば、高引張強度、高耐屈曲性、及び高導電性のロボット可動部用配線ケーブルが得られるという優れた効果を発揮する。   According to the present invention, an excellent effect is obtained in that a wiring cable for a robot movable part having high tensile strength, high bending resistance, and high conductivity can be obtained.

以下、本発明の好適一実施の形態を添付図面に基づいて説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a preferred embodiment of the invention will be described with reference to the accompanying drawings.

図1に示すように、本発明の好適一実施の形態に係るロボット可動部用配線ケーブル10は、導体(ケーブル導体)11の周りに絶縁層12を有する心線13で構成される心線部15の周りに、シールド(例えば、銅箔糸編組シールド)層16、外被(例えば、耐油性非鉛PVC)層17を設けたものである。   As shown in FIG. 1, a wiring cable 10 for a robot movable portion according to a preferred embodiment of the present invention is a core wire portion composed of a core wire 13 having an insulating layer 12 around a conductor (cable conductor) 11. 15, a shield (for example, copper foil braided shield) layer 16 and a jacket (for example, oil-resistant non-lead PVC) layer 17 are provided.

心線部15は、少なくとも3本(図1中では3本を図示)の心線13とドレンワイヤ14を撚り合わせてなるものである。各心線13とドレンワイヤ14の周りには、図2に示すように、束ね部材である押さえシース25が設けられる。導体11は、例えば、素線径が0.08mm以下、好ましくは0.05mm以下の極細素線21を複数本(図2中では7本を図示)撚り合わせてなる撚線の周囲に、メッキ(例えば、Sn合金メッキ(図示せず))層を形成したものである。   The core portion 15 is formed by twisting at least three core wires 13 and three drain wires 14 (three are shown in FIG. 1). As shown in FIG. 2, a pressing sheath 25 that is a bundling member is provided around each core wire 13 and the drain wire 14. The conductor 11 is, for example, plated (for example, around a stranded wire formed by twisting a plurality of ultrathin strands 21 having a strand diameter of 0.08 mm or less, preferably 0.05 mm or less (seven are shown in FIG. 2). , An Sn alloy plating (not shown) layer is formed.

ここで、導体11を、複数本の極細素線21を撚り合わせて構成するのは、勿論、強度の向上、及び強度と密接に関連する屈曲疲労特性の向上を図るためである。軟銅線からなる極細素線を複数本撚り合わせても、十分な強度及び屈曲疲労特性を得ることはできない。   Here, the reason why the conductor 11 is formed by twisting a plurality of ultrafine wires 21 is, of course, to improve the strength and the bending fatigue characteristics closely related to the strength. Even if a plurality of ultrafine wires made of annealed copper wire are twisted together, sufficient strength and bending fatigue characteristics cannot be obtained.

導体11(極細素線21)は、酸素を0.001〜0.1重量%(10〜1000重量ppm)含む銅母材に、SnとInを合計0.25〜1.0重量%の割合で含有させた銅合金材で構成される。導体11は、その結晶組織を構成する結晶粒の平均粒径が100μm以下であり、かつ、その結晶組織のマトリックスに、Sn及びInの酸化物の80%以上が平均粒径1μm以下の微小酸化物として分散されている。導体11の導電率は70%IACS以上、好ましくは75〜95%IACSとされる。   The conductor 11 (extra fine wire 21) is a copper alloy material in which Sn and In are contained in a proportion of 0.25 to 1.0% by weight in total in a copper base material containing 0.001 to 0.1% by weight (10 to 1000% by weight) of oxygen. Composed. The conductor 11 has a micro-oxidation in which the average grain size of the crystal grains constituting the crystal structure is 100 μm or less, and 80% or more of Sn and In oxides in the matrix of the crystal structure is an average grain size of 1 μm or less. It is dispersed as a thing. The conductivity of the conductor 11 is 70% IACS or more, preferably 75 to 95% IACS.

銅母材は、その酸素含有量が0.001〜0.1重量%(10〜1000重量ppm)の範囲において、酸素含有量が多いほど引張強度及び導電率が高くなる。   The copper base material has a higher tensile strength and electrical conductivity as the oxygen content increases in the range of 0.001 to 0.1% by weight (10 to 1000 ppm by weight).

銅母材にSnとInの両方を含有させるのは、Snだけでは線材を極細化した際に耐屈曲性が低下し、屈曲寿命が短くなってしまうためである。Sn及びInの各含有量は、同量(又はほぼ同量)ずつか、Sn含有量をIn含有量よりも多くすることが好ましい。   The reason why both the Sn and In are contained in the copper base material is that, when Sn alone is used, when the wire is made very thin, the bending resistance is lowered and the bending life is shortened. Each content of Sn and In is preferably the same amount (or almost the same amount), or the Sn content is preferably larger than the In content.

SnとInの合計含有量(以下、合計含有量という)を0.25〜1.0重量%としたのは、合計含有量が0.25重量%未満だと、強度向上に有効な固溶限が小さすぎることから、十分な強度向上効果を期待できないためである。また、合計含有量が1.0重量%を超えると、導電率が著しく低下するためである。ここで、合計含有量が0.25〜1.0重量%の範囲において、合計含有量が多くなるに従って、導電率は徐々に低下する。   The total content of Sn and In (hereinafter referred to as the total content) is set to 0.25 to 1.0% by weight because if the total content is less than 0.25% by weight, the effective solid solubility limit is too small. This is because a sufficient strength improvement effect cannot be expected. Moreover, it is because electrical conductivity will fall remarkably when total content exceeds 1.0 weight%. Here, in the range where the total content is 0.25 to 1.0% by weight, the conductivity gradually decreases as the total content increases.

合計含有量が多くなると、熱間圧延工程における熱間圧延加工時に傷が付きやすくなり、圧延材の表面傷が多くなる傾向にある。よって、合計含有量が多い場合(例えば0.5重量%以上の場合)には、圧延材の表面傷を減少させるべく、銅母材に、Sn及びInと共に、さらにPを添加してもよい。Pは0.01重量%(100重量ppm)以下の割合で含有させる。Pの含有量が2重量ppm未満だと、銅線表面傷を低減させる効果はあまり認められず、Pの含有量が100重量ppmを超えると、銅合金導体の導電率が低下してしまう。   When the total content is increased, scratches are likely to occur during hot rolling in the hot rolling process, and surface scratches of the rolled material tend to increase. Therefore, when the total content is large (for example, 0.5% by weight or more), P may be added to the copper base material together with Sn and In in order to reduce surface scratches on the rolled material. P is contained at a ratio of 0.01% by weight (100 ppm by weight) or less. If the P content is less than 2 ppm by weight, the effect of reducing the surface scratches on the copper wire is not recognized so much. If the P content exceeds 100 ppm by weight, the electrical conductivity of the copper alloy conductor is lowered.

また、合計含有量が多くなると、鋳造工程後における鋳造材の結晶粒がやや大きくなる傾向(延いては銅合金導体の強度がやや低下する傾向)にある。よって、合計含有量が多い場合(例えば0.5重量%以上の場合)には、鋳造材の結晶粒を微細にするべく、銅母材に、Sn及びInと共に、さらにBを添加してもよい。Bは0.01重量%(100重量ppm)以下の割合で含有させる。Bの含有量が2重量ppm未満だと、結晶粒を微細にする効果(延いては銅合金導体の強度向上効果)はあまり認められず、Bの含有量が100重量ppmを超えると、銅合金導体の導電率が低下してしまう。   Moreover, when total content increases, it exists in the tendency for the crystal grain of the casting material after a casting process to become a little large (and the tendency for the intensity | strength of a copper alloy conductor to fall a little by extension). Therefore, when the total content is large (for example, 0.5% by weight or more), B may be added to the copper base material together with Sn and In to make the crystal grains of the cast material fine. B is contained at a ratio of 0.01% by weight (100 ppm by weight) or less. If the B content is less than 2 ppm by weight, the effect of making the crystal grains fine (and hence the strength improvement effect of the copper alloy conductor) is not so much observed. If the B content exceeds 100 ppm by weight, the copper The conductivity of the alloy conductor is reduced.

さらに、P及びBの両方を、合計0.02重量%(200重量ppm)以下の割合で含ませてもよい。   Furthermore, you may contain both P and B in the ratio of a total of 0.02 weight% (200 weight ppm) or less.

次に、本実施の形態に係るロボット可動部用配線ケーブルにおけるケーブル導体(銅合金導体)の製造工程を説明する。   Next, the manufacturing process of the cable conductor (copper alloy conductor) in the robot movable part wiring cable according to the present embodiment will be described.

銅合金導体の製造方法は、
銅母材にSn及びInを添加して溶解し、銅合金溶湯を形成する溶解工程と、
その銅合金溶湯を鋳造して鋳造材を形成する鋳造工程と、
その鋳造材に複数段(多段)の熱間圧延加工を施して圧延材を形成する熱間圧延工程と、
その圧延材を洗浄し、巻取って荒引線とする洗浄・巻取り工程と、
その巻取った荒引線を送り出し、その荒引線に冷間加工を施して銅合金導体(極細素線21)を形成する冷間(伸線)加工工程を、
含んでいる。
The manufacturing method of the copper alloy conductor is:
Melting by adding Sn and In to the copper base material to form a copper alloy melt;
A casting process for casting the molten copper alloy to form a cast material;
A hot rolling process for forming a rolled material by subjecting the cast material to a multi-stage (multi-stage) hot rolling process;
Cleaning and winding process for cleaning the rolled material and winding it into a rough drawing line,
A cold (drawing) processing step of sending out the wound rough drawing wire and cold-processing the rough drawing wire to form a copper alloy conductor (extra fine wire 21),
Contains.

銅合金導体は、その後用途に応じた所望形状の線材、条材(板材)などに加工される。溶解工程から洗浄・巻取り工程までは、既存又は慣用の連続鋳造圧延設備(SCR連続鋳造機)を適用することができる。また、冷間加工工程は、既存又は慣用の冷間加工装置を適用することができる。   The copper alloy conductor is then processed into a wire or strip (plate) having a desired shape according to the application. Existing or conventional continuous casting and rolling equipment (SCR continuous casting machine) can be applied from the melting step to the cleaning / winding step. In addition, an existing or conventional cold working apparatus can be applied to the cold working process.

銅合金導体の製造方法をより詳細に説明すると、先ず、溶解工程において、酸素を0.001〜0.1重量%(10〜1000重量ppm)含む銅母材に、Sn及びInを0.25〜1.0重量%、好ましくは0.30〜0.80重量%、より好ましくは0.35〜0.75重量%の割合で添加して溶解を行うことで、銅合金溶湯が形成される。Sn及びInは酸化され、最終的に得られる銅合金導体の結晶組織内にSn酸化物(SnO2)及びIn酸化物(In2O3)として生成、分散される。Sn酸化物及びIn酸化物の大半(80%以上)は、平均粒径が1μm以下の微小酸化物である。銅母材は、不可避的不純物を含んでいてもよい。 The manufacturing method of the copper alloy conductor will be described in more detail. First, in the melting step, Sn and In are preferably 0.25 to 1.0% by weight, preferably in a copper base material containing 0.001 to 0.1% by weight (10 to 1000% by weight) of oxygen. Is added at a rate of 0.30 to 0.80% by weight, more preferably 0.35 to 0.75% by weight, to form a copper alloy melt. Sn and In are oxidized, and are produced and dispersed as Sn oxide (SnO 2 ) and In oxide (In 2 O 3 ) in the crystal structure of the finally obtained copper alloy conductor. Most of the Sn oxide and In oxide (80% or more) are fine oxides having an average particle size of 1 μm or less. The copper base material may contain inevitable impurities.

次に、鋳造工程において、前工程で得られた銅合金溶湯は、SCR方式の連続鋳造圧延に供される。具体的には、SCR連続鋳造の通常の鋳造温度(1120〜1200℃)よりも低い温度(1100〜1150℃)で鋳造を行うと共に、鋳型(銅鋳型)を強制水冷する。これにより、鋳造材が、銅合金溶湯の凝固温度より少なくとも15℃以上低い温度まで急速冷却される。   Next, in the casting process, the molten copper alloy obtained in the previous process is subjected to SCR continuous casting and rolling. Specifically, casting is performed at a temperature (1100 to 1150 ° C.) lower than the normal casting temperature (1120 to 1200 ° C.) of SCR continuous casting, and the mold (copper mold) is forcibly water-cooled. Thus, the cast material is rapidly cooled to a temperature that is at least 15 ° C. lower than the solidification temperature of the molten copper alloy.

これらの鋳造処理及び急冷処理によって、鋳造材中に晶出(又は析出)する酸化物のサイズ、及び鋳造材の結晶粒サイズが、通常の鋳造温度で鋳造を行う場合又は鋳造材を[銅合金溶湯の凝固温度−15℃]を超える温度までしか冷却しない場合と比較して、それぞれ小さくなる。   By these casting treatment and quenching treatment, the size of the oxide crystallized (or precipitated) in the cast material and the crystal grain size of the cast material are determined when casting is performed at a normal casting temperature or the cast material is selected as [Copper Alloy]. Compared to the case of cooling only to a temperature exceeding the solidification temperature of the molten metal—15 ° C.], each becomes smaller.

次に、熱間圧延工程において、連続鋳造圧延における通常の熱間圧延温度よりも50〜100℃低い温度、すなわち鋳造材の温度を900℃以下、好ましくは750〜900℃に調整した状態で、鋳造材に、熱間圧延が多段に施される。最終圧延時において、500〜600℃の圧延温度で熱間圧延加工を施し、圧延材が形成される。最終圧延温度が、500℃未満だと、圧延加工時に表面傷が多く発生してしまい、表面品質の低下を招き、また、600℃を超えると、結晶組織が従来と同レベルの粗大組織となってしまう。ここで、最終圧延温度が500〜600℃の範囲において、最終圧延温度が高くなるに従って、引張強度は徐々に低下するが、導電率は徐々に向上する。   Next, in the hot rolling step, the temperature is 50 to 100 ° C. lower than the normal hot rolling temperature in continuous casting rolling, that is, the temperature of the cast material is adjusted to 900 ° C. or less, preferably 750 to 900 ° C., The cast material is subjected to hot rolling in multiple stages. At the time of final rolling, hot rolling is performed at a rolling temperature of 500 to 600 ° C. to form a rolled material. If the final rolling temperature is less than 500 ° C, many surface flaws occur during rolling, resulting in deterioration of the surface quality. If it exceeds 600 ° C, the crystal structure becomes a coarse structure of the same level as before. End up. Here, in the range where the final rolling temperature is 500 to 600 ° C., the tensile strength gradually decreases as the final rolling temperature increases, but the electrical conductivity gradually increases.

この熱間圧延により、前工程で晶出(又は析出)した比較的小サイズの酸化物が分断され、酸化物のサイズがさらに小さくなる。また、この熱間圧延は、通常の熱間圧延よりも低温で行うものであるため、圧延時に導入された転位が再配列し、結晶粒内に微小な亜粒界が形成される。亜粒界は、結晶粒内に存在する方位が少し異なる複数の結晶間の境界である。   By this hot rolling, a relatively small size oxide crystallized (or precipitated) in the previous step is divided, and the size of the oxide is further reduced. In addition, since this hot rolling is performed at a lower temperature than normal hot rolling, the dislocations introduced during rolling are rearranged, and minute subgrain boundaries are formed in the crystal grains. A sub-grain boundary is a boundary between a plurality of crystals having slightly different orientations in the crystal grains.

次に、洗浄・巻取り工程において、圧延材を洗浄し、巻取りを行い、荒引線が得られる。巻取った荒引線の線径は、例えば、8〜40mm、好ましくは30mm以下とされる。例えば、ロボット可動部用配線ケーブルにおける荒引線の線径は、8〜25mmとされる。   Next, in the cleaning and winding process, the rolled material is cleaned and wound to obtain a rough drawn wire. The diameter of the wound rough drawing wire is, for example, 8 to 40 mm, preferably 30 mm or less. For example, the wire diameter of the rough drawing wire in the robot movable part wiring cable is 8 to 25 mm.

最後に、巻取った荒引線を送り出し、冷間加工工程において、その荒引線に、−193℃(液体窒素温度)〜100℃、好ましくは−193〜25℃以下の温度で冷間加工(伸線加工)を行う。これによって、銅合金導体、すなわち素線径が0.08mm以下の極細素線21が得られる。ここで、連続伸線時の加工熱が銅合金導体に及ぼす影響(強度低下など)を少なくするため、引抜きダイスなどの冷間加工装置の冷却を行い、線材温度が100℃以下、好ましくは25℃以下となるように調整を行う。また、銅合金導体の強度を向上させるためには、熱間圧延加工における加工度を高めて圧延材、つまり荒引線の強度を十分に向上させておくことが必要である他に、冷間加工における加工度を50%以上とすることが必要である。   Finally, the wound rough wire is sent out, and in the cold working process, the rough wire is subjected to cold working (stretching) at a temperature of −193 ° C. (liquid nitrogen temperature) to 100 ° C., preferably −193 to 25 ° C. or less. Wire processing). As a result, a copper alloy conductor, that is, an ultrathin strand 21 having a strand diameter of 0.08 mm or less is obtained. Here, in order to reduce the influence (strength reduction, etc.) on the copper alloy conductor due to the processing heat during continuous drawing, the cold working apparatus such as a drawing die is cooled, and the wire temperature is 100 ° C. or less, preferably 25 Adjust so that it is below ℃. In addition, in order to improve the strength of the copper alloy conductor, it is necessary to increase the workability in the hot rolling process to sufficiently improve the strength of the rolled material, that is, the rough drawing wire. It is necessary to set the processing degree at 50% or more.

得られた銅合金導体は、例えば、図1に示したロボット可動部用配線ケーブル10に形成される。この他にも、用途に応じた所望形状に形成し、例えば、機器用ケーブル導体、産業用ケーブル導体、電車線(トロリー線)などに適用してもよい。   The obtained copper alloy conductor is formed, for example, in the robot movable part wiring cable 10 shown in FIG. In addition to this, it may be formed into a desired shape according to the application and applied to, for example, a cable conductor for equipment, an industrial cable conductor, a train line (trolley line), and the like.

次に、本実施の形態の作用を説明する。   Next, the operation of the present embodiment will be described.

従来の銅合金導体は、結晶組織が粗大であった。また、Snなどの酸化物は、平均粒径(又は長さ)が1μmを超える粗大酸化物であった。これらの結果、従来の銅合金導体は、引張強度があまり十分ではなかった。   Conventional copper alloy conductors have a coarse crystal structure. The oxide such as Sn was a coarse oxide having an average particle size (or length) exceeding 1 μm. As a result, the conventional copper alloy conductor has not been sufficiently high in tensile strength.

これに対して、本実施の形態に係るロボット可動部用配線ケーブルにおける銅合金導体は、酸素を0.001〜0.1重量%(10〜1000重量ppm)含む銅母材に、SnとInを合わせて0.25〜1.0重量%の割合で添加して銅合金溶湯を形成し、その銅合金溶湯を用い、低温で連続鋳造(鋳造温度が1100〜1150℃)、低温圧延加工(最終圧延温度が500〜600℃)、及び加工熱が作用しないように100℃以下に温度調節した冷間加工を行い、製造される。   On the other hand, the copper alloy conductor in the robot movable part wiring cable according to the present embodiment is 0.25 by combining Sn and In with a copper base material containing 0.001 to 0.1 wt% (10 to 1000 wt ppm) of oxygen. Addition of ~ 1.0% by weight to form a molten copper alloy, using this molten copper alloy, continuous casting at low temperature (casting temperature 1100-1150 ° C), low temperature rolling (final rolling temperature 500-600 ° C) ), And cold processing is performed by adjusting the temperature to 100 ° C. or less so that the processing heat does not act.

これらによって、銅合金導体は、従来の銅合金導体と比較して結晶組織が微細となる。つまり、銅合金導体の結晶粒の平均粒径は、従来の銅合金導体の結晶粒の平均粒径と比較して小さくなり、100μm以下となる。また、銅合金導体のマトリックスには、Sn及びInの酸化物が分散しており、その酸化物の80%以上は平均粒径が1μm以下の微小酸化物である。   As a result, the copper alloy conductor has a finer crystal structure than the conventional copper alloy conductor. That is, the average grain size of the crystal grain of the copper alloy conductor is smaller than the average grain size of the crystal grain of the conventional copper alloy conductor, and becomes 100 μm or less. In addition, Sn and In oxides are dispersed in the matrix of the copper alloy conductor, and 80% or more of the oxides are fine oxides having an average particle size of 1 μm or less.

このマトリックスに分散した微小酸化物によって、鋳造材が有する熱(顕熱)により、結晶や結晶粒界が移動するのが抑制される。その結果、熱間圧延時における各結晶粒の成長が抑制されるため、圧延材の結晶組織が微細となる。   The fine oxide dispersed in the matrix suppresses the movement of crystals and grain boundaries due to the heat (sensible heat) of the cast material. As a result, since the growth of each crystal grain during hot rolling is suppressed, the crystal structure of the rolled material becomes fine.

以上より、本実施の形態に係るロボット可動部用配線ケーブルにおける銅合金導体の強化は、結晶粒の微細化による銅合金導体マトリックスの強度向上と、マトリックスに微小酸化物を分散させたことによる分散強化とによるものであり、特開平6-240426号公報などに記載されたSnの固溶強化だけによる強化と比較して、導電率低下の割合も低く抑えることができる。よって、本実施の形態によれば、導電性を良好に保ちながら、良好な引張強度及び屈曲疲労特性を有する銅合金導体を得ることができる。つまり、例えば後述の[実施例]で述べるように、70%IACS以上の高い導電率を有し、かつ、耐屈曲性が良好な銅合金導体を得ることができる。延いては、本実施の形態に係るロボット可動部用配線ケーブルを用いることで、ロボット可動部の小型・軽量化、高性能化などを図ることができる。   As described above, the strengthening of the copper alloy conductor in the robot movable part wiring cable according to the present embodiment is achieved by improving the strength of the copper alloy conductor matrix by refining the crystal grains and by dispersing the fine oxide in the matrix. This is because of the strengthening, and the rate of decrease in conductivity can be suppressed as compared with the strengthening only by solid solution strengthening of Sn described in JP-A-6-240426. Therefore, according to the present embodiment, it is possible to obtain a copper alloy conductor having good tensile strength and bending fatigue characteristics while maintaining good conductivity. That is, for example, as described in [Example] described later, a copper alloy conductor having a high conductivity of 70% IACS or more and good bending resistance can be obtained. Consequently, by using the robot movable part wiring cable according to the present embodiment, the robot movable part can be reduced in size, weight, performance, and the like.

また、本実施の形態に係るロボット可動部用配線ケーブルにおける銅合金導体は、合計含有量を0.25〜1.0重量%の範囲で適切に調整することにより、例えば[実施例]において後述するように、その導電率を70%IACS以上、耐屈曲性をタフピッチ銅(以下、TPCという)の1.5倍以上、好ましくは2〜10倍の範囲で、それぞれ自在に調整することができる。   In addition, the copper alloy conductor in the robot movable part wiring cable according to the present embodiment is appropriately adjusted in the total content in the range of 0.25 to 1.0% by weight, for example, as described later in [Example], The electrical conductivity can be freely adjusted within the range of 70% IACS or more, and the bending resistance can be adjusted to 1.5 times or more, preferably 2 to 10 times that of tough pitch copper (hereinafter referred to as TPC).

本実施の形態に係るロボット可動部用配線ケーブルにおける銅合金導体は、既存或いは慣用の連続鋳造圧延設備や冷間加工装置を使用して製造することができるので、新規の設備投資を必要とせず、高導電率、高強度、高耐屈曲性の銅合金導体を低コストで製造することができる。   Since the copper alloy conductor in the robot movable part wiring cable according to the present embodiment can be manufactured using existing or conventional continuous casting and rolling equipment or cold working equipment, no new equipment investment is required. A copper alloy conductor having high conductivity, high strength, and high bending resistance can be produced at low cost.

以上、本発明は、上述した実施の形態に限定されるものではなく、他にも種々のものが想定されることは言うまでもない。   As described above, the present invention is not limited to the above-described embodiment, and it goes without saying that various other things are assumed.

次に、本発明を実施例に基づいて説明するが、本発明はこの実施例に限定されるものではない。   Next, although this invention is demonstrated based on an Example, this invention is not limited to this Example.

(実施例1)
酸素を50重量ppm含む銅母材に、Sn及びInを合計0.4重量%(Snが0.2重量%、Inが0.2重量%)の割合で含む銅合金材を用いて荒引き線を作製し、その荒引き線に冷間伸線加工を施してφ0.08mmの極細素線を作製した。この極細素線を7本撚り合わせて導体を形成し、この導体の周囲に絶縁層を被覆して心線を作製した。この心線を3本撚り合わせてなる撚線の周囲に、順に銅箔糸編組シールド層、PVC層を被覆し、配線ケーブルを作製した。
Example 1
A rough drawn wire is prepared by using a copper base material containing 50 wt ppm of oxygen and a copper alloy material containing Sn and In in a proportion of 0.4 wt% (Sn is 0.2 wt%, In is 0.2 wt%). The drawn wire was cold-drawn to produce an ultrafine wire of φ0.08 mm. Seven conductors were twisted to form a conductor, and an insulating layer was coated around the conductor to produce a core wire. A copper cable braided shield layer and a PVC layer were sequentially coated around a stranded wire formed by twisting three core wires, thereby producing a wiring cable.

(実施例2)
酸素の含有量を300重量ppm、合計含有量を0.6重量%(Sn含有量が0.4重量%、In含有量が0.2重量%)とする以外は、実施例1と同様にして配線ケーブルを作製した。
(Example 2)
A wiring cable was produced in the same manner as in Example 1 except that the oxygen content was 300 ppm by weight and the total content was 0.6% by weight (Sn content was 0.4% by weight and In content was 0.2% by weight). .

(実施例3)
酸素の含有量を150重量ppm、合計含有量を0.7重量%(Sn含有量が0.4重量%、In含有量が0.3重量%)とする以外は、実施例1と同様にして配線ケーブルを作製した。
(Example 3)
A wiring cable was produced in the same manner as in Example 1 except that the oxygen content was 150 ppm by weight and the total content was 0.7% by weight (Sn content was 0.4% by weight and In content was 0.3% by weight). .

(比較例1)
酸素の含有量を50重量ppm、合計含有量を0.1重量%(Sn含有量が0.05重量%、In含有量が0.05重量%)とする以外は、実施例1と同様にして配線ケーブルを作製した。
(Comparative Example 1)
A wiring cable was produced in the same manner as in Example 1 except that the oxygen content was 50 ppm by weight and the total content was 0.1% by weight (Sn content was 0.05% by weight, In content was 0.05% by weight). .

(比較例2)
酸素の含有量を250重量ppm、合計含有量を0.15重量%(Sn含有量が0.1重量%、In含有量が0.05重量%)とする以外は、実施例1と同様にして配線ケーブルを作製した。
(Comparative Example 2)
A wiring cable was produced in the same manner as in Example 1 except that the oxygen content was 250 ppm by weight and the total content was 0.15 wt% (Sn content was 0.1 wt% and In content was 0.05 wt%). .

(比較例3)
酸素の含有量を200重量ppm、合計含有量を0.2重量%(Sn含有量が0.1重量%、In含有量が0.1重量%)とする以外は、実施例1と同様にして配線ケーブルを作製した。
(Comparative Example 3)
A wiring cable was produced in the same manner as in Example 1 except that the oxygen content was 200 ppm by weight and the total content was 0.2% by weight (Sn content was 0.1% by weight and In content was 0.1% by weight). .

(比較例4)
酸素の含有量を70重量ppm、合計含有量を1.1重量%(Sn含有量が0.6重量%、In含有量が0.5重量%)とする以外は、実施例1と同様にして配線ケーブルを作製した。
(Comparative Example 4)
A wiring cable was produced in the same manner as in Example 1 except that the oxygen content was 70 ppm by weight and the total content was 1.1% by weight (Sn content was 0.6% by weight and In content was 0.5% by weight). .

(比較例5)
酸素の含有量を100重量ppm、合計含有量を1.3重量%(Sn含有量が0.7重量%、In含有量が0.6重量%)とする以外は、実施例1と同様にして配線ケーブルを作製した。
(Comparative Example 5)
A wiring cable was produced in the same manner as in Example 1 except that the oxygen content was 100 ppm by weight and the total content was 1.3% by weight (Sn content was 0.7% by weight and In content was 0.6% by weight). .

(比較例6)
酸素の含有量を150重量ppm、合計含有量を1.5重量%(Sn含有量が0.7重量%、In含有量が0.8重量%)とする以外は、実施例1と同様にして配線ケーブルを作製した。
(Comparative Example 6)
A wiring cable was produced in the same manner as in Example 1 except that the oxygen content was 150 ppm by weight and the total content was 1.5% by weight (Sn content was 0.7% by weight and In content was 0.8% by weight). .

(比較例7)
酸素の含有量を5重量ppm、合計含有量を0.4重量%(Sn含有量が0.2重量%、In含有量が0.2重量%)とする以外は、実施例1と同様にして配線ケーブルを作製した。
(Comparative Example 7)
A wiring cable was produced in the same manner as in Example 1 except that the oxygen content was 5 ppm by weight and the total content was 0.4 wt% (Sn content was 0.2 wt%, In content was 0.2 wt%). .

(比較例8)
酸素の含有量を1500重量ppm、合計含有量を0.4重量%(Sn含有量が0.2重量%、In含有量が0.2重量%)とする以外は、実施例1と同様にして配線ケーブルを作製した。
(Comparative Example 8)
A wiring cable was produced in the same manner as in Example 1 except that the oxygen content was 1500 ppm by weight and the total content was 0.4% by weight (Sn content was 0.2% by weight and In content was 0.2% by weight). .

(比較例9)
酸素含有量が200重量ppmのタフピッチ銅からなる荒引き線を用いる以外は、実施例1と同様にして配線ケーブルを作製した。タフピッチ銅における合計含有量は0重量%とした(Sn及びInが無添加)。
(Comparative Example 9)
A wiring cable was produced in the same manner as in Example 1 except that a rough drawn wire made of tough pitch copper having an oxygen content of 200 ppm by weight was used. The total content in tough pitch copper was 0% by weight (Sn and In were not added).

実施例1〜3及び比較例1〜9の各配線ケーブルにおける導体組成(Sn及びInの各含有量、合計含有量、銅母材の酸素含有量)を表1に示す。また、各配線ケーブルの耐屈曲性、導体の導電性(導電率)、及び総合評価も併せて表1に示す。   Table 1 shows the conductor composition (the contents of Sn and In, the total contents, and the oxygen content of the copper base material) in each of the wiring cables of Examples 1 to 3 and Comparative Examples 1 to 9. Table 1 also shows the bending resistance of each wiring cable, the conductivity (conductivity) of the conductor, and the overall evaluation.

ここで、耐屈曲性は、比較例9の配線ケーブルの耐屈曲性を1.0とした時の相対値に基づいて評価を行い、相対値が1.5以上のものを良好(○)、1.5未満のものを不足(×)とした。また、導電性については、導電率が70%IACS以上のものを良好(○)、70%IACS未満のものを不足(×)とした。総合評価は、良好を○、不十分を×とした。   Here, the bending resistance is evaluated based on a relative value when the bending resistance of the wiring cable of Comparative Example 9 is set to 1.0. Was deficient (×). In addition, regarding conductivity, those having an electrical conductivity of 70% IACS or higher were judged as good (◯), and those with less than 70% IACS were judged as insufficient (x). In the comprehensive evaluation, “Good” was evaluated as “Good” and “Inadequate” as “Poor”.

Figure 2006307307
Figure 2006307307

表1に示すように、実施例1〜3の各配線ケーブルは、銅母材のSnとInの合計含有量が規定範囲(0.25〜1.0重量%)内で、かつ、酸素含有量も規定範囲(10〜1000重量ppm)内であるため、いずれも耐屈曲性及び導電率が良好であり、その結果、総合評価も良好であった。   As shown in Table 1, in each of the wiring cables of Examples 1 to 3, the total content of Sn and In of the copper base material is within the specified range (0.25 to 1.0% by weight), and the oxygen content is also within the specified range. Since it is within (10 to 1000 ppm by weight), the flex resistance and conductivity are all good, and as a result, the overall evaluation is also good.

これに対して、比較例1〜6,9の各配線ケーブルは、いずれも銅母材の酸素含有量が規定範囲内(50ppm,250ppm,200ppm,70ppm,100ppm,150ppm,200ppm)であった。しかしながら、比較例1〜3,9の各配線ケーブルは、いずれも合計含有量が規定範囲よりも少ない(0.1重量%,0.15重量%,0.2重量%,0重量%)ため、いずれも導電性は良好であるが、耐屈曲性が不足していた。逆に、比較例4〜6の各配線ケーブルは、合計含有量が規定範囲を超えている(1.1重量%,1.3重量%,1.5重量%)ため、いずれも耐屈曲性は良好であるが、導電率が著しく低下し、導電性が不足していた。その結果、比較例1〜6,9の各配線ケーブルは、いずれも総合評価が不十分であった。   On the other hand, in each of the wiring cables of Comparative Examples 1 to 6, 9, the oxygen content of the copper base material was within the specified range (50 ppm, 250 ppm, 200 ppm, 70 ppm, 100 ppm, 150 ppm, 200 ppm). However, each of the wiring cables of Comparative Examples 1 to 3 and 9 has a total content of less than the specified range (0.1 wt%, 0.15 wt%, 0.2 wt%, 0 wt%), so that the conductivity is all Although it was good, the bending resistance was insufficient. On the contrary, each of the wiring cables of Comparative Examples 4 to 6 has a total content exceeding the specified range (1.1% by weight, 1.3% by weight, 1.5% by weight). The conductivity was significantly lowered and the conductivity was insufficient. As a result, each of the wiring cables of Comparative Examples 1 to 6 and 9 was insufficient in overall evaluation.

また、比較例7,8の各配線ケーブルは、いずれも銅母材の合計含有量が規定範囲内(共に0.4重量%)であった。しかしながら、比較例7の配線ケーブルは、酸素含有量が5ppmと規定範囲よりも少ないため、微小酸化物をマトリックス中に十分に分散させることができず、強度を十分に向上させることができなかった。よって、導電性は良好であるが、耐屈曲性が不足していた。逆に、比較例8の配線ケーブルは、導電性及び耐屈曲性はいずれも良好であるが、酸素含有量が1500ppmと規定範囲を大幅に超えているため、マトリックス中に微小酸化物が過剰に晶出、分散されてしまい、導体表面に多くの傷が付いていた。   Further, in each of the wiring cables of Comparative Examples 7 and 8, the total content of the copper base material was within the specified range (both 0.4% by weight). However, since the wiring cable of Comparative Example 7 has an oxygen content of 5 ppm, which is less than the specified range, the fine oxide cannot be sufficiently dispersed in the matrix, and the strength cannot be sufficiently improved. . Therefore, the conductivity is good, but the bending resistance is insufficient. On the contrary, the wiring cable of Comparative Example 8 has both good conductivity and bending resistance, but the oxygen content is 1500 ppm, which is far beyond the specified range. Crystallization and dispersion occurred, and the conductor surface had many scratches.

本発明の好適一実施の形態に係るロボット可動部用配線ケーブルの横断面図である。It is a cross-sectional view of the robot movable part wiring cable according to a preferred embodiment of the present invention. 図1のケーブルの斜視図である。It is a perspective view of the cable of FIG.

符号の説明Explanation of symbols

10 ロボット可動部用配線ケーブル
11 ケーブル導体
10 Wiring cable for robot movable part 11 Cable conductor

Claims (6)

ケーブル導体の周りに絶縁層を有するロボット可動部用配線ケーブルにおいて、上記ケーブル導体を、酸素を0.001〜0.1重量%(10〜1000重量ppm)含む銅母材に、SnとInを合計0.25〜1.0重量%の割合で含有させた銅合金材で構成したことを特徴とするロボット可動部用配線ケーブル。   In the wiring cable for a moving part of a robot having an insulating layer around the cable conductor, the cable conductor is a copper base material containing 0.001 to 0.1% by weight (10 to 1000 ppm by weight) of oxygen and Sn and In are totaled to 0.25 to 1.0. A wiring cable for a moving part of a robot, characterized in that it is made of a copper alloy material contained in a proportion by weight. 上記Sn及びInの他に、P又はBを0.01重量%(100重量ppm)以下の割合で含有させた請求項1記載のロボット可動部用配線ケーブル。   The wiring cable for a robot movable part according to claim 1, wherein, in addition to Sn and In, P or B is contained at a ratio of 0.01 wt% (100 wtppm) or less. 上記Sn及びInの他に、P及びBを合計0.02重量%(200重量ppm)以下の割合で含有させた請求項1記載のロボット可動部用配線ケーブル。   The robot movable part wiring cable according to claim 1, wherein, in addition to Sn and In, P and B are contained in a total proportion of 0.02% by weight (200 ppm by weight) or less. 上記ケーブル導体が、結晶組織を構成する結晶粒の平均粒径が100μm以下であり、かつ、結晶組織のマトリックスに、上記Sn及びInの酸化物の80%以上が平均粒径1μm以下の微小酸化物として分散された請求項1から3いずれかに記載のロボット可動部用配線ケーブル。   In the cable conductor, the average grain size of the crystal grains constituting the crystal structure is 100 μm or less, and more than 80% of the Sn and In oxides in the crystal structure matrix have an average grain size of 1 μm or less. The wiring cable for a robot movable part according to any one of claims 1 to 3, which is dispersed as an object. 上記ケーブル導体が、素線径が0.08mm以下の極細素線を複数本撚り合わせてなる撚線を、少なくとも3本撚り合わせてなる請求項1から4いずれかに記載のロボット可動部用配線ケーブル。   The robot cable according to any one of claims 1 to 4, wherein the cable conductor is formed by twisting at least three stranded wires formed by twisting a plurality of ultrafine strands having a strand diameter of 0.08 mm or less. . 上記ケーブル導体の導電率が70%IACS以上である請求項1から5いずれかに記載のロボット可動部用配線ケーブル。
The robot movable part wiring cable according to any one of claims 1 to 5, wherein the cable conductor has a conductivity of 70% IACS or more.
JP2005134307A 2005-05-02 2005-05-02 Wiring cable for moving part in robot Pending JP2006307307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005134307A JP2006307307A (en) 2005-05-02 2005-05-02 Wiring cable for moving part in robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005134307A JP2006307307A (en) 2005-05-02 2005-05-02 Wiring cable for moving part in robot

Publications (1)

Publication Number Publication Date
JP2006307307A true JP2006307307A (en) 2006-11-09

Family

ID=37474520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005134307A Pending JP2006307307A (en) 2005-05-02 2005-05-02 Wiring cable for moving part in robot

Country Status (1)

Country Link
JP (1) JP2006307307A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112007001507T5 (en) 2006-06-30 2009-07-30 Mitsubishi Materials Corp. A composition for producing an electrode of a solar cell, a method of manufacturing the electrode, and a solar cell comprising the electrode obtainable by this method
JP2012087381A (en) * 2010-10-20 2012-05-10 Hitachi Cable Ltd Extrusion article and method for manufacturing the same
JP2012089369A (en) * 2010-10-20 2012-05-10 Hitachi Cable Ltd Cable for movable portion and method of manufacturing the same
JP2012089386A (en) * 2010-10-20 2012-05-10 Hitachi Cable Ltd Flexible flat cable and method for manufacturing the same
CN107791274A (en) * 2017-08-29 2018-03-13 宁波华源精特金属制品有限公司 A kind of Robot wrist and preparation method thereof
WO2019138748A1 (en) 2018-01-12 2019-07-18 古河電気工業株式会社 Movable cable
CN113223757A (en) * 2020-01-21 2021-08-06 日立金属株式会社 Twisted pair cable and multi-core cable
CN115464662A (en) * 2021-06-11 2022-12-13 北京精准医械科技有限公司 Robot system compatible with magnetic resonance

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112007001507T5 (en) 2006-06-30 2009-07-30 Mitsubishi Materials Corp. A composition for producing an electrode of a solar cell, a method of manufacturing the electrode, and a solar cell comprising the electrode obtainable by this method
JP2012087381A (en) * 2010-10-20 2012-05-10 Hitachi Cable Ltd Extrusion article and method for manufacturing the same
JP2012089369A (en) * 2010-10-20 2012-05-10 Hitachi Cable Ltd Cable for movable portion and method of manufacturing the same
JP2012089386A (en) * 2010-10-20 2012-05-10 Hitachi Cable Ltd Flexible flat cable and method for manufacturing the same
CN107791274A (en) * 2017-08-29 2018-03-13 宁波华源精特金属制品有限公司 A kind of Robot wrist and preparation method thereof
CN107791274B (en) * 2017-08-29 2020-09-18 宁波华源精特金属制品有限公司 Robot wrist body and preparation method thereof
WO2019138748A1 (en) 2018-01-12 2019-07-18 古河電気工業株式会社 Movable cable
KR20200092312A (en) 2018-01-12 2020-08-03 후루카와 덴키 고교 가부시키가이샤 Movable cable
US11410787B2 (en) 2018-01-12 2022-08-09 Furukawa Electric Co., Ltd. Movable cable
CN113223757A (en) * 2020-01-21 2021-08-06 日立金属株式会社 Twisted pair cable and multi-core cable
CN115464662A (en) * 2021-06-11 2022-12-13 北京精准医械科技有限公司 Robot system compatible with magnetic resonance

Similar Documents

Publication Publication Date Title
JP5147040B2 (en) Method for producing copper alloy conductor
JP4479510B2 (en) Copper alloy conductor, trolley wire / cable using the same, and method for producing copper alloy conductor
JP5607853B1 (en) Aluminum alloy wire, aluminum alloy stranded wire, covered electric wire, wire harness, and aluminum alloy wire manufacturing method
JP4311277B2 (en) Manufacturing method of extra fine copper alloy wire
JP4143086B2 (en) Extra-fine copper alloy wire, extra-fine copper alloy twisted wire, and manufacturing method thereof
JP5306591B2 (en) Wire conductor for wiring, wire for wiring, and manufacturing method thereof
JP2006193807A5 (en)
JP5380117B2 (en) Wire conductor manufacturing method, wire conductor, insulated wire, and wire harness
JP2006307307A (en) Wiring cable for moving part in robot
US8845829B2 (en) Cu alloy material, method of manufacturing Cu alloy conductor using the same, Cu alloy conductor obtained by the method, and cable or trolley wire using the Cu alloy conductor
JP4380441B2 (en) Trolley wire manufacturing method
JP2012094258A (en) Electric wire and cable
JP4497164B2 (en) Copper alloy conductor and cable using the same
JP4288844B2 (en) Extra fine copper alloy wire
JP2005126790A (en) Copper alloy material, method of producing copper alloy conductor using the same, copper alloy conductor obtained by the method, and cable using the same
KR101939555B1 (en) Copper alloy wire and copper alloy wire manufacturing method
JP2004137551A (en) Method for manufacturing copper alloy conductor for train wire, and copper alloy conductor for train wire
JP5376396B2 (en) Wire conductor for wire harness
JP3279374B2 (en) Copper alloy wire and method of manufacturing the same
JPH06240388A (en) Copper alloy wire and its production
JPH0689621A (en) Manufacture of high conductivity and high strength stranded wire
JP6853872B2 (en) Manufacturing method of aluminum alloy conductive wire, aluminum alloy conductive wire, electric wire and wire harness using this
JP2020050901A (en) Method for manufacturing aluminium alloy electric wire, aluminium alloy electric wire, and wire harness
JP6131542B2 (en) Copper alloy wire, copper alloy wire manufacturing method, stranded wire
JP2010095777A (en) Copper alloy conductor, trolley wire and cable using the same and method for manufacturing the copper alloy conductor