JPH0477060B2 - - Google Patents

Info

Publication number
JPH0477060B2
JPH0477060B2 JP1062697A JP6269789A JPH0477060B2 JP H0477060 B2 JPH0477060 B2 JP H0477060B2 JP 1062697 A JP1062697 A JP 1062697A JP 6269789 A JP6269789 A JP 6269789A JP H0477060 B2 JPH0477060 B2 JP H0477060B2
Authority
JP
Japan
Prior art keywords
wire
copper
copper alloy
semi
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1062697A
Other languages
Japanese (ja)
Other versions
JPH02243733A (en
Inventor
Akito Kurosaka
Haruo Tominaga
Kazuhiko Tomomatsu
Mamoru Aoyanagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP6269789A priority Critical patent/JPH02243733A/en
Publication of JPH02243733A publication Critical patent/JPH02243733A/en
Publication of JPH0477060B2 publication Critical patent/JPH0477060B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は銅細線又は磁気ヘツド用巻線芯線等と
して使用される銅合金線材に関し、特に、機械的
強度、導電性及び耐熱性が優れていると共に、伸
線加工時のダイスの摩耗が軽減され、線径が0.1
mm以下の極細線用として好適の銅合金線材に関す
る。 [従来の技術] 近時、電子機器の発達に伴い、銅細線及び磁気
ヘツド用巻線芯線(マグネツトワイヤ用芯線)の
分野においては、線径が0.1mm以下の極細銅線、
特に50μm以下の極細銅線に対する需要が急増し
ている。 ところで、銅線の極細線化に伴い、巻線時に断
線が発生しやすくなる。このため、極細銅線
(asdrawn)には通常の銅細線に要求される優れ
た導電性及び適度の軟かさ(伸び)に加え、破断
強度が高いことが要求されている。 従来、適度の伸びと高い破断強度を得るため
に、引抜後の極細銅線に半軟化処理を施してい
る。この場合、極細銅線の完全軟化温度が低い
と、後工程で極細銅線の周面にエナメルを焼き付
けるときに、極細銅線の組成が半軟化状態から完
全軟化状態に変化してしまう。従つて、所望の破
断強度を得ることができない。 このため、従来、極細銅線としてはZrを含有
した銅合金線材、Ag又はSb等を含有して銅合金
線材、Sn等を含有した銅合金線材及びCr銅等の
析出型銅合金線材等の完全軟化温度が高い銅合金
線材が使用されている。 [発明が解決しようとする課題] しかしながら、上述の銅合金線材には下記に示
す問題点がある。 先ず、Zrを含有した銅合金線材の場合は、完
全軟化温度が高過ぎるため、半軟化特性を得るた
めの焼鈍が困難である。 また、Ag又はSb等を含有した銅合金線材の場
合は、適度の完全軟化温度ではあるが、半軟化状
態が得られる焼鈍温度域が狭いため、半軟化処理
後の半軟化特性にバラツキが発生しやすい。 更に、Sn等を含有した銅合金の場合は、所望
の導電性(95%IACS以上)を得ることが困難で
ある。 更にまた、Cr銅等の析出銅合金の場合は、完
全軟化させて伸びやすいものに改質しても、破断
強度は高いものの、伸線加工に使用するダイスの
摩耗が激しく、また、所望の導電性を得ることが
困難である。 本発明はかかる問題点に鑑みてなされたもので
あつて、半軟化処理が容易であり、処理後の破断
強度及び伸び等の機械的特性が優れていると共
に、導電性が優れており、更に、伸線加工時ダイ
スの摩耗を純銅の場合と同程度に抑制できる銅合
金線材を提供することを目的とする。 [課題を解決するための手段] 本発明に係る銅合金線材は、Agを0.05乃至0.2
重量%、Zrを0.003乃至0.01重量%の割合で含有
し、残部がCu及び不可避不純物であり、酸素含
有量を10ppm以下に規制する。 [作用] 前述の如く、Ag含有銅合金からなる極細銅線
は破断強度及び伸び等の機械的強度が優れている
と共に優れた導電性を有している。しかし、この
極細銅線は半軟化処理が可能な焼鈍条件の範囲が
極めて狭い。即ち、焼鈍温度を一定すると適正な
焼鈍時間範囲が極めて狭く、また、焼鈍時間を一
定にすると適正な焼鈍温度範囲が極めて狭くな
る。このため、半軟化処理のための焼鈍工程で品
質のバラツキが発生しやすい。 一方、Zr含有銅合金からなる極細銅線は半軟
化処理の適正焼鈍条件範囲は広いという利点を有
する。しかし、前述の如く完全軟化温度が高過ぎ
るため、半軟化処理のための焼鈍温度を高くする
か又は焼鈍時間を長くする必要がある。 本願発明者等は上述のAg含有銅合金を基に、
その欠点を解消すべく、適正焼鈍条件範囲を広く
する効果を有するZrを添加し、その添加量が異
なる各種の銅合金材から線径が30μmの極細銅線
を形成して、焼鈍実験を繰り返し行つた。その結
果、特許請求の範囲に記載の含有量でAgを含有
する銅合金に、同様に特許請求の範囲に記載の含
有量のZrを添加して得た合金は、Ag含有銅合金
の優れた機械的特性及び導電性を損うことなく、
半軟化処理のための適正焼鈍条件範囲が広くなる
ことを見出した。本発明はこのようにAg及びZr
の両元素を所定の組成で添加することにより両元
素のもつ特性を補完し合うようにしたものであ
る。 次に、本発明に係る銅合金材の各成分の組成限
定理由について説明する。 Ag Agの含有量が0.05重量%未満の場合、完全軟
化温度の上昇効果を得ることができず、半軟化処
理後のエナメル焼付時に完全軟化状態になつてし
まうため、所望の破断強度を得ることができな
い。一方、Agの含有量が0.2重量%を超えると、
Agのコストが著しく上昇すると共に、極細銅線
の導電性が劣化する。このため、Agの含有量は
0.05乃至0.2重量%とする。 Zr Zrの含有量が0.003重量%未満の場合は、Zrの
添加効果が得られず、適正焼鈍条件範囲を拡大で
きない。一方、Zrの含有量が0.01重量%を超える
と、極細銅線の導電性が劣化すると共に、焼鈍温
度が高くなつて焼鈍が困難になる。これにより、
Zrの含有量は0.003乃至0.01重量%とする。 酸素 酸素の含有量が10ppmを超えると、合金線材中
のZr等と結合してZrO2等の酸化物が多くなり、
極細銅線に伸線加工する工程で断線が発生しやす
くなる。このため、酸素の含有量は10ppm以下に
規制する。 [実施例] 次に、本発明の実施例について説明する。 下記第1表に示す成分の銅合金を真空中又は大
気中で溶解し、直径が20mmの銅合金ロツドを得
た。
[Industrial Application Field] The present invention relates to a copper alloy wire used as a thin copper wire or a winding core wire for a magnetic head, etc., and in particular, it has excellent mechanical strength, electrical conductivity, and heat resistance, and is easy to use during wire drawing. Reduces die wear and reduces wire diameter to 0.1
The present invention relates to a copper alloy wire material suitable for ultrafine wires of mm or less. [Prior Art] Recently, with the development of electronic equipment, in the field of fine copper wire and winding core wire for magnetic heads (core wire for magnet wire), ultra-fine copper wire with a wire diameter of 0.1 mm or less,
In particular, demand for ultra-fine copper wire of 50 μm or less is rapidly increasing. By the way, as copper wires become thinner, wire breakage becomes more likely to occur during winding. For this reason, ultrafine copper wires (asdrawn) are required to have high breaking strength in addition to the excellent conductivity and appropriate softness (elongation) required of ordinary thin copper wires. Conventionally, in order to obtain appropriate elongation and high breaking strength, ultrafine copper wire has been subjected to semi-softening treatment after being drawn. In this case, if the complete softening temperature of the ultra-fine copper wire is low, the composition of the ultra-fine copper wire will change from a semi-softened state to a completely softened state when enamel is baked on the circumferential surface of the ultra-fine copper wire in a subsequent process. Therefore, the desired breaking strength cannot be obtained. For this reason, conventional ultrafine copper wires include copper alloy wires containing Zr, copper alloy wires containing Ag or Sb, copper alloy wires containing Sn, etc., and precipitated copper alloy wires such as Cr copper. Copper alloy wire with a high complete softening temperature is used. [Problems to be Solved by the Invention] However, the above-mentioned copper alloy wire has the following problems. First, in the case of a copper alloy wire containing Zr, the complete softening temperature is too high, so annealing to obtain semi-softening characteristics is difficult. In addition, in the case of copper alloy wire rods containing Ag or Sb, although the complete softening temperature is appropriate, the annealing temperature range in which a semi-softened state can be obtained is narrow, resulting in variations in semi-softening characteristics after semi-softening treatment. It's easy to do. Furthermore, in the case of a copper alloy containing Sn or the like, it is difficult to obtain the desired conductivity (95% IACS or higher). Furthermore, in the case of precipitated copper alloys such as Cr copper, even if they are completely softened and modified to make them easier to stretch, their breaking strength is high, but the dies used for wire drawing are subject to severe wear, and it is difficult to achieve the desired results. It is difficult to obtain conductivity. The present invention has been made in view of these problems, and it is easy to perform semi-softening treatment, has excellent mechanical properties such as breaking strength and elongation after treatment, and has excellent electrical conductivity. An object of the present invention is to provide a copper alloy wire material that can suppress die wear during wire drawing to the same extent as pure copper. [Means for Solving the Problems] The copper alloy wire according to the present invention contains 0.05 to 0.2 Ag.
It contains Zr at a ratio of 0.003 to 0.01% by weight, the remainder being Cu and unavoidable impurities, and the oxygen content is regulated to 10 ppm or less. [Function] As described above, the ultrafine copper wire made of an Ag-containing copper alloy has excellent mechanical strength such as breaking strength and elongation, and also has excellent electrical conductivity. However, the range of annealing conditions under which this ultra-fine copper wire can be semi-softened is extremely narrow. That is, when the annealing temperature is constant, the appropriate annealing time range is extremely narrow, and when the annealing time is constant, the appropriate annealing temperature range is extremely narrow. For this reason, variations in quality are likely to occur during the annealing process for semi-softening treatment. On the other hand, ultrafine copper wires made of Zr-containing copper alloys have the advantage that the range of appropriate annealing conditions for semi-softening treatment is wide. However, as mentioned above, the complete softening temperature is too high, so it is necessary to increase the annealing temperature or lengthen the annealing time for semi-softening treatment. The inventors of the present application, based on the above-mentioned Ag-containing copper alloy,
In order to eliminate this drawback, we added Zr, which has the effect of widening the range of appropriate annealing conditions, and repeated annealing experiments by forming ultra-fine copper wires with a wire diameter of 30 μm from various copper alloy materials with different addition amounts. I went. As a result, an alloy obtained by adding Zr in a content similarly stated in the claims to a copper alloy containing Ag in the content stated in the claims is superior to the Ag-containing copper alloy. without compromising mechanical properties and conductivity.
It has been found that the range of appropriate annealing conditions for semi-softening treatment is widened. The present invention thus deals with Ag and Zr.
By adding both elements in a predetermined composition, the characteristics of both elements complement each other. Next, the reasons for limiting the composition of each component of the copper alloy material according to the present invention will be explained. Ag If the Ag content is less than 0.05% by weight, the effect of increasing the complete softening temperature cannot be obtained and the enamel will be in a completely softened state when baked after semi-softening treatment, so it is difficult to obtain the desired breaking strength. I can't. On the other hand, when the Ag content exceeds 0.2% by weight,
The cost of Ag increases significantly and the conductivity of ultra-fine copper wire deteriorates. Therefore, the Ag content is
The amount should be 0.05 to 0.2% by weight. Zr If the Zr content is less than 0.003% by weight, the effect of Zr addition cannot be obtained and the range of appropriate annealing conditions cannot be expanded. On the other hand, when the Zr content exceeds 0.01% by weight, the conductivity of the ultrafine copper wire deteriorates and the annealing temperature becomes high, making annealing difficult. This results in
The content of Zr is 0.003 to 0.01% by weight. Oxygen When the oxygen content exceeds 10 ppm, it combines with Zr etc. in the alloy wire and oxides such as ZrO 2 increase.
Wire breakage is more likely to occur during the process of drawing ultra-fine copper wire. For this reason, the oxygen content is regulated to 10 ppm or less. [Example] Next, an example of the present invention will be described. A copper alloy having the components shown in Table 1 below was melted in vacuum or in the air to obtain a copper alloy rod having a diameter of 20 mm.

【表】 この実施例1乃至3及び比較例1乃至6のロツ
ドを伸線加工して、極細銅線を形成した。その結
果、実施例1乃至3及び比較例1乃至5の銅合金
ロツドは断線することなく、1Kgのロツドから線
径が30μmの極細銅線を連続して伸線加工するこ
とができた。一方、比較例6の銅合金ロツドの場
合は、1Kgのロツドを線径が50μmの極細銅線に
伸線加工するときに4回断線が発生した。 また、このときの実施例1乃至3及び比較例1
乃至6の銅合金線材の伸線時におけるダイスの摩
耗は鈍銅の場合と同程度であつた。 次に、線径が30μmである実施例1乃至3及び
比較例1乃至5極細銅線に対して繰り返し焼鈍実
験を行い、破断強度が32Kgf/cm2以上であり、伸
び率が10%以上という機械的強度が得られる焼鈍
温度を調べた。 但し、このとき炉長が90cmの加熱炉を使用し、
この加熱炉内に実施例1乃至3及び比較例1乃至
5の極細銅線を60m/分の線速で挿通させた。 この結果、前述の所望の機械的強度が得られる
焼鈍温度範囲を下記第2表に示す。また、この焼
鈍により得た半軟化状態の極細銅線の導電率を第
2表に併せて示す。
[Table] The rods of Examples 1 to 3 and Comparative Examples 1 to 6 were drawn to form ultrafine copper wires. As a result, the copper alloy rods of Examples 1 to 3 and Comparative Examples 1 to 5 could be continuously drawn into ultrafine copper wires with a wire diameter of 30 μm from 1 kg rods without breaking. On the other hand, in the case of the copper alloy rod of Comparative Example 6, wire breakage occurred four times when the 1 kg rod was drawn into an ultrafine copper wire with a wire diameter of 50 μm. In addition, Examples 1 to 3 and Comparative Example 1 at this time
The wear of the dies during drawing of the copper alloy wires Nos. 6 to 6 was comparable to that of the case of blunt copper. Next, repeated annealing experiments were conducted on the ultrafine copper wires of Examples 1 to 3 and Comparative Examples 1 to 5, each having a wire diameter of 30 μm, and the breaking strength was 32 Kgf/cm 2 or more and the elongation rate was 10% or more. The annealing temperature at which mechanical strength was obtained was investigated. However, at this time, use a heating furnace with a furnace length of 90 cm,
The ultrafine copper wires of Examples 1 to 3 and Comparative Examples 1 to 5 were inserted into this heating furnace at a wire speed of 60 m/min. As a result, the annealing temperature range in which the above-mentioned desired mechanical strength can be obtained is shown in Table 2 below. Further, the electrical conductivity of the semi-softened ultrafine copper wire obtained by this annealing is also shown in Table 2.

【表】 半軟化状態が得られる焼鈍温度は、低過ぎると
後工程において完全軟化状態となり、高過ぎると
処理が困難であるため、400乃至500℃の温度範囲
内で30℃以上の温度幅があることが好ましい。ま
た、導電率は95%IACS以上であることが好まし
い。実施例1乃至3はいずれもこの所望の条件を
満たしており、極めて優れた機械的特性及び電気
的特性を確実に得ることができた。 一方、本発明の特許請求の範囲から外れる比較
例1乃至6は、伸線加工性、適正焼鈍温度、処理
温度幅及び導電率のいずれか一項目以上が満足で
きるものではなかつた。 [発明の効果] 以上説明したように本発明に係る銅合金線材
は、0.05乃至0.2重量%以上のAg及び0.003乃至
0.01重量%のZrを含有し、酸素含有量を10ppm以
下に規制したから、半軟化処理を容易に行うこと
ができる。これにより、破断強度及び伸び等の機
械的強度並びに導電性が優れた極細銅線を得るこ
とができる。また、極細銅線ヲ伸線加工するため
のダイスの摩耗も極めて少ない。
[Table] If the annealing temperature to obtain a semi-softened state is too low, it will become completely softened in the subsequent process, and if it is too high, it will be difficult to process. It is preferable that there be. Further, the conductivity is preferably 95% IACS or higher. Examples 1 to 3 all satisfied these desired conditions, and were able to reliably obtain extremely excellent mechanical and electrical properties. On the other hand, Comparative Examples 1 to 6, which fall outside the scope of the claims of the present invention, were not satisfactory in any one or more of wire drawability, appropriate annealing temperature, processing temperature range, and electrical conductivity. [Effect of the invention] As explained above, the copper alloy wire according to the present invention contains 0.05 to 0.2% by weight or more of Ag and 0.003 to 0.2% by weight.
Since it contains 0.01% by weight of Zr and the oxygen content is regulated to 10 ppm or less, semi-softening treatment can be easily performed. As a result, an ultrafine copper wire having excellent mechanical strength such as breaking strength and elongation as well as electrical conductivity can be obtained. In addition, the wear of dies for drawing ultra-fine copper wire is extremely low.

Claims (1)

【特許請求の範囲】[Claims] 1 0.05乃至0.2重量%のAg及び0.003乃至0.01重
量%のZrを含有し、残部がCu及び不可避不純物
であり、酸素含有量を10ppm以下に規制した組成
を有することを特徴とする銅合金線材。
1. A copper alloy wire material having a composition containing 0.05 to 0.2% by weight of Ag and 0.003 to 0.01% by weight of Zr, the remainder being Cu and unavoidable impurities, and controlling the oxygen content to 10 ppm or less.
JP6269789A 1989-03-15 1989-03-15 Copper alloy wire rod Granted JPH02243733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6269789A JPH02243733A (en) 1989-03-15 1989-03-15 Copper alloy wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6269789A JPH02243733A (en) 1989-03-15 1989-03-15 Copper alloy wire rod

Publications (2)

Publication Number Publication Date
JPH02243733A JPH02243733A (en) 1990-09-27
JPH0477060B2 true JPH0477060B2 (en) 1992-12-07

Family

ID=13207747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6269789A Granted JPH02243733A (en) 1989-03-15 1989-03-15 Copper alloy wire rod

Country Status (1)

Country Link
JP (1) JPH02243733A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014007258A1 (en) 2012-07-02 2014-01-09 古河電気工業株式会社 Copper-alloy wire rod and manufacturing method therefor
WO2015034071A1 (en) 2013-09-06 2015-03-12 古河電気工業株式会社 Copper alloy wire material and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193233A (en) * 1983-04-15 1984-11-01 Toshiba Corp Copper alloy
JPS6120694A (en) * 1984-07-06 1986-01-29 Toshiba Corp Bonding wire
JPS61224213A (en) * 1985-03-28 1986-10-04 住友電気工業株式会社 Stabilizing material for superconducting composite body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193233A (en) * 1983-04-15 1984-11-01 Toshiba Corp Copper alloy
JPS6120694A (en) * 1984-07-06 1986-01-29 Toshiba Corp Bonding wire
JPS61224213A (en) * 1985-03-28 1986-10-04 住友電気工業株式会社 Stabilizing material for superconducting composite body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014007258A1 (en) 2012-07-02 2014-01-09 古河電気工業株式会社 Copper-alloy wire rod and manufacturing method therefor
WO2015034071A1 (en) 2013-09-06 2015-03-12 古河電気工業株式会社 Copper alloy wire material and method for producing same

Also Published As

Publication number Publication date
JPH02243733A (en) 1990-09-27

Similar Documents

Publication Publication Date Title
JP3941304B2 (en) Super fine copper alloy wire, method for producing the same, and electric wire using the same
JP2008001933A (en) Copper alloy material, copper alloy conductor and its production method, trolley wire for overhead contact wire, and cable
JPS633936B2 (en)
JP5652741B2 (en) Copper wire and method for producing the same
JP4497164B2 (en) Copper alloy conductor and cable using the same
JPS607701B2 (en) Manufacturing method of highly conductive heat-resistant aluminum alloy
JP3948451B2 (en) Copper alloy material, method for producing copper alloy conductor using the same, copper alloy conductor obtained by the method, and cable using the same
JP3856073B2 (en) Method for producing Cu-Ag alloy
JP2001234309A (en) Method for producing extra-fine copper alloy stranded wire
JPH0477060B2 (en)
JPS60215751A (en) Manufacture of high-strength aluminum alloy wire for electric conduction
JPH02267811A (en) Copper composite wire material for extra fine wire
JPH0644413B2 (en) Copper alloy composite wire for extra fine wire
JP3718036B2 (en) Extra fine copper wire and method for producing the same
JP6853872B2 (en) Manufacturing method of aluminum alloy conductive wire, aluminum alloy conductive wire, electric wire and wire harness using this
US3107998A (en) Copper-zirconium-arsenic alloys
JPH01180931A (en) Copper alloy wire
JPH04301046A (en) Heat resisting aluminum alloy material for electrification
JPH0416534B2 (en)
JP3858861B2 (en) Copper wire for overhead distribution lines and method for manufacturing the same
JP2000169918A (en) Extra-thin wire and its production
JPS5831051A (en) Tough pitch copper for electric wire with softening resistance
JPH02263939A (en) High conductivity and high heat-resistant copper alloy and its manufacture
JPS6017039A (en) Copper alloy with superior heat resistance, mechanical characteristic, workability and electric conductivity
JPH03230415A (en) Copper alloy wire rod

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees