WO2014007258A1 - Copper-alloy wire rod and manufacturing method therefor - Google Patents

Copper-alloy wire rod and manufacturing method therefor Download PDF

Info

Publication number
WO2014007258A1
WO2014007258A1 PCT/JP2013/068159 JP2013068159W WO2014007258A1 WO 2014007258 A1 WO2014007258 A1 WO 2014007258A1 JP 2013068159 W JP2013068159 W JP 2013068159W WO 2014007258 A1 WO2014007258 A1 WO 2014007258A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
heat treatment
mass
copper alloy
alloy wire
Prior art date
Application number
PCT/JP2013/068159
Other languages
French (fr)
Japanese (ja)
Inventor
司 ▲高▼澤
聡 勅使河原
俊郎 阿部
修司 富松
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to CN201380015359.XA priority Critical patent/CN104169448B/en
Priority to EP13812970.5A priority patent/EP2868757B1/en
Priority to KR1020147026033A priority patent/KR101719888B1/en
Priority to JP2013554697A priority patent/JP5840234B2/en
Publication of WO2014007258A1 publication Critical patent/WO2014007258A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper

Definitions

  • the present invention relates to a copper alloy wire and a method for manufacturing the same, and more particularly to an ultrafine copper alloy wire for a magnet wire and a method for manufacturing the same.
  • a coil for a microspeaker used in a mobile phone, a smartphone, or the like is manufactured by winding an extra fine wire (magnet wire) having a wire diameter of 0.1 mm or less into a coil shape.
  • This winding processing requires toughness (elongation) as the workability that allows the formation of turns, and conventionally pure copper having excellent toughness has been used.
  • pure copper is excellent in electrical conductivity, it has a low strength, so there is a problem that fatigue resistance accompanying coil vibration is low.
  • Patent Document 1 a technique using a high concentration Cu—Ag alloy containing 2 to 15 mass% of Ag that can increase the tensile strength without decreasing the conductivity is proposed.
  • a processed metal or alloy has an increased tensile strength and a reduced elongation.
  • a heat treatment at a certain temperature or higher is applied thereto, the elongation is restored and the strength is decreased.
  • Patent Document 2 a technique has been proposed in which the strength and elongation are compatible even with a low-concentration alloy by performing the heat treatment temperature below the softening temperature.
  • this method is difficult to control the heat treatment temperature and time.
  • Patent Document 3 A technique for performing a softening process has been proposed (Patent Document 3).
  • JP 2009-280860 A Japanese Patent No. 3944304 Japanese Examined Patent Publication No. 4-77060
  • the method of semi-softening by adding a small amount of Zr to a low concentration Cu—Ag alloy can easily achieve both elongation and strength, but is insufficient in terms of increasing the strength.
  • the shape of the magnet wire is not limited to a round wire, and the use of a square wire or a flat wire is also being studied. Also in the case of these square wires and flat wires, it is required that the wire be thin enough to correspond to the diameter of the round wire.
  • the present invention has been made in view of the problems in the prior art, and an object thereof is to provide a copper alloy wire excellent in strength, elongation, and conductivity, for example, suitable for a magnet wire, at low cost. .
  • the present inventors diligently studied various copper alloys and heat treatment conditions in order to develop copper alloy wires suitably used for magnet wires and the like that are superior in strength, elongation, and conductivity compared to conventional alloy wires. .
  • a Cu—Ag—Mg alloy wire is subjected to a semi-softening treatment, the elongation and strength are excellent, and the characteristics can be easily realized by heat treatment.
  • the present inventors have thus obtained a copper alloy wire that is excellent in strength, conductivity, and elongation, for example, suitable for use as a magnet wire, by adding Ag and Mg to Cu in a predetermined composition and semi-softening treatment. I found out that The present invention has been completed based on this finding.
  • the copper alloy wire according to (1) which has a wire diameter of 0.1 mm or less (in the case of a round wire) or a wire thickness (in the case of a square wire or a flat wire).
  • the copper alloy wire according to Item The copper alloy wire according to Item.
  • the semi-softened state means a state in which the elongation of the copper alloy wire satisfies 7% to 30%.
  • Semi-softening treatment refers to heat treatment that gives the semi-softening state.
  • the semi-softening temperature range refers to a heat treatment temperature in a range that gives a state where the copper alloy wire after the heat treatment satisfies elongation of 7% to 30%.
  • the softening temperature refers to a heat treatment temperature that gives a state in which the tensile strength does not decrease any more in the copper alloy wire after the heat treatment. Referring to FIG. 3, the heat treatment temperature at which the slope becomes 0 (zero) in the tensile strength reduction curve is the softening temperature.
  • the heat treatment temperature range refers to a temperature range in which a desired strength is maintained after the heat treatment in the semi-softening temperature range. However, when subjected to heat treatment at a high temperature exceeding this softening temperature (a temperature on the right side of the softening temperature in FIG. 3), the tensile strength is further reduced due to overheating.
  • the softened state means a state in which the elongation of the copper alloy wire has been recovered by exceeding 30%.
  • the softening treatment refers to a heat treatment at a high temperature that gives the softened state.
  • the wire means a square wire or a flat wire in addition to the round wire.
  • the wire of the present invention refers to a round wire, a square wire, and a flat wire unless otherwise specified.
  • the size of the wire is a round wire (the cross section in the width direction (TD) is circular), the wire diameter ⁇ (the diameter of the circle in the cross section) of the round wire, and a square (the cross section in the width direction is a square).
  • the thickness t and width w of the square wire (both are the same as the length of one side of the square of the cross section), and if it is a flat wire (the cross section in the width direction is rectangular), the thickness of the flat wire It refers to the length t (the length of the short side of the rectangle of the cross section) and the width w (the length of the long side of the rectangle of the cross section).
  • the Cu—Ag—Mg alloy wire of the present invention is suitable as, for example, a copper alloy wire for a magnet wire because it is excellent in tensile strength, elongation, and conductivity.
  • the performance can be exhibited with a small amount of Ag compared to a conventional Cu-Ag alloy wire with a large amount of Ag, it can be manufactured at a lower cost.
  • the method for producing a Cu—Ag—Mg alloy wire of the present invention since the temperature range for performing the semi-softening heat treatment is wide, a stable Cu—Ag—Mg alloy having excellent performance and less variation in performance. A wire can be manufactured.
  • FIG. 5 is a graph showing a comparison between the content of Ag and the tensile strength at the time of semi-softening for a comparative Cu—Ag alloy wire containing no Mg and a Cu—Ag—Mg alloy wire of the present invention containing Mg. is there.
  • Cu-1% Ag-0.1% Mg with a wire diameter of 0.1 mm (where% means mass%, the same applies hereinafter) Changes in strength and elongation when a round wire is heat-treated at various temperatures
  • FIG. 5 is a graph showing a comparison between the content of Ag and the tensile strength at the time of semi-softening for a comparative Cu—Ag alloy wire containing no Mg and a Cu—Ag—Mg alloy wire of the present invention containing Mg. is there.
  • Cu-1% Ag-0.1% Mg with a wire diameter of 0.1 mm (where% means mass%, the same applies hereinafter) Changes in strength and elongation when a round wire is heat-
  • Ag is 0.5% by mass or more (preferably 0.5 to 4.0% by mass), and Mg is 0.05% by mass or more (preferably 0.05 to 0.5% by mass). And the remainder consists of Cu and inevitable impurities.
  • the Ag content is 0.5% by mass or more, preferably 0.5 to 4.0% by mass, and more preferably 0.5 to 2.0% by mass. When Ag is too small, sufficient strength cannot be obtained. Moreover, when there is too much Ag content, while electroconductivity will fall, cost will become high too much.
  • the heat treatment temperature becomes too high, and the heat treatment becomes difficult.
  • Mg the tensile strength at the time of semi-softening is improved, and an ultrafine magnet wire excellent in strength can be obtained.
  • the semi-softening temperature range is expanded, and the heat treatment temperature range for obtaining the characteristics required for the ultrafine magnet wire (tensile strength of 350 MPa or more and elongation of 7% or more) is widened, and stable production becomes possible.
  • the Mg content is 0.05% by mass or more, preferably 0.05 to 0.5% by mass, and more preferably 0.05 to 0.3% by mass. When the Mg content is too small, the effect of increasing the strength during semi-softening and expanding the semi-softening temperature range is insufficient. Moreover, when there is too much Mg content, electroconductivity will fall remarkably.
  • Ag is 0.5% by mass or more (preferably 0.5 to 4.0% by mass), and Mg is 0.05% by mass or more (preferably 0.05 to 0.5%).
  • Mass%), Sn, Zn, In, Ni, Co, Zr and Cr at least one selected from the group consisting of 0.05 to 0.3 mass%, with the balance being Cu and inevitable impurities
  • An alloy composition consisting of
  • At least one element selected from the group consisting of Sn, Zn, In, Ni, Co, Zr, and Cr is an optional additive element in the copper alloy according to the present invention.
  • the content of these elements is 0.05 to 0.3%, preferably 0.05 to 0.2% as each content. When this content is too small as each content, the effect of the strength increase by addition of these elements is hardly expected. Further, if the content is too large, the decrease in conductivity is too large, so that it is not suitable as a copper alloy wire such as a magnet wire.
  • These elements are solid solution strengthening type or precipitation strengthening type elements, respectively, and by adding these elements to Cu, the strength can be increased without significantly reducing the conductivity. This addition increases the strength of the copper alloy wire itself and improves the bending fatigue resistance.
  • the reason why the tensile strength of the copper alloy wire of the present invention is set to 350 MPa or more is that when it is less than 350 MPa, the strength when the diameter is reduced by wire drawing is insufficient, and the bending fatigue resistance is inferior. Further, the reason why the elongation of the copper alloy wire of the present invention is set to 7% or more is that if it is less than 7%, the workability is inferior and problems such as breakage occur when the coil is formed.
  • the manufacturing method of the copper alloy wire of the present invention will be described.
  • the shape of the copper alloy wire of the present invention is not limited to a round wire, and may be a square wire or a flat wire, which will be described below.
  • the method for producing a copper alloy round wire according to the present invention includes, for example, casting, cold working (cold drawing), intermediate heat treatment (intermediate annealing), and final heat treatment (final annealing) in this order.
  • intermediate annealing may be omitted.
  • the first and second cold working Intermediate annealing may be performed during this period.
  • the heat treatment method for performing the intermediate annealing is roughly classified into a batch type and a continuous type. Batch-type heat treatment is inferior in productivity because it takes processing time and cost, but it is easy to control characteristics because temperature and holding time are easy to control.
  • continuous heat treatment is excellent in productivity because it can be performed continuously with the wire drawing process, but since heat treatment needs to be performed in an extremely short time, the heat treatment temperature and time are accurately controlled to stabilize the characteristics. It needs to be realized.
  • a heat treatment method suitable for the purpose may be selected.
  • the heat treatment it is preferable to perform the heat treatment at 300 to 600 ° C. for 30 minutes to 2 hours in a heat treatment furnace in an inert atmosphere such as nitrogen or argon.
  • the continuous heat treatment include an electric heating method and an in-atmosphere heat treatment method.
  • the electric heating method is a method in which an electrode ring is provided in the middle of the wire drawing process, a current is passed through the copper alloy wire passing between the electrode wheels, and heat treatment is performed by Joule heat generated in the copper alloy wire itself.
  • a heating container is provided in the middle of wire drawing, and the copper alloy wire is passed through the heating container atmosphere heated to a predetermined temperature (for example, 300 to 600 ° C.) to perform heat treatment.
  • the heat treatment is preferably performed in an inert gas atmosphere in order to prevent oxidation of the copper alloy wire.
  • the heat treatment time since the heat treatment time is short, it is preferable to perform the heat treatment at 300 to 700 ° C. for 0.1 to 5 seconds.
  • the heating temperature and heating holding time in the finish annealing are appropriately adjusted so that the elongation of the copper alloy wire obtained by the final heat treatment is 7 to 30%, preferably 10 to 20%.
  • the final heat treatment is performed at a higher temperature when the heat treatment time is short, and at a lower temperature when the heat treatment time is long.
  • the heat treatment time since the heat treatment time is short, it is preferable to perform the heat treatment at 300 to 700 ° C. for 0.1 to 5 seconds.
  • the heat treatment time can be long, and it is preferable to perform the heat treatment at 300 to 600 ° C. for 30 to 120 minutes.
  • the manufacturing method of the copper alloy rectangular wire of the present invention is the same as the manufacturing method of the round wire, except that it has a rectangular wire processing step.
  • the method for producing a flat wire according to the present invention includes, for example, casting, cold working (cold drawing), flat wire working, and final heat treatment (final annealing) in this order. If necessary, intermediate annealing (intermediate heat treatment) may be inserted between the cold working and the rectangular wire working, as in the method for producing the round wire.
  • the conditions of processing and heat treatment in each step of casting, cold working, intermediate annealing, and final annealing, and preferred conditions thereof are the same as in the method of manufacturing the round wire.
  • the rolling reduction and the total rolling reduction in each pass during rolling or the like are not particularly limited, and may be set as appropriate so that a desired rectangular wire size can be obtained.
  • the rolling reduction is the rate of change in the thickness in the rolling direction when flattening is performed, and the rolling reduction when the thickness before rolling is t 1 and the thickness of the line after rolling is t 2. (%) Is represented by ⁇ 1- (t 2 / t 1 ) ⁇ ⁇ 100.
  • the total rolling reduction can be 10 to 90%, and the rolling reduction in each pass can be 10 to 50%.
  • the cross-sectional shape of the rectangular wire is not particularly limited, but the aspect ratio is usually 1 to 50, preferably 1 to 20, and more preferably 2 to 10.
  • the aspect ratio (expressed as w / t below) is the ratio of the short side to the long side of the rectangle forming the cross-section (TD) cross section of the flat wire.
  • the thickness t of the flat wire is equal to the short side of the rectangle forming the width direction (TD) cross section
  • the width w of the flat wire is the length of the rectangle forming the cross section of the width direction (TD). Equal to edge.
  • the thickness of the flat wire is usually 0.1 mm or less, preferably 0.07 mm or less, more preferably 0.05 mm or less.
  • the width of the flat wire is usually 1 mm or less, preferably 0.7 mm or less, more preferably 0.5 mm or less.
  • winding a flat wire in the thickness direction means winding the flat wire in a coil shape with the width w of the flat wire being the width of the coil.
  • Each of the processing rates in the first and second cold wire drawing processes varies depending on the target wire diameter or wire thickness and copper alloy composition, as well as two heat treatment conditions of intermediate annealing and finish annealing.
  • the processing rate in the first cold working (drawing) is normally set to 70.0 to 99.9%
  • the processing rate in the second cold working (drawing) Is 70.0 to 99.9%.
  • a plate material or strip material having a predetermined alloy composition can be manufactured, and these plates or strips can be slit to obtain a rectangular wire material or a rectangular wire material having a desired line width.
  • this manufacturing process for example, there is a method comprising casting, hot rolling, cold rolling, finish annealing, and slit processing. If necessary, intermediate annealing may be performed during the cold rolling. In some cases, the slit processing may be performed before the finish annealing.
  • FIG. 3 shows changes in strength (tensile strength) and elongation when a Cu-1% Ag-0.1% Mg round wire having a diameter of 0.1 mm is heat-treated at various temperatures. If the heat treatment is performed at a temperature lower than the heat treatment possible temperature range, the strength is high, but the elongation does not sufficiently occur, so that a problem occurs when the coil is formed. In addition, when the heat treatment is performed at a temperature higher than the heat treatment possible temperature range, the elongation is increased, but the strength is greatly reduced, so that a problem occurs at the time of forming the coil, or the fatigue resistance is lowered and the life of the coil is reduced. .
  • wire diameter or wire thickness is 0.1 mm or less, More preferably, it is 0.07 mm or less, More preferably, it is 0.05 mm or less.
  • the lower limit of the wire diameter or the wire thickness is not particularly limited, but is usually 0.01 mm or more in the current technology.
  • the use of the copper alloy wire of the present invention is not particularly limited, and examples thereof include a magnet wire that is an extra fine wire used for a speaker coil used in a mobile phone, a smartphone, and the like.
  • the cast material contains 0.5 to 4.0% by mass of Ag, 0.05 to 0.5% by mass of Mg, and the balance of the example of the present invention having the alloy composition shown in Table 1 consisting of Cu and inevitable impurities.
  • a Cu—Ag—Mg alloy and a copper alloy of a comparative example having the alloy composition shown in Table 1 were each cast into a rough drawn wire having a diameter of 10 mm by a horizontal continuous casting method. This rough drawn wire is subjected to cold working (drawing) (total working rate of the following first and second cold workings: 99.984%), intermediate annealing and finish annealing, and a round wire sample having a diameter of 40 ⁇ m is obtained. Produced.
  • the heat treatment of intermediate annealing and finish annealing was performed in any of three patterns selected from batch annealing, current annealing, and running annealing, and each was performed in a nitrogen atmosphere.
  • the intermediate annealing was performed only once between the first cold working (drawing) and the second cold working (drawing).
  • Table 1 there are some that have been subjected to intermediate annealing and those that have not.
  • the balance between elongation and strength varies greatly depending on the heat treatment conditions. Therefore, the heat treatment conditions were adjusted so that the elongation was relatively close to 13 to 18%.
  • Examples of other round wires include at least one selected from the group consisting of optional additive elements Sn, Zn, In, Ni, Co, Zr and Cr in addition to Ag and Mg, with the balance being Cu and inevitable impurities
  • a Cu—Ag—Mg— (Sn, Zn, In, Ni, Co, Zr or Cr) alloy of the present invention having the alloy composition shown in Table 2 and a comparative example having the alloy composition shown in Table 2 Were produced in the same manner as described above.
  • Examples of rectangular wires, comparative examples In the same manner as the round wire, except that after roughing the wire (drawing), or after intermediate annealing, if it is performed, after performing rectangular wire processing, finish annealing, A flat wire sample was prepared. As shown in Table 3, there are those that have been subjected to intermediate annealing and those that have not. Moreover, even in the appropriate heat treatment temperature range defined in the present invention, the balance between elongation and strength varies greatly depending on the heat treatment conditions. Therefore, the heat treatment conditions were adjusted so that the elongation was relatively close to 13 to 18%. As shown in Table 3, the flat wire processing is performed by cold rolling the wire diameter ⁇ (mm) of the round wire before the processing into a flat wire having a size of width w (mm) ⁇ thickness t (mm). processed.
  • CP ⁇ 20 (Tensile strength of copper alloy wire-350) (MPa) / Ag content (mass%)
  • CP ⁇ 20 is “ ⁇ (excellent)”
  • 10 ⁇ CP ⁇ 20 is “ ⁇ (good)”
  • 0 ⁇ CP ⁇ 10 is “ ⁇ (slightly inferior)”
  • CP ⁇ 0 is “ ⁇ (inferior)”. ) ”.
  • the coil life was evaluated by measuring the number of bending fatigue fractures using the test method shown in FIG.
  • a copper alloy wire sample having a wire diameter ⁇ or a wire thickness t of 0.04 mm (40 ⁇ m) is sandwiched between dies as a sample, and a 20 g weight (W )) And applied a load.
  • W 20 g weight
  • the sample was set so as to be sandwiched between dies in the wire thickness direction (ND).
  • the upper end of the sample was fixed with a connector. In this state, the sample was bent 90 degrees to the left and right, repeatedly bent at a rate of 100 times per minute, and the number of bending until breaking was measured for each sample.
  • the number of bendings was counted as one round trip of 1 ⁇ 2 ⁇ 3 in the figure, and the interval between the two dies was set to 1 mm so as not to press the copper alloy wire sample during the test.
  • the determination of breakage was made when the weight suspended at the lower end of the sample dropped.
  • the bending radius (R) was set to 1 mm, 4 mm, or 6 mm depending on the curvature of the die. “ ⁇ (excellent)” if the number of breaks is 201 times or more, “ ⁇ (good)” if it is 151 to 200 times, “ ⁇ (somewhat inferior)” if it is 101 to 150 times, and less than 100 times Was evaluated as “ ⁇ (poor)”.
  • those having a tensile strength of less than 350 MPa or an elongation of less than 7% are “x (poor)”
  • those having a tensile strength of 350 MPa to less than 370 MPa and an elongation of 7% or more are “ ⁇ (good)”
  • tensile strength of 370 MPa or more and elongation are “ ⁇ (excellent)”.
  • Those having a conductivity of 7% or more and a conductivity of 75% IACS or more were evaluated as “ ⁇ (excellent) ”.
  • Comprehensive evaluation is based on the above cost performance, coil life and coil performance, and it is " ⁇ (excellent)", then " ⁇ (good)”, “ ⁇ ” (Slightly inferior) ”and“ ⁇ (poor) ”.
  • the copper alloy wires of the present invention containing Mg have higher strength than the copper alloy wires of the comparative examples not containing Mg. .
  • the copper alloy wire of the present invention is superior in balance between conductivity and strength to the conventional Cu—Ag alloy wire. From these, it can be seen that the copper alloy wire of the present invention can exhibit the same performance as the high concentration Cu—Ag alloy wire of the comparative example with a smaller Ag content, that is, at a lower cost. Focusing on the heat treatment temperature, the Cu—Ag—Mg alloy wire manufactured according to the manufacturing method of the present invention is approximately 50 ° C.
  • Comparative Examples 1 to 5 those in which at least one of the Ag content and the Mg content is insufficient as in Comparative Examples 1 to 5 cannot obtain sufficient strength even by semi-softening heat treatment, and are used as ultrafine magnet wires. Can not do it. Further, as can be seen from Comparative Examples 6 to 15, when the Mg content is less than 0.05% by mass, the effect of improving the semi-softening property by adding Mg can hardly be obtained.
  • Comparative Example 7 Comparative Examples 9 to 12, and Comparative Examples 14 to 15 are comparative examples of alloy compositions that imitate Patent Document 1, respectively.
  • Comparative Example 16 is a comparative example of the alloy composition imitating Patent Document 3 and Comparative Example 17 is that of Patent Document 2.
  • Comparative Example 18 was a comparative example in which neither the intermediate annealing nor the finish annealing was performed, but the elongation was insufficient and the result was that it could not be used as an ultrafine magnet wire.
  • an alloy of Cu—Ag—Mg is obtained by adding at least one element selected from the group consisting of Sn, Zn, In, Ni, Co, Zr and Cr to the optional additive element Sn to Cu—Ag—Mg alloy. It can be seen that when the corresponding compositions are compared (for example, Example 101 for Example 2, Example 102 for Example 3, etc.), the tensile strength is improved. Although not shown in the table, when the content of Sn among the optional additive elements is too large, the conductivity is inferior.
  • Table 4 shows magnet wire formability when the wire diameters of the present invention and the comparative Cu-Ag-Mg alloy wire (round wire) and the comparative Cu-Ag alloy wire (round wire) are variously changed.
  • the results of the impact on “ ⁇ (excellent)” indicates that no defects such as disconnection occurred when the copper alloy wire of each test material was formed into a coil, “ ⁇ (good)” indicates that disconnection occurred very rarely, and often The case where the disconnection occurred was evaluated as “ ⁇ (slightly inferior)”, and the case where the coil could not be formed was evaluated as “ ⁇ (inferior)”.
  • the Cu—Ag—Mg alloy wire according to the present invention has a wire diameter larger than that of the Cu—Ag alloy wire of the comparative example. It can be seen that even if it is smaller, the coil can be formed without disconnection. In the case of a rectangular wire, the same result as in the case of the round wire can be obtained.
  • Table 5 shows a Cu-Ag-Mg alloy wire according to the present invention and, as a comparison, a Cu-Ag alloy wire and a Cu-Ag-Mg alloy wire (both with insufficient Mg content) at various temperatures by a batch method.
  • the result of having measured the heat treatment temperature range in which the heat treatment was performed for 30 minutes and the tensile strength of 350 MPa or more and the elongation of 7% or more could be achieved at the same time is shown. It can be seen that the Cu—Ag—Mg alloy wire according to the present invention has a heat treatment temperature range equal to or wider than that of the conventional high concentration Cu—Ag alloy wire for comparison, although the Ag concentration is low.
  • the obtained Cu—Ag—Mg alloy wire can be easily subjected to a semi-softening treatment that can achieve both desired elongation and strength under a wider heat treatment temperature range. It can be seen that a stable product can be manufactured.

Abstract

This copper-alloy wire rod and a manufacturing method therefor make it possible to inexpensively provide a copper-alloy wire rod that exhibits excellent strength, elongation, and conductivity and is suitable for use, for example, as a magnet wire. Said copper-alloy wire rod contains, by mass, at least 0.5% silver and at least 0.05% magnesium, with the remainder consisting of copper and unavoidable impurities, and exhibits a tensile strength of at least 350 MPa and an elongation of at least 7%.

Description

銅合金線材及びその製造方法Copper alloy wire and method for producing the same
 本発明は、銅合金線材及びその製造方法に関し、特にマグネットワイヤ用極細銅合金線材及びその製造方法に関するものである。 The present invention relates to a copper alloy wire and a method for manufacturing the same, and more particularly to an ultrafine copper alloy wire for a magnet wire and a method for manufacturing the same.
 電子機器の発達に伴い電子部品の小型化が進み、線径が0.1mm以下の極細銅合金線(丸線)に対する需要が増えてきている。例えば、携帯電話、スマートフォンなどに使用されているマイクロスピーカ用コイルは線径が0.1mm以下の極細線(マグネットワイヤ)をコイル状に巻きつけ加工して製造されている。 With the development of electronic equipment, miniaturization of electronic components has progressed, and the demand for ultrafine copper alloy wires (round wires) with a wire diameter of 0.1 mm or less is increasing. For example, a coil for a microspeaker used in a mobile phone, a smartphone, or the like is manufactured by winding an extra fine wire (magnet wire) having a wire diameter of 0.1 mm or less into a coil shape.
 この巻線加工にはターン形成が可能なだけの加工性として靭性(伸び)が必要であり、従来靭性に優れる純銅が用いられてきた。しかし、純銅は導電性に優れるが強度が低いため、コイル振動に伴う耐疲労耐性が低いという問題がある。 This winding processing requires toughness (elongation) as the workability that allows the formation of turns, and conventionally pure copper having excellent toughness has been used. However, although pure copper is excellent in electrical conductivity, it has a low strength, so there is a problem that fatigue resistance accompanying coil vibration is low.
 この問題を解決するため、導電率を殆ど下げずに引張強さを上げることのできるAg 2~15質量%を含有する高濃度のCu-Ag合金を使用する技術が提案されている(特許文献1)。また、一般的に加工を加えた金属や合金は引張強さが上昇して伸びが低下するが、これに一定温度以上の熱処理を加えることで再び伸びが回復して強度が低下する。そこで、この熱処理の温度を軟化温度以下で行うことにより低濃度の合金でも強度と伸びを両立させる技術が提案されている(特許文献2)。しかし、この方法は熱処理温度、時間のコントロールが難しい。この点については、0.05~0.2質量%のAgと0.003~0.01質量%のZrを銅中に添加することで軟化温度範囲を広くし、強度と伸びを両立させる半軟化処理を行う技術が提案されている(特許文献3)。 In order to solve this problem, a technique using a high concentration Cu—Ag alloy containing 2 to 15 mass% of Ag that can increase the tensile strength without decreasing the conductivity is proposed (Patent Document). 1). In general, a processed metal or alloy has an increased tensile strength and a reduced elongation. However, when a heat treatment at a certain temperature or higher is applied thereto, the elongation is restored and the strength is decreased. In view of this, a technique has been proposed in which the strength and elongation are compatible even with a low-concentration alloy by performing the heat treatment temperature below the softening temperature (Patent Document 2). However, this method is difficult to control the heat treatment temperature and time. Regarding this point, 0.05 to 0.2 mass% Ag and 0.003 to 0.01 mass% Zr are added to copper to widen the softening temperature range and to achieve both strength and elongation. A technique for performing a softening process has been proposed (Patent Document 3).
特開2009-280860号公報JP 2009-280860 A 特許3941304号公報Japanese Patent No. 3944304 特公平4-77060号公報Japanese Examined Patent Publication No. 4-77060
 しかし、マグネットワイヤの長寿命化の要求や更なる電子部品の小型化によるマグネットワイヤの極細化(線径0.07mm以下)の要求にともない、さらなる銅合金線材の高強度化が求められてきている。特許文献1に記載されているように、より強度を上げるためAg含有量を増やすと、その反面、導電性が低下してしまう。さらに、Agは耐熱性を向上させる元素であり、熱処理が困難となる。さらに、Agは非常に高価であるためコストの著しい上昇を招いてしまう。また、特許文献2に記載されているような一般の固溶型の高導電性合金は半軟化熱処理を実現させる温度範囲が狭いため安定した性能を実現させることが困難である。さらに、低濃度のCu-Ag合金に微量のZrを添加して半軟化処理をする方法(特許文献3)は容易に伸びと強度を両立させることができるが、高強度化の点では不十分であった。
 また、近時、マグネットワイヤの形状としては、丸線に限らず、角線や平角線の採用も検討されている。これらの角線や平角線の場合にも、前記丸線の線径に相当する程度に厚さが薄い線材とすることが要求されている。
However, with the demand for longer magnet wire life and further miniaturization of the magnet wire (wire diameter 0.07 mm or less) due to further downsizing of electronic components, further enhancement of the strength of the copper alloy wire has been demanded. Yes. As described in Patent Document 1, when the Ag content is increased in order to increase the strength, on the other hand, the conductivity is lowered. Furthermore, Ag is an element that improves heat resistance, and heat treatment becomes difficult. Furthermore, since Ag is very expensive, the cost is significantly increased. Moreover, since the general solid solution type highly conductive alloy as described in Patent Document 2 has a narrow temperature range for realizing the semi-softening heat treatment, it is difficult to realize stable performance. Further, the method of semi-softening by adding a small amount of Zr to a low concentration Cu—Ag alloy (Patent Document 3) can easily achieve both elongation and strength, but is insufficient in terms of increasing the strength. Met.
Recently, the shape of the magnet wire is not limited to a round wire, and the use of a square wire or a flat wire is also being studied. Also in the case of these square wires and flat wires, it is required that the wire be thin enough to correspond to the diameter of the round wire.
 本発明はかかる従来の技術における問題点に鑑みてなされたものであり、強度、伸び、導電性に優れた、例えばマグネットワイヤ用として好適な、銅合金線材を安価で提供することを目的とする。 The present invention has been made in view of the problems in the prior art, and an object thereof is to provide a copper alloy wire excellent in strength, elongation, and conductivity, for example, suitable for a magnet wire, at low cost. .
 本発明者らは、従来の合金線材よりも強度、伸び、導電性に優れたマグネットワイヤ等に好適に用いられる銅合金線材を開発すべく種々の銅合金、その熱処理条件について鋭意検討を行った。その結果、Cu-Ag-Mg合金線材を半軟化処理したとき伸びと強度に大変優れ、かつ熱処理による特性の実現が容易であることを見出した。本発明者らは、このようにCuにAgおよびMgを所定の組成で添加し半軟化処理することで強度、導電性、伸びに優れた、例えばマグネットワイヤ用として好適な、銅合金線材を安価に得られることを見出した。本発明は、この知見に基づいて完成されるに至ったものである。 The present inventors diligently studied various copper alloys and heat treatment conditions in order to develop copper alloy wires suitably used for magnet wires and the like that are superior in strength, elongation, and conductivity compared to conventional alloy wires. . As a result, it has been found that when a Cu—Ag—Mg alloy wire is subjected to a semi-softening treatment, the elongation and strength are excellent, and the characteristics can be easily realized by heat treatment. The present inventors have thus obtained a copper alloy wire that is excellent in strength, conductivity, and elongation, for example, suitable for use as a magnet wire, by adding Ag and Mg to Cu in a predetermined composition and semi-softening treatment. I found out that The present invention has been completed based on this finding.
 すなわち、本発明によれば以下の手段が提供される。
(1)0.5質量%以上のAg及び0.05質量%以上のMgを含有し、残部がCu及び不可避不純物であり、引張強さが350MPa以上、伸びが7%以上である銅合金線材。
(2)0.1mm以下の線径(丸線材の場合)または線材の厚さ(角線材や平角線材の場合)を有する(1)項に記載の銅合金線材。
(3)Agの含有量が0.5質量%以上4.0質量%以下であり、Mgの含有量が0.05質量%以上0.5質量%以下である前記(1)または(2)項に記載の銅合金線材。
(4)Agの含有量が0.5質量%以上2.0質量%以下であり、Mgの含有量が0.05質量%以上0.3質量%以下である前記(1)または(2)項に記載の銅合金線材。
(5)さらに、Sn、Zn、In、Ni、Co、Zr及びCrからなる群から選ばれる少なくとも1種を各々の含有量として0.05~0.3質量%含有する前記(1)~(4)のいずれか1項に記載の銅合金線材。
(6)線径または線材の厚さが50μm以下である前記(1)~(5)のいずれか1項に記載の銅合金線材。
(7)0.5質量%以上のAg及び0.05質量%以上のMgを含有し、残部がCu及び不可避不純物である銅合金の荒引線に冷間加工を施して、線径または線材の厚さが0.1mm以下の線材を形成する線材加工工程と、
 前記線材を半軟化状態にする最終熱処理工程と
を有する銅合金線材の製造方法。
(8)前記最終熱処理工程での熱処理温度が、300℃以上600℃以下である前記(7)項に記載の銅合金線材の製造方法。
(9)前記線材加工工程において、複数の冷間加工の間に中間熱処理を行う前記(7)または(8)項に記載の銅合金線材の製造方法。
That is, according to the present invention, the following means are provided.
(1) A copper alloy wire containing 0.5% by mass or more of Ag and 0.05% by mass or more of Mg, the balance being Cu and inevitable impurities, a tensile strength of 350 MPa or more, and an elongation of 7% or more. .
(2) The copper alloy wire according to (1), which has a wire diameter of 0.1 mm or less (in the case of a round wire) or a wire thickness (in the case of a square wire or a flat wire).
(3) Said (1) or (2) whose Ag content is 0.5 mass% or more and 4.0 mass% or less, and whose Mg content is 0.05 mass% or more and 0.5 mass% or less The copper alloy wire according to Item.
(4) Said (1) or (2) whose Ag content is 0.5 mass% or more and 2.0 mass% or less, and whose Mg content is 0.05 mass% or more and 0.3 mass% or less The copper alloy wire according to Item.
(5) The above (1) to (1) further containing 0.05 to 0.3% by mass of at least one selected from the group consisting of Sn, Zn, In, Ni, Co, Zr and Cr. The copper alloy wire according to any one of 4).
(6) The copper alloy wire according to any one of (1) to (5), wherein the wire diameter or wire thickness is 50 μm or less.
(7) Cold work is performed on rough drawn wire of a copper alloy containing 0.5% by mass or more of Ag and 0.05% by mass or more of Mg, and the balance is Cu and inevitable impurities. A wire processing step for forming a wire having a thickness of 0.1 mm or less;
A method for producing a copper alloy wire, comprising a final heat treatment step for bringing the wire into a semi-softened state.
(8) The method for producing a copper alloy wire according to (7), wherein a heat treatment temperature in the final heat treatment step is 300 ° C. or higher and 600 ° C. or lower.
(9) The method for producing a copper alloy wire according to (7) or (8), wherein in the wire rod processing step, intermediate heat treatment is performed between a plurality of cold working operations.
 ここで、本明細書において、半軟化状態とは銅合金線材の伸びが7%~30%を満たす状態をいう。また、半軟化処理とは、前記半軟化状態を与える熱処理をいう。また、半軟化温度範囲とは、熱処理後の銅合金線材が伸び7%~30%を満たす状態を与える範囲の熱処理温度をいう。これに対して、軟化温度とは、熱処理後の銅合金線材において引張強さがそれ以上低下しなくなる状態を与える熱処理温度をいう。図3を参照すれば、引張強さの低下曲線において傾きが0(零)になる熱処理温度が軟化温度である。熱処理温度範囲とは、半軟化温度範囲中で、かつ、熱処理後に所望の強度を保持する温度範囲をいう。但し、この軟化温度を超える高温(図3で軟化温度より右側の温度)で熱処理に付すと、過熱により引張強さはさらに若干小さくなる。
 一方、軟化状態とは銅合金線材の伸びが30%を超えて回復された状態をいう。また、軟化処理とは、前記軟化状態を与える高温での熱処理をいう。
 本発明において、線材とは、丸線の他に、角線や平角線を含む意味である。従って、本発明の線材とは、特に断らない限り、丸線、角線、平角線を合わせていう。ここで、線材のサイズとは、丸線(幅方向(TD)の断面が円形)であれば丸線材の線径φ(前記断面の円の直径)を、角線(幅方向の断面が正方形)であれば角線材の厚さt及び幅w(いずれも、前記断面の正方形の一辺の長さで同一である)を、平角線(幅方向の断面が長方形)であれば平角線材の厚さt(前記断面の長方形の短辺の長さ)及び幅w(前記断面の長方形の長辺の長さ)をいう。
Here, in the present specification, the semi-softened state means a state in which the elongation of the copper alloy wire satisfies 7% to 30%. Semi-softening treatment refers to heat treatment that gives the semi-softening state. The semi-softening temperature range refers to a heat treatment temperature in a range that gives a state where the copper alloy wire after the heat treatment satisfies elongation of 7% to 30%. On the other hand, the softening temperature refers to a heat treatment temperature that gives a state in which the tensile strength does not decrease any more in the copper alloy wire after the heat treatment. Referring to FIG. 3, the heat treatment temperature at which the slope becomes 0 (zero) in the tensile strength reduction curve is the softening temperature. The heat treatment temperature range refers to a temperature range in which a desired strength is maintained after the heat treatment in the semi-softening temperature range. However, when subjected to heat treatment at a high temperature exceeding this softening temperature (a temperature on the right side of the softening temperature in FIG. 3), the tensile strength is further reduced due to overheating.
On the other hand, the softened state means a state in which the elongation of the copper alloy wire has been recovered by exceeding 30%. The softening treatment refers to a heat treatment at a high temperature that gives the softened state.
In the present invention, the wire means a square wire or a flat wire in addition to the round wire. Accordingly, the wire of the present invention refers to a round wire, a square wire, and a flat wire unless otherwise specified. Here, the size of the wire is a round wire (the cross section in the width direction (TD) is circular), the wire diameter φ (the diameter of the circle in the cross section) of the round wire, and a square (the cross section in the width direction is a square). ) Is the thickness t and width w of the square wire (both are the same as the length of one side of the square of the cross section), and if it is a flat wire (the cross section in the width direction is rectangular), the thickness of the flat wire It refers to the length t (the length of the short side of the rectangle of the cross section) and the width w (the length of the long side of the rectangle of the cross section).
 本発明のCu-Ag-Mg合金線材は、引張強度、伸び、導電性に優れていることから、例えばマグネットワイヤ用の銅合金線材として好適である。また、従来のAg含有量の多いCu-Ag合金線材と比較しAg含有量が少量で性能を発揮することができるため、より低コストで製造することができる。さらに、本発明のCu-Ag-Mg合金線材の製造方法によれば、半軟化熱処理を行う温度範囲が広いため、前記性能に優れるとともに、その性能のバラつきの少ない安定したCu-Ag-Mg合金線材を製造することができる。 The Cu—Ag—Mg alloy wire of the present invention is suitable as, for example, a copper alloy wire for a magnet wire because it is excellent in tensile strength, elongation, and conductivity. In addition, since the performance can be exhibited with a small amount of Ag compared to a conventional Cu-Ag alloy wire with a large amount of Ag, it can be manufactured at a lower cost. Furthermore, according to the method for producing a Cu—Ag—Mg alloy wire of the present invention, since the temperature range for performing the semi-softening heat treatment is wide, a stable Cu—Ag—Mg alloy having excellent performance and less variation in performance. A wire can be manufactured.
実施例で行った屈曲疲労破断回数(繰返破断回数)を測定する試験に用いた装置を模式的に示す正面図である。It is a front view which shows typically the apparatus used for the test which measures the bending fatigue fracture number (number of repeated fractures) performed in the Example. Mgを含まない比較用のCu-Ag合金線材と、Mgを含む本発明のCu-Ag-Mg合金線材について、Ag含有量と半軟化時の引張強さの関係を対比して示した図である。FIG. 5 is a graph showing a comparison between the content of Ag and the tensile strength at the time of semi-softening for a comparative Cu—Ag alloy wire containing no Mg and a Cu—Ag—Mg alloy wire of the present invention containing Mg. is there. 線径が0.1mmのCu-1%Ag-0.1%Mg(ここで、%は質量%を意味する。以下同様。)丸線材を様々な温度で熱処理したときの強度、伸びの変化を示した図である。Cu-1% Ag-0.1% Mg with a wire diameter of 0.1 mm (where% means mass%, the same applies hereinafter) Changes in strength and elongation when a round wire is heat-treated at various temperatures FIG.
 以下、本発明をより詳細に説明する。
[合金組成]
 本発明の銅合金線材は、Agを0.5質量%以上(好ましくは0.5~4.0質量%)、Mgを0.05質量%以上(好ましくは0.05~0.5質量%)含有し、残部はCuと不可避不純物からなる。
 CuにAgを添加することで導電性を殆ど低下させずに強度を上げることができる。また、耐熱性を向上させることで半軟化熱処理を行いやすくすることができる。Ag含有量は、0.5質量%以上とし、好ましくは0.5~4.0質量%、さらに好ましくは0.5~2.0質量%である。Agが少なすぎる場合、十分な強度を得ることができない。また、Ag含有量が多すぎると導電性が低下するとともにコストが高くなりすぎる。さらに、熱処理温度が高くなりすぎ、熱処理が困難となる。
 Mgを添加することにより半軟化時の引張強さが向上し強度に優れた極細マグネットワイヤを得ることができる。さらに半軟化温度範囲が拡大して極細マグネットワイヤに必要な特性(引張強さ350MPa以上、伸び7%以上)を得るための熱処理温度範囲が広くなり、安定した製造が可能となる。Mg含有量は、0.05質量%以上とし、好ましくは0.05~0.5質量%、さらに好ましくは0.05~0.3質量%である。Mg含有量が少なすぎる場合、半軟化時の強度上昇、半軟化温度範囲拡大の効果が不十分である。また、Mg含有量が多すぎると導電性が著しく低下してしまう。
Hereinafter, the present invention will be described in more detail.
[Alloy composition]
In the copper alloy wire of the present invention, Ag is 0.5% by mass or more (preferably 0.5 to 4.0% by mass), and Mg is 0.05% by mass or more (preferably 0.05 to 0.5% by mass). And the remainder consists of Cu and inevitable impurities.
By adding Ag to Cu, the strength can be increased with almost no decrease in conductivity. Moreover, semi-softening heat treatment can be facilitated by improving heat resistance. The Ag content is 0.5% by mass or more, preferably 0.5 to 4.0% by mass, and more preferably 0.5 to 2.0% by mass. When Ag is too small, sufficient strength cannot be obtained. Moreover, when there is too much Ag content, while electroconductivity will fall, cost will become high too much. Furthermore, the heat treatment temperature becomes too high, and the heat treatment becomes difficult.
By adding Mg, the tensile strength at the time of semi-softening is improved, and an ultrafine magnet wire excellent in strength can be obtained. Further, the semi-softening temperature range is expanded, and the heat treatment temperature range for obtaining the characteristics required for the ultrafine magnet wire (tensile strength of 350 MPa or more and elongation of 7% or more) is widened, and stable production becomes possible. The Mg content is 0.05% by mass or more, preferably 0.05 to 0.5% by mass, and more preferably 0.05 to 0.3% by mass. When the Mg content is too small, the effect of increasing the strength during semi-softening and expanding the semi-softening temperature range is insufficient. Moreover, when there is too much Mg content, electroconductivity will fall remarkably.
 また、本発明の銅合金線材は、Agを0.5質量%以上(好ましくは0.5~4.0質量%)、Mgを0.05質量%以上(好ましくは0.05~0.5質量%)、Sn、Zn、In、Ni、Co、Zr及びCrからなる群から選ばれる少なくとも1種を各々の含有量として0.05~0.3質量%含有し、残部がCuと不可避不純物からなる合金組成であってもよい。 In the copper alloy wire of the present invention, Ag is 0.5% by mass or more (preferably 0.5 to 4.0% by mass), and Mg is 0.05% by mass or more (preferably 0.05 to 0.5%). (Mass%), Sn, Zn, In, Ni, Co, Zr and Cr at least one selected from the group consisting of 0.05 to 0.3 mass%, with the balance being Cu and inevitable impurities An alloy composition consisting of
 Sn、Zn、In、Ni、Co、Zr及びCrからなる群から選ばれる少なくとも1種の元素は、本発明に係る銅合金における任意添加元素である。本発明において、これらの元素の含有量は各々の含有量として0.05~0.3%とし、好ましくは0.05~0.2%である。この含有量が各々の含有量として少なすぎる場合、これらの元素添加による強度上昇の効果が殆ど見込めない。また、この含有量が多すぎると導電率の低下が大きすぎるため、マグネットワイヤ等の銅合金線材として不適である。
 これらの元素は、それぞれ固溶強化型あるいは析出強化型の元素であり、Cuにこれらの元素を添加することで導電率を大幅に低下させることなく強度を上げることができる。この添加によって、銅合金線材自体の強度が上がり、耐屈曲疲労特性が向上する。
At least one element selected from the group consisting of Sn, Zn, In, Ni, Co, Zr, and Cr is an optional additive element in the copper alloy according to the present invention. In the present invention, the content of these elements is 0.05 to 0.3%, preferably 0.05 to 0.2% as each content. When this content is too small as each content, the effect of the strength increase by addition of these elements is hardly expected. Further, if the content is too large, the decrease in conductivity is too large, so that it is not suitable as a copper alloy wire such as a magnet wire.
These elements are solid solution strengthening type or precipitation strengthening type elements, respectively, and by adding these elements to Cu, the strength can be increased without significantly reducing the conductivity. This addition increases the strength of the copper alloy wire itself and improves the bending fatigue resistance.
[物性]
 本発明の銅合金線材の引張強さを350MPa以上としたのは、350MPa未満では伸線加工により細径化したときの強度が足りず、耐屈曲疲労特性に劣るためである。
 また、本発明の銅合金線材の伸びを7%以上としたのは、7%未満では加工性に劣り、コイルを成形する際に破断等の不具合が生じてしまうためである。
[Physical properties]
The reason why the tensile strength of the copper alloy wire of the present invention is set to 350 MPa or more is that when it is less than 350 MPa, the strength when the diameter is reduced by wire drawing is insufficient, and the bending fatigue resistance is inferior.
Further, the reason why the elongation of the copper alloy wire of the present invention is set to 7% or more is that if it is less than 7%, the workability is inferior and problems such as breakage occur when the coil is formed.
[製造方法]
 本発明の銅合金線材の製造方法について説明する。
 前記のとおり、本発明の銅合金線材の形状は、丸線に限定されず、角線や平角線としても良いので、これらについて以下に説明する。
[Production method]
The manufacturing method of the copper alloy wire of the present invention will be described.
As described above, the shape of the copper alloy wire of the present invention is not limited to a round wire, and may be a square wire or a flat wire, which will be described below.
[丸線材の製造方法]
 まず、本発明の銅合金丸線材の製造方法は、例えば、鋳造、冷間加工(冷間伸線)、中間熱処理(中間焼鈍)、最終熱処理(最終焼鈍)の各工程をこの順に施してなる。ここで、中間焼鈍に付さなくても所望の物性を有する銅合金線材が得られる場合には、中間焼鈍は省略してもよい。
[Manufacturing method of round wire]
First, the method for producing a copper alloy round wire according to the present invention includes, for example, casting, cold working (cold drawing), intermediate heat treatment (intermediate annealing), and final heat treatment (final annealing) in this order. . Here, when a copper alloy wire having desired physical properties can be obtained without being subjected to intermediate annealing, intermediate annealing may be omitted.
[鋳造]
 Cu、Ag、Mgの原料を、鋳造機内部(内壁)が好ましくは炭素製の、例えば黒鉛坩堝にて、溶解し鋳造する。溶解するときの鋳造機内部の雰囲気は、酸化物の生成を防止するために真空もしくは窒素やアルゴンなどの不活性ガス雰囲気とすることが好ましい。鋳造方法には特に制限はなく、例えば横型連続鋳造機やUpcast法などを用いることができる。これらの連続鋳造伸線法によって、鋳造から伸線の工程を連続して行って、直径が通常φ8~23mm程度の荒引線を鋳造する。
 連続鋳造伸線法によらない場合には、鋳造によって得たビレット(鋳塊)を伸線加工に付すことによって、同様に直径が通常φ8~23mm程度の荒引線を得る。
[casting]
Cu, Ag, and Mg raw materials are melted and cast in, for example, a graphite crucible, preferably made of carbon inside the casting machine (inner wall). The atmosphere inside the casting machine when melting is preferably a vacuum or an inert gas atmosphere such as nitrogen or argon in order to prevent the formation of oxides. There is no restriction | limiting in particular in a casting method, For example, a horizontal type continuous casting machine, an Upcast method, etc. can be used. By these continuous casting wire drawing methods, the steps from casting to wire drawing are continuously performed to cast a rough drawn wire having a diameter of usually about φ8 to 23 mm.
When not using the continuous casting wire drawing method, a billet (ingot) obtained by casting is subjected to wire drawing to obtain a rough drawing wire having a diameter of usually about φ8 to 23 mm.
[冷間加工、中間焼鈍](線材加工工程)
 この荒引線に冷間加工を施すことによって、直径φ0.1mm以下の細径線に加工する。この冷間加工としては、冷間伸線することが好ましい。
 この冷間加工(伸線)での加工率は、目標線径と銅合金組成、さらには熱処理条件に応じて変わり、特に制限するものではないが、通常この加工率を70.0~99.9%とする。
[Cold working, intermediate annealing] (wire processing process)
By cold-working this rough drawn wire, it is processed into a thin wire having a diameter of 0.1 mm or less. As this cold working, it is preferable to cold-draw.
The processing rate in this cold working (drawing) varies depending on the target wire diameter, the copper alloy composition, and further the heat treatment conditions, and is not particularly limited, but this processing rate is usually 70.0 to 99.99. 9%.
 この冷間加工が、第一の冷間加工(伸線)と第二の冷間加工(伸線)の複数の冷間加工工程を有している場合、第一と第二の冷間加工の間に中間焼鈍(中間熱処理)を行っても良い。
 中間焼鈍を行う熱処理方法としては大きく分けてバッチ式と連続式が挙げられる。バッチ式の熱処理は処理時間、コストがかかるため生産性に劣るが、温度や保持時間の制御が行い易いため特性の制御を行い易い。これに対し連続式の熱処理は伸線加工工程と連続で熱処理が行えるため生産性に優れるが、極短時間で熱処理を行う必要があるため熱処理温度と時間を正確に制御し特性を安定して実現させることが必要となる。それぞれの熱処理方法は以上のように長所と短所があるため、目的に沿った熱処理方法を選択すればよい。
 バッチ式の場合は、例えば窒素やアルゴンなどの不活性雰囲気の熱処理炉で、300~600℃で30分~2時間熱処理を行うことが好ましい。
 連続式の熱処理としては、通電加熱式と雰囲気内走間熱処理式が挙げられる。通電加熱式は、伸線工程の途中に電極輪を設け、電極輪間を通過する銅合金線材に電流を流し、銅合金線材自身に発生するジュール熱によって熱処理を行う方法である。雰囲気内走間熱処理式は、伸線の途中に加熱用容器を設け、所定の温度(例えば、300~600℃)に加熱された加熱用容器雰囲気の中に銅合金線材を通過させ熱処理を行う方法である。いずれの熱処理方法も銅合金線材の酸化を防止するために不活性ガス雰囲気下で熱処理を行うことが好ましい。連続式の場合は熱処理時間が短いため、300~700℃で0.1~5秒の熱処理を行うことが好ましい。
 複数の冷間加工の間で中間焼鈍を行うことで、得られる線材の伸びを回復させることによって加工性を向上させることができる。また、中間焼鈍によりAg析出が促進され、得られる線材の強度、導電性をより高くすることができる。
When this cold working has a plurality of cold working steps of the first cold working (drawing) and the second cold working (drawing), the first and second cold working Intermediate annealing (intermediate heat treatment) may be performed during this period.
The heat treatment method for performing the intermediate annealing is roughly classified into a batch type and a continuous type. Batch-type heat treatment is inferior in productivity because it takes processing time and cost, but it is easy to control characteristics because temperature and holding time are easy to control. In contrast, continuous heat treatment is excellent in productivity because it can be performed continuously with the wire drawing process, but since heat treatment needs to be performed in an extremely short time, the heat treatment temperature and time are accurately controlled to stabilize the characteristics. It needs to be realized. Since each heat treatment method has advantages and disadvantages as described above, a heat treatment method suitable for the purpose may be selected.
In the case of the batch type, it is preferable to perform the heat treatment at 300 to 600 ° C. for 30 minutes to 2 hours in a heat treatment furnace in an inert atmosphere such as nitrogen or argon.
Examples of the continuous heat treatment include an electric heating method and an in-atmosphere heat treatment method. The electric heating method is a method in which an electrode ring is provided in the middle of the wire drawing process, a current is passed through the copper alloy wire passing between the electrode wheels, and heat treatment is performed by Joule heat generated in the copper alloy wire itself. In the in-atmosphere heat treatment method, a heating container is provided in the middle of wire drawing, and the copper alloy wire is passed through the heating container atmosphere heated to a predetermined temperature (for example, 300 to 600 ° C.) to perform heat treatment. Is the method. In any of the heat treatment methods, the heat treatment is preferably performed in an inert gas atmosphere in order to prevent oxidation of the copper alloy wire. In the case of the continuous type, since the heat treatment time is short, it is preferable to perform the heat treatment at 300 to 700 ° C. for 0.1 to 5 seconds.
By performing the intermediate annealing between a plurality of cold workings, the workability can be improved by recovering the elongation of the obtained wire. Moreover, Ag precipitation is accelerated | stimulated by intermediate annealing and the intensity | strength and electroconductivity of the wire obtained can be made higher.
[仕上焼鈍(最終焼鈍ともいう)](最終熱処理工程)
 上記工程により所望のサイズ(線径)まで加工した銅合金線材に最終熱処理として仕上焼鈍を施す。
 仕上焼鈍を行う熱処理方法としては前記中間焼鈍と同様に、バッチ式と連続式が挙げられる。
 この仕上焼鈍の際に、銅合金線材の組成や加工率によっては、最終熱処理後の線材における引張強さ、伸びが若干変化することがある。そこで、本発明においては、この最終熱処理によって得られる銅合金線材の伸びが7~30%、好ましくは10~20%となるように、仕上焼鈍における加熱温度、加熱保持時間を適宜調整する。
 最終熱処理は、熱処理時間が短い場合はより高温で行い、熱処理時間が長い場合はより低温で行う。連続式の場合は熱処理時間が短いため、300~700℃で0.1~5秒の熱処理を行うことが好ましい。また、バッチ式の場合は熱処理時間を長く取ることができ、300~600℃で30~120分間の熱処理を行うことが好ましい。
[Finish annealing (also called final annealing)] (final heat treatment process)
The copper alloy wire processed to the desired size (wire diameter) by the above process is subjected to finish annealing as the final heat treatment.
As a heat treatment method for performing the finish annealing, a batch method and a continuous method can be used as in the case of the intermediate annealing.
During the finish annealing, depending on the composition and processing rate of the copper alloy wire, the tensile strength and elongation of the wire after the final heat treatment may change slightly. Therefore, in the present invention, the heating temperature and heating holding time in the finish annealing are appropriately adjusted so that the elongation of the copper alloy wire obtained by the final heat treatment is 7 to 30%, preferably 10 to 20%.
The final heat treatment is performed at a higher temperature when the heat treatment time is short, and at a lower temperature when the heat treatment time is long. In the case of the continuous type, since the heat treatment time is short, it is preferable to perform the heat treatment at 300 to 700 ° C. for 0.1 to 5 seconds. In the case of the batch method, the heat treatment time can be long, and it is preferable to perform the heat treatment at 300 to 600 ° C. for 30 to 120 minutes.
[平角線材の製造方法]
 次に、本発明の銅合金平角線材の製造方法は、平角線加工工程を有する以外は、前記丸線材の製造方法と同様である。具体的には、本発明の平角線材の製造方法は、例えば、鋳造、冷間加工(冷間伸線)、平角線加工、最終熱処理(最終焼鈍)の各工程をこの順に施してなる。必要に応じて、冷間加工と平角線加工の間に中間焼鈍(中間熱処理)を入れても良いことも、前記丸線材の製造方法と同様である。鋳造、冷間加工、中間焼鈍、最終焼鈍の各工程の加工・熱処理の各条件とそれらの好ましい条件も丸線材の製造方法と同様である。
[Manufacturing method of flat wire]
Next, the manufacturing method of the copper alloy rectangular wire of the present invention is the same as the manufacturing method of the round wire, except that it has a rectangular wire processing step. Specifically, the method for producing a flat wire according to the present invention includes, for example, casting, cold working (cold drawing), flat wire working, and final heat treatment (final annealing) in this order. If necessary, intermediate annealing (intermediate heat treatment) may be inserted between the cold working and the rectangular wire working, as in the method for producing the round wire. The conditions of processing and heat treatment in each step of casting, cold working, intermediate annealing, and final annealing, and preferred conditions thereof are the same as in the method of manufacturing the round wire.
[平角線加工]
 平角線加工の前までは、丸線材の製造と同様にして、鋳造で得た鋳塊に冷間加工(伸線加工)を施して丸線形状の荒引線を得て、必要により中間焼鈍を施す。平角線加工としては、こうして得た丸線(荒引線)に、圧延機による冷間圧延、カセットローラーダイスによる冷間圧延、プレス、引抜加工等を施す。この平角線加工により、幅方向(TD)断面形状を長方形に加工して、平角線の形状とする。この圧延等は、通常1~5回のパスによって行う。圧延等の際の各パスでの圧下率と合計圧下率は、特に制限されるものではなく、所望の平角線サイズが得られるように適宜設定すればよい。ここで、圧下率とは平角加工を行った時の圧延方向の厚さの変化率であり、圧延前の厚さをt、圧延後の線の厚さをtとした時、圧下率(%)は{1-(t/t)}×100で表される。例えば、この合計圧下率は、10~90%とし、各パスでの圧下率は、10~50%とすることができる。ここで、本発明において、平角線の断面形状には特に制限はないが、アスペクト比は通常1~50、好ましくは1~20、さらに好ましくは2~10である。アスペクト比(下記のw/tとして表わされる)とは、平角線の幅方向(TD)断面を形成する長方形の長辺に対する短辺の比である。平角線のサイズとしては、平角線材の厚さtは前記幅方向(TD)断面を形成する長方形の短辺に等しく、平角線材の幅wは前記幅方向(TD)断面を形成する長方形の長辺に等しい。平角線材の厚さは、通常0.1mm以下、好ましくは0.07mm以下、より好ましくは0.05mm以下である。平角線材の幅は、通常1mm以下、好ましくは0.7mm以下、さらに好ましくは0.5mm以下である。
 この平角線材を厚さ方向に巻線加工する場合、本発明による丸線材と同様に、高い引張強度、伸び、導電率を発現することができる。ここで、平角線材を厚さ方向に巻線加工するとは、平角線材の幅wをコイルの幅として、平角線をコイル状に巻きつけることをいう。
[Square wire processing]
Before flat wire processing, in the same way as the manufacture of round wire, cold work (drawing) is performed on the ingot obtained by casting to obtain a round wire-shaped rough drawing wire, and if necessary, intermediate annealing is performed. Apply. As the flat wire processing, the round wire (rough drawing wire) thus obtained is subjected to cold rolling with a rolling mill, cold rolling with a cassette roller die, pressing, drawing processing, and the like. By this flat wire processing, the cross-sectional shape in the width direction (TD) is processed into a rectangular shape to obtain a flat wire shape. This rolling or the like is usually performed by 1 to 5 passes. The rolling reduction and the total rolling reduction in each pass during rolling or the like are not particularly limited, and may be set as appropriate so that a desired rectangular wire size can be obtained. Here, the rolling reduction is the rate of change in the thickness in the rolling direction when flattening is performed, and the rolling reduction when the thickness before rolling is t 1 and the thickness of the line after rolling is t 2. (%) Is represented by {1- (t 2 / t 1 )} × 100. For example, the total rolling reduction can be 10 to 90%, and the rolling reduction in each pass can be 10 to 50%. Here, in the present invention, the cross-sectional shape of the rectangular wire is not particularly limited, but the aspect ratio is usually 1 to 50, preferably 1 to 20, and more preferably 2 to 10. The aspect ratio (expressed as w / t below) is the ratio of the short side to the long side of the rectangle forming the cross-section (TD) cross section of the flat wire. As for the size of the flat wire, the thickness t of the flat wire is equal to the short side of the rectangle forming the width direction (TD) cross section, and the width w of the flat wire is the length of the rectangle forming the cross section of the width direction (TD). Equal to edge. The thickness of the flat wire is usually 0.1 mm or less, preferably 0.07 mm or less, more preferably 0.05 mm or less. The width of the flat wire is usually 1 mm or less, preferably 0.7 mm or less, more preferably 0.5 mm or less.
When this rectangular wire is wound in the thickness direction, high tensile strength, elongation, and electrical conductivity can be expressed as in the case of the round wire according to the present invention. Here, winding a flat wire in the thickness direction means winding the flat wire in a coil shape with the width w of the flat wire being the width of the coil.
[角線材の製造方法]
 さらに、角線材を製造する場合には、前記平角線材の製造方法において、幅方向(TD)断面が正方形(w=t)となるように設定すればよい。
[Manufacturing method of square wire]
Furthermore, when manufacturing a square wire, what is necessary is just to set so that the width direction (TD) cross section may become a square (w = t) in the manufacturing method of the said flat wire.
[線材の製造方法の別の実施形態]
 本発明の銅合金線材の製造方法の別の一実施形態としては、まず鋳造によって得た荒引き線を第一の冷間加工(伸線)に付した後に、中間焼鈍によって伸びを回復して、さらに第二の冷間加工(伸線)を行って所望の線径または線材の厚さとし、最後に仕上焼鈍によって所定の機械強度と伸びに調整する、という全製造工程を挙げることができる。但し、エネルギー消費、効率の観点からは、冷間加工工程の数を少なくする方が好ましい。
 これらの第一及び第二の冷間伸線加工工程での各加工率は、目標線径または線材の厚さと銅合金組成、さらには中間焼鈍及び仕上焼鈍の2回の熱処理条件に応じて変わり、特に制限するものではないが、通常、第一の冷間加工(伸線)での加工率を70.0~99.9%とし、第二の冷間加工(伸線)での加工率を70.0~99.9%とする。
[Another Embodiment of Manufacturing Method of Wire Material]
As another embodiment of the method for producing a copper alloy wire according to the present invention, first, the rough drawn wire obtained by casting is subjected to first cold working (drawing), and then the elongation is recovered by intermediate annealing. Furthermore, the second cold working (drawing) may be performed to obtain a desired wire diameter or wire thickness, and finally, the entire manufacturing process may be adjusted to a predetermined mechanical strength and elongation by finish annealing. However, in terms of energy consumption and efficiency, it is preferable to reduce the number of cold working steps.
Each of the processing rates in the first and second cold wire drawing processes varies depending on the target wire diameter or wire thickness and copper alloy composition, as well as two heat treatment conditions of intermediate annealing and finish annealing. Although not particularly limited, the processing rate in the first cold working (drawing) is normally set to 70.0 to 99.9%, and the processing rate in the second cold working (drawing). Is 70.0 to 99.9%.
[平角線材及び角線材の製造方法の別の実施形態]
 前記の製造方法に代えて、所定の合金組成の板材または条材を製造し、これらの板または条をスリットして、所望の線幅の平角線材または角線材を得ることができる。
 この製造工程として、例えば、鋳造、熱間圧延、冷間圧延、仕上焼鈍、スリット加工からなる方法がある。必要に応じて冷間圧延の途中に中間焼鈍を入れても良い。スリット加工は場合によっては仕上焼鈍の前に行っても良い。
[Another Embodiment of Flat Wire and Square Wire Manufacturing Method]
Instead of the above manufacturing method, a plate material or strip material having a predetermined alloy composition can be manufactured, and these plates or strips can be slit to obtain a rectangular wire material or a rectangular wire material having a desired line width.
As this manufacturing process, for example, there is a method comprising casting, hot rolling, cold rolling, finish annealing, and slit processing. If necessary, intermediate annealing may be performed during the cold rolling. In some cases, the slit processing may be performed before the finish annealing.
[熱処理温度範囲]
 図3に直径φ0.1mmのCu-1%Ag-0.1%Mg丸線材を様々な温度で熱処理したときの強度(引張強度)、伸びの変化を示す。熱処理可能温度範囲より低温で熱処理すると強度は高いが伸びが十分に出ないためにコイル成形する際に不具合が出てしまう。また、熱処理可能温度範囲より高温で熱処理すると伸びが高くなるが、強度が大きく低下してしまいコイル成形時に不具合が発生したり、耐疲労特性が低下してコイルの寿命が低下したりしてしまう。以上から、特性に優れた極細線のマグネットワイヤを得るためには適切な温度範囲での熱処理が必要となることが分かる。また、この半軟化熱処理によって安定した性能の銅合金線材を製造するために、半軟化熱処理の温度範囲が広い方が好ましく、本発明による銅合金線材はこれを実現するものである。
[Heat treatment temperature range]
FIG. 3 shows changes in strength (tensile strength) and elongation when a Cu-1% Ag-0.1% Mg round wire having a diameter of 0.1 mm is heat-treated at various temperatures. If the heat treatment is performed at a temperature lower than the heat treatment possible temperature range, the strength is high, but the elongation does not sufficiently occur, so that a problem occurs when the coil is formed. In addition, when the heat treatment is performed at a temperature higher than the heat treatment possible temperature range, the elongation is increased, but the strength is greatly reduced, so that a problem occurs at the time of forming the coil, or the fatigue resistance is lowered and the life of the coil is reduced. . From the above, it can be seen that heat treatment in an appropriate temperature range is required in order to obtain a fine wire magnet wire having excellent characteristics. Further, in order to produce a copper alloy wire having stable performance by this semi-softening heat treatment, it is preferable that the temperature range of the semisoftening heat treatment is wide, and the copper alloy wire according to the present invention realizes this.
[線径または線材の厚さ、用途]
 本発明の銅合金線材の線径または線材の厚さには、特に制限はないが、好ましくは0.1mm以下、さらに好ましくは0.07mm以下、より好ましくは0.05mm以下である。線径または線材の厚さの下限値には特に制限はないが、現在の技術では通常0.01mm以上である。
 本発明の銅合金線材の用途は、特に制限されないが、例えば、携帯電話、スマートフォンなどに使用されているスピーカコイルに用いられる極細線であるマグネットワイヤ等が挙げられる。
[Wire diameter or wire thickness, application]
Although there is no restriction | limiting in particular in the wire diameter of the copper alloy wire of this invention, or the thickness of a wire, Preferably it is 0.1 mm or less, More preferably, it is 0.07 mm or less, More preferably, it is 0.05 mm or less. The lower limit of the wire diameter or the wire thickness is not particularly limited, but is usually 0.01 mm or more in the current technology.
The use of the copper alloy wire of the present invention is not particularly limited, and examples thereof include a magnet wire that is an extra fine wire used for a speaker coil used in a mobile phone, a smartphone, and the like.
 以下に、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
[丸線材の実施例、比較例]
 鋳造材は、Ag 0.5~4.0質量%、Mg 0.05~0.5質量%を含有し、残部がCuと不可避不純物からなる表1に示した合金組成を有する本発明例のCu-Ag-Mg合金と、表1に示した合金組成を有する比較例の銅合金とを、それぞれ横型連続鋳造方法で直径φ10mmの荒引線に鋳造した。この荒引線を冷間加工(伸線)(以下の第1と第2の2回の冷間加工の合計加工率:99.984%)、中間焼鈍、仕上焼鈍し直径φ40μmの丸線材サンプルを作製した。中間焼鈍、仕上焼鈍の熱処理は、バッチ焼鈍、電流焼鈍、走間焼鈍の3パターンから選ばれるいずれかで実施し、いずれも窒素雰囲気下で行った。なお、中間焼鈍は、第1の冷間加工(伸線)と第2の冷間加工(伸線)の間に1度だけ行った。表1に示したように、中間焼鈍は行ったものと行わなかったものとがある。また、本発明で定義した適性熱処理温度範囲であっても、その熱処理条件によって伸びと強度のバランスが大きく異なる。そのため、伸びが13~18%と比較的近い条件になるよう熱処理条件を調整した。
[Examples of round wires, comparative examples]
The cast material contains 0.5 to 4.0% by mass of Ag, 0.05 to 0.5% by mass of Mg, and the balance of the example of the present invention having the alloy composition shown in Table 1 consisting of Cu and inevitable impurities. A Cu—Ag—Mg alloy and a copper alloy of a comparative example having the alloy composition shown in Table 1 were each cast into a rough drawn wire having a diameter of 10 mm by a horizontal continuous casting method. This rough drawn wire is subjected to cold working (drawing) (total working rate of the following first and second cold workings: 99.984%), intermediate annealing and finish annealing, and a round wire sample having a diameter of 40 μm is obtained. Produced. The heat treatment of intermediate annealing and finish annealing was performed in any of three patterns selected from batch annealing, current annealing, and running annealing, and each was performed in a nitrogen atmosphere. The intermediate annealing was performed only once between the first cold working (drawing) and the second cold working (drawing). As shown in Table 1, there are some that have been subjected to intermediate annealing and those that have not. Moreover, even in the appropriate heat treatment temperature range defined in the present invention, the balance between elongation and strength varies greatly depending on the heat treatment conditions. Therefore, the heat treatment conditions were adjusted so that the elongation was relatively close to 13 to 18%.
 他の丸線材の例として、Ag、Mgに加えて、任意添加元素Sn、Zn、In、Ni、Co、Zr及びCrからなる群から選ばれる少なくとも1種を含有し、残部がCuと不可避不純物からなる表2に示した合金組成を有する本発明例のCu-Ag-Mg-(Sn、Zn、In、Ni、Co、Zr又はCr)合金と、表2に示した合金組成を有する比較例の銅合金とを用いて、それぞれ前記と同様にして製造した。 Examples of other round wires include at least one selected from the group consisting of optional additive elements Sn, Zn, In, Ni, Co, Zr and Cr in addition to Ag and Mg, with the balance being Cu and inevitable impurities A Cu—Ag—Mg— (Sn, Zn, In, Ni, Co, Zr or Cr) alloy of the present invention having the alloy composition shown in Table 2 and a comparative example having the alloy composition shown in Table 2 Were produced in the same manner as described above.
[平角線材の実施例、比較例]
 前記丸線材と同様にして、但し、荒引線を冷間加工(伸線)後、または行った場合には中間焼鈍後、のいずれかに、平角線加工を施してから、仕上焼鈍して、平角線材サンプルを作製した。表3に示したように、中間焼鈍は行ったものと行わなかったものとがある。また、本発明で定義した適性熱処理温度範囲であっても、その熱処理条件によって伸びと強度のバランスが大きく異なる。そのため、伸びが13~18%と比較的近い条件になるよう熱処理条件を調整した。
 平角線加工は、表3に示したように、この加工前の丸線の線径φ(mm)を、幅w(mm)×厚さt(mm)のサイズの平角線に冷間圧延によって加工した。
[Examples of rectangular wires, comparative examples]
In the same manner as the round wire, except that after roughing the wire (drawing), or after intermediate annealing, if it is performed, after performing rectangular wire processing, finish annealing, A flat wire sample was prepared. As shown in Table 3, there are those that have been subjected to intermediate annealing and those that have not. Moreover, even in the appropriate heat treatment temperature range defined in the present invention, the balance between elongation and strength varies greatly depending on the heat treatment conditions. Therefore, the heat treatment conditions were adjusted so that the elongation was relatively close to 13 to 18%.
As shown in Table 3, the flat wire processing is performed by cold rolling the wire diameter φ (mm) of the round wire before the processing into a flat wire having a size of width w (mm) × thickness t (mm). processed.
[特性]
 以上のようにして得た丸線材と平角線材のサンプルについて、各種特性を試験、評価した。
 引張強さ(TS)、伸び(El)は、JIS Z2201、Z2241に従い測定した。
 導電率(EC)は、JIS H0505に従い測定した。
 Ag含有量が全体のコストに大きく影響を与えるため、極細マグネットワイヤとして成形性と耐屈曲疲労性として必要な引張強さである350MPaを基準として、コストパフォーマンスの指標CPを
CP(MPa/質量%)=(銅合金線材の引張強さ-350)(MPa)/Ag含有量(質量%)
で定義し、CP≧20を「◎(優)」、10≦CP<20を「○(良)」、0≦CP<10を「△(やや劣)」、CP<0を「×(劣)」と評価した。
[Characteristic]
Various characteristics were tested and evaluated for the round wire and flat wire samples obtained as described above.
Tensile strength (TS) and elongation (El) were measured according to JIS Z2201 and Z2241.
The conductivity (EC) was measured according to JIS H0505.
Since the Ag content greatly affects the overall cost, the cost performance index CP is set to CP (MPa / mass%) based on 350 MPa, which is the tensile strength required for formability and bending fatigue resistance as an ultrafine magnet wire. ) = (Tensile strength of copper alloy wire-350) (MPa) / Ag content (mass%)
CP ≧ 20 is “◎ (excellent)”, 10 ≦ CP <20 is “◯ (good)”, 0 ≦ CP <10 is “△ (slightly inferior)”, and CP <0 is “× (inferior)”. ) ”.
 コイル寿命は、図1に示すような試験方法で屈曲疲労破断回数を測定し、その破断回数で評価した。図1に示すように、試料として線径φまたは線材の厚さtが0.04mm(40μm)の銅合金線材の試料をダイスで挟み、線材のたわみを抑えるため下端部に20gの錘(W)をつるして荷重を掛けた。平角線の場合には、線材の厚さ方向(ND)でサンプルをダイスで挟むようにセットした。試料の上端部は接続具で固定した。この状態で試料を左右に90度ずつ折り曲げて、毎分100回の速さで繰り返しの曲げを行い、破断するまでの曲げ回数をそれぞれの試料について測定した。なお、曲げ回数は図中1→2→3の一往復を一回と数え、また、2つのダイス間の間隔は、試験中に銅合金線材の試料を圧迫しないように1mmとした。破断の判定は、試料の下端部に吊るした錘が落下したときに、破断したものとした。なおダイスの曲率によって、曲げ半径(R)は1mm、4mmまたは6mmとした。破断回数が201回以上のものを「◎(優)」、151~200回のものを「○(良)」、101~150回のものを「△(やや劣)」、100回未満のものを「×(劣)」と評価した。 The coil life was evaluated by measuring the number of bending fatigue fractures using the test method shown in FIG. As shown in FIG. 1, a copper alloy wire sample having a wire diameter φ or a wire thickness t of 0.04 mm (40 μm) is sandwiched between dies as a sample, and a 20 g weight (W )) And applied a load. In the case of a flat wire, the sample was set so as to be sandwiched between dies in the wire thickness direction (ND). The upper end of the sample was fixed with a connector. In this state, the sample was bent 90 degrees to the left and right, repeatedly bent at a rate of 100 times per minute, and the number of bending until breaking was measured for each sample. In addition, the number of bendings was counted as one round trip of 1 → 2 → 3 in the figure, and the interval between the two dies was set to 1 mm so as not to press the copper alloy wire sample during the test. The determination of breakage was made when the weight suspended at the lower end of the sample dropped. The bending radius (R) was set to 1 mm, 4 mm, or 6 mm depending on the curvature of the die. “◎ (excellent)” if the number of breaks is 201 times or more, “◯ (good)” if it is 151 to 200 times, “△ (somewhat inferior)” if it is 101 to 150 times, and less than 100 times Was evaluated as “× (poor)”.
 コイル性能は、引張強度350MPa未満または伸び7%未満のものを「×(劣)」、引張強度350MPa以上370MPa未満及び伸び7%以上のものを「○(良)」、引張強度370MPa以上及び伸び7%以上で、かつ、導電率75%IACS以上のものを「◎(優)」と評価した。
 総合評価は、前記のコストパフォーマンス、コイル寿命及びコイル性能から判断して、低コストで極細線コイル用銅合金線材として優れるものを「◎(優)」、次いで「○(良)」、「△(やや劣)」、「×(劣)」で評価した。
As for the coil performance, those having a tensile strength of less than 350 MPa or an elongation of less than 7% are “x (poor)”, those having a tensile strength of 350 MPa to less than 370 MPa and an elongation of 7% or more are “◯ (good)”, tensile strength of 370 MPa or more and elongation. Those having a conductivity of 7% or more and a conductivity of 75% IACS or more were evaluated as “「 (excellent) ”.
Comprehensive evaluation is based on the above cost performance, coil life and coil performance, and it is "◎ (excellent)", then "○ (good)", "△" (Slightly inferior) ”and“ × (poor) ”.
 このように作成した本発明例のサンプルと比較例のサンプルの特性を測定、評価した結果を、丸線材については表1と表2に、平角線材については表3に、それぞれ示す。 The results of measuring and evaluating the characteristics of the sample of the present invention and the comparative example prepared in this way are shown in Tables 1 and 2 for round wires and in Table 3 for rectangular wires.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 また、Mgを含まない比較用のCu-Ag合金線材とMgを含む本発明のCu-Ag-Mg合金線材について、Ag含有量と半軟化時の引張強さの関係を測定した。その結果を図2に示す。 Also, for the comparative Cu—Ag alloy wire containing no Mg and the Cu—Ag—Mg alloy wire of the present invention containing Mg, the relationship between the Ag content and the tensile strength during semi-softening was measured. The result is shown in FIG.
 図2、表1より、それぞれ同量のAgを含む銅合金線材の特性を比較するとMgを含有する本発明の銅合金線材の方がMgを含有しない比較例の銅合金線材よりも強度が高い。また、本発明の銅合金線材は、導電性と強度のバランスも従来のCu-Ag合金線材に匹敵して優れている。これらから、本発明の銅合金線材によれば、より少ないAg含有量すなわちより低コストで、比較例の高濃度のCu-Ag合金線材と同等の性能を発揮できることが分かる。熱処理温度に着目すると本発明の製造方法に従って製造したCu-Ag-Mg合金線材では、同程度の強度を持つ比較例の合金線材より高濃度のCu-Ag合金線材と比較しておよそ50℃程度低い温度で熱処理することが可能であり、熱処理にかかるコストを大幅に低減することができることが分かる。
 本発明例の中でもAgが0.5~2質量%、Mgが0.05~0.3質量%のものはコストパフォーマンス、コイル性能共に優れており、極細マグネットワイヤとしてさらに好適な性質を有していることが分かる。
2 and Table 1, when comparing the characteristics of copper alloy wires containing the same amount of Ag, the copper alloy wires of the present invention containing Mg have higher strength than the copper alloy wires of the comparative examples not containing Mg. . In addition, the copper alloy wire of the present invention is superior in balance between conductivity and strength to the conventional Cu—Ag alloy wire. From these, it can be seen that the copper alloy wire of the present invention can exhibit the same performance as the high concentration Cu—Ag alloy wire of the comparative example with a smaller Ag content, that is, at a lower cost. Focusing on the heat treatment temperature, the Cu—Ag—Mg alloy wire manufactured according to the manufacturing method of the present invention is approximately 50 ° C. compared to the Cu—Ag alloy wire having a higher strength than the comparative alloy wire having the same strength. It can be seen that the heat treatment can be performed at a low temperature, and the cost for the heat treatment can be greatly reduced.
Among the examples of the present invention, those with Ag of 0.5 to 2% by mass and Mg of 0.05 to 0.3% by mass have excellent cost performance and coil performance, and have more suitable properties as ultrafine magnet wires. I understand that
 これに対して、比較例1~5のようにAg含有量、Mg含有量の少なくともどちらかが不十分なものは半軟化熱処理によっても十分な強度を得ることができず、極細マグネットワイヤとして使用することができない。また、比較例6~15から分かるようにMg含有量が0.05質量%未満で不十分なものはMg添加による半軟化特性向上の効果を殆ど得ることができない。この内、比較例7、比較例9~12、比較例14~15は、前記特許文献1を、それぞれ模した合金組成の比較例である。
 さらに、比較例16は前記特許文献3を、比較例17は前記特許文献2を、それぞれ模した合金組成の比較例であるが、強度が不足し、コストパフォーマンスとコイル寿命の少なくともいずれかにも劣り、極細マグネットワイヤとして使用することができない結果となった。
 さらにまた、比較例18は中間焼鈍及び仕上焼鈍をどちらも施さなかった比較例であるが、伸びが不足し、極細マグネットワイヤとして使用することができない結果となった。
On the other hand, those in which at least one of the Ag content and the Mg content is insufficient as in Comparative Examples 1 to 5 cannot obtain sufficient strength even by semi-softening heat treatment, and are used as ultrafine magnet wires. Can not do it. Further, as can be seen from Comparative Examples 6 to 15, when the Mg content is less than 0.05% by mass, the effect of improving the semi-softening property by adding Mg can hardly be obtained. Of these, Comparative Example 7, Comparative Examples 9 to 12, and Comparative Examples 14 to 15 are comparative examples of alloy compositions that imitate Patent Document 1, respectively.
Further, Comparative Example 16 is a comparative example of the alloy composition imitating Patent Document 3 and Comparative Example 17 is that of Patent Document 2. However, the strength is insufficient, and at least one of cost performance and coil life is required. Inferior, the result was that it could not be used as an extra fine magnet wire.
Furthermore, Comparative Example 18 was a comparative example in which neither the intermediate annealing nor the finish annealing was performed, but the elongation was insufficient and the result was that it could not be used as an ultrafine magnet wire.
 表2から、Cu-Ag-Mg合金に、任意添加元素Sn、Zn、In、Ni、Co、Zr及びCrからなる群から選ばれる少なくとも1種を添加することで、Cu-Ag-Mgの合金組成が対応するもの同士を対比する(例えば、実施例2に対する実施例101、実施例3に対する実施例102、等)と、引張強さが向上したことがわかる。
 なお、表には示していないが、任意添加元素の内、Snの含有量が多すぎると、導電率が劣る結果となった。
From Table 2, an alloy of Cu—Ag—Mg is obtained by adding at least one element selected from the group consisting of Sn, Zn, In, Ni, Co, Zr and Cr to the optional additive element Sn to Cu—Ag—Mg alloy. It can be seen that when the corresponding compositions are compared (for example, Example 101 for Example 2, Example 102 for Example 3, etc.), the tensile strength is improved.
Although not shown in the table, when the content of Sn among the optional additive elements is too large, the conductivity is inferior.
 また、表3から、平角線材の場合にも、丸線材の場合と同様の結果となったことがわかる。 Also, from Table 3, it can be seen that the same results as in the case of the round wire were obtained in the case of the flat wire.
 表4に、本発明と比較例のCu-Ag-Mg合金線材(丸線)と、比較例のCu-Ag合金線材(丸線)との、線径を種々変更した場合のマグネットワイヤ成形性への影響の結果について示す。各供試材の銅合金線材をコイルに成形した際に断線等の不具合が全く発生しなかったものを「◎(優)」、極まれに断線が発生したものを「○(良)」、しばしば断線が発生したものを「△(やや劣)」、コイル成形できなかったものを「×(劣)」と評価した。 Table 4 shows magnet wire formability when the wire diameters of the present invention and the comparative Cu-Ag-Mg alloy wire (round wire) and the comparative Cu-Ag alloy wire (round wire) are variously changed. The results of the impact on “◎ (excellent)” indicates that no defects such as disconnection occurred when the copper alloy wire of each test material was formed into a coil, “○ (good)” indicates that disconnection occurred very rarely, and often The case where the disconnection occurred was evaluated as “Δ (slightly inferior)”, and the case where the coil could not be formed was evaluated as “× (inferior)”.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表4の結果から、同程度のAg含有量を持つ銅合金線材で比較した場合、本発明によるCu-Ag-Mg合金線材の方が、比較例のCu-Ag合金線材よりも、線径のより小さい場合でも断線することなくコイルに成形することができる結果となったことが分かる。
 なお、平角線材の場合にも、前記丸線の場合と同様の結果が得られる。
From the results of Table 4, when compared with a copper alloy wire having the same Ag content, the Cu—Ag—Mg alloy wire according to the present invention has a wire diameter larger than that of the Cu—Ag alloy wire of the comparative example. It can be seen that even if it is smaller, the coil can be formed without disconnection.
In the case of a rectangular wire, the same result as in the case of the round wire can be obtained.
 表5に、本発明によるCu-Ag-Mg合金線材と、比較としてCu-Ag合金線材とCu-Ag-Mg合金線材(いずれもMgの含有量不足)とを、バッチ式により様々な温度で30分間熱処理し、引張強さ350MPa以上、伸び7%以上を両立させることのできた熱処理温度範囲を測定した結果を示す。本発明によるCu-Ag-Mg合金線材はAg濃度が低いにもかかわらず、比較としての従来の高濃度のCu-Ag合金線材と同等かそれより広い熱処理温度範囲を有することがわかる。このことから、本発明によれば、得られるCu-Ag-Mg合金線材が所望の伸びと強度を両立できるような半軟化処理を、より広い熱処理温度範囲下で容易に行うことができ、性能の安定した製品を製造することができることが分かる。 Table 5 shows a Cu-Ag-Mg alloy wire according to the present invention and, as a comparison, a Cu-Ag alloy wire and a Cu-Ag-Mg alloy wire (both with insufficient Mg content) at various temperatures by a batch method. The result of having measured the heat treatment temperature range in which the heat treatment was performed for 30 minutes and the tensile strength of 350 MPa or more and the elongation of 7% or more could be achieved at the same time is shown. It can be seen that the Cu—Ag—Mg alloy wire according to the present invention has a heat treatment temperature range equal to or wider than that of the conventional high concentration Cu—Ag alloy wire for comparison, although the Ag concentration is low. Therefore, according to the present invention, the obtained Cu—Ag—Mg alloy wire can be easily subjected to a semi-softening treatment that can achieve both desired elongation and strength under a wider heat treatment temperature range. It can be seen that a stable product can be manufactured.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010

Claims (9)

  1.  0.5質量%以上のAg及び0.05質量%以上のMgを含有し、残部がCu及び不可避不純物であり、引張強さが350MPa以上、伸びが7%以上である銅合金線材。 A copper alloy wire containing 0.5% by mass or more of Ag and 0.05% by mass or more of Mg, the balance being Cu and inevitable impurities, a tensile strength of 350 MPa or more, and an elongation of 7% or more.
  2.  0.1mm以下の線径または線材の厚さを有する請求項1に記載の銅合金線材。 The copper alloy wire according to claim 1, having a wire diameter or wire thickness of 0.1 mm or less.
  3.  Agの含有量が0.5質量%以上4.0質量%以下であり、Mgの含有量が0.05質量%以上0.5質量%以下である請求項1または2に記載の銅合金線材。 The copper alloy wire according to claim 1 or 2, wherein the Ag content is 0.5 mass% or more and 4.0 mass% or less, and the Mg content is 0.05 mass% or more and 0.5 mass% or less. .
  4.  Agの含有量が0.5質量%以上2.0質量%以下であり、Mgの含有量が0.05質量%以上0.3質量%以下である請求項1または2に記載の銅合金線材。 The copper alloy wire according to claim 1 or 2, wherein the Ag content is 0.5 mass% or more and 2.0 mass% or less, and the Mg content is 0.05 mass% or more and 0.3 mass% or less. .
  5.  さらに、Sn、Zn、In、Ni、Co、Zr及びCrからなる群から選ばれる少なくとも1種を各々の含有量として0.05~0.3質量%含有する請求項1~4のいずれか1項に記載の銅合金線材。 Furthermore, 0.05 to 0.3% by mass of at least one selected from the group consisting of Sn, Zn, In, Ni, Co, Zr and Cr is contained as each content. The copper alloy wire according to Item.
  6.  線径または線材の厚さが50μm以下である請求項1~5のいずれか1項に記載の銅合金線材。 The copper alloy wire according to any one of claims 1 to 5, wherein the wire diameter or the wire thickness is 50 µm or less.
  7.  0.5質量%以上のAg及び0.05質量%以上のMgを含有し、残部がCu及び不可避不純物である銅合金の荒引線に冷間加工を施して、線径または線材の厚さが0.1mm以下の線材を形成する線材加工工程と、
     前記線材を半軟化状態にする最終熱処理工程と
    を有する銅合金線材の製造方法。
    The wire diameter or the wire thickness is determined by subjecting a rough drawn wire of a copper alloy containing 0.5 mass% or more of Ag and 0.05 mass% or more of Mg and the balance of Cu and inevitable impurities to cold working. A wire processing step of forming a wire of 0.1 mm or less;
    A method for producing a copper alloy wire, comprising a final heat treatment step for bringing the wire into a semi-softened state.
  8.  前記最終熱処理工程での熱処理温度が、300℃以上600℃以下である請求項7に記載の銅合金線材の製造方法。 The method for producing a copper alloy wire according to claim 7, wherein a heat treatment temperature in the final heat treatment step is 300 ° C or higher and 600 ° C or lower.
  9.  前記線材加工工程において、複数の冷間加工の間に中間熱処理を行う請求項7または8に記載の銅合金線材の製造方法。 The method for producing a copper alloy wire according to claim 7 or 8, wherein in the wire processing step, an intermediate heat treatment is performed between a plurality of cold workings.
PCT/JP2013/068159 2012-07-02 2013-07-02 Copper-alloy wire rod and manufacturing method therefor WO2014007258A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380015359.XA CN104169448B (en) 2012-07-02 2013-07-02 Copper alloy wire and its manufacture method
EP13812970.5A EP2868757B1 (en) 2012-07-02 2013-07-02 Copper-alloy wire rod and manufacturing method therefor
KR1020147026033A KR101719888B1 (en) 2012-07-02 2013-07-02 Copper-alloy wire rod and manufacturing method therefor
JP2013554697A JP5840234B2 (en) 2012-07-02 2013-07-02 Copper alloy wire and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012148919 2012-07-02
JP2012-148919 2012-07-02

Publications (1)

Publication Number Publication Date
WO2014007258A1 true WO2014007258A1 (en) 2014-01-09

Family

ID=49882012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068159 WO2014007258A1 (en) 2012-07-02 2013-07-02 Copper-alloy wire rod and manufacturing method therefor

Country Status (5)

Country Link
EP (1) EP2868757B1 (en)
JP (1) JP5840234B2 (en)
KR (1) KR101719888B1 (en)
CN (1) CN104169448B (en)
WO (1) WO2014007258A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104046842A (en) * 2014-06-05 2014-09-17 锐展(铜陵)科技有限公司 Preparation method of high-content nickel-copper alloy wire for electronic instrument of automobile
WO2015152166A1 (en) * 2014-03-31 2015-10-08 古河電気工業株式会社 Copper alloy wire material and manufacturing method thereof
CN106029930A (en) * 2014-02-28 2016-10-12 株式会社自动网络技术研究所 Copper alloy twisted wire, manufacturing method therefor, and electrical wire for automobile
WO2017199906A1 (en) * 2016-05-16 2017-11-23 古河電気工業株式会社 Copper alloy wire material
CN114369735A (en) * 2021-12-16 2022-04-19 虹华科技股份有限公司 Processing technology of high-purity copper wire for electronic chip

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6529346B2 (en) * 2015-06-04 2019-06-12 古河電気工業株式会社 High bending fatigue resistance copper based alloy wire
CN105401044A (en) * 2015-11-23 2016-03-16 芜湖楚江合金铜材有限公司 Copper alloy wire for ultrafine machining and preparing method for copper alloy wire
CN105603242B (en) * 2015-12-21 2018-03-23 赣州江钨拉法格高铁铜材有限公司 A kind of copper silver magnesium alloy contact wire and preparation method thereof
KR20230024244A (en) * 2021-03-23 2023-02-20 후루카와 덴키 고교 가부시키가이샤 copper alloy wire rod
CN113560365B (en) * 2021-07-22 2023-08-15 诺克威新材料(江苏)有限公司 Processing method for improving wiredrawing strength of copper alloy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0477060B2 (en) 1989-03-15 1992-12-07 Fujikura Ltd
JP2002121629A (en) * 2000-10-13 2002-04-26 Hitachi Cable Ltd Super-extra-fine copper-alloy wire, copper-alloy stranded-wire conductor, extra-fine coaxial cable, and method for manufacturing super-extra-fine copper-alloy wire
JP2005089805A (en) * 2003-09-16 2005-04-07 Hitachi Cable Ltd Method for producing copper alloy conductor
JP3941304B2 (en) 1999-11-19 2007-07-04 日立電線株式会社 Super fine copper alloy wire, method for producing the same, and electric wire using the same
JP2009280860A (en) 2008-05-21 2009-12-03 Sumitomo Electric Ind Ltd Cu-Ag ALLOY WIRE AND METHOD FOR PRODUCING THE SAME

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02118037A (en) * 1988-10-28 1990-05-02 Nippon Mining Co Ltd High tensile and high conductivity copper alloy having excellent adhesion of oxidized film
JPH0477060A (en) 1990-07-16 1992-03-11 Minolta Camera Co Ltd Image forming device
JP2008081835A (en) * 2006-09-29 2008-04-10 Nikko Kinzoku Kk Copper alloy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0477060B2 (en) 1989-03-15 1992-12-07 Fujikura Ltd
JP3941304B2 (en) 1999-11-19 2007-07-04 日立電線株式会社 Super fine copper alloy wire, method for producing the same, and electric wire using the same
JP2002121629A (en) * 2000-10-13 2002-04-26 Hitachi Cable Ltd Super-extra-fine copper-alloy wire, copper-alloy stranded-wire conductor, extra-fine coaxial cable, and method for manufacturing super-extra-fine copper-alloy wire
JP2005089805A (en) * 2003-09-16 2005-04-07 Hitachi Cable Ltd Method for producing copper alloy conductor
JP2009280860A (en) 2008-05-21 2009-12-03 Sumitomo Electric Ind Ltd Cu-Ag ALLOY WIRE AND METHOD FOR PRODUCING THE SAME

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106029930A (en) * 2014-02-28 2016-10-12 株式会社自动网络技术研究所 Copper alloy twisted wire, manufacturing method therefor, and electrical wire for automobile
KR101932828B1 (en) * 2014-03-31 2018-12-26 후루카와 덴키 고교 가부시키가이샤 Copper alloy wire material and manufacturing method thereof
WO2015152166A1 (en) * 2014-03-31 2015-10-08 古河電気工業株式会社 Copper alloy wire material and manufacturing method thereof
CN106164306A (en) * 2014-03-31 2016-11-23 古河电气工业株式会社 Copper alloy wire and manufacture method thereof
JPWO2015152166A1 (en) * 2014-03-31 2017-04-13 古河電気工業株式会社 Copper alloy wire and method for producing the same
EP3128019A4 (en) * 2014-03-31 2018-06-27 Furukawa Electric Co. Ltd. Copper alloy wire material and manufacturing method thereof
KR20180137040A (en) * 2014-03-31 2018-12-26 후루카와 덴키 고교 가부시키가이샤 Copper alloy wire material and manufacturing method thereof
KR102009755B1 (en) * 2014-03-31 2019-08-12 후루카와 덴키 고교 가부시키가이샤 Copper alloy wire material and manufacturing method thereof
CN104046842A (en) * 2014-06-05 2014-09-17 锐展(铜陵)科技有限公司 Preparation method of high-content nickel-copper alloy wire for electronic instrument of automobile
WO2017199906A1 (en) * 2016-05-16 2017-11-23 古河電気工業株式会社 Copper alloy wire material
JP6284691B1 (en) * 2016-05-16 2018-02-28 古河電気工業株式会社 Copper alloy wire
US10626483B2 (en) 2016-05-16 2020-04-21 Furukawa Electric Co., Ltd. Copper alloy wire rod
CN114369735A (en) * 2021-12-16 2022-04-19 虹华科技股份有限公司 Processing technology of high-purity copper wire for electronic chip

Also Published As

Publication number Publication date
CN104169448A (en) 2014-11-26
JP5840234B2 (en) 2016-01-06
EP2868757A4 (en) 2016-04-27
KR101719888B1 (en) 2017-03-24
EP2868757A1 (en) 2015-05-06
KR20150030188A (en) 2015-03-19
CN104169448B (en) 2017-10-24
JPWO2014007258A1 (en) 2016-06-02
EP2868757B1 (en) 2019-01-16

Similar Documents

Publication Publication Date Title
JP5840234B2 (en) Copper alloy wire and method for producing the same
JP5840235B2 (en) Copper alloy wire and method for producing the same
JP6499159B2 (en) Copper alloy wire and method for producing the same
JP5117604B1 (en) Cu-Ni-Si alloy and method for producing the same
EP3042972B1 (en) Copper alloy wire
TWI452152B (en) Electronic-based copper alloy strip material Cu-Co-Si and manufacturing method thereof
JP5417366B2 (en) Cu-Ni-Si alloy with excellent bending workability
JP5539932B2 (en) Cu-Co-Si alloy with excellent bending workability
WO2012026488A1 (en) Copper-cobalt-silicon alloy for electrode material
JP6228725B2 (en) Cu-Co-Si alloy and method for producing the same
JP2013082960A (en) Titanium-copper, method for production thereof, and wrought copper product and electronic device using the titanium-copper
JP2016199808A (en) Cu-Co-Si-BASED ALLOY AND PRODUCTION METHOD THEREFOR
JP5748945B2 (en) Copper alloy material manufacturing method and copper alloy material obtained thereby
JP7430502B2 (en) Copper alloy wire and electronic equipment parts
JP6246454B2 (en) Cu-Ni-Si alloy and method for producing the same
JP7355569B2 (en) Copper alloys, copper alloy products and electronic equipment parts
JP2016211078A (en) Cu-Ni-Si-BASED ALLOY AND MANUFACTURING METHOD THEREFOR
JP2013147687A (en) Titanium copper excellent in bendability
JP2013221163A (en) Wiring material using soft dilute copper alloy and method for producing the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013554697

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13812970

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147026033

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013812970

Country of ref document: EP