JPS6144930B2 - - Google Patents

Info

Publication number
JPS6144930B2
JPS6144930B2 JP59278529A JP27852984A JPS6144930B2 JP S6144930 B2 JPS6144930 B2 JP S6144930B2 JP 59278529 A JP59278529 A JP 59278529A JP 27852984 A JP27852984 A JP 27852984A JP S6144930 B2 JPS6144930 B2 JP S6144930B2
Authority
JP
Japan
Prior art keywords
alloy
resistance
content
continuous casting
cracking resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59278529A
Other languages
Japanese (ja)
Other versions
JPS60238432A (en
Inventor
Hideaki Yoshida
Masaki Morikawa
Takuro Iwamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP27852984A priority Critical patent/JPS60238432A/en
Publication of JPS60238432A publication Critical patent/JPS60238432A/en
Publication of JPS6144930B2 publication Critical patent/JPS6144930B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、すぐれた高温強度、熱伝導性、耐
摩耗性、耐熱疲労割れ性、および耐粗大割れ性を
有し、特に連続鋳造鋳型における溶湯と直接接触
する内壁材として使用するのに適したCu合金に
関するものである。 〔従来の技術〕 従来、一般に、鉄鋼の連続鋳造鋳型の内壁材と
して、純銅や、Ag:0.1%含有の低合金銅やSn:
0.1%含有の低合金銅などの固溶体強化型Cu合金
(以上重量%、以下%の表示は重量%を意味す
る)が使用されているが、これら鋳型において
は、使用開始後早期に、鋳型内面の鋳塊メニスカ
ス部に熱疲労による割れや、熱軟化による鋳型変
形が発生し、比較的短期間で使用寿命に至るもの
であつた。 そこで、近年、連続鋳造鋳型用として、高い熱
疲労強度および降伏点を有し、かつ耐熱疲労割れ
性や耐熱変形性にすぐれた析出硬化型Cu合金、
例えばCr:0.5〜0.8%含有のCr合金銅や、Cr:
0.5〜0.6%およびZr:0.1〜0.2%含有のCr―Zr合
金銅などが多く実用に供され、この析出硬化型
Cu合金の使用によつて使用寿命のかなりの延命
化が可能になつている。 〔発明が解決しようとする問題点〕 しかし、上記の従来析出硬化型Cu合金で製造
された連続鋳造鋳型においても、フラツクス中に
不可避不純物として含有する硫黄(S)によつて
結晶粒界が侵食されることに原因すると思われる
深く大きい割れ(粗大割れ)が発生し、この粗大
割れによつて使用不能となるなど必ずしも満足す
る使用寿命を示さないものであつた。 一方、このようなことから、鋳型内面に、耐熱
疲労割れ性のすぐれたNiや、Sによる粒界侵食
に対してすぐれた抵抗を有するCrをメツキある
いは爆着する試みもなされたが、前者の場合には
粗大割れが発生しやすく、また後者の場合には熱
疲労割れが早期に発生するばかりでなく、この割
れ先端部に応力集中が起りやすいために割れが内
部にまで進展し、粗大割れにつながるなど使用寿
命の延命化をはかることは困難であつた。 〔問題点を解決するための手段〕 そこで、本発明者等は、上述のような観点か
ら、鋳型内面にメツキや爆着を施すことなく、連
続鋳造鋳型の内壁材に要求される高温強度、熱伝
導性、耐摩耗性、耐熱疲労割れ性、および耐粗大
割れ性を具備した材料を得べく研究を行なつた結
果、CrはCuに比して著しく高い約1850℃の高融
点をもつばかりでなく、きわめて活性があるため
に酸化しやすく、かつCrのCuに対する固溶限、
すなわち析出硬化作用に有効に作用する最大固溶
限は約1%であることから、従来Cuにおける合
金元素としてのCrの含有量はせいぜい1%まで
しか考えられていないものであつたが、ここに従
来考えられていたCrの最大含有量である約1%
をはるかに越えて多量のCrをCuに含有させ、素
地に多量のCrを分散させた組織とすると、この
結果のCu合金は、強度が高く、かつ耐熱疲労割
れ性、耐粗大割れ性、および耐摩耗性にすぐれ、
しかも良好な熱伝導性を保持するという知見を得
たのである。 この発明は、上記知見にもとづいてなされたも
のであつて、 Cr:2.5〜17%, P :0.005〜0.25%, を含有し、さらに必要に応じて、 Zr:0.02〜1.5%, を含有し、残りがCuと不可避不純物からなる組
成を有し、かつ連続鋳造鋳型の長期に亘る使用を
可能ならしめるのに必要な上記の特性を兼ね備え
たCu合金に特徴を有するものである。 つぎに、この発明のCu合金において、成分組
成範囲を上記の通りに限定した理由を説明する。 (a) Cr Cr成分には、上記のように合金強度を向上さ
せ、かつ耐熱疲労割れ性、耐粗大割れ性、および
耐摩耗性を改善する作用があるが、その含有量が
2.5%未満では前記作用に所望の効果が得られ
ず、一方17%を越えて含有させると、合金の熱伝
導性および延性が低下するようになるばかりでな
く、溶解が困難になることから、その含有量を
2.5〜17%と定めた。 (b) P P成分には、鋳塊偏析を抑制するほか、初晶と
して晶出するCrを均一微細に分散させ、もつて
合金の機械的強度を改善する作用があるが、その
含有量が、0.005%未満では前記作用に所望の効
果が得られず、一方、0.25%を越えて含有させる
と、熱伝導性が低下するようになることから、そ
の含有量を0.005〜0.25%と定めた。 (c) Zr Zr成分には、合金の高温延性、特に200〜600℃
の温度範囲における延性を改善すると共に、高温
強度を向上させる作用があるので、これらの特性
が要求される場合に必要に応じて含有されるが、
その含有量が0.02%未満では前記作用に所望の改
善効果が得られず、一方1.5%を越えて含有させ
てもより一層の改善効果は現われず、逆に溶解が
困難になると共に、合金の塑性加工性が低下する
ようになることから、その含有量を0.02〜1.5%
と定めた。 なお、この発明のCu合金において、強度改善
をはかる目的で、いずれも0.05〜0.5%のFe,
Ni,Co,Cd,Sn,Ag,およびInのうちの1種ま
たは2種以上、並びに0.01〜0.1%のC、または
耐熱性の一層の向上をはかる目的で、いずれも
0.05〜0.5%のAl,Mg,Ti,Si,Be,B,Hf,お
よび希土類のうちの1種または2種以上、さらに
鋳塊清浄化のための脱酸剤として、いずれも、
0.01〜0.2%のCa,Li,およびMgのうちの1種ま
たは2種以上を含有させても、何ら上記の特性が
そこなわれるものではない。 〔実施例および効果の確認〕 つぎに、この発明のCu合金を実施例により具
体的に説明する。 実施例 1 高周波誘導加熱炉を用い、真空雰囲気中、黒鉛
るつぼ内でそれぞれ第1表に示される成分組成を
[Industrial Application Field] This invention has excellent high-temperature strength, thermal conductivity, abrasion resistance, thermal fatigue cracking resistance, and coarse cracking resistance, and is particularly applicable to inner wall materials that come into direct contact with molten metal in continuous casting molds. It relates to Cu alloys suitable for use as [Prior art] Conventionally, pure copper, low alloy copper containing 0.1% Ag, or Sn:
Solid solution-strengthened Cu alloys such as low-alloy copper containing 0.1% (weight% above, below % mean weight%) are used in these molds. Cracks due to thermal fatigue and mold deformation due to thermal softening occurred in the meniscus of the ingot, and the service life was reached in a relatively short period of time. Therefore, in recent years, precipitation hardening type Cu alloys, which have high thermal fatigue strength and yield point, and have excellent thermal fatigue cracking resistance and heat deformation resistance, have been developed for use in continuous casting molds.
For example, Cr alloy copper containing 0.5 to 0.8% Cr, Cr:
Many Cr-Zr alloy copper containing 0.5-0.6% and Zr: 0.1-0.2% are in practical use, and this precipitation hardening type
The use of Cu alloys has made it possible to significantly extend the service life. [Problems to be Solved by the Invention] However, even in continuous casting molds manufactured using the conventional precipitation-hardening Cu alloy described above, the grain boundaries are eroded by sulfur (S), which is contained as an unavoidable impurity in the flux. Deep and large cracks (coarse cracks) occurred, which was thought to be caused by the cracking, and the product did not necessarily have a satisfactory service life, as it became unusable due to the coarse cracks. On the other hand, attempts have been made to plate or bombard the inner surface of the mold with Ni, which has excellent thermal fatigue cracking resistance, and Cr, which has excellent resistance to grain boundary erosion by S. In the latter case, not only does thermal fatigue cracking occur early, but stress concentration tends to occur at the tip of the crack, causing the crack to propagate internally and cause coarse cracking. It has been difficult to extend the service life, as this leads to [Means for solving the problem] Therefore, from the above-mentioned viewpoint, the present inventors have achieved the high temperature strength required for the inner wall material of a continuous casting mold without applying plating or explosive bonding to the inner surface of the mold. As a result of conducting research to obtain a material with thermal conductivity, wear resistance, thermal fatigue cracking resistance, and gross cracking resistance, it was found that Cr has a high melting point of approximately 1850°C, which is significantly higher than that of Cu. However, it is extremely active and easily oxidized, and the solid solubility limit of Cr with respect to Cu is
In other words, since the maximum solid solubility limit that effectively affects precipitation hardening is approximately 1%, the content of Cr as an alloying element in Cu has traditionally been considered to be at most 1%. The maximum Cr content previously thought to be approximately 1%
If a large amount of Cr is contained in Cu, far exceeding the above, and a large amount of Cr is dispersed in the matrix, the resulting Cu alloy will have high strength, thermal fatigue cracking resistance, coarse cracking resistance, and Excellent wear resistance,
Moreover, they found that it maintains good thermal conductivity. This invention was made based on the above knowledge, and contains Cr: 2.5 to 17%, P: 0.005 to 0.25%, and further contains Zr: 0.02 to 1.5%, if necessary. , the remainder being Cu and unavoidable impurities, and is characterized by a Cu alloy that has the above-mentioned properties necessary to enable continuous casting molds to be used over a long period of time. Next, the reason why the composition range of the Cu alloy of the present invention is limited as described above will be explained. (a) Cr As mentioned above, the Cr component has the effect of improving alloy strength and improving thermal fatigue cracking resistance, coarse cracking resistance, and wear resistance, but its content is
If the content is less than 2.5%, the desired effect cannot be obtained, while if the content exceeds 17%, the thermal conductivity and ductility of the alloy will not only decrease, but also become difficult to melt. its content
It was set at 2.5% to 17%. (b) P In addition to suppressing ingot segregation, the P component has the effect of uniformly and finely dispersing Cr that crystallizes as primary crystals, thereby improving the mechanical strength of the alloy. If the content is less than 0.005%, the desired effect cannot be obtained, while if the content exceeds 0.25%, the thermal conductivity will decrease, so the content was set at 0.005 to 0.25%. . (c) Zr
It has the effect of improving ductility in the temperature range of
If the content is less than 0.02%, the desired effect of improving the above action cannot be obtained, and on the other hand, if the content exceeds 1.5%, no further improvement effect will be obtained, and on the contrary, it will become difficult to melt and the alloy will deteriorate. Since the plastic workability will decrease, its content should be reduced to 0.02 to 1.5%.
It was determined that In addition, in the Cu alloy of this invention, for the purpose of improving the strength, 0.05 to 0.5% Fe,
One or more of Ni, Co, Cd, Sn, Ag, and In, and 0.01 to 0.1% C, or any of them for the purpose of further improving heat resistance.
0.05 to 0.5% of Al, Mg, Ti, Si, Be, B, Hf, and one or more of rare earths, and as a deoxidizing agent for cleaning the ingot,
Even if one or more of Ca, Li, and Mg is contained in an amount of 0.01 to 0.2%, the above characteristics will not be impaired in any way. [Examples and Confirmation of Effects] Next, the Cu alloy of the present invention will be specifically explained using examples. Example 1 Using a high-frequency induction heating furnace, the component compositions shown in Table 1 were prepared in a graphite crucible in a vacuum atmosphere.

【表】 もつたCu合金溶湯をそれぞれ5Kgづつ調整し、
金型鋳造し、面削し、鍛造し、熱間圧延して板
厚:22mmの熱延板とした後、温度:1000℃に1時
間保持後水焼入れの熱処理を行ない、引続いて約
40%の圧下率にて冷間圧延を行なつて板厚:13mm
の冷延板とし、最終的に温度:480℃に1時間保
持の熱処理を行なうことによつて本発明Cu合金
板1〜16および比較Cu合金板1〜3をそれぞれ
製造した。なお、比較Cu合金板1〜3は、いず
れも従来連続鋳造鋳型の内壁材として使用されて
いるものである。 ついで、この結果得られた本発明Cu合金板1
〜16および比較Cu合金板1〜3について、常温
引張試験、500℃での高温引張試験、電気伝導度
測定試験、大越式摩耗試験、および粗大割れの原
因と考えられている硫黄による影響を見る目的で
溶融硫黄浸漬試験をそれぞれ行なつた。なお、大
越式摩耗試験は、水平に設置した試験片に対し
て、上方より直径:30mm×幅:3mmの寸法をもつ
たCr―Mo鋼製回転体を、おしつけ力:1Kg、回
転速度:4r.p.mの条件でおしつけ、5分経過後
における試験片の摩耗幅を測定することにより行
ない、また、溶融硫黄浸漬試験は、25mm×25mm×
10mmの寸法に切り出した試験片を軟鋼製治具に嵌
め込んでその一面だけが露出した状態とし、この
状態で温度:300℃に加熱した溶融硫黄中に10分
間浸漬後取出して板厚減を測定することにより行
なつた。これらの測定結果を第1表に合せて示し
た。 第1表に示される結果から、本発明Cu合金板
1〜16は、いずれも比較Cu合金板1〜3に比し
て、多少電気伝導度は劣るが、常温および高温に
おける強度が高く、かつ耐摩耗性および耐溶融硫
黄侵食性にもすぐれていることが明らかである。 実施例 2 高周波誘導加熱炉を用い、真空雰囲気中、黒鉛
るつぼ内でそれぞれ第2表に示される成分組成を
もつたCu合金溶湯をそれぞれ250Kgづつ溶製し、
インゴツトとし、熱間鍛造にて断面:170mm口×
長さ:750mmの寸法に加工した後、温度:
[Table] Adjust 5 kg of each motsuta Cu alloy molten metal,
After die casting, facing, forging, and hot rolling to obtain a hot rolled sheet with a thickness of 22 mm, the plate was held at a temperature of 1000°C for 1 hour, then water quenched and then heated to approximately 22 mm.
Cold rolled at a rolling reduction of 40%, plate thickness: 13mm
Invention Cu alloy plates 1 to 16 and comparative Cu alloy plates 1 to 3 were produced by final heat treatment at a temperature of 480°C for 1 hour. Note that Comparative Cu alloy plates 1 to 3 are all those that have been conventionally used as inner wall materials of continuous casting molds. Next, the resulting Cu alloy plate 1 of the present invention
~16 and Comparative Cu alloy plates 1 to 3 were subjected to a room temperature tensile test, a high temperature tensile test at 500℃, an electrical conductivity measurement test, an Okoshi type abrasion test, and the effects of sulfur, which is thought to be the cause of coarse cracking. For this purpose, a molten sulfur immersion test was conducted for each. In the Okoshi type wear test, a Cr-Mo steel rotating body with dimensions of diameter: 30 mm x width: 3 mm is pushed from above onto a test piece set horizontally, force: 1 Kg, rotation speed: 4 r. The molten sulfur immersion test was conducted by basting under the conditions of .pm and measuring the wear width of the test piece after 5 minutes.
A test piece cut out to a size of 10 mm was fitted into a mild steel jig with only one side exposed, and in this state it was immersed in molten sulfur heated to 300°C for 10 minutes and then taken out to reduce the plate thickness. This was done by measuring. These measurement results are also shown in Table 1. From the results shown in Table 1, Cu alloy plates 1 to 16 of the present invention are all slightly inferior in electrical conductivity to Comparative Cu alloy plates 1 to 3, but have high strength at room temperature and high temperature, and It is clear that it also has excellent wear resistance and molten sulfur corrosion resistance. Example 2 Using a high-frequency induction heating furnace, 250 kg of each Cu alloy molten metal having the composition shown in Table 2 was melted in a graphite crucible in a vacuum atmosphere.
Made into an ingot and hot forged Cross section: 170mm mouth x
After processing into dimensions of length: 750mm, temperature:

〔総括的効果〕[Overall effect]

上述のように、この発明にCu合金は、きわめ
て高い常温および高温強度を有し、かつ耐摩耗
性、耐熱疲労割れ性、および耐粗大割れ性にもす
ぐれているので、これらの特性が要求される連続
鋳造鋳型として使用した場合に、きわめて長期に
亘つてすぐれた性能を発揮するのである。
As mentioned above, the present invention requires Cu alloys to have extremely high strength at room and high temperatures, as well as excellent wear resistance, thermal fatigue cracking resistance, and coarse cracking resistance. When used as a continuous casting mold, it exhibits excellent performance over an extremely long period of time.

Claims (1)

【特許請求の範囲】 1 Cr:2.5〜17%, P:0.005〜0.25%, を含有し、残りがCuと不可避不純物からなる組
成(以上重量%)を有することを特徴とする連続
鋳造鋳型用Cu合金。 2 Cr:2.5〜17%, P:0.005〜0.25%, を含有し、さらに、 Zr:0.02〜1.5%, を含有し、残りがCuと不可避不純物からなる組
成(以上重量%)を有することを特徴とする連続
鋳造鋳型用Cu合金。
[Claims] 1. A continuous casting mold having a composition (weight %) containing 1 Cr: 2.5 to 17%, P: 0.005 to 0.25%, and the remainder consisting of Cu and unavoidable impurities. Cu alloy. 2 Contains Cr: 2.5 to 17%, P: 0.005 to 0.25%, and further contains Zr: 0.02 to 1.5%, with the remainder being Cu and unavoidable impurities (weight%). Features of Cu alloy for continuous casting molds.
JP27852984A 1984-12-27 1984-12-27 Cu alloy for continuous casting mold Granted JPS60238432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27852984A JPS60238432A (en) 1984-12-27 1984-12-27 Cu alloy for continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27852984A JPS60238432A (en) 1984-12-27 1984-12-27 Cu alloy for continuous casting mold

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1400181A Division JPS57131337A (en) 1981-02-02 1981-02-02 Cu alloy for continuous casting mold

Publications (2)

Publication Number Publication Date
JPS60238432A JPS60238432A (en) 1985-11-27
JPS6144930B2 true JPS6144930B2 (en) 1986-10-06

Family

ID=17598541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27852984A Granted JPS60238432A (en) 1984-12-27 1984-12-27 Cu alloy for continuous casting mold

Country Status (1)

Country Link
JP (1) JPS60238432A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711030U (en) * 1993-07-23 1995-02-14 東光株式会社 Ceramic filter

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2614210B2 (en) * 1986-02-06 1997-05-28 三菱マテリアル株式会社 Cu alloy for continuous casting mold
JPH07113133B2 (en) * 1986-02-06 1995-12-06 三菱マテリアル株式会社 Cu alloy for continuous casting mold
DE3760850D1 (en) * 1986-06-20 1989-11-30 Kabelmetal Ag Using a copper alloy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS508729A (en) * 1973-04-13 1975-01-29

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS508729A (en) * 1973-04-13 1975-01-29

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711030U (en) * 1993-07-23 1995-02-14 東光株式会社 Ceramic filter

Also Published As

Publication number Publication date
JPS60238432A (en) 1985-11-27

Similar Documents

Publication Publication Date Title
JP2501275B2 (en) Copper alloy with both conductivity and strength
JPH059502B2 (en)
CN109402446A (en) A kind of high-end frame material copper strips preparation process
JP2004353011A (en) Electrode material and manufacturing method therefor
JPH10168532A (en) Copper alloy for backing plate and its production
JPH059619A (en) Production of high-strength copper alloy
JPS6231059B2 (en)
KR950014423B1 (en) A copper-based metal alloy of improved type particularly for the contruction of electronic components
JPS6158541B2 (en)
JPS6144930B2 (en)
JPS5823452B2 (en) Softening resistant copper alloy
JPS58197241A (en) High strength cu alloy with high electric conductivity and superior resistance to erosion due to molten metal
JPS62182238A (en) Cu alloy for continuous casting mold
JPH11189834A (en) High strength trolley wire and its manufacture
JPS62182239A (en) Cu alloy for continuous casting mold
JP4293580B2 (en) Corson alloy for metal mold and manufacturing method thereof
JPS6117891B2 (en)
JPS6141973B2 (en)
JPH0314896B2 (en)
JPS6219263B2 (en)
JP3404278B2 (en) Cu-Ni-Si based copper base alloy with improved annealing cracking
JP2697242B2 (en) Continuous casting mold material made of Cu alloy having high cooling ability and method for producing the same
JP2632818B2 (en) High-strength copper alloy with excellent thermal fatigue resistance
JPS58197240A (en) Copper alloy for roll for rapidly cooling molten metal
JP3519863B2 (en) Phosphor bronze with low surface cracking susceptibility and method for producing the same