JP4293580B2 - Corson alloy for metal mold and manufacturing method thereof - Google Patents

Corson alloy for metal mold and manufacturing method thereof Download PDF

Info

Publication number
JP4293580B2
JP4293580B2 JP2000274366A JP2000274366A JP4293580B2 JP 4293580 B2 JP4293580 B2 JP 4293580B2 JP 2000274366 A JP2000274366 A JP 2000274366A JP 2000274366 A JP2000274366 A JP 2000274366A JP 4293580 B2 JP4293580 B2 JP 4293580B2
Authority
JP
Japan
Prior art keywords
heat treatment
corson
corson alloy
alloy
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000274366A
Other languages
Japanese (ja)
Other versions
JP2002080924A (en
Inventor
邦夫 中島
良一 石金
亘 矢後
賢一 市田
淳 安川
裕信 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHUETSU METAL CO., LTD.
Original Assignee
CHUETSU METAL CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHUETSU METAL CO., LTD. filed Critical CHUETSU METAL CO., LTD.
Priority to JP2000274366A priority Critical patent/JP4293580B2/en
Publication of JP2002080924A publication Critical patent/JP2002080924A/en
Application granted granted Critical
Publication of JP4293580B2 publication Critical patent/JP4293580B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、金型材に使用される、高強度及び熱伝導率に優れたコルソン系合金及びその製造方法に関する。
【0002】
【従来の技術】
現在、金型材には、Cu−Be系,コルソン系,Fe系の材料が広く使用されている。金型材に要求される特性は、次のようなものがある。
(1)高強度であること。
(2)熱伝導率が大きいこと(冷却速度が早いこと)。
(3)加工性がよいこと。
【0003】
【本発明が解決しようとする課題】
現在、金型材に使用されている、Cu−Be系,コルソン系,Fe系の材料は、下記のような問題点を抱えている。
【0004】
Cu−Be系材料については、以下のことが欠点とされている。
(1)非常に高価である。
(2)製造時に人体に有害なベリリウム酸化物を生成する。
(3)熱伝導率が高いが、放電加工性が悪い。
【0005】
現在、一般的に使用されている金型用のコルソン合金は、化学成分:96%Cu−3%Ni−1%Si(Cu%には不純物を含む)で、NiSiの析出物を形成し、合金のマトリックスを強化することで、強度を向上させているが、Cu−Be系に比べ、強度が低いことが欠点である。
【0006】
一方、Fe系材料は、次のことが欠点とされている。
(1)熱伝導率が低い。
(2)Cu−Be系に比べ、強度が低い。
【0007】
本発明は、かかる金型材の実情に鑑み、高強度で、熱伝導率が良く、且つ加工性が良く、製造コストも安価な金型用コルソン系合金及びその製造方法を提供することを目的としている。
【0008】
【課題を解決するための手段】
本発明による金型用コルソン系合金は、質量%で、Al:0.3〜2%、Si:1.5〜5%、Ni:4〜8%、Cr,Tiのうちから1種以上:0.1〜2%、残部がCu及び不純物よりなることを特徴とする。
【0009】
また、質量%で、Al:0.3〜2%、Si:1.5〜5%、Ni:4〜8%、Cr,Ti,Co,Feのうちから1種以上:0.1〜2%、Sn,Mn,Zn,Mg,Nb,Mo,Vのうちから1種以上:0.005〜3%、残部がCu及び不純物よりなることも特徴としている。
【0010】
一方、本発明による金型用コルソン系合金の製造方法は、質量%で、Al:0.3〜2%、Si:1.5〜5%、Ni:4〜8%、Cr,Tiのうちから1種以上:0.1〜2%、残部がCu及び不純物よりなる金型用コルソン系合金を熱間鍛造し、その後溶体化熱処理を行い、時効硬化熱処理を行うことを特徴とする。
【0011】
また、質量%で、Al:0.3〜2%、Si:1.5〜5%、Ni:4〜8%、Cr,Ti,Co,Feのうちから1種以上:0.1〜2%、Sn,Mn,Zn,Mg,Nb,Mo,Vのうちから1種以上:0.005〜3%、残部がCu及び不純物よりなる金型用コルソン系合金を熱間鍛造し、その後溶体化熱処理を行い、時効硬化熱処理を行うことをも特徴としている。
【0012】
次に、本発明合金の構成成分について、その作用と添加量の限定理由、及び強度向上のための熱処理条件について説明する。
【0013】
1)Al
Alは、合金の強度を決定すると共に、電気伝導度,熱伝導率を左右する元素であり、2%以上では熱伝導率が低下し、金型としての冷却能力が不足する。0.3%未満では電気伝導度が高くなり、金型製作時の放電加工性を害す。
【0014】
2)Si
Siは、溶湯を脱酸する作用があり、鋳造欠陥の発生を防止すると同時に、Niと共に熱処理により、Si−Ni系金属間化合物を析出し、強度を向上させる。
1.5%以下では従来のコルソン系金型材の強度を上回らず、5%を超えると強度の向上が飽和する。
【0015】
3)Ni
Niは、Siと共に熱処理により、Si−Ni系金属間化合物を構成し、合金を強化し、硬度を向上させる。4%以下だと効果がなく、8%以上だと伸びが低下して脆くなり割れの原因になる。
【0016】
4)Cr及びTi
Cr及びTiは、高温での耐酸化性を改善すると共に、合金の結晶粒を微細化させ、更にコルソン系合金に頻繁に発生する鋳造時及び鍛造時の熱間割れを防止する。0.1%以下では効果がなく、2%以上では効果が飽和する。
【0017】
5)Fe
Feは、Niと共に合金のマトリックスを強化し、硬度を向上させる。
【0018】
6)Sn
Snは、マトリックスに固溶し電気伝導度を低下させる。多すぎると熱伝導度が下がり、金型の冷却能力を低下させる。少なすぎると電気伝導度が高すぎて放電加工性が悪くなる。
【0019】
7)Mn
Mnは、溶湯内の酸素を除去(脱酸)し、湯流れ及び溶湯の品位を向上させると共に、延性,鍛造性を改善する。
【0020】
8)Zn
Znは、蒸気圧が高いため、溶解時の酸化やガス吸収を防止すると同時に、鍛造性の向上にも寄与する。
【0021】
9)Mg
Mgは、高温時の延性の低下を軽減し、鍛造性を向上させる。
【0022】
10)Ti,Cr,Co,Nb,Mo,V
Ti,Cr,Co,Nb,Mo,Vは、結晶粒を微細化し、伸びを改善するので金型として使用した際の繰り返しの熱応力に耐え、高温での肌荒れの防止や、耐摩耗性に効果があり、金型寿命を向上させる。
【0023】
11)熱処理
熱間鍛造を行った後、下記熱処理を施すことにより、強度が向上する。Si及びNiは、800〜950℃で溶体化熱処理を行うことにより、マトリックスに固溶し、その後400〜500℃で時効硬化熱処理を行うことにより、Si−Ni系金属間化合物を析出し、強度がさらに向上する。
【0024】
【実施例】
(1)供試材
本発明実施例材料を表1に示し、比較例材料を表2に示した。この表1及び表2に示したNo.1〜No.8及びNo.A〜No.Cの成分からなる合金を、高周波誘導炉にて溶製し、φ140×300Lのインゴットを鋳造し、そのインゴットを65×1000Lの正四角柱に熱間鍛造した。その後900℃の溶体化熱処理を施し、450℃の時効硬化熱処理を行って供試材とした。
【表1】

Figure 0004293580
【表2】
Figure 0004293580
【0025】
(2)引張試験,硬さ試験,導電率測定
各材質の供試材から、JIS Z 2201 14A号引張試験片(硬度片付)に機械加工し、各試験を行った。その結果を表3に示す。
【0026】
(3)放電加工試験
各材質の供試材を、φ50×20tに加工し、φ8×50の銅電極を用い、1時間放電加工し、加工量を測定した。その結果を表3に示した。
【表3】
Figure 0004293580
【0027】
【発明の効果】
本発明の金型用コルソン系合金は、金型材として従来使用されているCu−Be系,コルソン系,Fe系の材料と比較して、次のような優れた効果を有する。
【0028】
(1)Beを含有していないので、製造費が安価であるとともに、人体に優しい。
(2)Alを添加することにより、電気伝導度を実用上問題のないレベルまで下げ、放電加工性を改善している。
(3)従来のコルソン系金型材よりも高強度であり、Cu−Be系金型材に近い機械的性質を有す。
(4)熱処理を行うことにより、さらに高強度になる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a Corson alloy that is used for a mold material and has high strength and excellent thermal conductivity, and a method for producing the same.
[0002]
[Prior art]
Currently, Cu-Be, Corson, and Fe materials are widely used as mold materials. The characteristics required for the mold material are as follows.
(1) High strength.
(2) High thermal conductivity (fast cooling rate).
(3) Good workability.
[0003]
[Problems to be solved by the present invention]
Currently, Cu—Be, Corson, and Fe materials used for mold materials have the following problems.
[0004]
The following are the drawbacks of Cu-Be based materials.
(1) Very expensive.
(2) Forms beryllium oxide that is harmful to the human body during production.
(3) Although the thermal conductivity is high, the electric discharge processability is poor.
[0005]
Currently used corson alloy for molds is a chemical component: 96% Cu-3% Ni-1% Si (Cu% contains impurities) and forms Ni 3 Si precipitates. However, the strength is improved by strengthening the matrix of the alloy, but the strength is lower than that of the Cu-Be system.
[0006]
On the other hand, Fe-based materials have the following disadvantages.
(1) Low thermal conductivity.
(2) The strength is lower than that of the Cu-Be system.
[0007]
In view of the actual situation of such mold materials, the present invention aims to provide a Corson-based alloy for molds and a method for manufacturing the same, which has high strength, good thermal conductivity, good workability, and low manufacturing costs. Yes.
[0008]
[Means for Solving the Problems]
The Corson-based alloy for molds according to the present invention is, by mass , Al: 0.3-2%, Si: 1.5-5%, Ni: 4-8%, one or more of Cr, Ti: It is characterized by 0.1 to 2%, the balance being made of Cu and impurities.
[0009]
Also, by mass% , Al: 0.3-2%, Si: 1.5-5%, Ni: 4-8%, one or more of Cr, Ti, Co, Fe: 0.1-2 %, Sn, Mn, Zn, Mg, Nb, Mo, and V , 0.005 to 3%, and the balance is made of Cu and impurities.
[0010]
On the other hand, the manufacturing method of the Corson type alloy for molds according to the present invention is mass%, Al: 0.3-2%, Si: 1.5-5%, Ni: 4-8%, Cr, Ti 1 or more: 0.1-2%, and the remainder is hot forged a mold Corson alloy consisting of Cu and impurities, followed by solution heat treatment and age hardening heat treatment.
[0011]
Also, by mass% , Al: 0.3-2%, Si: 1.5-5%, Ni: 4-8%, one or more of Cr, Ti, Co, Fe: 0.1-2 %, Sn, Mn, Zn, Mg, Nb, Mo, V , one or more types: 0.005 to 3%, the hot-forging of the Corson alloy for molds, the balance being Cu and impurities, and then the solution It is also characterized by performing an aging heat treatment and an age hardening heat treatment.
[0012]
Next, with regard to the constituent components of the alloy of the present invention, the reason for limiting the action and addition amount and the heat treatment conditions for improving the strength will be described.
[0013]
1) Al
Al is an element that determines the strength of the alloy and influences the electrical conductivity and thermal conductivity. If it is 2% or more, the thermal conductivity is lowered and the cooling ability as a mold is insufficient. If it is less than 0.3%, the electric conductivity becomes high, and the electric discharge machining property at the time of mold production is impaired.
[0014]
2) Si
Si has a function of deoxidizing the molten metal, prevents the occurrence of casting defects, and at the same time, precipitates Si-Ni intermetallic compounds by heat treatment together with Ni to improve the strength.
If it is less than 1.5%, it does not exceed the strength of the conventional Corson mold material, and if it exceeds 5%, the strength improvement is saturated.
[0015]
3) Ni
Ni forms a Si-Ni intermetallic compound by heat treatment with Si, strengthens the alloy, and improves the hardness. If it is 4% or less, there is no effect, and if it is 8% or more, the elongation decreases and becomes brittle and causes cracking.
[0016]
4) Cr and Ti
Cr and Ti improve the oxidation resistance at high temperatures, refine the crystal grains of the alloy, and prevent hot cracking frequently occurring in Corson alloys during casting and forging. If it is 0.1% or less, there is no effect, and if it is 2% or more, the effect is saturated.
[0017]
5) Fe
Fe, together with Ni, strengthens the matrix of the alloy and improves the hardness.
[0018]
6) Sn
Sn dissolves in the matrix and lowers the electrical conductivity. If it is too much, the thermal conductivity is lowered and the cooling capacity of the mold is lowered. If the amount is too small, the electrical conductivity is too high and the electric discharge machining property is deteriorated.
[0019]
7) Mn
Mn removes (deoxidizes) oxygen in the molten metal, improves the flow of the molten metal and the quality of the molten metal, and improves the ductility and forgeability.
[0020]
8) Zn
Since Zn has a high vapor pressure, it prevents oxidation and gas absorption during melting, and at the same time contributes to improvement of forgeability.
[0021]
9) Mg
Mg reduces the reduction in ductility at high temperatures and improves forgeability.
[0022]
10) Ti, Cr, Co, Nb, Mo, V
Ti, Cr, Co, Nb, Mo, and V refine crystal grains and improve elongation, so they can withstand repeated thermal stress when used as a mold, prevent rough skin at high temperatures, and wear resistance. It is effective and improves the mold life.
[0023]
11) Heat treatment After hot forging, the following heat treatment is performed to improve the strength. Si and Ni are dissolved in the matrix by solution heat treatment at 800 to 950 ° C., and then subjected to age hardening heat treatment at 400 to 500 ° C. to precipitate Si—Ni intermetallic compounds, Is further improved.
[0024]
【Example】
(1) Test material Table 1 shows examples of the present invention and Table 2 shows comparative materials. Alloys composed of components No. 1 to No. 8 and No. A to No. C shown in Table 1 and Table 2 are melted in a high frequency induction furnace, and an ingot of φ140 × 300 L is cast. The ingot was hot forged into a 65 × 1000 L square prism. Thereafter, a solution heat treatment at 900 ° C. was performed, and an age hardening heat treatment at 450 ° C. was performed to obtain a test material.
[Table 1]
Figure 0004293580
[Table 2]
Figure 0004293580
[0025]
(2) Tensile test, hardness test, conductivity measurement Each specimen was machined from a test material of each material to a JIS Z 2201 14A tensile test piece (with a hardness piece). The results are shown in Table 3.
[0026]
(3) Electrical Discharge Machining Test Each specimen was processed to φ50 × 20t, subjected to electrical discharge machining using a φ8 × 50 copper electrode for 1 hour, and the processing amount was measured. The results are shown in Table 3.
[Table 3]
Figure 0004293580
[0027]
【The invention's effect】
The Corson alloy for molds of the present invention has the following excellent effects as compared with Cu-Be, Corson, and Fe materials that are conventionally used as mold materials.
[0028]
(1) Since Be is not contained, the manufacturing cost is low and it is friendly to the human body.
(2) By adding Al, the electrical conductivity is lowered to a level that does not cause a practical problem, and the electric discharge processability is improved.
(3) It has higher strength than conventional Corson mold materials and has mechanical properties close to those of Cu-Be mold materials.
(4) The strength is further increased by heat treatment.

Claims (4)

質量%で、Al:0.3〜2%、Si:1.5〜5%、Ni:4〜8%、Cr,Tiのうちから1種以上:0.1〜2%、残部がCu及び不純物よりなる金型用コルソン系合金。 In mass% , Al: 0.3-2%, Si: 1.5-5%, Ni: 4-8%, one or more of Cr and Ti: 0.1-2%, the balance being Cu and Corson alloy for molds made of impurities. 質量%で、Al:0.3〜2%、Si:1.5〜5%、Ni:4〜8%、Cr,Ti,Co,Feのうちから1種以上:0.1〜2%、Sn,Mn,Zn,Mg,Nb,Mo,Vのうちから1種以上:0.005〜3%、残部がCu及び不純物よりなる金型用コルソン系合金。 In mass% , Al: 0.3-2%, Si: 1.5-5%, Ni: 4-8%, one or more of Cr, Ti, Co, Fe: 0.1-2%, One or more of Sn, Mn, Zn, Mg, Nb, Mo, and V : 0.005 to 3%, and the remainder is a Corson alloy for molds made of Cu and impurities. 質量%で、Al:0.3〜2%、Si:1.5〜5%、Ni:4〜8%、Cr,Tiのうちから1種以上:0.1〜2%、残部がCu及び不純物よりなる金型用コルソン系合金を熱間鍛造し、その後溶体化熱処理を行い、時効硬化熱処理を行うことを特徴とする金型用コルソン系合金の製造方法。 In mass% , Al: 0.3-2%, Si: 1.5-5%, Ni: 4-8%, one or more of Cr and Ti: 0.1-2%, the balance being Cu and A method for producing a Corson alloy for molds, comprising hot forging a Corson alloy for molds made of impurities, followed by solution heat treatment, followed by age hardening heat treatment. 質量%で、Al:0.3〜2%、Si:1.5〜5%、Ni:4〜8%、Cr,Ti,Co,Feのうちから1種以上:0.1〜2%、Sn,Mn,Zn,Mg,Nb,Mo,Vのうちから1種以上:0.005〜3%、残部がCu及び不純物よりなる金型用コルソン系合金を熱間鍛造し、その後溶体化熱処理を行い、時効硬化熱処理を行うことを特徴とする金型用コルソン系合金の製造方法。 In mass% , Al: 0.3-2%, Si: 1.5-5%, Ni: 4-8%, one or more of Cr, Ti, Co, Fe: 0.1-2%, One or more of Sn, Mn, Zn, Mg, Nb, Mo, and V : 0.005 to 3%, hot forging a mold Corson alloy composed of Cu and impurities, followed by solution heat treatment A method for producing a Corson alloy for molds, comprising performing age hardening heat treatment.
JP2000274366A 2000-09-11 2000-09-11 Corson alloy for metal mold and manufacturing method thereof Expired - Lifetime JP4293580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000274366A JP4293580B2 (en) 2000-09-11 2000-09-11 Corson alloy for metal mold and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000274366A JP4293580B2 (en) 2000-09-11 2000-09-11 Corson alloy for metal mold and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002080924A JP2002080924A (en) 2002-03-22
JP4293580B2 true JP4293580B2 (en) 2009-07-08

Family

ID=18760132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000274366A Expired - Lifetime JP4293580B2 (en) 2000-09-11 2000-09-11 Corson alloy for metal mold and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4293580B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5587615B2 (en) * 2010-01-18 2014-09-10 本田技研工業株式会社 Casting method
CN105908015A (en) * 2016-05-05 2016-08-31 太仓小小精密模具有限公司 Anti-oxidization copper alloy mold material
CN107186384A (en) * 2017-07-31 2017-09-22 安徽华众焊业有限公司 A kind of copper silicon welding wire
CN115404376B (en) * 2021-05-26 2023-05-05 叶均蔚 High-strength abrasion-resistant multi-element copper alloy and application thereof
TW202246536A (en) * 2021-05-26 2022-12-01 國立清華大學 High strength and wear resistant multi-element copper alloy and use thereof

Also Published As

Publication number Publication date
JP2002080924A (en) 2002-03-22

Similar Documents

Publication Publication Date Title
JP4277113B2 (en) Ni-base alloy for heat-resistant springs
JP5085908B2 (en) Copper alloy for electronic materials and manufacturing method thereof
JP3896422B2 (en) Copper alloy for backing plate and manufacturing method thereof
JP2007126739A (en) Copper alloy for electronic material
CN111057937A (en) Electrothermal alloy iron-chromium-aluminum wire material and preparation method thereof
CN112626375A (en) Preparation method of novel nickel-based material for petroleum valve rod
JP2005002451A (en) Fe-Ni-Cr ALLOY FOR HEAT-RESISTANT SPRING AND PRODUCTION METHOD OF HEAT-RESISTANT SPRING
TWI257955B (en) Ni-Cr-Mo-Cu alloys resistant to sulfuric acid and wet process phosphoric acid
JP4293580B2 (en) Corson alloy for metal mold and manufacturing method thereof
JP3824944B2 (en) Copper alloy excellent in stress corrosion cracking resistance and dezincing resistance and manufacturing method thereof
JPS6158541B2 (en)
JPS6039140B2 (en) High-strength, highly conductive Cu alloy with excellent resistance to molten metal erosion
JP3581028B2 (en) Hot work tool steel and high temperature members made of the hot work tool steel
JP4543171B2 (en) Iron alloy for high resistors
JP3821368B2 (en) Manufacturing method of high clean maraging steel
JP3563311B2 (en) Copper alloy electrode material for resistance welding and method for producing the same
JPH11189834A (en) High strength trolley wire and its manufacture
RU2446223C1 (en) Heat-resistant chrome-nickel alloy with austenitic structure
JPS62182238A (en) Cu alloy for continuous casting mold
JPH09316569A (en) Copper alloy for lead frame and its production
JPH0314896B2 (en)
JPH0832935B2 (en) High strength and high toughness Cu alloy with little characteristic anisotropy
JPH0285330A (en) Copper alloy having good press bendability and its manufacture
WO2022211062A1 (en) Aluminum alloy material, production method therefor, and machine component
JP4296303B2 (en) High Cr ferritic iron alloy with excellent toughness and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090406

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250