WO2022211062A1 - Aluminum alloy material, production method therefor, and machine component - Google Patents

Aluminum alloy material, production method therefor, and machine component Download PDF

Info

Publication number
WO2022211062A1
WO2022211062A1 PCT/JP2022/016719 JP2022016719W WO2022211062A1 WO 2022211062 A1 WO2022211062 A1 WO 2022211062A1 JP 2022016719 W JP2022016719 W JP 2022016719W WO 2022211062 A1 WO2022211062 A1 WO 2022211062A1
Authority
WO
WIPO (PCT)
Prior art keywords
atomic
less
aluminum alloy
alloy material
content
Prior art date
Application number
PCT/JP2022/016719
Other languages
French (fr)
Japanese (ja)
Inventor
雅晶 近藤
知平 杉山
尚記 ▲高▼田
Original Assignee
株式会社豊田自動織機
国立大学法人東海国立大学機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機, 国立大学法人東海国立大学機構 filed Critical 株式会社豊田自動織機
Priority to JP2023511733A priority Critical patent/JPWO2022211062A1/ja
Publication of WO2022211062A1 publication Critical patent/WO2022211062A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • the present invention relates to an aluminum alloy material, a method for manufacturing the same, and a machine part made of the aluminum alloy material.
  • Aluminum alloy is used as a material for machine parts, taking advantage of its high specific strength.
  • compressor parts for transportation machines such as impellers incorporated in turbochargers are required to have excellent mechanical properties at high temperatures.
  • Non-Patent Document 1 describes that Al-Mg-Zn ternary alloys have excellent strength at high temperatures (Non-Patent Document 1).
  • Non-Patent Document 1 still has room for improvement in creep properties.
  • the present invention has been made in view of this background, and aims to provide an aluminum alloy material with excellent creep properties, a method for producing the same, and a machine part.
  • One aspect of the present invention is Mg (magnesium): 1.0 atomic % to 10.0 atomic %, Zn (zinc): 1.0 atomic % to 9.0 atomic %, Ni (nickel): 0.0 atomic % to 10.0 atomic %.
  • the aluminum alloy material having a chemical composition in which the balance is Al (aluminum) and unavoidable impurities.
  • the aluminum alloy material contains Mg, Zn, Ni, and Cu in respective contents within the specific ranges.
  • the aluminum alloy material further contains one or more of Ti, Mn and Fe in a content within the specific range.
  • the aluminum alloy material can improve the creep property by setting the chemical composition within the specific range.
  • the aluminum alloy material has excellent creep properties.
  • FIG. 1 is an explanatory diagram schematically showing an elemental map of the test material E1 in Example 1.
  • FIG. 2 is a backscattered electron image of the test material E1 in Example 1.
  • FIG. 3 is an explanatory diagram schematically showing an elemental map of the test material E2 in Example 1.
  • FIG. 4 is an explanatory diagram showing creep curves in the low strain region of test materials E1 to E4 and test materials C1 to C2.
  • FIG. 5 is an explanatory diagram showing creep curves in the low strain region of test materials E5 to E7, test material C1 and test material C3.
  • FIG. 6 is an explanatory diagram showing creep curves in the low strain region of test materials E8 to E10.
  • FIG. 7 is an explanatory diagram showing creep curves in the low strain region of test materials E11 to E14.
  • FIG. 8 is a backscattered electron image of the test material E1 after the creep test.
  • FIG. 9 is an enlarged backscattered electron image of the portion where Ti atoms exist in the Al matrix phase in FIG.
  • FIG. 10 is an enlarged backscattered electron image of a portion where no Ti atoms exist in the Al matrix phase in FIG. 11 is an elemental map of test material E15 in Example 2.
  • FIG. 12 is an elemental map of test material E16 in Example 2.
  • Mg forms second phase particles in the Al matrix by coexisting with Zn, and has the effect of improving the strength of the aluminum alloy material.
  • the content of Mg in the aluminum alloy material is 1.0 atomic % or more and 10.0 atomic % or less.
  • the content of Mg is preferably 1.5 atomic % or more and 9.5 atomic % or less, more preferably 2.0 atomic % or more and 9.0 atomic % or less, and 3.5 atomic % or more and 9.0 atomic % or less. 0 atomic % or less is more preferable, and 4.0 atomic % or more and 8.0 atomic % or less is particularly preferable. In this case, the creep property of the aluminum alloy material can be improved more easily.
  • the ratio Mg/Zn of the Mg content to the Zn content is preferably 0.8 or more and 2.0 or less, more preferably 1.0 or more and 1.5 or less. In this case, the strain rate in the secondary creep region in the strain rate-time curve is made smaller, and the effect of further improving the secondary creep property can be expected.
  • Zn 1.0 atomic % or more and 9.0 atomic % or less
  • Zn forms second phase particles in the Al matrix by coexisting with Mg, and has the effect of improving the strength of the aluminum alloy material.
  • the content of Zn in the aluminum alloy material is 1.0 atomic % or more and 9.0 atomic % or less.
  • the Zn content is preferably 1.5 atomic % or more and 8.5 atomic % or less, and more preferably 2.0 atomic % or more and 8.0 atomic % or less. In this case, the creep property can be improved more easily.
  • the aluminum alloy material can further improve the creep property compared to the case where either one or both of these elements are not added.
  • the Cu content in the aluminum alloy material is preferably 0.30 atomic % or more, more preferably 0.50 atomic % or more, and more preferably 0.80 atomic % or more. It is more preferably at least 1.2 atomic %, particularly preferably at least 1.2 atomic %. From the same point of view, the Ni content in the aluminum alloy material is preferably 0.30 atomic % or more, more preferably 0.50 atomic % or more, and 0.80 atomic % or more. is more preferable, and 1.2 atomic % or more is particularly preferable.
  • the Cu content in the aluminum alloy material is preferably 2.5 atomic % or less, and more preferably 2.2 atomic % or less. It is more preferably 1.5 atomic % or less, and particularly preferably 1.3 atomic % or less.
  • the Ni content in the aluminum alloy material is preferably 2.5 atomic % or less, more preferably 2.2 atomic % or less, and 1.5 atomic % or less. is more preferable, and 1.3 atomic % or less is particularly preferable.
  • the Cu content in the aluminum alloy material is 0.50 atomic % or more and 1.5 atomic % or less, and , Ni content is most preferably 0.50 atomic % or more and 1.5 atomic % or less.
  • Ti: 0.01 atomic % or more and 0.30 atomic %, Mn: 0.01 atomic % or more and 0.30 atomic % or less, Fe: 0.01 atomic % or more and 0.30 atomic % or less in the aluminum alloy material is, in addition to Mg, Zn, Cu and Ni, Ti: 0.01 atomic % to 0.30 atomic %, Mn: 0.01 atomic % to 0.30 atomic % and Fe: 0.01 atomic %
  • One or two or more of the elements above 0.30 atomic % and below are contained.
  • the second It is possible to suppress coarsening of phase particles. As a result, the progress of creep in the aluminum alloy material can be further retarded, and the creep properties can be further improved.
  • the aluminum alloy material contains Mg: 1.0 atomic % or more and 10.0 atomic % or less, Zn: 1.0 atomic % or more and 9.0 atomic % or less, Ni: 0.25 atomic % or more and 3.0 atomic % or less and Cu: 0.25 atomic % or more and 3.0 atomic % or less, and Ti: 0.01 atomic % or more and 0.30 atomic % or less and Mn: It is preferable to have a chemical component containing one or more elements of 0.01 atomic % or more and 0.30 atomic % or less, with the balance being Al and unavoidable impurities.
  • the Ti content in the aluminum alloy material is preferably 0.02 atomic % or more, more preferably 0.03 atomic % or more. It is preferably 0.04 atomic % or more, and particularly preferably 0.07 atomic % or more. From the same point of view, the content of Mn and the content of Fe in the aluminum alloy material are each preferably 0.02 atomic % or more, more preferably 0.03 atomic % or more, and 0 It is more preferably 0.04 atomic % or more, and particularly preferably 0.07 atomic % or more.
  • the content of Ti in the aluminum alloy material is preferably 0.25 atomic % or less, more preferably 0.22 atomic % or less. , is more preferably 0.17 atomic % or less, and particularly preferably 0.15 atomic % or less.
  • the content of Mn and the content of Fe in the aluminum alloy material are each preferably 0.25 atomic % or less, more preferably 0.22 atomic % or less, and 0 It is more preferably 0.17 atomic % or less, and particularly preferably 0.15 atomic % or less.
  • the aluminum alloy material contains, for example, Mg: 1.0 atomic % or more and 10.0 atomic % or less, Zn: 1.0 atomic % or more and 9.0 atomic % or less, Ni: 1.5 atomic % % and 3.0 atomic % or less and Cu: more than 1.5 atomic % and 3.0 atomic % or less, Ti: 0.01 atomic % or more and 0.17 atomic % or less, Mn: 0.01 atomic % or more and 0.17 atomic % or less.
  • the aluminum alloy material contains Mg: 1.0 atomic % or more and 10.0 atomic % or less, Zn: 1.0 atomic % or more and 9.0 atomic % or less, Ni: 1.5 More than 3.0 atomic % and Cu: more than 1.5 atomic % and 3.0 atomic % or less, Ti: 0.01 atomic % or more and 0.17 atomic % or less, and Mn: 0 It is preferable to have a chemical composition containing one or two elements in the range of 0.01 atomic % to 0.17 atomic % and the balance being Al and unavoidable impurities.
  • the Cu content is more than 1.5 atomic percent and 3.0 atomic percent or less, and the Ni content is more than 1.5 atomic percent and 3.0 atomic percent.
  • At least Ti is included among Ti, Mn and Fe, and the content of Ti is preferably 0.01 atomic % or more and 0.17 atomic % or less.
  • the aluminum alloy material has, for example, Mg: 1.0 atomic % or more and 10.0 atomic % or less, Zn: 1.0 atomic % or more and 9.0 atomic % or less, Ni: more than 1.5 atomic % and 3 0 atomic % or less and Cu: more than 1.5 atomic % and 3.0 atomic % or less, Ti: 0.01 atomic % or more and 0.17 atomic % or less, Mn: 0.01 atomic % or more and 0.01 atomic % or less. 17 atomic % or less and Fe: 0.01 atomic % or more and 0.17 atomic % or less, preferably having a chemical composition containing at least Ti and the balance being Al and unavoidable impurities.
  • the aluminum alloy material contains Mg: 1.0 atomic % or more and 10.0 atomic % or less, Zn: 1.0 atomic % or more and 9.0 atomic % or less, Ni: 1.5 more than 3.0 atomic %, Cu: more than 1.5 atomic % and 3.0 atomic % or less, and Ti: 0.01 atomic % or more and 0.17 atomic % or less, and the balance is Al and unavoidable It is more preferable to have a chemical composition consisting of organic impurities.
  • the aluminum alloy material contains, for example, Mg: 1.0 atomic % to 10.0 atomic %, Zn: 1.0 atomic % to 9.0 atomic %, Ni: 0.25 atomic % to 1.0 atomic %. 5 atomic % or less and Cu: 0.25 atomic % or more and 1.5 atomic % or less, Ti: 0.01 atomic % or more and 0.30 atomic % or less, Mn: 0.01 atomic % or more and 0.5 atomic % or less It may contain one or more elements selected from 30 atomic % or less and Fe: 0.01 atomic % or more and 0.30 atomic % or less.
  • An aluminum alloy material having such chemical components has excellent creep properties and can be easily reduced in density.
  • the aluminum alloy material contains Mg: 1.0 atomic % or more and 10.0 atomic % or less, Zn: 1.0 atomic % or more and 9.0 atomic % or less, Ni: 0.25 atomic % or more and 1.5 atomic % or less, Cu: 0.25 atomic % or more and 1.5 atomic % or less, and Ti: 0.07 atomic % or more and 0.30 atomic % It is preferable to contain one or two elements selected from atomic % or less and Mn: 0.07 atomic % or more and 0.30 atomic % or less.
  • the Cu content is 0.25 atomic % or more and 1.5 atomic % or less
  • the Ni content is 0.25 atomic % or more and 1.5 atomic %. and preferably contains at least Ti among Ti, Mn and Fe and contains one or two elements of Mn and Fe.
  • the aluminum alloy material contains Mg: 1.0 atomic % or more and 10.0 atomic % or less, Zn: 1.0 atomic % or more and 9.0 atomic % or less, Ni: 0.25 atomic % or more and 1.5 atoms % or less, Cu: 0.25 atomic % or more and 1.5 atomic % or less and Ti: 0.01 atomic % or more and 0.30 atomic % or less, and Mn: 0.01 atomic % or more and 0.30 atomic % or less % or less and Fe: 0.01 atomic % or more and 0.30 atomic % or less.
  • the aluminum alloy material contains Mg: 1.0 atomic % or more and 10.0 atomic % or less, Zn: 1.0 atomic % or more and 9.0 atomic % or less, Ni: 0.25 at least 1.5 atomic %, Cu: from 0.25 atomic % to 1.5 atomic %, Ti: from 0.01 atomic % to 0.30 atomic %, and Mn: from 0.01 atomic % to 0.01 atomic %. It is more preferable to contain 30 atomic % or less. In this case, the total content of Ti and Mn is particularly preferably 0.15 atomic % or more and 0.35 atomic % or less.
  • the aluminum alloy material preferably has a metallographic structure in which second-phase particles are dispersed in an Al matrix.
  • the second phase particles formed in the Al matrix include, for example, ⁇ phase precipitates having a composition represented by the composition formula Zn 2 Mg, and compositions represented by the composition formula Al 3 (Cu, Ni) 2 and a T-phase precipitate having a composition represented by the composition formula Al 6 Mg 11 Zn 11 .
  • the second phase particles in the Al matrix can strengthen the aluminum alloy material and further improve the strength of the aluminum alloy material.
  • the second-phase particles in the aluminum alloy material contain T-phase precipitates with a major axis of 0.05 ⁇ m or less.
  • T-phase precipitates are highly stable in high-temperature environments. Therefore, by precipitating a large amount of fine T-phase precipitates in the Al matrix, the strength of the aluminum alloy material at high temperatures can be further improved.
  • Ti atoms, Mn atoms and Fe atoms contained in the Al matrix phase have the effect of suppressing coarsening of T-phase precipitates due to heat and stress. Therefore, when T-phase precipitates are formed in the Al matrix containing these atoms, it is necessary to maintain the state in which the T-phase precipitates are finely dispersed in the Al matrix for a longer period of time. can be done. As a result, the creep property of the aluminum alloy material can be further improved.
  • the Ti atoms are preferably distributed throughout the Al matrix.
  • An aluminum alloy material having such a metal structure has higher hardness. Further, by making the distribution of Ti atoms in the Al matrix more uniform in this way, it is possible to exhibit the effect of suppressing the coarsening of T-phase precipitates due to Ti atoms in the entire aluminum alloy material. From the same point of view, it is more preferable that the maximum concentration of Ti atoms in the Al matrix is 150% or less of the average concentration of Ti atoms in the aluminum alloy material.
  • the distribution state of Ti atoms in the Al matrix and the concentration of Ti atoms in the Al matrix described above can be evaluated based on the elemental map of the aluminum alloy material.
  • An electron probe microanalyzer (EPMA) for example, may be used to acquire the elemental map of the aluminum alloy material.
  • the above-mentioned aluminum alloy material has a creep property in which the time required for the creep strain to reach 0.4% is 440 hours or more when a creep test is performed under the conditions of a test temperature of 200 ° C and a test stress of 105 MPa. and more preferably have a creep property of 600 hours or more.
  • Aluminum alloy materials having such creep properties are suitable for machine parts used in high-temperature environments.
  • the aluminum alloy material has a characteristic that the strength is not easily lowered even in a high-temperature environment.
  • the aluminum alloy material has excellent creep properties even in a high temperature environment. Taking advantage of these characteristics, the aluminum alloy material can be suitably used for machine parts used in a high temperature environment of 170° C. or higher.
  • Such mechanical parts include, for example, compressor parts for transport machines that are incorporated in transport machines such as automobiles.
  • the aluminum alloy material is particularly suitable for an impeller incorporated in a turbocharger among compressor parts for transport machines.
  • the aluminum alloy material is manufactured by, for example, sequentially performing casting, solution treatment, quenching and aging treatment. Moreover, in the manufacturing method of the above aspect, the ingot after casting may be subjected to a homogenization treatment and a drawing process, if necessary.
  • an ingot having the specific chemical composition may be produced by a method such as continuous casting or semi-continuous casting.
  • an effect of further improving the hardness of the aluminum alloy material can be expected. The reason for this is thought to be that if the molten metal is rapidly solidified during casting, the strain accumulated in the crystal grains increases.
  • the heating temperature can be appropriately set within the range of, for example, 420°C or higher and 500°C or lower.
  • the holding time in the homogenization treatment can be appropriately set within a range of, for example, 10 hours or more and 48 hours or less. If the heating temperature in the homogenization treatment is too low or the holding time is too short, the homogenization of the ingot becomes insufficient, and problems such as segregation may occur. Moreover, in this case, there is a possibility that deformation resistance will increase when plastic working is performed later.
  • the heating temperature in the homogenization process is too high or the holding time is too long, the energy required to heat the ingot increases, which may lead to an increase in manufacturing costs. Moreover, in this case, cracks may easily occur when plastic working is performed later. From the viewpoint of avoiding these problems more reliably, it is preferable to set the heating temperature in the homogenization treatment within the range of 440° C. or higher and 490° C. or lower. From the same point of view, it is preferable to set the holding time in the homogenization treatment within the range of 20 hours or more and 30 hours or less.
  • the stretching is performed by one type of processing selected from hot rolling, cold rolling, hot extrusion, cold extrusion, hot forging, and cold forging. Alternatively, two or more of these processes may be combined. Further, heat treatment such as annealing can be performed as necessary during the drawing process.
  • the ingot or wrought material is heated to dissolve solute elements such as Mg into the Al matrix.
  • solute elements such as Mg into the Al matrix.
  • the heating temperature in the solution treatment can be appropriately set within the range of, for example, 420°C or higher and 500°C or lower.
  • the holding time in the solution treatment can be appropriately set within the range of 20 hours or more and 48 hours or less.
  • the solute elements may not be sufficiently solidified and the amount of second phase particles after aging treatment may decrease. As a result, the creep property of the aluminum alloy material may deteriorate. If the heating temperature in the solution treatment is too high or the holding time is too long, the energy required for heating the ingot or wrought material increases, which may lead to an increase in manufacturing costs.
  • the method of quenching the ingot or wrought material is not particularly limited, and a method such as water quenching can be used, for example.
  • the ingot or wrought material that has become a supersaturated solid solution through solution treatment and quenching is heated and aged.
  • the heating temperature in the aging treatment can be appropriately set within a range of, for example, 170°C or higher and 300°C or lower.
  • the holding time in the aging treatment can be appropriately set within the range of 1 hour or more and 100 hours or less.
  • the heating temperature in the aging treatment is too low or the holding time is too short, the amount of second phase particles may decrease. As a result, the creep property of the aluminum alloy material may deteriorate. If the heating temperature in the aging treatment is too high or the holding time is too long, overaging will occur, which may lead to deterioration of the creep properties of the aluminum alloy material. From the viewpoint of avoiding these problems more reliably, it is preferable to set the heating temperature in the aging treatment within the range of 170° C. or more and 250° C. or less. From the same point of view, it is preferable to set the holding time in the aging treatment within the range of 1 hour or more and 10 hours or less.
  • Example 1 Examples of the aluminum alloy material and the manufacturing method thereof will be described below.
  • an ingot having the chemical composition shown in Table 1 was produced by a conventional method.
  • "-" in the chemical composition column of Table 1 is a symbol indicating that the element is not contained, and "Bal.” is a symbol indicating the remainder.
  • the obtained ingot was subjected to solution treatment by holding it at a temperature of 480°C for 24 hours, and then water quenching. Then, the ingot after water quenching was held at a temperature of 200° C. for 10 hours for aging treatment.
  • the aluminum alloy materials test materials E1 to E14 and test materials C1 to C3 shown in Table 1 were obtained.
  • FIG. 1 schematically shows an elemental map of the test material E1.
  • the Al matrix 1 of the test material E1 contained Mg atoms, Zn atoms, Cu atoms, and the like solid-dissolved in the Al matrix 1 . Furthermore, the Al matrix 1 in the test material E1 had a portion 1a containing Ti atoms and a portion 1b containing no Ti atoms. Second phase particles 2 having a major diameter of about 1 to 5 ⁇ m are formed at the grain boundaries of the Al matrix 1, and the second phase particles 2 include T-phase precipitates 2a and Al 3 (Ni , Cu) 2 and an intermetallic compound 2b having a composition of 2 were included.
  • FIG. 2 shows a further enlarged backscattered electron image of the portion 1a containing Ti atoms in the Al matrix 1 of FIG.
  • the portion shown in gray in FIG. 2 is the Al matrix, and the white dots dispersed in the Al matrix are finely precipitated T-phase precipitates. Moreover, the major axis of these T-phase precipitates is 0.05 ⁇ m or less. According to FIG. 2, in the test material E1, it was confirmed that a large amount of fine T-phase precipitates were also deposited inside the portion 1a containing Ti atoms in the Al matrix 1.
  • T-phase precipitates having a major axis of 0.05 ⁇ m or less are formed inside the Al matrix 1 in the portion 1b where the Ti atoms are not contained in the Al matrix 1, as in FIG. A large amount was deposited.
  • the elemental map of the test material E2 is shown typically in FIG.
  • the Al matrix 1 of the test material E2 contained Mg atoms, Zn atoms, Cu atoms, and the like dissolved in the Al matrix 1 as a solid solution.
  • Mn atoms were contained in the Al matrix phase 1 in the test material E2.
  • second phase particles 2 such as T-phase precipitates 2a and intermetallic compounds 2b having a composition of Al 3 (Ni, Cu) 2 were formed at the grain boundaries of the Al matrix 1 .
  • Mn atoms in the test material E2 were distributed not only in the Al matrix 1 but also around the intermetallic compound 2b. From these results, it can be understood that the Mn atoms in the test material E2 are mainly present in the crystal grains of the Al matrix phase 1 and at the grain boundaries.
  • test materials E1 to E14 and test materials C1 to C3 were evaluated.
  • a dumbbell-shaped test piece was taken from the obtained test material.
  • a creep test was performed by a method according to JIS Z2271:2010.
  • a single creep tester was used for the creep test, the test temperature was 200° C., and the test stress was 105 MPa.
  • the length of the test piece was 57 mm including the grip portion, the diameter of the parallel portion was ⁇ 4 mm, and the diameter of the grip portion was ⁇ 8 mm.
  • Figures 4 to 7 show the creep characteristics of each test material.
  • the horizontal axis is the elapsed time (unit: hour) from the start of the test, and the vertical axis is the creep strain (unit: %) of the test material.
  • Table 1 also shows the time required for the creep strain to reach 0.4%.
  • test material E4 the test was completed before the creep strain reached 0.4%, so the "required time to creep strain 0.4%" column in Table 1 shows the elapsed time until the end of the test. Values with the symbol ">" are shown.
  • test materials E1 to E14 are composed of aluminum alloys having the specific chemical components. Therefore, these test materials have the required creep strain to reach 0.4% compared to the test materials C1 to C3 that do not contain at least one element selected from Ni, Cu, Ti, Mn and Fe. time is getting longer. More specifically, the time required for the creep strain of the test materials E1 to E14 to reach 0.4% was all 440 hours or longer.
  • the aluminum alloy material containing Mg, Zn, Ni and Cu and containing one or more elements of Ti, Mn and Fe in a content within the specific range is excellent. It can be understood that it has creep characteristics.
  • FIG. 8 shows a backscattered electron image of the cross section of the test material E1 as an example of the metallographic structure after the creep test. As shown in FIG. 8, it was confirmed that second phase particles 2 having a long diameter of about several ⁇ m were present in the test material E1 after the creep test. In addition, the portion 1a containing Ti atoms in the Al matrix 1 appearing in the cross section had a lower brightness than the portion 1b containing no Ti atoms.
  • Ti atoms in the Al matrix 1 have the effect of suppressing the coarsening of T-phase precipitates in the Al matrix 1 even when heat and stress are applied to the aluminum alloy material.
  • the creep property was improved because the coarsening of the T-phase precipitates was suppressed during the creep test.
  • Example 2 In this example, an aluminum alloy material was produced by changing the cooling rate during casting, and the metal structure and Vickers hardness of the obtained aluminum alloy material were evaluated.
  • the method for producing the aluminum alloy materials (test materials E15 to E16) produced in this example is as follows.
  • molten aluminum alloy material having the same composition as the test material E1 shown in Table 1 was prepared. This molten metal was poured into a mold having a cylindrical cavity with an inner diameter of 10 mm, and the molten metal was solidified in the mold. As described above, a cylindrical test material E16 having a diameter of about 10 mm was obtained.
  • test material E15 and test material E16 obtained above were evaluated by the following methods.
  • test material E15 and the test material E16 were cut at arbitrary cross sections.
  • the cut surface was observed using SEM-EDX to obtain an elemental map.
  • 11 and 12 show an example of the elemental map of each test material.
  • the surroundings of the Al matrix 1 are Al-Mg-Zn-Cu-based intermetallic compounds and Al-Ni-based intermetallic compounds. It was surrounded by an intermetallic compound phase 3 such as a compound.
  • the Al matrix phase 1 of the test material E15 the Al matrix phase having a relatively large grain size has a portion 1a containing Ti atoms and a portion 1b containing almost no Ti atoms.
  • the Al matrix phase with a relatively small grain size was composed of the portion 1b containing almost no Ti atoms.
  • the maximum value of the concentration of Ti atoms in the portion 1a containing Ti atoms in the Al matrix 1 is 150% or more of the average concentration of Ti in the test material E11 (that is, 0.1 at%). guessed.
  • the Al matrix phase 1 was also surrounded by the intermetallic compound phase 3 in the elemental map of the test material E16. From the comparison between FIG. 11 and FIG. 12, it can be understood that the grain size of the Al matrix phase 1 of the test material E16 tends to be smaller overall than that of the test material E15.
  • Ti atoms were uniformly distributed in the Al matrix 1 of the test material E16, and it was composed of a portion 1a containing Ti atoms. In FIG. 12 , Ti atoms are distributed throughout the Al matrix 1 . Therefore, it is estimated that the maximum concentration of Ti atoms in the portion 1a containing Ti atoms in the Al matrix 1 in FIG. 12 is less than 150% of the average concentration of Ti in the test material E16.
  • Vickers hardness of each test material was measured based on JISZ2244:2009. Specifically, each test material was measured five times with a measurement load of 1 kgf while changing the measurement position, and the arithmetic mean value and standard deviation of Vickers hardness were calculated based on these measurements. Table 2 shows these values.
  • the test material E16 which has a relatively high solidification rate during casting, has a finer metal structure than the test material E15, and the variation in the distribution of Ti atoms is also small. Moreover, the Vickers hardness of the test material E16 was higher than that of the test material E15. From these results, it can be understood that the hardness of the aluminum alloy material can be improved by increasing the solidification rate during casting.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

An aluminum alloy material according to the present invention has chemical components including 1.0-10.0 atomic% of Mg, 1.0-9.0 atomic% of Zn, 0.25-3.0 atomic% of Ni, and 0.25-3.0 atomic% of Cu, and further including one or more types of elements among 0.01-0.30 atomic% of Ti, 0.01-0.30 atomic% of Mn, and 0.01-0.30 atomic% of Fe, with the balance consisting of Al and unavoidable impurities.

Description

アルミニウム合金材、その製造方法及び機械部品Aluminum alloy material, its manufacturing method and machine parts
 本発明は、アルミニウム合金材、その製造方法及びこのアルミニウム合金材からなる機械部品に関する。 The present invention relates to an aluminum alloy material, a method for manufacturing the same, and a machine part made of the aluminum alloy material.
 アルミニウム合金は、比強度が高いという特性を活かし、機械部品などの素材として使用されている。機械部品の中でも、例えば、ターボチャージャに組み込まれるインペラなどの輸送機用圧縮機部品には、高温下での機械的特性に優れていることが求められる。  Aluminum alloy is used as a material for machine parts, taking advantage of its high specific strength. Among mechanical parts, for example, compressor parts for transportation machines such as impellers incorporated in turbochargers are required to have excellent mechanical properties at high temperatures.
 例えば非特許文献1には、Al-Mg-Zn三元系合金が高温における強度に優れていることが記載されている(非特許文献1)。 For example, Non-Patent Document 1 describes that Al-Mg-Zn ternary alloys have excellent strength at high temperatures (Non-Patent Document 1).
 しかし、非特許文献1のAl-Mg-Zn三元系合金は、クリープ特性に未だ改善の余地がある。 However, the Al-Mg-Zn ternary alloy of Non-Patent Document 1 still has room for improvement in creep properties.
 本発明は、かかる背景に鑑みてなされたものであり、クリープ特性に優れたアルミニウム合金材、その製造方法及び機械部品を提供しようとするものである。 The present invention has been made in view of this background, and aims to provide an aluminum alloy material with excellent creep properties, a method for producing the same, and a machine part.
 本発明の一態様は、Mg(マグネシウム):1.0原子%以上10.0原子%以下、Zn(亜鉛):1.0原子%以上9.0原子%以下、Ni(ニッケル):0.25原子%以上3.0原子%以下及びCu(銅):0.25原子%以上3.0原子%以下を含有し、さらに、Ti(チタン):0.01原子%以上0.30原子%以下、Mn(マンガン):0.01原子%以上0.30原子%以下及びFe(鉄):0.01原子%以上0.30原子%以下のうち1種または2種以上の元素を含有し、残部がAl(アルミニウム)及び不可避的不純物からなる化学成分を有する、アルミニウム合金材にある。 One aspect of the present invention is Mg (magnesium): 1.0 atomic % to 10.0 atomic %, Zn (zinc): 1.0 atomic % to 9.0 atomic %, Ni (nickel): 0.0 atomic % to 10.0 atomic %. 25 atomic % or more and 3.0 atomic % or less and Cu (copper): 0.25 atomic % or more and 3.0 atomic % or less, and Ti (titanium): 0.01 atomic % or more and 0.30 atomic % Mn (manganese): 0.01 atomic % or more and 0.30 atomic % or less and Fe (iron): 0.01 atomic % or more and 0.30 atomic % or less containing one or more elements , the aluminum alloy material having a chemical composition in which the balance is Al (aluminum) and unavoidable impurities.
 前記アルミニウム合金材には、Mg、Zn、Ni及びCuがそれぞれ前記特定の範囲の含有量で含まれている。また、前記アルミニウム合金材にはこれらの元素に加え、さらに、Ti、Mn及びFeのうち1種または2種以上の元素が前記特定の範囲の含有量で含まれている。前記アルミニウム合金材は、化学成分を前記特定の範囲とすることにより、クリープ特性を改善することができる。 The aluminum alloy material contains Mg, Zn, Ni, and Cu in respective contents within the specific ranges. In addition to these elements, the aluminum alloy material further contains one or more of Ti, Mn and Fe in a content within the specific range. The aluminum alloy material can improve the creep property by setting the chemical composition within the specific range.
 以上のように、前記アルミニウム合金材は、優れたクリープ特性を有している。 As described above, the aluminum alloy material has excellent creep properties.
図1は、実施例1における試験材E1の元素マップを模式的に示した説明図である。FIG. 1 is an explanatory diagram schematically showing an elemental map of the test material E1 in Example 1. FIG. 図2は、実施例1における試験材E1の反射電子像である。2 is a backscattered electron image of the test material E1 in Example 1. FIG. 図3は、実施例1における試験材E2の元素マップを模式的に示した説明図である。FIG. 3 is an explanatory diagram schematically showing an elemental map of the test material E2 in Example 1. FIG. 図4は、試験材E1~E4及び試験材C1~C2の低ひずみ領域におけるクリープ曲線を示す説明図である。FIG. 4 is an explanatory diagram showing creep curves in the low strain region of test materials E1 to E4 and test materials C1 to C2. 図5は、試験材E5~E7、試験材C1及び試験材C3の低ひずみ領域におけるクリープ曲線を示す説明図である。FIG. 5 is an explanatory diagram showing creep curves in the low strain region of test materials E5 to E7, test material C1 and test material C3. 図6は、試験材E8~E10の低ひずみ領域におけるクリープ曲線を示す説明図である。FIG. 6 is an explanatory diagram showing creep curves in the low strain region of test materials E8 to E10. 図7は、試験材E11~E14の低ひずみ領域におけるクリープ曲線を示す説明図である。FIG. 7 is an explanatory diagram showing creep curves in the low strain region of test materials E11 to E14. 図8は、クリープ試験後の試験材E1の反射電子像である。FIG. 8 is a backscattered electron image of the test material E1 after the creep test. 図9は、図8における、Al母相中のTi原子が存在している部分を拡大した反射電子像である。FIG. 9 is an enlarged backscattered electron image of the portion where Ti atoms exist in the Al matrix phase in FIG. 図10は、図8における、Al母相中のTi原子が存在していない部分を拡大した反射電子像である。FIG. 10 is an enlarged backscattered electron image of a portion where no Ti atoms exist in the Al matrix phase in FIG. 図11は、実施例2における試験材E15の元素マップである。11 is an elemental map of test material E15 in Example 2. FIG. 図12は、実施例2における試験材E16の元素マップである。12 is an elemental map of test material E16 in Example 2. FIG.
 前記アルミニウム合金材の化学成分及びその限定理由について説明する。 The chemical composition of the aluminum alloy material and the reason for its limitation will be explained.
・Mg:1.0原子%以上10.0原子%以下
 Mgは、Znと共存することによりAl母相中に第二相粒子を形成し、前記アルミニウム合金材の強度を向上させる作用を有している。前記アルミニウム合金材中のMgの含有量は、1.0原子%以上10.0原子%以下である。Mgの含有量を前記特定の範囲とすることにより、Al母相中に第二相粒子を形成することができる。そして、Al母相中に第二相粒子を形成することにより、前記アルミニウム合金材の高温における強度の低下を抑制するとともに、クリープ特性を改善しやすくすることができる。
・Mg: 1.0 atomic % or more and 10.0 atomic % or less Mg forms second phase particles in the Al matrix by coexisting with Zn, and has the effect of improving the strength of the aluminum alloy material. ing. The content of Mg in the aluminum alloy material is 1.0 atomic % or more and 10.0 atomic % or less. By setting the content of Mg within the specific range, second phase particles can be formed in the Al matrix. By forming the second phase particles in the Al matrix phase, it is possible to suppress the decrease in the strength of the aluminum alloy material at high temperatures and to facilitate the improvement of the creep properties.
 Mgの含有量は、1.5原子%以上9.5原子%以下であることが好ましく、2.0原子%以上9.0原子%以下であることがより好ましく、3.5原子%以上9.0原子%以下であることがさらに好ましく、4.0原子%以上8.0原子%以下であることが特に好ましい。この場合には、前記アルミニウム合金材のクリープ特性をより改善しやすくすることができる。 The content of Mg is preferably 1.5 atomic % or more and 9.5 atomic % or less, more preferably 2.0 atomic % or more and 9.0 atomic % or less, and 3.5 atomic % or more and 9.0 atomic % or less. 0 atomic % or less is more preferable, and 4.0 atomic % or more and 8.0 atomic % or less is particularly preferable. In this case, the creep property of the aluminum alloy material can be improved more easily.
 Znの含有量に対するMgの含有量の比Mg/Znの値は、0.8以上2.0以下であることが好ましく、1.0以上1.5以下であることがより好ましい。この場合には、ひずみ速度-時間曲線における二次クリープ領域のひずみ速度をより小さくし、二次クリープ特性をより改善させる効果が期待できる。 The ratio Mg/Zn of the Mg content to the Zn content is preferably 0.8 or more and 2.0 or less, more preferably 1.0 or more and 1.5 or less. In this case, the strain rate in the secondary creep region in the strain rate-time curve is made smaller, and the effect of further improving the secondary creep property can be expected.
・Zn:1.0原子%以上9.0原子%以下
 Znは、Mgと共存することによりAl母相中に第二相粒子を形成し、前記アルミニウム合金材の強度を向上させる作用を有している。前記アルミニウム合金材中のZnの含有量は、1.0原子%以上9.0原子%以下である。Znの含有量を前記特定の範囲とすることにより、Al母相中に第二相粒子を形成し、高温における前記アルミニウム合金材の強度の低下を抑制するとともに、クリープ特性を改善しやすくすることができる。
Zn: 1.0 atomic % or more and 9.0 atomic % or less Zn forms second phase particles in the Al matrix by coexisting with Mg, and has the effect of improving the strength of the aluminum alloy material. ing. The content of Zn in the aluminum alloy material is 1.0 atomic % or more and 9.0 atomic % or less. By setting the Zn content within the specific range, second-phase particles are formed in the Al matrix, suppressing a decrease in the strength of the aluminum alloy material at high temperatures, and making it easier to improve creep properties. can be done.
 Znの含有量は、1.5原子%以上8.5原子%以下であることが好ましく、2.0原子%以上8.0原子%以下であることがより好ましい。この場合には、クリープ特性をより改善しやすくすることができる。 The Zn content is preferably 1.5 atomic % or more and 8.5 atomic % or less, and more preferably 2.0 atomic % or more and 8.0 atomic % or less. In this case, the creep property can be improved more easily.
・Ni:0.25原子%以上3.0原子%以下、Cu:0.25原子%以上3.0原子%以下
 前記アルミニウム合金材中のNiの含有量及びCuの含有量は、それぞれ前記特定の範囲内である。前記アルミニウム合金材は、NiとCuとの両方が添加されていることにより、これらの元素のいずれか一方または両方が添加されていない場合に比べてクリープ特性をより向上させることができる。
・Ni: 0.25 atomic % or more and 3.0 atomic % or less, Cu: 0.25 atomic % or more and 3.0 atomic % or less is within the range of By adding both Ni and Cu, the aluminum alloy material can further improve the creep property compared to the case where either one or both of these elements are not added.
 クリープ特性をより向上させる観点からは、前記アルミニウム合金材中のCuの含有量は、0.30原子%以上であることが好ましく、0.50原子%以上であることがより好ましく、0.80原子%以上であることがさらに好ましく、1.2原子%以上であることが特に好ましい。同様の観点から、前記アルミニウム合金材中のNiの含有量は、0.30原子%以上であることが好ましく、0.50原子%以上であることがより好ましく、0.80原子%以上であることがさらに好ましく、1.2原子%以上であることが特に好ましい。 From the viewpoint of further improving the creep property, the Cu content in the aluminum alloy material is preferably 0.30 atomic % or more, more preferably 0.50 atomic % or more, and more preferably 0.80 atomic % or more. It is more preferably at least 1.2 atomic %, particularly preferably at least 1.2 atomic %. From the same point of view, the Ni content in the aluminum alloy material is preferably 0.30 atomic % or more, more preferably 0.50 atomic % or more, and 0.80 atomic % or more. is more preferable, and 1.2 atomic % or more is particularly preferable.
 また、前記アルミニウム合金材の密度をより小さくする観点からは、前記アルミニウム合金材中のCuの含有量は、2.5原子%以下であることが好ましく、2.2原子%以下であることがより好ましく、1.5原子%以下であることがさらに好ましく、1.3原子%以下であることが特に好ましい。同様の観点から、前記アルミニウム合金材中のNiの含有量は、2.5原子%以下であることが好ましく、2.2原子%以下であることがより好ましく、1.5原子%以下であることがさらに好ましく、1.3原子%以下であることが特に好ましい。 Further, from the viewpoint of further reducing the density of the aluminum alloy material, the Cu content in the aluminum alloy material is preferably 2.5 atomic % or less, and more preferably 2.2 atomic % or less. It is more preferably 1.5 atomic % or less, and particularly preferably 1.3 atomic % or less. From the same point of view, the Ni content in the aluminum alloy material is preferably 2.5 atomic % or less, more preferably 2.2 atomic % or less, and 1.5 atomic % or less. is more preferable, and 1.3 atomic % or less is particularly preferable.
 また、クリープ特性をより向上させつつ前記アルミニウム合金材の密度をより小さくする観点からは、前記アルミニウム合金材中のCuの含有量が0.50原子%以上1.5原子%以下であり、かつ、Niの含有量が0.50原子%以上1.5原子%以下であることが最も好ましい。 Further, from the viewpoint of further improving the creep property and further reducing the density of the aluminum alloy material, the Cu content in the aluminum alloy material is 0.50 atomic % or more and 1.5 atomic % or less, and , Ni content is most preferably 0.50 atomic % or more and 1.5 atomic % or less.
・Ti:0.01原子%以上0.30原子%、Mn:0.01原子%以上0.30原子%以下、Fe:0.01原子%以上0.30原子%以下
 前記アルミニウム合金材中には、Mg、Zn、Cu及びNiに加えて、Ti:0.01原子%以上0.30原子%以下、Mn:0.01原子%以上0.30原子%以下及びFe:0.01原子%以上0.30原子%以下のうち1種または2種以上の元素が含まれている。前記アルミニウム合金材中におけるTiの含有量を前記特定の範囲とすることにより、Ti原子を主にAlの結晶粒内に分布させることができる。また、前記アルミニウム合金材中におけるMnの含有量及びFeの含有量を前記特定の範囲にすることにより、Mn原子及びFe原子をAlの結晶粒内や結晶粒界に分布させることができる。
- Ti: 0.01 atomic % or more and 0.30 atomic %, Mn: 0.01 atomic % or more and 0.30 atomic % or less, Fe: 0.01 atomic % or more and 0.30 atomic % or less in the aluminum alloy material is, in addition to Mg, Zn, Cu and Ni, Ti: 0.01 atomic % to 0.30 atomic %, Mn: 0.01 atomic % to 0.30 atomic % and Fe: 0.01 atomic % One or two or more of the elements above 0.30 atomic % and below are contained. By setting the Ti content in the aluminum alloy material to the specific range, Ti atoms can be distributed mainly in the Al crystal grains. Further, by setting the content of Mn and the content of Fe in the aluminum alloy material to the specific ranges, the Mn atoms and Fe atoms can be distributed within the crystal grains of Al and at the grain boundaries.
 そして、前記アルミニウム合金材中に前述した態様で分布したTi原子、Mn原子及びFe原子によれば、前記アルミニウム合金材に熱や応力が印加された場合においても、前記アルミニウム合金材中の第二相粒子の粗大化を抑制することができる。以上の結果、アルミニウム合金材におけるクリープの進展をより遅延させ、クリープ特性をより向上させることができる。 Further, according to the Ti atoms, Mn atoms, and Fe atoms distributed in the aluminum alloy material in the manner described above, even when heat and stress are applied to the aluminum alloy material, the second It is possible to suppress coarsening of phase particles. As a result, the progress of creep in the aluminum alloy material can be further retarded, and the creep properties can be further improved.
 かかる作用効果をより確実に得る観点からは、前記アルミニウム合金材は、Mg:1.0原子%以上10.0原子%以下、Zn:1.0原子%以上9.0原子%以下、Ni:0.25原子%以上3.0原子%以下及びCu:0.25原子%以上3.0原子%以下を含有し、さらに、Ti:0.01原子%以上0.30原子%以下及びMn:0.01原子%以上0.30原子%以下のうち1種または2種以上の元素を含有し、残部がAl及び不可避的不純物からなる化学成分を有していることが好ましい。 From the viewpoint of obtaining such effects more reliably, the aluminum alloy material contains Mg: 1.0 atomic % or more and 10.0 atomic % or less, Zn: 1.0 atomic % or more and 9.0 atomic % or less, Ni: 0.25 atomic % or more and 3.0 atomic % or less and Cu: 0.25 atomic % or more and 3.0 atomic % or less, and Ti: 0.01 atomic % or more and 0.30 atomic % or less and Mn: It is preferable to have a chemical component containing one or more elements of 0.01 atomic % or more and 0.30 atomic % or less, with the balance being Al and unavoidable impurities.
 前記アルミニウム合金材のクリープ特性をより向上させる観点からは、前記アルミニウム合金材中のTiの含有量は、0.02原子%以上であることが好ましく、0.03原子%以上であることがより好ましく、0.04原子%以上であることがさらに好ましく、0.07原子%以上であることが特に好ましい。同様の観点からは、前記アルミニウム合金材中のMnの含有量及びFeの含有量は、それぞれ0.02原子%以上であることが好ましく、0.03原子%以上であることがより好ましく、0.04原子%以上であることがさらに好ましく、0.07原子%以上であることが特に好ましい。 From the viewpoint of further improving the creep properties of the aluminum alloy material, the Ti content in the aluminum alloy material is preferably 0.02 atomic % or more, more preferably 0.03 atomic % or more. It is preferably 0.04 atomic % or more, and particularly preferably 0.07 atomic % or more. From the same point of view, the content of Mn and the content of Fe in the aluminum alloy material are each preferably 0.02 atomic % or more, more preferably 0.03 atomic % or more, and 0 It is more preferably 0.04 atomic % or more, and particularly preferably 0.07 atomic % or more.
 一方、前記アルミニウム合金材中のTiの含有量、Mnの含有量またはFeの含有量が過度に多くなると、クリープ特性向上の効果が小さくなるおそれがある。クリープ特性向上の効果をより確実に奏する観点からは、前記アルミニウム合金材中のTiの含有量は、0.25原子%以下であることが好ましく、0.22原子%以下であることがより好ましく、0.17原子%以下であることがさらに好ましく、0.15原子%以下であることが特に好ましい。同様の観点からは、前記アルミニウム合金材中のMnの含有量及びFeの含有量は、それぞれ0.25原子%以下であることが好ましく、0.22原子%以下であることがより好ましく、0.17原子%以下であることがさらに好ましく、0.15原子%以下であることが特に好ましい。 On the other hand, if the content of Ti, the content of Mn, or the content of Fe in the aluminum alloy material is excessively increased, the effect of improving creep characteristics may be reduced. From the viewpoint of achieving the effect of improving creep characteristics more reliably, the content of Ti in the aluminum alloy material is preferably 0.25 atomic % or less, more preferably 0.22 atomic % or less. , is more preferably 0.17 atomic % or less, and particularly preferably 0.15 atomic % or less. From the same point of view, the content of Mn and the content of Fe in the aluminum alloy material are each preferably 0.25 atomic % or less, more preferably 0.22 atomic % or less, and 0 It is more preferably 0.17 atomic % or less, and particularly preferably 0.15 atomic % or less.
 より具体的には、前記アルミニウム合金材は、例えば、Mg:1.0原子%以上10.0原子%以下、Zn:1.0原子%以上9.0原子%以下、Ni:1.5原子%を超え3.0原子%以下及びCu:1.5原子%を超え3.0原子%以下を含有し、さらに、Ti:0.01原子%以上0.17原子%以下、Mn:0.01原子%以上0.17原子%以下及びFe:0.01原子%以上0.17原子%以下のうち1種または2種以上の元素を含有し、残部がAl及び不可避的不純物からなる化学成分を有していてもよい。かかる化学成分を有するアルミニウム合金材は、優れたクリープ特性を有している。 More specifically, the aluminum alloy material contains, for example, Mg: 1.0 atomic % or more and 10.0 atomic % or less, Zn: 1.0 atomic % or more and 9.0 atomic % or less, Ni: 1.5 atomic % % and 3.0 atomic % or less and Cu: more than 1.5 atomic % and 3.0 atomic % or less, Ti: 0.01 atomic % or more and 0.17 atomic % or less, Mn: 0.01 atomic % or more and 0.17 atomic % or less. 01 atomic % or more and 0.17 atomic % or less and Fe: 0.01 atomic % or more and 0.17 atomic % or less containing one or more elements, the balance being Al and unavoidable impurities may have An aluminum alloy material having such chemical components has excellent creep properties.
 クリープ特性をより高める観点からは、前記アルミニウム合金材は、Mg:1.0原子%以上10.0原子%以下、Zn:1.0原子%以上9.0原子%以下、Ni:1.5原子%を超え3.0原子%以下及びCu:1.5原子%を超え3.0原子%以下を含有し、さらに、Ti:0.01原子%以上0.17原子%以下及びMn:0.01原子%以上0.17原子%以下のうち1種または2種の元素を含有し、残部がAl及び不可避的不純物からなる化学成分を有していることが好ましい。 From the viewpoint of further improving the creep property, the aluminum alloy material contains Mg: 1.0 atomic % or more and 10.0 atomic % or less, Zn: 1.0 atomic % or more and 9.0 atomic % or less, Ni: 1.5 More than 3.0 atomic % and Cu: more than 1.5 atomic % and 3.0 atomic % or less, Ti: 0.01 atomic % or more and 0.17 atomic % or less, and Mn: 0 It is preferable to have a chemical composition containing one or two elements in the range of 0.01 atomic % to 0.17 atomic % and the balance being Al and unavoidable impurities.
 同様の観点から、前記アルミニウム合金材の化学成分における、Cuの含有量が1.5原子%を超え3.0原子%以下であり、Niの含有量が1.5原子%を超え3.0原子%以下であり、Ti、Mn及びFeのうち少なくともTiを含むとともに、Tiの含有量が0.01原子%以上0.17原子%以下であることが好ましい。すなわち、前記アルミニウム合金材は、例えば、Mg:1.0原子%以上10.0原子%以下、Zn:1.0原子%以上9.0原子%以下、Ni:1.5原子%を超え3.0原子%以下及びCu:1.5原子%を超え3.0原子%以下を含有し、Ti:0.01原子%以上0.17原子%以下、Mn:0.01原子%以上0.17原子%以下及びFe:0.01原子%以上0.17原子%以下のうち少なくともTiを含有し、残部がAl及び不可避的不純物からなる化学成分を有していることが好ましい。 From the same point of view, in the chemical composition of the aluminum alloy material, the Cu content is more than 1.5 atomic percent and 3.0 atomic percent or less, and the Ni content is more than 1.5 atomic percent and 3.0 atomic percent. At least Ti is included among Ti, Mn and Fe, and the content of Ti is preferably 0.01 atomic % or more and 0.17 atomic % or less. That is, the aluminum alloy material has, for example, Mg: 1.0 atomic % or more and 10.0 atomic % or less, Zn: 1.0 atomic % or more and 9.0 atomic % or less, Ni: more than 1.5 atomic % and 3 0 atomic % or less and Cu: more than 1.5 atomic % and 3.0 atomic % or less, Ti: 0.01 atomic % or more and 0.17 atomic % or less, Mn: 0.01 atomic % or more and 0.01 atomic % or less. 17 atomic % or less and Fe: 0.01 atomic % or more and 0.17 atomic % or less, preferably having a chemical composition containing at least Ti and the balance being Al and unavoidable impurities.
 クリープ特性をさらに高める観点からは、前記アルミニウム合金材は、Mg:1.0原子%以上10.0原子%以下、Zn:1.0原子%以上9.0原子%以下、Ni:1.5原子%を超え3.0原子%以下、Cu:1.5原子%を超え3.0原子%以下及びTi:0.01原子%以上0.17原子%以下を含有し、残部がAl及び不可避的不純物からなる化学成分を有していることがより好ましい。 From the viewpoint of further improving the creep property, the aluminum alloy material contains Mg: 1.0 atomic % or more and 10.0 atomic % or less, Zn: 1.0 atomic % or more and 9.0 atomic % or less, Ni: 1.5 more than 3.0 atomic %, Cu: more than 1.5 atomic % and 3.0 atomic % or less, and Ti: 0.01 atomic % or more and 0.17 atomic % or less, and the balance is Al and unavoidable It is more preferable to have a chemical composition consisting of organic impurities.
 また、前記アルミニウム合金材は、例えば、Mg:1.0原子%以上10.0原子%以下、Zn:1.0原子%以上9.0原子%以下、Ni:0.25原子%以上1.5原子%以下及びCu:0.25原子%以上1.5原子%以下を含有し、さらに、Ti:0.01原子%以上0.30原子%以下、Mn:0.01原子%以上0.30原子%以下及びFe:0.01原子%以上0.30原子%以下のうち1種または2種以上の元素を含有していてもよい。かかる化学成分を有するアルミニウム合金材は、優れたクリープ特性を有するとともに、密度を容易に低減することができる。 The aluminum alloy material contains, for example, Mg: 1.0 atomic % to 10.0 atomic %, Zn: 1.0 atomic % to 9.0 atomic %, Ni: 0.25 atomic % to 1.0 atomic %. 5 atomic % or less and Cu: 0.25 atomic % or more and 1.5 atomic % or less, Ti: 0.01 atomic % or more and 0.30 atomic % or less, Mn: 0.01 atomic % or more and 0.5 atomic % or less It may contain one or more elements selected from 30 atomic % or less and Fe: 0.01 atomic % or more and 0.30 atomic % or less. An aluminum alloy material having such chemical components has excellent creep properties and can be easily reduced in density.
 アルミニウム合金材の密度を低減しつつクリープ特性をより高める観点からは、前記アルミニウム合金材は、Mg:1.0原子%以上10.0原子%以下、Zn:1.0原子%以上9.0原子%以下、Ni:0.25原子%以上1.5原子%以下及びCu:0.25原子%以上1.5原子%以下を含有し、さらに、Ti:0.07原子%以上0.30原子%以下及びMn:0.07原子%以上0.30原子%以下のうち1種または2種の元素を含有していることが好ましい。 From the viewpoint of further improving the creep property while reducing the density of the aluminum alloy material, the aluminum alloy material contains Mg: 1.0 atomic % or more and 10.0 atomic % or less, Zn: 1.0 atomic % or more and 9.0 atomic % or less, Ni: 0.25 atomic % or more and 1.5 atomic % or less, Cu: 0.25 atomic % or more and 1.5 atomic % or less, and Ti: 0.07 atomic % or more and 0.30 atomic % It is preferable to contain one or two elements selected from atomic % or less and Mn: 0.07 atomic % or more and 0.30 atomic % or less.
 同様の観点から、前記アルミニウム合金材の化学成分における、Cuの含有量が0.25原子%以上1.5原子%以下であり、Niの含有量が0.25原子%以上1.5原子%以下であり、Ti、Mn及びFeのうち少なくともTiを含むとともにMn及びFeのうち1種または2種の元素を含むことが好ましい。すなわち、前記アルミニウム合金材は、Mg:1.0原子%以上10.0原子%以下、Zn:1.0原子%以上9.0原子%以下、Ni:0.25原子%以上1.5原子%以下、Cu:0.25原子%以上1.5原子%以下及びTi:0.01原子%以上0.30原子%以下を含有し、さらに、Mn:0.01原子%以上0.30原子%以下及びFe:0.01原子%以上0.30原子%以下のうち1種または2種の元素を含有していることが好ましい。 From the same point of view, in the chemical composition of the aluminum alloy material, the Cu content is 0.25 atomic % or more and 1.5 atomic % or less, and the Ni content is 0.25 atomic % or more and 1.5 atomic %. and preferably contains at least Ti among Ti, Mn and Fe and contains one or two elements of Mn and Fe. That is, the aluminum alloy material contains Mg: 1.0 atomic % or more and 10.0 atomic % or less, Zn: 1.0 atomic % or more and 9.0 atomic % or less, Ni: 0.25 atomic % or more and 1.5 atoms % or less, Cu: 0.25 atomic % or more and 1.5 atomic % or less and Ti: 0.01 atomic % or more and 0.30 atomic % or less, and Mn: 0.01 atomic % or more and 0.30 atomic % or less % or less and Fe: 0.01 atomic % or more and 0.30 atomic % or less.
 クリープ特性をさらに高める観点からは、前記アルミニウム合金材は、Mg:1.0原子%以上10.0原子%以下、Zn:1.0原子%以上9.0原子%以下、Ni:0.25原子%以上1.5原子%以下、Cu:0.25原子%以上1.5原子%以下、Ti:0.01原子%以上0.30原子%以下及びMn:0.01原子%以上0.30原子%以下を含有していることがさらに好ましい。この場合、Tiの含有量とMnの含有量との合計は0.15原子%以上0.35原子%以下であることが特に好ましい。 From the viewpoint of further improving the creep property, the aluminum alloy material contains Mg: 1.0 atomic % or more and 10.0 atomic % or less, Zn: 1.0 atomic % or more and 9.0 atomic % or less, Ni: 0.25 at least 1.5 atomic %, Cu: from 0.25 atomic % to 1.5 atomic %, Ti: from 0.01 atomic % to 0.30 atomic %, and Mn: from 0.01 atomic % to 0.01 atomic %. It is more preferable to contain 30 atomic % or less. In this case, the total content of Ti and Mn is particularly preferably 0.15 atomic % or more and 0.35 atomic % or less.
・金属組織
 前記アルミニウム合金材は、Al母相中に第二相粒子が分散した金属組織を有していることが好ましい。Al母相中に形成される第二相粒子としては、例えば、組成式ZnMgで表される組成を有するη相析出物や、組成式Al(Cu、Ni)で表される組成を有する析出物、組成式AlMg11Zn11で表される組成を有するT相析出物等が挙げられる。Al母相中の第二相粒子は、前記アルミニウム合金材を強化し、前記アルミニウム合金材の強度をより向上させることができる。
- Metallographic structure The aluminum alloy material preferably has a metallographic structure in which second-phase particles are dispersed in an Al matrix. The second phase particles formed in the Al matrix include, for example, η phase precipitates having a composition represented by the composition formula Zn 2 Mg, and compositions represented by the composition formula Al 3 (Cu, Ni) 2 and a T-phase precipitate having a composition represented by the composition formula Al 6 Mg 11 Zn 11 . The second phase particles in the Al matrix can strengthen the aluminum alloy material and further improve the strength of the aluminum alloy material.
 前記アルミニウム合金材における第二相粒子には、長径0.05μm以下のT相析出物が含まれていることがより好ましい。T相析出物は、高温環境下における安定性が高い。そのため、Al母相中にT相析出物を微細かつ多量に析出させることにより、前記アルミニウム合金材の高温における強度をより向上させることができる。また、Al母相中に含まれるTi原子、Mn原子及びFe原子は、熱や応力によるT相析出物の粗大化を抑制する作用を有している。そのため、これらの原子を含むAl母相中にT相析出物が形成されている場合には、T相析出物がAl母相中に微細に分散した状態をより長期間に亘って維持することができる。その結果、アルミニウム合金材のクリープ特性をさらに向上させることができる。 It is more preferable that the second-phase particles in the aluminum alloy material contain T-phase precipitates with a major axis of 0.05 μm or less. T-phase precipitates are highly stable in high-temperature environments. Therefore, by precipitating a large amount of fine T-phase precipitates in the Al matrix, the strength of the aluminum alloy material at high temperatures can be further improved. In addition, Ti atoms, Mn atoms and Fe atoms contained in the Al matrix phase have the effect of suppressing coarsening of T-phase precipitates due to heat and stress. Therefore, when T-phase precipitates are formed in the Al matrix containing these atoms, it is necessary to maintain the state in which the T-phase precipitates are finely dispersed in the Al matrix for a longer period of time. can be done. As a result, the creep property of the aluminum alloy material can be further improved.
 前記アルミニウム合金材中にTiが含まれている場合、Ti原子は、Al母相全体に分布していることが好ましい。このような金属組織を有するアルミニウム合金材は、より高い硬さを有している。また、このように、Al母相中のTi原子の分布をより均一にすることにより、アルミニウム合金材全体でTi原子によるT相析出物の粗大化を抑制する効果を発揮させることができる。同様の観点から、Al母相中のTi原子の濃度の最大値が、前記アルミニウム合金材中のTi原子の平均濃度の150%以下であることがより好ましい。なお、前述したAl母相中のTi原子の分布状態及びAl母相中のTi原子の濃度は、前記アルミニウム合金材の元素マップに基づいて評価することができる。前記アルミニウム合金材の元素マップの取得には、例えば電子プローブマイクロアナライザ(EPMA)を用いればよい。 When the aluminum alloy material contains Ti, the Ti atoms are preferably distributed throughout the Al matrix. An aluminum alloy material having such a metal structure has higher hardness. Further, by making the distribution of Ti atoms in the Al matrix more uniform in this way, it is possible to exhibit the effect of suppressing the coarsening of T-phase precipitates due to Ti atoms in the entire aluminum alloy material. From the same point of view, it is more preferable that the maximum concentration of Ti atoms in the Al matrix is 150% or less of the average concentration of Ti atoms in the aluminum alloy material. The distribution state of Ti atoms in the Al matrix and the concentration of Ti atoms in the Al matrix described above can be evaluated based on the elemental map of the aluminum alloy material. An electron probe microanalyzer (EPMA), for example, may be used to acquire the elemental map of the aluminum alloy material.
・クリープ特性
 前記アルミニウム合金材は、試験温度200℃、試験応力105MPaの条件でクリープ試験を行った場合に、クリープひずみが0.4%に到達するまでに要する時間が440時間以上となるクリープ特性を有していることが好ましく、600時間以上となるクリープ特性を有していることがより好ましい。このようなクリープ特性を有するアルミニウム合金材は、高温環境下において使用される機械部品に好適である。
・Creep property The above-mentioned aluminum alloy material has a creep property in which the time required for the creep strain to reach 0.4% is 440 hours or more when a creep test is performed under the conditions of a test temperature of 200 ° C and a test stress of 105 MPa. and more preferably have a creep property of 600 hours or more. Aluminum alloy materials having such creep properties are suitable for machine parts used in high-temperature environments.
・用途
 前記アルミニウム合金材は、前述したように、高温環境下においても強度が低下しにくい特性を有している。また、前記アルミニウム合金材は、高温環境下においても優れたクリープ特性を有している。前記アルミニウム合金材は、これらの特性を活かし、170℃以上の高温環境下において使用される機械部品に好適に使用することができる。
- Application As described above, the aluminum alloy material has a characteristic that the strength is not easily lowered even in a high-temperature environment. In addition, the aluminum alloy material has excellent creep properties even in a high temperature environment. Taking advantage of these characteristics, the aluminum alloy material can be suitably used for machine parts used in a high temperature environment of 170° C. or higher.
 このような機械部品としては、例えば、自動車等の輸送機に組み込まれる輸送機用圧縮機部品等が挙げられる。前記アルミニウム合金材は、輸送機用圧縮機部品の中でも特にターボチャージャに組み込まれるインペラとして好適である。 Such mechanical parts include, for example, compressor parts for transport machines that are incorporated in transport machines such as automobiles. The aluminum alloy material is particularly suitable for an impeller incorporated in a turbocharger among compressor parts for transport machines.
・製造方法
 前記アルミニウム合金材は、例えば、鋳造、溶体化処理、焼入れ及び時効処理を順次実施することにより作製される。また、前記の態様の製造方法においては、必要に応じて、鋳造後の鋳塊に、均質化処理及び展伸加工を行ってもよい。
- Manufacturing method The aluminum alloy material is manufactured by, for example, sequentially performing casting, solution treatment, quenching and aging treatment. Moreover, in the manufacturing method of the above aspect, the ingot after casting may be subjected to a homogenization treatment and a drawing process, if necessary.
 鋳造においては、例えば、連続鋳造や半連続鋳造等の方法により、前記特定の化学成分を有する鋳塊を作製すればよい。最終的に得られるアルミニウム合金材の金属組織において、結晶粒をより微細化する観点、及び、Ti原子の分布をより均一にする観点からは、鋳造時における溶湯の凝固速度を高めることが好ましい。また、鋳造時における溶湯の凝固速度を高めることにより、アルミニウム合金材の硬さをより向上させる効果を期待することができる。これは、鋳造時に溶湯を急速に凝固させると、結晶粒内に蓄積される歪みが大きくなること等が原因と考えられる。 In casting, for example, an ingot having the specific chemical composition may be produced by a method such as continuous casting or semi-continuous casting. In the metal structure of the finally obtained aluminum alloy material, it is preferable to increase the solidification rate of the molten metal during casting from the viewpoint of further refining the crystal grains and making the distribution of Ti atoms more uniform. Further, by increasing the solidification speed of the molten metal during casting, an effect of further improving the hardness of the aluminum alloy material can be expected. The reason for this is thought to be that if the molten metal is rapidly solidified during casting, the strain accumulated in the crystal grains increases.
 鋳造後の鋳塊を加熱して均質化処理を行う場合、加熱温度は、例えば、420℃以上500℃以下の範囲から適宜設定することができる。また、均質化処理における保持時間は、例えば、10時間以上48時間以下の範囲から適宜設定することができる。均質化処理における加熱温度が低すぎる場合または保持時間が短すぎる場合には、鋳塊の均質化が不十分となり、偏析等の問題が生じるおそれがある。また、この場合には、後に塑性加工を行う際に、変形抵抗の増大を招くおそれもある。 When the ingot after casting is heated for homogenization, the heating temperature can be appropriately set within the range of, for example, 420°C or higher and 500°C or lower. Moreover, the holding time in the homogenization treatment can be appropriately set within a range of, for example, 10 hours or more and 48 hours or less. If the heating temperature in the homogenization treatment is too low or the holding time is too short, the homogenization of the ingot becomes insufficient, and problems such as segregation may occur. Moreover, in this case, there is a possibility that deformation resistance will increase when plastic working is performed later.
 均質化処理における加熱温度が高すぎる場合または保持時間が長すぎる場合には、鋳塊の加熱に要するエネルギーが増大し、製造コストの増大を招くおそれがある。また、この場合には、後に塑性加工を行う際に、割れが生じやすくなるおそれもある。これらの問題をより確実に回避する観点からは、均質化処理における加熱温度を440℃以上490℃以下の範囲内とすることが好ましい。同様の観点から、均質化処理における保持時間を20時間以上30時間以下の範囲内とすることが好ましい。 If the heating temperature in the homogenization process is too high or the holding time is too long, the energy required to heat the ingot increases, which may lead to an increase in manufacturing costs. Moreover, in this case, cracks may easily occur when plastic working is performed later. From the viewpoint of avoiding these problems more reliably, it is preferable to set the heating temperature in the homogenization treatment within the range of 440° C. or higher and 490° C. or lower. From the same point of view, it is preferable to set the holding time in the homogenization treatment within the range of 20 hours or more and 30 hours or less.
 鋳塊に展伸加工を施す場合、展伸加工としては、熱間圧延、冷間圧延、熱間押出、冷間押出、熱間鍛造及び冷間鍛造から選択される1種の加工を実施してもよいし、これらのうち2種以上の加工を組み合わせて実施してもよい。また、展伸加工の途中において、焼鈍等の熱処理を必要に応じて行うこともできる。 When the ingot is stretched, the stretching is performed by one type of processing selected from hot rolling, cold rolling, hot extrusion, cold extrusion, hot forging, and cold forging. Alternatively, two or more of these processes may be combined. Further, heat treatment such as annealing can be performed as necessary during the drawing process.
 溶体化処理においては、鋳塊又は展伸材を加熱してMg等の溶質元素をAl母相中に固溶させる。そして、溶体化処理が完了した直後に焼入れを行うことにより、鋳塊又は展伸材を過飽和固溶体とすることができる。 In the solution treatment, the ingot or wrought material is heated to dissolve solute elements such as Mg into the Al matrix. By performing quenching immediately after the solution treatment is completed, the ingot or wrought material can be made into a supersaturated solid solution.
 溶体化処理における加熱温度は、例えば、420℃以上500℃以下の範囲から適宜設定することができる。また、溶体化処理における保持時間は、20時間以上48時間以下の範囲から適宜設定することができる。溶体化処理における加熱温度及び保持時間を前記特定の範囲とすることにより、溶質元素を鋳塊又は展伸材中に十分に固溶させ、後に行う時効処理によって第二相粒子を微細に析出させることができる。 The heating temperature in the solution treatment can be appropriately set within the range of, for example, 420°C or higher and 500°C or lower. In addition, the holding time in the solution treatment can be appropriately set within the range of 20 hours or more and 48 hours or less. By setting the heating temperature and holding time in the solution treatment within the above-mentioned specific ranges, the solute elements are sufficiently dissolved in the ingot or the wrought material, and the second phase particles are finely precipitated by the subsequent aging treatment. be able to.
 溶体化処理における加熱温度が低すぎる場合または保持時間が短すぎる場合には、溶質元素が十分に固溶せず、時効処理後の第二相粒子の量が少なくなるおそれがある。その結果、前記アルミニウム合金材のクリープ特性の悪化を招くおそれがある。溶体化処理における加熱温度が高すぎる場合または保持時間が長すぎる場合には、鋳塊又は展伸材の加熱に要するエネルギーが増大し、製造コストの増大を招くおそれがある。 If the heating temperature in the solution treatment is too low or the holding time is too short, the solute elements may not be sufficiently solidified and the amount of second phase particles after aging treatment may decrease. As a result, the creep property of the aluminum alloy material may deteriorate. If the heating temperature in the solution treatment is too high or the holding time is too long, the energy required for heating the ingot or wrought material increases, which may lead to an increase in manufacturing costs.
 鋳塊又は展伸材の焼入れ方法は特に限定されることはなく、例えば、水焼入れなどの方法を採用することができる。 The method of quenching the ingot or wrought material is not particularly limited, and a method such as water quenching can be used, for example.
 その後、溶体化処理及び焼入れによって過飽和固溶体となった鋳塊又は展伸材を加熱して時効処理を行う。時効処理における加熱温度は、例えば、170℃以上300℃以下の範囲から適宜設定することができる。また、時効処理における保持時間は、1時間以上100時間以下の範囲から適宜設定することができる。時効処理における加熱温度及び保持時間を前記特定の範囲とすることにより、Al母相中に第二相粒子を微細に析出させることができる。 After that, the ingot or wrought material that has become a supersaturated solid solution through solution treatment and quenching is heated and aged. The heating temperature in the aging treatment can be appropriately set within a range of, for example, 170°C or higher and 300°C or lower. In addition, the holding time in the aging treatment can be appropriately set within the range of 1 hour or more and 100 hours or less. By setting the heating temperature and holding time in the aging treatment within the above-mentioned specific ranges, fine second-phase particles can be precipitated in the Al matrix phase.
 時効処理における加熱温度が低すぎる場合または保持時間が短すぎる場合には、第二相粒子の量が少なくなるおそれがある。その結果、前記アルミニウム合金材のクリープ特性の悪化を招くおそれがある。時効処理における加熱温度が高すぎる場合または保持時間が長すぎる場合には、過時効となり、前記アルミニウム合金材のクリープ特性の悪化を招くおそれがある。これらの問題をより確実に回避する観点からは、時効処理における加熱温度を170℃以上250℃以下の範囲内とすることが好ましい。同様の観点から、時効処理における保持時間を1時間以上10時間以下の範囲内とすることが好ましい。 If the heating temperature in the aging treatment is too low or the holding time is too short, the amount of second phase particles may decrease. As a result, the creep property of the aluminum alloy material may deteriorate. If the heating temperature in the aging treatment is too high or the holding time is too long, overaging will occur, which may lead to deterioration of the creep properties of the aluminum alloy material. From the viewpoint of avoiding these problems more reliably, it is preferable to set the heating temperature in the aging treatment within the range of 170° C. or more and 250° C. or less. From the same point of view, it is preferable to set the holding time in the aging treatment within the range of 1 hour or more and 10 hours or less.
(実施例1)
 前記アルミニウム合金材及びその製造方法の実施例を以下に説明する。本例では、常法により表1に示す化学成分を有する鋳塊を作製した。なお、表1の化学成分欄における「-」は、当該元素が含まれていないことを示す記号であり、「Bal.」は、残部を示す記号である。
(Example 1)
Examples of the aluminum alloy material and the manufacturing method thereof will be described below. In this example, an ingot having the chemical composition shown in Table 1 was produced by a conventional method. In addition, "-" in the chemical composition column of Table 1 is a symbol indicating that the element is not contained, and "Bal." is a symbol indicating the remainder.
 得られた鋳塊を480℃の温度に24時間保持して溶体化処理を行い、次いで水焼入れを行った。そして、水焼入れ後の鋳塊を200℃の温度に10時間保持して時効処理を行った。以上により、表1に示すアルミニウム合金材(試験材E1~E14、試験材C1~C3)を得た。 The obtained ingot was subjected to solution treatment by holding it at a temperature of 480°C for 24 hours, and then water quenching. Then, the ingot after water quenching was held at a temperature of 200° C. for 10 hours for aging treatment. As described above, the aluminum alloy materials (test materials E1 to E14 and test materials C1 to C3) shown in Table 1 were obtained.
 試験材E1及び試験材E2における元素の分布状況を評価するため、電子プローブマイクロアナライザ(EPMA)により、これらの試験材の元素マップを取得した。一例として、図1に試験材E1の元素マップを模式的に示す。 In order to evaluate the distribution of elements in the test materials E1 and E2, elemental maps of these test materials were acquired using an electron probe microanalyzer (EPMA). As an example, FIG. 1 schematically shows an elemental map of the test material E1.
 図1において、試験材E1のAl母相1中には、Al原子に加えて、Al母相1に固溶したMg原子、Zn原子及びCu原子等が含まれていた。さらに、試験材E1におけるAl母相1には、Ti原子が含まれている部分1aと、Ti原子が含まれていない部分1bとが存在していた。また、Al母相1の結晶粒界には、1~5μm程度の長径を有する第二相粒子2が形成されており、第二相粒子2には、T相析出物2aやAl(Ni,Cu)の組成を有する金属間化合物2bなどが含まれていた。 In FIG. 1, in addition to Al atoms, the Al matrix 1 of the test material E1 contained Mg atoms, Zn atoms, Cu atoms, and the like solid-dissolved in the Al matrix 1 . Furthermore, the Al matrix 1 in the test material E1 had a portion 1a containing Ti atoms and a portion 1b containing no Ti atoms. Second phase particles 2 having a major diameter of about 1 to 5 μm are formed at the grain boundaries of the Al matrix 1, and the second phase particles 2 include T-phase precipitates 2a and Al 3 (Ni , Cu) 2 and an intermetallic compound 2b having a composition of 2 were included.
 また、図2に、図1のAl母相1におけるTi原子が含まれている部分1aをさらに拡大した反射電子像を示す。図2における灰色で示された部分はAl母相であり、Al母相中に分散している白い点は、微細に析出したT相析出物である。また、これらのT相析出物の長径は0.05μm以下である。図2によれば、試験材E1においては、Al母相1におけるTi原子が含まれている部分1aの内部にも、T相析出物が微細かつ多量に析出していることが確認された。なお、図には示さないが、Al母相1におけるTi原子が含まれていない部分1bにおいても、図2と同様に、Al母相1の内部に長径0.05μm以下のT相析出物が多量に析出していた。 Further, FIG. 2 shows a further enlarged backscattered electron image of the portion 1a containing Ti atoms in the Al matrix 1 of FIG. The portion shown in gray in FIG. 2 is the Al matrix, and the white dots dispersed in the Al matrix are finely precipitated T-phase precipitates. Moreover, the major axis of these T-phase precipitates is 0.05 μm or less. According to FIG. 2, in the test material E1, it was confirmed that a large amount of fine T-phase precipitates were also deposited inside the portion 1a containing Ti atoms in the Al matrix 1. Although not shown in the figure, T-phase precipitates having a major axis of 0.05 μm or less are formed inside the Al matrix 1 in the portion 1b where the Ti atoms are not contained in the Al matrix 1, as in FIG. A large amount was deposited.
 また、図には示さないが、Ti原子が含まれている試験材E3~E14においても、試験材E1と同様に、Al母相1の内部に長径0.05μm以下のT相析出物が多量に析出していた。 In addition, although not shown in the figure, in the test materials E3 to E14 containing Ti atoms, a large amount of T-phase precipitates with a major axis of 0.05 μm or less inside the Al matrix phase 1, similar to the test material E1. was precipitated.
 また、図3に試験材E2の元素マップを模式的に示す。図3において、試験材E2のAl母相1中には、Al原子に加えて、Al母相1中に固溶したMg原子、Zn原子及びCu原子等が含まれていた。さらに、試験材E2におけるAl母相1中には、Mn原子が含まれていた。また、Al母相1の結晶粒界には、T相析出物2aやAl(Ni,Cu)の組成を有する金属間化合物2bなどの第二相粒子2が形成されていた。試験材E2中のMn原子は、Al母相1に加え、金属間化合物2bの周辺にも分布していた。これらの結果によれば、試験材E2中のMn原子は、主にAl母相1の結晶粒中及び結晶粒界に存在していることが理解できる。 Moreover, the elemental map of the test material E2 is shown typically in FIG. In FIG. 3, in addition to Al atoms, the Al matrix 1 of the test material E2 contained Mg atoms, Zn atoms, Cu atoms, and the like dissolved in the Al matrix 1 as a solid solution. Furthermore, Mn atoms were contained in the Al matrix phase 1 in the test material E2. In addition, second phase particles 2 such as T-phase precipitates 2a and intermetallic compounds 2b having a composition of Al 3 (Ni, Cu) 2 were formed at the grain boundaries of the Al matrix 1 . Mn atoms in the test material E2 were distributed not only in the Al matrix 1 but also around the intermetallic compound 2b. From these results, it can be understood that the Mn atoms in the test material E2 are mainly present in the crystal grains of the Al matrix phase 1 and at the grain boundaries.
 また、図には示さないが、Mn原子が含まれている試験材E2においても、試験材E1と同様に、Al母相1の内部に長径0.05μm以下のT相析出物が多量に析出していた。 Also, although not shown in the figure, in the test material E2 containing Mn atoms, a large amount of T-phase precipitates with a major axis of 0.05 μm or less inside the Al matrix phase 1 precipitate similarly to the test material E1. Was.
 次に、試験材E1~E14及び試験材C1~C3のクリープ特性の評価を行った。まず、得られた試験材から、ダンベル形状の試験片を採取した。この試験片を用い、JIS Z2271:2010に準じた方法によりクリープ試験を行った。クリープ試験にはシングルクリープ試験機を使用し、試験温度は200℃、試験応力は105MPaとした。また、試験片の長さは掴み部を含めて57mmとし、平行部の直径はφ4mm、掴み部の直径はφ8mmとした。 Next, the creep properties of test materials E1 to E14 and test materials C1 to C3 were evaluated. First, a dumbbell-shaped test piece was taken from the obtained test material. Using this test piece, a creep test was performed by a method according to JIS Z2271:2010. A single creep tester was used for the creep test, the test temperature was 200° C., and the test stress was 105 MPa. The length of the test piece was 57 mm including the grip portion, the diameter of the parallel portion was φ4 mm, and the diameter of the grip portion was φ8 mm.
 各試験材のクリープ特性を図4~図7に示す。なお、図4~図7の横軸は試験開始時点からの経過時間(単位:時間)であり、縦軸は試験材のクリープひずみ(単位:%)である。また、表1に、クリープひずみが0.4%に到達するまでに要した所要時間を示す。なお、試験材E4については、クリープひずみが0.4%に到達する前に試験を終了したため、表1の「クリープひずみ0.4%までの所要時間」欄には試験終了までの経過時間に記号「>」を付した値を示した。  Figures 4 to 7 show the creep characteristics of each test material. In FIGS. 4 to 7, the horizontal axis is the elapsed time (unit: hour) from the start of the test, and the vertical axis is the creep strain (unit: %) of the test material. Table 1 also shows the time required for the creep strain to reach 0.4%. For test material E4, the test was completed before the creep strain reached 0.4%, so the "required time to creep strain 0.4%" column in Table 1 shows the elapsed time until the end of the test. Values with the symbol ">" are shown.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、試験材E1~E14は、前記特定の化学成分を有するアルミニウム合金から構成されている。そのため、これらの試験材は、Ni、Cu、Ti、Mn及びFeのうち1種以上の元素が含まれていない試験材C1~C3に比べ、クリープひずみが0.4%に到達するまでの所要時間が長くなっている。より具体的には、試験材E1~E14のクリープひずみが0.4%に到達するまでの所要時間は、いずれも440時間以上であった。 As shown in Table 1, test materials E1 to E14 are composed of aluminum alloys having the specific chemical components. Therefore, these test materials have the required creep strain to reach 0.4% compared to the test materials C1 to C3 that do not contain at least one element selected from Ni, Cu, Ti, Mn and Fe. time is getting longer. More specifically, the time required for the creep strain of the test materials E1 to E14 to reach 0.4% was all 440 hours or longer.
 従って、これらの結果によれば、Mg、Zn、Ni及びCuを含むとともに、Ti、Mn及びFeのうち1種以上の元素を前記特定の範囲の含有量で含有するアルミニウム合金材は、優れたクリープ特性を有していることが理解できる。 Therefore, according to these results, the aluminum alloy material containing Mg, Zn, Ni and Cu and containing one or more elements of Ti, Mn and Fe in a content within the specific range is excellent. It can be understood that it has creep characteristics.
 図8に、クリープ試験後の金属組織の一例として、試験材E1の断面の反射電子像を示す。図8に示すように、クリープ試験後の試験材E1には、長径数μm程度の第二相粒子2が存在していることが確認された。また、断面に現れたAl母相1におけるTi原子が含まれている部分1aは、Ti原子が含まれていない部分1bに比べて明度が低くなっていた。 FIG. 8 shows a backscattered electron image of the cross section of the test material E1 as an example of the metallographic structure after the creep test. As shown in FIG. 8, it was confirmed that second phase particles 2 having a long diameter of about several μm were present in the test material E1 after the creep test. In addition, the portion 1a containing Ti atoms in the Al matrix 1 appearing in the cross section had a lower brightness than the portion 1b containing no Ti atoms.
 そこで、Al母相1におけるTi原子が含まれている部分1aをさらに拡大して観察したところ、図9に示すように、Al母相1におけるTi原子が含まれている部分1aにおいては、図2に示すクリープ試験前の状態と同様に、長径0.05μm以下のT相析出物が多数存在していることが確認された。一方、Al母相1におけるTi原子が含まれていない部分1bをさらに拡大して観察したところ、図10に示すように、Al母相1におけるTi原子が含まれていない部分1bにおいては、図2に示すクリープ試験前の状態に比べてT相析出物が粗大化していることが確認された。 Therefore, when the portion 1a containing Ti atoms in the Al matrix 1 was further enlarged and observed, as shown in FIG. 2, it was confirmed that a large number of T-phase precipitates with a major diameter of 0.05 μm or less were present. On the other hand, when the portion 1b containing no Ti atoms in the Al matrix 1 was further enlarged and observed, as shown in FIG. It was confirmed that the T-phase precipitates were coarsened compared to the state before the creep test shown in 2.
 これらの結果から、Al母相1中のTi原子は、アルミニウム合金材に熱や応力が加わった場合においても、Al母相1中のT相析出物の粗大化を抑制する作用を有していることが理解できる。そして、試験材E1~E14においては、クリープ試験中におけるT相析出物の粗大化が抑制されたことにより、クリープ特性が向上したと推定される。 From these results, Ti atoms in the Al matrix 1 have the effect of suppressing the coarsening of T-phase precipitates in the Al matrix 1 even when heat and stress are applied to the aluminum alloy material. I understand that there are In the test materials E1 to E14, it is presumed that the creep property was improved because the coarsening of the T-phase precipitates was suppressed during the creep test.
(実施例2)
 本例においては、鋳造時の冷却速度を変更してアルミニウム合金材を作製し、得られたアルミニウム合金材の金属組織及びビッカース硬さの評価を行った。本例において作製したアルミニウム合金材(試験材E15~E16)の作製方法は以下の通りである。
(Example 2)
In this example, an aluminum alloy material was produced by changing the cooling rate during casting, and the metal structure and Vickers hardness of the obtained aluminum alloy material were evaluated. The method for producing the aluminum alloy materials (test materials E15 to E16) produced in this example is as follows.
<試験材E15>
 まず、表1に示す試験材E1と同一の組成を有するアルミニウム合金材の溶湯を準備した。この溶湯を内径10mmの円柱状キャビティを有する鋳型に注ぎ込み、鋳型内で溶湯を凝固させた。以上により、直径約10mmの円柱形状を有する試験材E16を得た。
<Test material E15>
First, a molten aluminum alloy material having the same composition as the test material E1 shown in Table 1 was prepared. This molten metal was poured into a mold having a cylindrical cavity with an inner diameter of 10 mm, and the molten metal was solidified in the mold. As described above, a cylindrical test material E16 having a diameter of about 10 mm was obtained.
<試験材E16>
 厚み0.6mmの薄板を鋳造可能なキャビティを有する鋳型を用いた以外は、試験材E15と同様の方法により鋳造を行った。以上により、厚み約0.6mmの薄板形状を有する試験材E16を得た。なお、鋳型内に注入された溶湯の体積の差から、試験材E16の鋳造時の凝固速度は試験材E15よりも格段に速いと推定される。
<Test material E16>
Casting was performed in the same manner as for test material E15, except that a mold having a cavity capable of casting a thin plate with a thickness of 0.6 mm was used. As described above, a test material E16 having a thin plate shape with a thickness of about 0.6 mm was obtained. From the difference in the volume of the molten metal injected into the mold, it is estimated that the solidification speed of the test material E16 during casting is much faster than that of the test material E15.
 以上により得られた試験材E15及び試験材E16の金属組織及びビッカース硬さを以下の方法で評価した。 The metallographic structure and Vickers hardness of test material E15 and test material E16 obtained above were evaluated by the following methods.
・金属組織の評価
 試験材E15及び試験材E16を任意の断面で切断した。SEM-EDXを用いて切断面を観察し、元素マップを取得した。図11及び図12に、各試験材の元素マップの一例を示す。
-Evaluation of metal structure The test material E15 and the test material E16 were cut at arbitrary cross sections. The cut surface was observed using SEM-EDX to obtain an elemental map. 11 and 12 show an example of the elemental map of each test material.
 図11に示すように、SEM-EDXを用いて得られた試験材E15の元素マップにおいては、Al母相1の周囲はAl-Mg-Zn-Cu系金属間化合物やAl-Ni系金属間化合物等の金属間化合物相3によって囲まれていた。また、試験材E15のAl母相1のうち、比較的粒径が大きいAl母相には、Ti原子が含まれている部分1aと、Ti原子がほとんど含まれていない部分1bとが存在していた。一方、比較的粒径が小さいAl母相はTi原子がほとんど含まれていない部分1bから構成されていた。図11における、Al母相1中のTi原子が含まれている部分1aのTi原子の濃度の最大値は、試験材E11のTiの平均濃度(つまり、0.1at%)の150%以上と推測される。 As shown in FIG. 11, in the element map of the test material E15 obtained using SEM-EDX, the surroundings of the Al matrix 1 are Al-Mg-Zn-Cu-based intermetallic compounds and Al-Ni-based intermetallic compounds. It was surrounded by an intermetallic compound phase 3 such as a compound. In addition, among the Al matrix phase 1 of the test material E15, the Al matrix phase having a relatively large grain size has a portion 1a containing Ti atoms and a portion 1b containing almost no Ti atoms. was On the other hand, the Al matrix phase with a relatively small grain size was composed of the portion 1b containing almost no Ti atoms. In FIG. 11, the maximum value of the concentration of Ti atoms in the portion 1a containing Ti atoms in the Al matrix 1 is 150% or more of the average concentration of Ti in the test material E11 (that is, 0.1 at%). guessed.
 図12に示すように、試験材E16の元素マップにおいても、Al母相1の周囲は金属間化合物相3によって囲まれていた。図11と図12との比較から、試験材E16のAl母相1の粒径は試験材E15に比べて全体的に小さくなる傾向があることが理解できる。また、試験材E16のAl母相1にはTi原子が均一に分布しており、Ti原子が含まれている部分1aから構成されていた。図12においては、Ti原子がAl母相1中の全体に分布している。従って、図12における、Al母相1中のTi原子が含まれている部分1aのTi原子の濃度の最大値は、試験材E16のTiの平均濃度の150%未満であると推測される。 As shown in FIG. 12, the Al matrix phase 1 was also surrounded by the intermetallic compound phase 3 in the elemental map of the test material E16. From the comparison between FIG. 11 and FIG. 12, it can be understood that the grain size of the Al matrix phase 1 of the test material E16 tends to be smaller overall than that of the test material E15. In addition, Ti atoms were uniformly distributed in the Al matrix 1 of the test material E16, and it was composed of a portion 1a containing Ti atoms. In FIG. 12 , Ti atoms are distributed throughout the Al matrix 1 . Therefore, it is estimated that the maximum concentration of Ti atoms in the portion 1a containing Ti atoms in the Al matrix 1 in FIG. 12 is less than 150% of the average concentration of Ti in the test material E16.
・ビッカース硬さの評価
 JIS Z2244:2009に基づいて各試験材のビッカース硬さを測定した。具体的には、各試験材について、測定位置を変更しながら1kgfの測定荷重で5回の測定を行い、これらの測定に基づいてビッカース硬さの算術平均値及び標準偏差を算出した。表2にこれらの値を示す。
- Evaluation of Vickers hardness Vickers hardness of each test material was measured based on JISZ2244:2009. Specifically, each test material was measured five times with a measurement load of 1 kgf while changing the measurement position, and the arithmetic mean value and standard deviation of Vickers hardness were calculated based on these measurements. Table 2 shows these values.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示したように、鋳造時の凝固速度が比較的高い試験材E16は、試験材E15に比べて金属組織が微細化されており、Ti原子の分布のばらつきも小さくなった。また、試験材E16のビッカース硬さは試験材E15よりも高かった。これらの結果から、鋳造時の凝固速度を高くすることにより、アルミニウム合金材の硬さを向上可能であることが理解できる。 As shown in Table 2, the test material E16, which has a relatively high solidification rate during casting, has a finer metal structure than the test material E15, and the variation in the distribution of Ti atoms is also small. Moreover, the Vickers hardness of the test material E16 was higher than that of the test material E15. From these results, it can be understood that the hardness of the aluminum alloy material can be improved by increasing the solidification rate during casting.
 本発明に係るアルミニウム合金材の具体的な態様は、実施例に記載された態様に限定されるものではなく、本発明の趣旨を損なわない範囲で適宜構成を変更することができる。 Specific aspects of the aluminum alloy material according to the present invention are not limited to those described in the examples, and the configuration can be changed as appropriate within the scope of the present invention.

Claims (11)

  1.  Mg:1.0原子%以上10.0原子%以下、Zn:1.0原子%以上9.0原子%以下、Ni:0.25原子%以上3.0原子%以下及びCu:0.25原子%以上3.0原子%以下を含有し、さらに、Ti:0.01原子%以上0.30原子%以下、Mn:0.01原子%以上0.30原子%以下及びFe:0.01原子%以上0.30原子%以下のうち1種または2種以上の元素を含有し、残部がAl及び不可避的不純物からなる化学成分を有する、アルミニウム合金材。 Mg: 1.0 atomic % or more and 10.0 atomic % or less, Zn: 1.0 atomic % or more and 9.0 atomic % or less, Ni: 0.25 atomic % or more and 3.0 atomic % or less, and Cu: 0.25 0.01 atomic % to 0.30 atomic %, Mn: 0.01 atomic % to 0.30 atomic %, and Fe: 0.01 atomic % to 3.0 atomic % An aluminum alloy material having a chemical composition containing one or more elements of atomic % or more and 0.30 atomic % or less, with the balance being Al and unavoidable impurities.
  2.  Mgの含有量が3.5原子%以上9.0原子%以下である、請求項1に記載のアルミニウム合金材。 The aluminum alloy material according to claim 1, wherein the content of Mg is 3.5 atomic % or more and 9.0 atomic % or less.
  3.  Znの含有量が2.0原子%以上8.0原子%以下である、請求項1または2に記載のアルミニウム合金材。 The aluminum alloy material according to claim 1 or 2, wherein the Zn content is 2.0 atomic % or more and 8.0 atomic % or less.
  4.  Znの含有量に対するMgの含有量の比Mg/Znの値が0.8以上2.0以下である、請求項1~3のいずれか1項に記載のアルミニウム合金材。 The aluminum alloy material according to any one of claims 1 to 3, wherein the ratio Mg/Zn of the content of Mg to the content of Zn is 0.8 or more and 2.0 or less.
  5.  前記アルミニウム合金材は、Al母相中に第二相粒子が分散した金属組織を有しており、前記第二相粒子には長径0.05μm以下のT相析出物が含まれている、請求項1~4のいずれか1項に記載のアルミニウム合金材。 The aluminum alloy material has a metal structure in which second-phase particles are dispersed in an Al matrix, and the second-phase particles contain T-phase precipitates having a major axis of 0.05 μm or less. 5. The aluminum alloy material according to any one of Items 1 to 4.
  6.  前記アルミニウム合金材は、Ti:0.01原子%以上0.30原子%以下、Mn:0.01原子%以上0.30原子%以下及びFe:0.01原子%以上0.30原子%以下のうち少なくともTiを含んでおり、Al母相におけるTi原子の濃度の最大値が前記アルミニウム合金材中のTi原子の平均濃度の150%以下である、請求項1~5のいずれか1項に記載のアルミニウム合金材。 The aluminum alloy material contains Ti: 0.01 atomic % or more and 0.30 atomic % or less, Mn: 0.01 atomic % or more and 0.30 atomic % or less, and Fe: 0.01 atomic % or more and 0.30 atomic % or less. wherein the maximum concentration of Ti atoms in the Al matrix phase is 150% or less of the average concentration of Ti atoms in the aluminum alloy material. The aluminum alloy material described.
  7.  前記アルミニウム合金材は、Ti:0.01原子%以上0.30原子%以下、Mn:0.01原子%以上0.30原子%以下及びFe:0.01原子%以上0.30原子%以下のうち少なくともTiを含んでおり、Ti原子がAl母相全体に分布している、請求項1~6のいずれか1項に記載のアルミニウム合金材。 The aluminum alloy material contains Ti: 0.01 atomic % or more and 0.30 atomic % or less, Mn: 0.01 atomic % or more and 0.30 atomic % or less, and Fe: 0.01 atomic % or more and 0.30 atomic % or less. The aluminum alloy material according to any one of claims 1 to 6, which contains at least Ti among the above, and Ti atoms are distributed throughout the Al matrix.
  8.  前記アルミニウム合金材の化学成分における、Cuの含有量が0.25原子%以上1.5原子%以下であり、Niの含有量が0.25原子%以上1.5原子%以下であり、Ti、Mn及びFeのうち少なくともTiを含むとともにMn及びFeのうち1種または2種の元素を含む、請求項1~7のいずれか1項に記載のアルミニウム合金材。 In the chemical composition of the aluminum alloy material, the Cu content is 0.25 atomic % or more and 1.5 atomic % or less, the Ni content is 0.25 atomic % or more and 1.5 atomic % or less, and Ti 8. The aluminum alloy material according to claim 1, which contains at least Ti among Mn and Fe, and contains one or two elements of Mn and Fe.
  9.  前記アルミニウム合金材の化学成分における、Cuの含有量が1.5原子%を超え3.0原子%以下であり、Niの含有量が1.5原子%を超え3.0原子%以下であり、Ti、Mn及びFeのうち少なくともTiを含むとともに、Tiの含有量が0.01原子%以上0.17原子%以下である、請求項1~7のいずれか1項に記載のアルミニウム合金材。 In the chemical composition of the aluminum alloy material, the Cu content is more than 1.5 atomic percent and 3.0 atomic percent or less, and the Ni content is more than 1.5 atomic percent and 3.0 atomic percent or less. 8. The aluminum alloy material according to any one of claims 1 to 7, which contains at least Ti from among , Ti, Mn and Fe, and has a Ti content of 0.01 atomic% or more and 0.17 atomic% or less. .
  10.  請求項1~9のいずれか1項に記載のアルミニウム合金材からなり、170℃以上の高温環境下において使用される機械部品。 A machine part made of the aluminum alloy material according to any one of claims 1 to 9 and used in a high temperature environment of 170°C or higher.
  11.  請求項1~9のいずれか1項に記載のアルミニウム合金材の製造方法であって、
     前記化学成分を有する鋳塊を作製し、
     前記鋳塊を420~500℃の温度で20~48時間加熱して溶体化処理を行い、
     次いで、前記鋳塊を焼入れし、
     その後、前記鋳塊を170~300℃の温度で1~100時間加熱して時効処理を行う、アルミニウム合金材の製造方法。
    A method for producing an aluminum alloy material according to any one of claims 1 to 9,
    Producing an ingot having the chemical composition,
    Solution treatment is performed by heating the ingot at a temperature of 420 to 500 ° C. for 20 to 48 hours,
    Next, the ingot is quenched,
    Thereafter, the ingot is heated at a temperature of 170 to 300° C. for 1 to 100 hours for aging treatment.
PCT/JP2022/016719 2021-03-31 2022-03-31 Aluminum alloy material, production method therefor, and machine component WO2022211062A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023511733A JPWO2022211062A1 (en) 2021-03-31 2022-03-31

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-060059 2021-03-31
JP2021060059 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022211062A1 true WO2022211062A1 (en) 2022-10-06

Family

ID=83456589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016719 WO2022211062A1 (en) 2021-03-31 2022-03-31 Aluminum alloy material, production method therefor, and machine component

Country Status (2)

Country Link
JP (1) JPWO2022211062A1 (en)
WO (1) WO2022211062A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179043A (en) * 1987-01-21 1988-07-23 Furukawa Alum Co Ltd Aluminum alloy for forming
US5338510A (en) * 1993-10-04 1994-08-16 Zuech Romeo A Cast aluminum alloy and tooling fixture therefrom
JPH08283921A (en) * 1995-04-17 1996-10-29 Ykk Kk High strength aluminum alloy consolidation material and its production
JP2013053361A (en) * 2011-09-06 2013-03-21 Furukawa-Sky Aluminum Corp Aluminum alloy for flying body excellent in heat-resistant strength
CN104046856A (en) * 2014-07-01 2014-09-17 张家港市佳晟机械有限公司 Aluminum-copper-magnesium-based hard aluminum alloy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179043A (en) * 1987-01-21 1988-07-23 Furukawa Alum Co Ltd Aluminum alloy for forming
US5338510A (en) * 1993-10-04 1994-08-16 Zuech Romeo A Cast aluminum alloy and tooling fixture therefrom
JPH08283921A (en) * 1995-04-17 1996-10-29 Ykk Kk High strength aluminum alloy consolidation material and its production
JP2013053361A (en) * 2011-09-06 2013-03-21 Furukawa-Sky Aluminum Corp Aluminum alloy for flying body excellent in heat-resistant strength
CN104046856A (en) * 2014-07-01 2014-09-17 张家港市佳晟机械有限公司 Aluminum-copper-magnesium-based hard aluminum alloy

Also Published As

Publication number Publication date
JPWO2022211062A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
US5366570A (en) Titanium matrix composites
JP4189687B2 (en) Magnesium alloy material
US20130206287A1 (en) Co-based alloy
JP5703881B2 (en) High strength magnesium alloy and method for producing the same
JP2008520826A (en) Alloy based on titanium aluminum
CN106065443B (en) Copper alloy and method for producing same
JP6826879B2 (en) Manufacturing method of Ni-based super heat-resistant alloy
JP2016079454A (en) Aluminum alloy forging material and manufacturing method therefor
EP1340825A2 (en) Ni-base alloy, heat-resistant spring made of the alloy, and process for producing the spring
CN105525134A (en) High-strength alloy and preparation method thereof
JP2015030856A (en) Aluminum alloy extruded material for cutting
JP4433916B2 (en) Magnesium alloy and magnesium alloy member for plastic working
JP2010537052A (en) Magnesium-based alloy and method for producing the same
JP7184257B2 (en) Aluminum alloy material, manufacturing method thereof, and impeller
JP4228166B2 (en) Seamless copper alloy tube with excellent fatigue strength
JP2005320618A (en) High-strength alpha+beta-type titanium alloy
WO2019023818A1 (en) Readily cold-formable deformable zinc alloy material, preparation method therefor, and application thereof
WO2022211062A1 (en) Aluminum alloy material, production method therefor, and machine component
JP5228708B2 (en) Titanium alloy for heat-resistant members with excellent creep resistance and high-temperature fatigue strength
JP6660042B2 (en) Method for manufacturing extruded Ni-base superalloy and extruded Ni-base superalloy
JP2002266044A (en) Magnesium alloy
JP7387139B2 (en) Titanium alloy, its manufacturing method, and engine parts using it
JP5282547B2 (en) High-strength, thick-walled spheroidal graphite cast iron with excellent wear resistance
JP3920656B2 (en) High rigidity aluminum alloy containing boron
JP5688744B2 (en) High strength and high toughness copper alloy forging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781272

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023511733

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22781272

Country of ref document: EP

Kind code of ref document: A1