JPH08283921A - High strength aluminum alloy consolidation material and its production - Google Patents

High strength aluminum alloy consolidation material and its production

Info

Publication number
JPH08283921A
JPH08283921A JP11403795A JP11403795A JPH08283921A JP H08283921 A JPH08283921 A JP H08283921A JP 11403795 A JP11403795 A JP 11403795A JP 11403795 A JP11403795 A JP 11403795A JP H08283921 A JPH08283921 A JP H08283921A
Authority
JP
Japan
Prior art keywords
aluminum alloy
strength aluminum
material according
phase
solidified material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11403795A
Other languages
Japanese (ja)
Other versions
JP3372129B2 (en
Inventor
Kazuhiko Kita
和彦 喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YKK Corp
Original Assignee
YKK Corp
Yoshida Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YKK Corp, Yoshida Kogyo KK filed Critical YKK Corp
Priority to JP11403795A priority Critical patent/JP3372129B2/en
Publication of JPH08283921A publication Critical patent/JPH08283921A/en
Application granted granted Critical
Publication of JP3372129B2 publication Critical patent/JP3372129B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE: To produce a high strength aluminum alloy consolidation material used for structural material for machine parts, etc. CONSTITUTION: This consolidation material is composed essentially of supersaturated solid solution phases of <=100nm average crystalline grain size and has >=1mm thickness, and further, the super-saturated solid solution phases are constituted as grains of 1-10μm average grain size. Moreover, the consolidation material has a composition represented by general formulae, Albal Ma Xb and Albal Ma Xb Qc [where M means V, Cr, Mn, Fe, Co, and Ni, X means Li, Mg, Si, Ti, Cu, Zn, Y, Zr, Nb, Mo, Ag, Hf, Ta, W, Mm, and rare earth elements, Q means B, C, N, and O, and the symbols (a), (b), and (c) stand for 0.5-10%, 0.5-10%, and <=5%, respectively). The consolidation material can be produced by an electron beam vapor deposition process. By this method, the high strength aluminum alloy consolidation material having new structure can be obtained, and, by using an electron beam vapor deposition process, a high density and high strength bulk material can be obtained directly from a master alloy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、機械部品等の構造材と
して用いる高強度アルミニウム合金固化材およびその製
造方法である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high strength aluminum alloy solidified material used as a structural material for machine parts and the like and a method for producing the same.

【0002】[0002]

【従来の技術】従来の急冷凝固させたアルミニウム合金
の微細結晶組織は、急冷凝固法による組織の微細化によ
り高強度化されている。さらに、微結晶組織ではなく、
さらに特定組成において急冷してアモルファス相を得る
ことによりさらに高強度な材料が得られている。しかし
ながら、急冷凝固法又はメカニカルアロイング法などの
手法で得られた微細組織を有する合金は、通常薄帯又は
粉末に形状が限定されていた。よって機械部品等の構造
材として用いるためには、薄帯又は粉末等を集成固化さ
せる必要があった。集成固化の方法としては、熱間押出
法、鍛造法等が通常用いられているが、その時の熱履歴
により、急冷により得られたアモルファスは加熱により
結晶化し、微細結晶組織は加熱により粒生長するため
に、強度特性は熱間加工後に低下する問題点があった。
又、原料として薄帯又は粉末を用いるために、最終製品
の形状には製造設備上の制約があり、大面積の板材の作
製は困難であった。
2. Description of the Related Art The conventional fine crystal structure of rapidly solidified aluminum alloys has been strengthened by the refinement of the structure by the rapid solidification method. Furthermore, instead of a microcrystalline structure,
Further, by quenching in a specific composition to obtain an amorphous phase, a material having higher strength is obtained. However, an alloy having a fine structure obtained by a method such as a rapid solidification method or a mechanical alloying method is usually limited to a ribbon or a powder. Therefore, in order to use it as a structural material for machine parts or the like, it was necessary to assemble and solidify thin strips or powders. As a method of assembly and solidification, a hot extrusion method, a forging method, etc. are usually used, but due to the heat history at that time, the amorphous obtained by quenching is crystallized by heating, and the fine crystal structure grows grains by heating. Therefore, there is a problem that the strength characteristics deteriorate after hot working.
Further, since the ribbon or powder is used as the raw material, the shape of the final product is limited due to the manufacturing facility, and it is difficult to produce a large-area plate material.

【0003】さらに、一般に粉末冶金の手法が用いられ
ているが、その工程は母合金→溶解→急冷凝固→ビレッ
ト(プリフォーム)化(+脱ガス)→熱間加工(押出、
鍛造等)→仕上げ→最終製品という複雑な過程を経なけ
ればならないという問題がある。又、原料としての薄帯
又は粉末の表面の酸化は雰囲気の制御では限界があり、
表面酸化物の残存による固化の不健全さやガス成分、特
に吸着水、結晶水等に起因する水素脆性、粉末ハンドリ
ング時のコンタミネーションの混入が成形後の製品特性
に問題を生じさせる問題がある。
Further, a powder metallurgy method is generally used. The process is mother alloy → melting → rapid solidification → billet (preform) conversion (+ degassing) → hot working (extrusion, extrusion,
There is a problem that it has to go through a complicated process such as forging) → finishing → final product. Also, the oxidation of the surface of the ribbon or powder as a raw material has a limit in controlling the atmosphere,
There is a problem that unsoundness of solidification due to residual surface oxide, hydrogen embrittlement due to gas components, especially adsorbed water, crystallization water, etc., and contamination during powder handling cause problems in product characteristics after molding.

【0004】一方、電子ビーム蒸着は公知の物理蒸着技
術であって、主に金属フィルム又は被膜の製造のために
使用されているが、準安定過飽和固溶体を有する合金を
構造材料の用途の規模で製造する方法としても知られて
いる。一般的な説明は、Bickerdike等による
2つの論文「International Journ
al of Rapid Solidificatio
n(1985,Vol.1pp305〜325;198
6,Vol.2pp001〜019)」に記載されてい
る。
Electron beam evaporation, on the other hand, is a well-known physical vapor deposition technique, mainly used for the production of metal films or coatings, but with alloys having metastable supersaturated solid solutions at the scale of structural material applications. It is also known as a manufacturing method. For a general explanation, see the two papers by Bickerdike et al., "International Journal."
al of Rapid Solidifatio
n (1985, Vol. 1 pp 305-325; 198).
6, Vol. 2 pp001 to 019) ".

【0005】[0005]

【発明が解決しようとする課題】本発明は、微細結晶組
織を有する高強度アルミニウム合金固化材を酸化、水素
脆化、コンタミネーションの問題がなく提供するもので
ある。
SUMMARY OF THE INVENTION The present invention provides a high-strength aluminum alloy solidified material having a fine crystal structure without the problems of oxidation, hydrogen embrittlement and contamination.

【0006】[0006]

【課題を解決するための手段】本発明は、実質的に平均
結晶粒径が100nm以下の過飽和固溶体相からなり、
厚さが1mm以上であることを特徴とする高強度アルミ
ニウム合金固化材である。本発明は又、平均粒径1〜1
0μmの粒子によって構成され、該粒子が実質的に平均
結晶粒径が100nm以下の過飽和固溶体相からなるも
のであり、厚さが1mm以上であることを特徴とする高
強度アルミニウム合金固化材である。過飽和固溶体相は
体積率で80%以上であることが望ましく、残りはアモ
ルファス又は金属間化合物であるが、金属間化合物の体
積率は0であることが望ましく、最大5%までである。
又、バルク材の相対密度は95%以上が良い。平均結晶
粒径が100nmを超えると強度が十分でなく、アモル
ファス相が体積率で20%を超えると、延性、靭性、加
工性が低下してしまう。金属間化合物の体積率が多くな
ると、強度には悪影響はないが、固化材が低下してしま
う問題点がある。
The present invention comprises a supersaturated solid solution phase having an average crystal grain size of 100 nm or less.
A high strength aluminum alloy solidified material having a thickness of 1 mm or more. The present invention also has an average particle size of 1-1.
It is a high-strength aluminum alloy solidification material characterized by being composed of 0 μm particles, the particles substantially consisting of a supersaturated solid solution phase having an average crystal grain size of 100 nm or less, and having a thickness of 1 mm or more. . The volume ratio of the supersaturated solid solution phase is preferably 80% or more, and the rest is amorphous or intermetallic compound, but the volume ratio of the intermetallic compound is preferably 0, and the maximum is 5%.
The relative density of the bulk material is preferably 95% or more. If the average crystal grain size exceeds 100 nm, the strength is insufficient, and if the volume ratio of the amorphous phase exceeds 20%, the ductility, toughness and workability deteriorate. When the volume ratio of the intermetallic compound increases, the strength is not adversely affected, but there is a problem that the solidifying material decreases.

【0007】堆積したマクロ構造における粒子の大きさ
は1〜10μmであるが、1μmより小さくても、又、
10μmより大きくても、空隙が生じて相対密度で95
%以上が得られなくなり、材料の欠陥となる。アモルフ
ァス相が混在する場合においては、上記1〜10μmの
大きさの粒子内に、アモルファスと過飽和固溶体を主相
とする微細結晶とが均一に分散した状態であり、粒子界
面には存在しない。アモルファス相が粒子が緻密に堆積
したマクロ構造の粒子同士の界面に存在すると、延性、
靭性、加工性が低下してしまう。上記組織を得るために
は、Albalab又はAlbalabcの一般式を有
し、a=0.5〜10%、b=0.5〜10%、c=5
%以下の組成範囲が望ましく、さらにAl量は80%以
上が延性の点でより望ましい。
The size of the particles in the deposited macrostructure is 1 to 10 μm, but if it is smaller than 1 μm,
Even if it is larger than 10 μm, voids occur and the relative density is 95
% Or more cannot be obtained, resulting in a material defect. When the amorphous phase is mixed, the amorphous particles and fine crystals having a supersaturated solid solution as a main phase are uniformly dispersed in the particles having a size of 1 to 10 μm and do not exist at the particle interface. If an amorphous phase is present at the interface between macro-structured particles in which particles are densely deposited, ductility,
Toughness and workability will be reduced. In order to obtain the tissue has an Al bal M a X b or of the general formula Al bal M a X b Q c , a = 0.5~10%, b = 0.5~10%, c = 5
% Or less, and more preferably 80% or more in terms of ductility.

【0008】M元素は、V,Cr,Mn,Fe,Co,
Niから選ばれた少なくとも1種の元素で、組織の微細
化に効果のある元素である。又、固溶強化により、靭性
を損うことなく、合金の高強度化が得られる。その量が
0.5%未満では強化が十分でないと共に、前記請求項
で述べたようなマクロ、ミクロ構造を得ることができな
い。その量が10%を越えるとマトリックスとしてのア
ルミニウムまたはアルミニウムの過飽和固溶体の延性が
低下してしまう。又、アモルファス相を形成しやすくな
り、熱的安定性や加工性、延性に問題が生じてしまう。
さらに前記請求項に記載のマクロ、ミクロ構造を得るこ
とができる基板温度において、低密度なものしか得られ
なくなってしまうので、0.5〜10%の範囲が良い。
Xは元素は、Li,Mg,Si,Ti,Cu,Zn,
Y,Zr,Nb,Mo,Ag,Hf,Ta,W,Mm
(ミッシュメタル)、希土類金属元素から選ばれた少な
くとも1種の元素で、組織の微細化に効果のある元素で
ある。又、固溶強化により靭性を損うことなく、合金の
高強度化が得られる。その量が0.5%未満であると、
強化が十分でないと共に、前記請求項に記載のようなマ
クロ、ミクロ構造を得ることができない。その量が10
%を越えると、マトリックスとしてのアルミニウムまた
はアルミニウムの過飽和固溶体の延性が低下してしま
う。また、アモルファス相を形成しやすくなり、熱的安
定性や加工性、延性に問題が生じてしまう。さらに前記
請求項に記載のマクロ、ミクロ構造を得ることができる
基板温度において、低密度なものしか得られなくなって
しまうので、0.5〜10%の範囲が良い。Q元素は、
B,C,N,Oから選ばれた少なくとも1種の元素で、
アルミニウムまたはアルミニウム過飽和固溶体の耐熱性
を著しく向上させることができる元素である。Q元素は
通常の溶解法などでは均一に合金化することは不可能な
元素であり、雰囲気制御による蒸着法により初めて固化
材が作製できる。その量が5%を越えると、耐熱性は良
好なままであるが、緻密な材料が作製できなくなると共
に延性に問題が生じてくる。
M element is V, Cr, Mn, Fe, Co,
It is at least one element selected from Ni and is an element effective in refining the structure. Further, solid solution strengthening can enhance the strength of the alloy without impairing the toughness. If the amount is less than 0.5%, the strengthening is insufficient and the macro and micro structures as described in the above claims cannot be obtained. If the amount exceeds 10%, the ductility of aluminum as a matrix or a supersaturated solid solution of aluminum is reduced. Moreover, an amorphous phase is easily formed, which causes problems in thermal stability, workability, and ductility.
Further, at the substrate temperature at which the macro and micro structures described in the above claims can be obtained, only low density ones can be obtained, so the range of 0.5 to 10% is preferable.
X is an element such as Li, Mg, Si, Ti, Cu, Zn,
Y, Zr, Nb, Mo, Ag, Hf, Ta, W, Mm
(Misch metal), at least one element selected from rare earth metal elements, and is an element effective in refining the structure. Further, the solid solution strengthening makes it possible to increase the strength of the alloy without impairing the toughness. If the amount is less than 0.5%,
In addition to insufficient reinforcement, it is impossible to obtain a macro or micro structure as described in the above claims. The amount is 10
If it exceeds%, the ductility of aluminum as a matrix or a supersaturated solid solution of aluminum is reduced. Further, an amorphous phase is easily formed, which causes problems in thermal stability, workability, and ductility. Further, at the substrate temperature at which the macro and micro structures described in the above claims can be obtained, only low density ones can be obtained, so the range of 0.5 to 10% is preferable. Q element is
At least one element selected from B, C, N and O,
It is an element capable of significantly improving the heat resistance of aluminum or an aluminum supersaturated solid solution. The Q element is an element that cannot be uniformly alloyed by a usual melting method or the like, and the solidified material can be produced only by the vapor deposition method by controlling the atmosphere. If the amount exceeds 5%, the heat resistance remains good, but a dense material cannot be produced and a problem occurs in ductility.

【0009】このようなアルミニウム合金固化材は、電
子ビーム蒸着法により、実質的に平均結晶粒径が100
nm以下の過飽和固溶体相からなる平均粒径1〜10μ
mの合金粒子を蒸着物堆積基板上に堆積することを特徴
とする方法により得ることができる。電子ビーム蒸着装
置の具体例を模式的に示したのが図1である。真空装置
内において、蒸着源材料ロッド2を銅製のるつぼ1内に
下方から上方に向って移動可能に配し、これに電子銃3
により電子ビーム4を照射し、蒸発源材料を加熱溶融さ
せ、さらに蒸発させる。蒸発した粒子5はるつぼ1と対
向して設けられた堆積基板6上に蒸着堆積し、堆積層7
を形成する。又、るつぼ1と堆積基板6との間にはシャ
ッタ8が設けられ、基板温度および蒸着粒子が適した条
件となった場合に開くようになっている。
Such an aluminum alloy solidified material has an average crystal grain size of substantially 100 by an electron beam evaporation method.
nm or less having an average particle size of 1-10 μm of a supersaturated solid solution phase
m alloy particles can be obtained by a method characterized in that they are deposited on a vapor deposition substrate. FIG. 1 schematically shows a specific example of the electron beam vapor deposition apparatus. In the vacuum apparatus, a vapor deposition source material rod 2 is arranged in a copper crucible 1 so as to be movable from the lower side to the upper side, and an electron gun 3 is attached thereto.
Is irradiated with the electron beam 4 to heat and melt the evaporation source material and further evaporate it. The evaporated particles 5 are deposited by evaporation on a deposition substrate 6 provided so as to face the crucible 1, and a deposition layer 7 is formed.
To form. Further, a shutter 8 is provided between the crucible 1 and the deposition substrate 6, and is opened when the substrate temperature and the vapor deposition particles become suitable conditions.

【0010】電子銃3は1つだけ示してあるが、複数個
設けることも可能である。電子銃3を複数個設けること
により、より均一組成分布の材料および組成的に不均一
な傾斜機能材料、人工格子厚膜材などを作製することが
できる。このような電子ビーム蒸着は、高い冷却状態が
得られるので、他の物理蒸着技術に比して前記本発明の
組織を得るのに適している。真空装置内の真空度は0.
5×10-5〜1.5×10-5Torrが適当である。
又、前記組織を得るためには、蒸着物堆積基板温度を1
50〜350℃に制御することがよい。150℃より低
温であると非平衡な状態が得られるが、緻密な材料が得
にくく、柱状になり易い等の問題がある。350℃より
高温であると、結晶粒径が大きくなり、強度特性が劣化
すると共に金属間化合物の析出・晶出現象が起り、延
性、靭性、加工性が低下してしまう。
Although only one electron gun 3 is shown, a plurality of electron guns 3 can be provided. By providing a plurality of electron guns 3, a material having a more uniform composition distribution, a compositionally non-uniform functionally graded material, an artificial lattice thick film material, and the like can be manufactured. Such electron beam evaporation is suitable for obtaining the structure of the present invention, as compared with other physical vapor deposition techniques, since a high cooling state can be obtained. The degree of vacuum in the vacuum device is 0.
5 × 10 −5 to 1.5 × 10 −5 Torr is suitable.
Further, in order to obtain the above-mentioned texture, the temperature of the vapor deposition material substrate is set to 1
It is preferable to control the temperature to 50 to 350 ° C. When the temperature is lower than 150 ° C., a non-equilibrium state can be obtained, but there are problems that it is difficult to obtain a dense material and the material tends to be columnar. If the temperature is higher than 350 ° C., the crystal grain size becomes large, the strength characteristics are deteriorated, and the precipitation / crystallization phenomenon of the intermetallic compound occurs, and the ductility, toughness, and workability deteriorate.

【0011】[0011]

【実施例】図1に示す電子ビーム蒸着装置により表1に
示す組成の材料を用いて、同じく表1に示す蒸着条件に
より高強度アルミニウム合金固化材を作製した。具体的
な作製方法は、まず、装置内を表1に示す真空度とし、
表1に示すガン出力にて電子銃より電子ビームを照射す
る。蒸着時間および堆積基板温度も表1に示す条件で行
った。なお、本発明例9の場合、装置内を酸素雰囲気に
て行った。この際に使用する蒸着源材料は酸素成分を除
く材料を用意する。Q元素として、N.Oを用いる場合
は装置内をN2、O2等のN、O雰囲気で行う。装置内を
N、O雰囲気とする場合は分圧はN2の場合6×10-3
Torr以下、O2の場合1×10-3Torr以下が適
当である。又、BやCを含む場合は蒸着源としてBやC
またはBやCを含んだものを用いれば良い。
EXAMPLE A high-strength aluminum alloy solidified material was produced using the materials having the compositions shown in Table 1 by the electron beam evaporation apparatus shown in FIG. 1 and under the same evaporation conditions as shown in Table 1. A specific manufacturing method is as follows:
An electron beam is emitted from the electron gun with the gun output shown in Table 1. The vapor deposition time and the deposition substrate temperature were also set under the conditions shown in Table 1. In the case of Example 9 of the present invention, the inside of the apparatus was placed in an oxygen atmosphere. As the vapor deposition source material used at this time, a material excluding oxygen components is prepared. As the Q element, N. When O is used, the inside of the apparatus is operated in an N, O atmosphere such as N 2 , O 2 . When the inside of the equipment is N and O atmosphere, the partial pressure is 6 × 10 -3 when N 2
It is appropriate that the pressure is less than or equal to Torr, and if O 2 is less than or equal to 1 × 10 −3 Torr. When B or C is included, B or C is used as a vapor deposition source.
Alternatively, a material containing B or C may be used.

【0012】[0012]

【表1】 表1に基づいて得られた固化材について、硬度(Hv)
を測定した。なお、硬度(Hv)は25g荷重の微小ビ
ッカース硬度計による測定値(DPN)で示す。得られ
た結果を表2に示す。
[Table 1] Hardness (Hv) of the solidified material obtained based on Table 1
Was measured. The hardness (Hv) is shown by a measured value (DPN) by a micro Vickers hardness meter with a load of 25 g. The obtained results are shown in Table 2.

【0013】[0013]

【表2】 表2に示す結果より、本発明の固化材は硬度が265〜
360DPNと非常に高いことが分かり、高強度特性に
優れた固化材であることが分かる。図2は本発明例1の
蒸着物の表面からのSEM像であり、図3は図2の拡大
写真である。蒸着物は粒径1〜10μmの粒子状であ
り、これらの粒子が堆積され固化材が構成されているこ
とが分かる。図4は本発明例2の、又、図5は本発明例
3の蒸着物の表面からのSEM像であり、図2、図3と
ほぼ同様であることが分かる。
[Table 2] From the results shown in Table 2, the solidified material of the present invention has a hardness of 265 to 265.
It can be seen that it is extremely high as 360 DPN, and it can be seen that it is a solidified material excellent in high strength characteristics. FIG. 2 is an SEM image from the surface of the deposit of Inventive Example 1, and FIG. 3 is an enlarged photograph of FIG. It can be seen that the deposit is in the form of particles having a particle size of 1 to 10 μm, and these particles are deposited to form the solidifying material. FIG. 4 is an SEM image from the surface of the deposited material of Inventive Example 2 and FIG. 5 is Inventive Example 3, and it can be seen that it is almost the same as FIGS. 2 and 3.

【0014】図6は本発明例3の蒸着物の破断面のSE
M像であり、アモルファスとは異なり、延性な結晶に特
有なディンプルパターンを呈している。又、堆積物のマ
クロな柱状組織に起因したような柱状組織界面での破壊
の進行は認められず、非常に緻密な状態が得られている
ことが分かる。図7は本発明例3、図8は本発明例6の
DSC曲線(示差走査熱量分析曲線)であり、これより
アモルファスや過飽和固溶体の分解や析出に対応する発
熱ピークは300℃付近まで認められず、熱的に安定で
あることが分かる。図9は本発明例1のX線回折図形で
あり、fcc(面心立方構造)−Alのピークのみ表わ
れており、過飽和固溶体fcc−Al相のみからなる微
細結晶相組織であることが分かる。図10は本発明例2
のX線回折図形であり、fcc−Alのピークとアモル
ファス相を含むことを示すブロードな部分とが存在して
おり、主相過飽和固溶体fcc−Al相からなる微細結
晶相中にアモルファス相が分散した混相組織であること
が分かる。
FIG. 6 shows the SE of the fracture surface of the deposit of Example 3 of the present invention.
M image, which is different from amorphous and exhibits a dimple pattern peculiar to a ductile crystal. Further, no progress of fracture at the interface of the columnar structure due to the macroscopic columnar structure of the deposit was observed, and it can be seen that a very dense state was obtained. FIG. 7 is an example 3 of the present invention, and FIG. 8 is a DSC curve (differential scanning calorimetry curve) of the example 6 of the present invention. From this, an exothermic peak corresponding to decomposition or precipitation of an amorphous or supersaturated solid solution is recognized up to around 300.degree. It can be seen that it is thermally stable. FIG. 9 is an X-ray diffraction pattern of Example 1 of the present invention, showing only the peak of fcc (face-centered cubic structure) -Al, and it can be seen that the structure is a fine crystal phase consisting only of the supersaturated solid solution fcc-Al phase. . FIG. 10 shows Example 2 of the present invention.
2 is an X-ray diffraction pattern of the above, and there is a peak of fcc-Al and a broad portion indicating that it contains an amorphous phase, and the amorphous phase is dispersed in the fine crystalline phase composed of the main phase supersaturated solid solution fcc-Al phase. It can be seen that it is a mixed phase structure.

【0015】[0015]

【発明の効果】本発明によれば、新規な組織を有する高
強度アルミニウム合金固化材が得られ、しかも電子ビー
ム蒸着法を利用することにより母合金から直接高密度な
高強度バルク材を得ることができ、従来の熱間押出法等
における熱履歴による影響を受けることがなく、安定し
た製品を提供することができる。
According to the present invention, a high-strength aluminum alloy solidified material having a novel structure can be obtained, and a high-density high-strength bulk material can be directly obtained from a mother alloy by utilizing an electron beam evaporation method. It is possible to provide a stable product without being affected by the heat history in the conventional hot extrusion method or the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法に適した電子ビーム蒸着装置
の具体例の模式図である。
FIG. 1 is a schematic view of a specific example of an electron beam vapor deposition apparatus suitable for the manufacturing method of the present invention.

【図2】本発明例1の蒸着物表面からのSEM写真であ
る。
FIG. 2 is an SEM photograph from the surface of the deposit of Example 1 of the present invention.

【図3】図2の拡大図である。FIG. 3 is an enlarged view of FIG.

【図4】本発明例2の蒸着物表面からのSEM写真であ
る。
FIG. 4 is an SEM photograph from the surface of a deposit of Inventive Example 2.

【図5】本発明例3の蒸着物表面からのSEM写真であ
る。
FIG. 5 is an SEM photograph from the surface of a deposit of Inventive Example 3.

【図6】本発明例3の蒸着物の破断面のSEM写真であ
る。
FIG. 6 is an SEM photograph of a fracture surface of a vapor deposition product of Inventive Example 3.

【図7】本発明例3の示差走査熱量分析曲線である。FIG. 7 is a differential scanning calorimetry curve of Example 3 of the present invention.

【図8】本発明例6の示差走査熱量分析曲線である。FIG. 8 is a differential scanning calorimetric analysis curve of Example 6 of the present invention.

【図9】本発明例1のX線回折図である。FIG. 9 is an X-ray diffraction diagram of Example 1 of the present invention.

【図10】本発明例2のX線回折図である。FIG. 10 is an X-ray diffraction diagram of Example 2 of the present invention.

【符号の説明】[Explanation of symbols]

1 るつぼ 2 蒸着源材料ロッド 3 電子銃 4 電子ビーム 5 粒子 6 堆積基板 7 堆積層 8 シャッタ 1 crucible 2 evaporation source material rod 3 electron gun 4 electron beam 5 particles 6 deposition substrate 7 deposition layer 8 shutter

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 実質的に平均結晶粒径が100nm以下
の過飽和固溶体相からなり、厚さが1mm以上であるこ
とを特徴とする高強度アルミニウム合金固化材。
1. A high-strength aluminum alloy solidified material, which is substantially composed of a supersaturated solid solution phase having an average crystal grain size of 100 nm or less and has a thickness of 1 mm or more.
【請求項2】 平均粒径1〜10μmの粒子によって構
成され、該粒子が実質的に平均結晶粒径が100nm以
下の過飽和固溶体相からなるものであり、厚さが1mm
以上であることを特徴とする高強度アルミニウム合金固
化材。
2. A particle having an average particle size of 1 to 10 μm, which is substantially composed of a supersaturated solid solution phase having an average crystal particle size of 100 nm or less and a thickness of 1 mm.
A high-strength aluminum alloy solidified material characterized by the above.
【請求項3】 過飽和固溶体相が体積率で80%以上で
あり、残部がアモルファス相又は金属間化合物相である
請求項1又は請求項2記載の高強度アルミニウム合金固
化材。
3. The high-strength aluminum alloy solidified material according to claim 1, wherein the supersaturated solid solution phase has a volume ratio of 80% or more, and the balance is an amorphous phase or an intermetallic compound phase.
【請求項4】 金属間化合物相が含まれる場合、該相が
体積率で5%以下である請求項3記載の高強度アルミニ
ウム合金固化材。
4. The high-strength aluminum alloy solidified material according to claim 3, wherein when the intermetallic compound phase is included, the phase is 5% or less in volume ratio.
【請求項5】 バルク材の相対密度が95%以上である
請求項1又は請求項2記載の高強度アルミニウム合金固
化材。
5. The solidified high-strength aluminum alloy material according to claim 1, wherein the bulk material has a relative density of 95% or more.
【請求項6】 平均粒径1〜10μmの粒子内は過飽和
固溶体を主相とし、これにアモルファス相が微細分散し
た組織であり、前記粒子同士の粒子界面では、100n
m以下の結晶相のみが存在してなる上記請求項2記載の
高強度アルミニウム合金固化材。
6. A structure having a supersaturated solid solution as a main phase and an amorphous phase finely dispersed in a particle having an average particle size of 1 to 10 μm.
The high-strength aluminum alloy solidified material according to claim 2, wherein only a crystal phase of m or less is present.
【請求項7】 一般式:Albalab(ただし、Mは
V,Cr,Mn,Fe,Co,Niから選ばれる少なく
とも1種の元素、XはLi,Mg,Si,Ti,Cu,
Zn,Y,Zr,Nb,Mo,Ag,Hf,Ta,W,
Mm(ミッシュメタル)、希土類元素から選ばれる少な
くとも1種の元素であり、a,bは原子パーセントでa
=0.5〜10%、b=0.5〜10%)で示される組
成からなる請求項1又は請求項2記載の高強度アルミニ
ウム合金固化材。
7. A general formula: Al bal M a X b (provided that at least one element M is V, Cr, Mn, Fe, Co, chosen from Ni, X is Li, Mg, Si, Ti, Cu ,
Zn, Y, Zr, Nb, Mo, Ag, Hf, Ta, W,
It is at least one element selected from Mm (Misch metal) and rare earth elements, and a and b are atomic percentages of a.
= 0.5-10%, b = 0.5-10%), The high-strength aluminum alloy solidified material according to claim 1 or claim 2.
【請求項8】 一般式:Albalabc(ただし、M
はV,Cr,Mn,Fe,Co,Niから選ばれる少な
くとも1種の元素、XはLi,Mg,Si,Ti,C
u,Zn,Y,Zr,Nb,Mo,Ag,Hf,Ta,
W,Mm(ミッシュメタル)、希土類元素から選ばれる
少なくとも1種の元素、QはB,C,N,Vから選ばれ
る少なくとも1種の元素であり、a,b,cは原子パー
セントでa=0.5〜10%、b=0.5〜10%、c
=5%以下)で示される組成からなる請求項1又は請求
項2記載の高強度アルミニウム合金固化材。
8. A general formula: Al bal M a X b Q c (where M
Is at least one element selected from V, Cr, Mn, Fe, Co and Ni, and X is Li, Mg, Si, Ti, C
u, Zn, Y, Zr, Nb, Mo, Ag, Hf, Ta,
W, Mm (Misch metal), at least one element selected from rare earth elements, Q is at least one element selected from B, C, N, and V, and a, b, and c are atomic percentages and a = 0.5-10%, b = 0.5-10%, c
= 5% or less), the high strength aluminum alloy solidified material according to claim 1 or 2.
【請求項9】 電子ビーム蒸着法により、実質的に平均
結晶粒径が100nm以下の過飽和固溶体相からなる平
均粒径1〜10μmの合金粒子を蒸着物堆積基板上に堆
積することを特徴とする高強度アルミニウム合金固化材
の製造方法。
9. An alloy particle having an average particle size of 1 to 10 μm, which is substantially composed of a supersaturated solid solution phase having an average crystal particle size of 100 nm or less, is deposited on a deposition material deposition substrate by an electron beam evaporation method. Manufacturing method of high strength aluminum alloy solidified material.
【請求項10】 粒状の合金粒子が緻密に堆積したマク
ロ組織で、柱状組織でない請求項9記載の高強度アルミ
ニウム合金固化材の製造方法。
10. The method for producing a solidified high-strength aluminum alloy material according to claim 9, wherein the granular alloy particles have a dense microstructure and not a columnar structure.
【請求項11】 蒸着物堆積基板温度が150〜350
℃である請求項9記載の高強度アルミニウム合金固化材
の製造方法。
11. The temperature of the vapor deposition substrate is 150-350.
The method for producing a high-strength aluminum alloy solidified material according to claim 9, wherein the temperature is 0 ° C.
【請求項12】 蒸着源からの蒸発元素量と速度を電子
ビーム出力により制御し、厚み方向に組成又は/及び結
晶構造(組織)が連続的又は段階的に変化する傾斜材料
とする請求項9記載の高強度アルミニウム合金固化材の
製造方法。
12. A gradient material in which the composition and / or crystal structure (structure) is continuously or stepwise changed in the thickness direction by controlling the amount and rate of vaporized element from the vapor deposition source by electron beam output. A method for producing the solidified high strength aluminum alloy described above.
【請求項13】 堆積する合金粒子が、一般式:Al
balab(ただし、MはV,Cr,Mn,Fe,C
o,Niから選ばれる少なくとも1種の元素、XはL
i,Mg,Si,Ti,Cu,Zn,Y,Zr,Nb,
Mo,Ag,Hf,Ta,W,Mm(ミッシュメタ
ル)、希土類元素から選ばれる少なくとも1種の元素で
あり、a,bは原子パーセントでa=0.5〜10%、
b=0.5〜10%)で示される組成のものである請求
項9又は請求項10記載の高強度アルミニウム合金固化
材の製造方法。
13. The deposited alloy particles have the general formula: Al
bal M a X b (where M is V, Cr, Mn, Fe, C
at least one element selected from o and Ni, X is L
i, Mg, Si, Ti, Cu, Zn, Y, Zr, Nb,
Mo, Ag, Hf, Ta, W, Mm (Misch metal), at least one element selected from rare earth elements, a and b are atomic percentages of a = 0.5 to 10%,
b = 0.5 to 10%). The method for producing a high-strength aluminum alloy solidified material according to claim 9 or 10, wherein the composition has the composition shown in FIG.
【請求項14】 堆積する合金粒子が、一般式:Al
balabc(ただし、MはV,Cr,Mn,Fe,C
o,Niから選ばれる少なくとも1種の元素、XはL
i,Mg,Si,Ti,Cu,Zn,Y,Zr,Nb,
Mo,Ag,Hf,Ta,W,Mm(ミッシュメタ
ル)、希土類元素から選ばれる少なくとも1種の元素、
QはB,C,N,Oから選ばれる少なくとも1種の元素
であり、a,b,cは原子パーセントで、a=0.5〜
10%、b=0.5〜10%、c=5%以下)で示され
る組成のものである請求項9又は請求項10記載の高強
度アルミニウム合金固化材の製造方法。
14. The deposited alloy particles have the general formula: Al
bal M a X b Q c (where M is V, Cr, Mn, Fe, C
at least one element selected from o and Ni, X is L
i, Mg, Si, Ti, Cu, Zn, Y, Zr, Nb,
At least one element selected from Mo, Ag, Hf, Ta, W, Mm (Misch metal) and rare earth elements,
Q is at least one element selected from B, C, N and O, a, b and c are atomic percentages, and a = 0.5 to
10%, b = 0.5 to 10%, and c = 5% or less). The method for producing a high-strength aluminum alloy solidified material according to claim 9 or claim 10.
JP11403795A 1995-04-17 1995-04-17 High-strength aluminum alloy solidified material and method for producing the same Expired - Fee Related JP3372129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11403795A JP3372129B2 (en) 1995-04-17 1995-04-17 High-strength aluminum alloy solidified material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11403795A JP3372129B2 (en) 1995-04-17 1995-04-17 High-strength aluminum alloy solidified material and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08283921A true JPH08283921A (en) 1996-10-29
JP3372129B2 JP3372129B2 (en) 2003-01-27

Family

ID=14627457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11403795A Expired - Fee Related JP3372129B2 (en) 1995-04-17 1995-04-17 High-strength aluminum alloy solidified material and method for producing the same

Country Status (1)

Country Link
JP (1) JP3372129B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004068156A (en) * 2002-07-31 2004-03-04 General Electric Co <Ge> Method for protecting article and related composition
WO2008123258A1 (en) 2007-03-26 2008-10-16 National Institute For Materials Science Sintered binary aluminum alloy powder, and method for production thereof
KR101295809B1 (en) * 2013-05-06 2013-08-12 자동차부품연구원 Cr-W solid solution phase strengthened aluminum alloys and manufacturing method thereof
CN105803270A (en) * 2016-05-20 2016-07-27 湖南东方钪业股份有限公司 Rare earth zirconium intermediate alloy for aluminum alloy production and preparing method of intermediate alloy
WO2017191961A1 (en) * 2016-05-03 2017-11-09 손희식 Highly corrosion-resistant aluminum alloy for casting
US20210238729A1 (en) * 2020-01-30 2021-08-05 Purdue Research Foundation Aluminum alloy coatings with high strength and high thermal stability and method of making the same
WO2022124448A1 (en) * 2020-12-11 2022-06-16 손희식 Highly corrosion-resistant magnesium-added aluminum alloy for casting
WO2022211062A1 (en) * 2021-03-31 2022-10-06 株式会社豊田自動織機 Aluminum alloy material, production method therefor, and machine component

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004068156A (en) * 2002-07-31 2004-03-04 General Electric Co <Ge> Method for protecting article and related composition
WO2008123258A1 (en) 2007-03-26 2008-10-16 National Institute For Materials Science Sintered binary aluminum alloy powder, and method for production thereof
US7976775B2 (en) 2007-03-26 2011-07-12 National Institute For Materials Science Sintered binary aluminum alloy powder sintered material and method for production thereof
JP5665037B2 (en) * 2007-03-26 2015-02-04 独立行政法人物質・材料研究機構 Binary aluminum alloy powder sintered material and method for producing the same
KR101295809B1 (en) * 2013-05-06 2013-08-12 자동차부품연구원 Cr-W solid solution phase strengthened aluminum alloys and manufacturing method thereof
WO2017191961A1 (en) * 2016-05-03 2017-11-09 손희식 Highly corrosion-resistant aluminum alloy for casting
CN105803270A (en) * 2016-05-20 2016-07-27 湖南东方钪业股份有限公司 Rare earth zirconium intermediate alloy for aluminum alloy production and preparing method of intermediate alloy
US20210238729A1 (en) * 2020-01-30 2021-08-05 Purdue Research Foundation Aluminum alloy coatings with high strength and high thermal stability and method of making the same
WO2022124448A1 (en) * 2020-12-11 2022-06-16 손희식 Highly corrosion-resistant magnesium-added aluminum alloy for casting
WO2022211062A1 (en) * 2021-03-31 2022-10-06 株式会社豊田自動織機 Aluminum alloy material, production method therefor, and machine component

Also Published As

Publication number Publication date
JP3372129B2 (en) 2003-01-27

Similar Documents

Publication Publication Date Title
KR101928329B1 (en) Method for manufacturing nanocrystalline high entropy alloy(hea) and high entropy alloy(hea) manufactured therefrom
US20080014109A1 (en) Enhanced sputter target manufacturing method
Zhang et al. High entropy alloys: Manufacturing routes
TWI288784B (en) Carbon containing sputter target alloy compositions
WO2015022963A1 (en) Fe-Co-BASED ALLOY SPUTTERING TARGET MATERIAL, SOFT MAGNETIC THIN FILM LAYER, AND VERTICAL MAGNETIC RECORDING MEDIUM PRODUCED USING SAID SOFT MAGNETIC THIN FILM LAYER
JP2010018869A (en) Alloy for soft magnetic film layer in perpendicular magnetic recording medium, sputtering target material and method for producing the same
JP3372129B2 (en) High-strength aluminum alloy solidified material and method for producing the same
JP5370917B2 (en) Method for producing Fe-Co-Ni alloy sputtering target material
JP6262332B2 (en) Sputtering target made of Al-Te-Cu-Zr alloy and method for producing the same
JP4515596B2 (en) Bulk amorphous alloy, method for producing bulk amorphous alloy, and high strength member
US9293166B2 (en) Sputtering target material for producing intermediate layer film of perpendicular magnetic recording medium and thin film produced by using the same
TW201103999A (en) Method for manufacturing nickel alloy target
TW593704B (en) Annealing-induced extensive solid-state amorphization in a metallic film
Suzuki et al. Alloying effect on stability of multi-variant structure of Ni3V at elevated temperatures
JP3731041B2 (en) High corrosion resistance magnesium alloy and method for producing high corrosion resistance magnesium material
US6017403A (en) High strength and high rigidity aluminum-based alloy
US20100140084A1 (en) Method for production of aluminum containing targets
KR102477415B1 (en) Multi-nano-phase separation-based high-entropy refractory metal-oxide composite and manufacturing method thereof
JP3525439B2 (en) Target member and method of manufacturing the same
JP2023529159A (en) Aluminum-scandium composite, aluminum-scandium composite sputtering target and method of making
JP3744729B2 (en) High strength solidified aluminum alloy
JP3744713B2 (en) High strength solidified aluminum alloy
US11085109B2 (en) Method of manufacturing a crystalline aluminum-iron-silicon alloy
JPH1096077A (en) Functionally gradient thin coating and its production
CN108070800B (en) Ti-based amorphous alloy composite material and preparation method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees