JP2683903B2 - High strength and high conductivity copper alloy with excellent solder heat resistance - Google Patents
High strength and high conductivity copper alloy with excellent solder heat resistanceInfo
- Publication number
- JP2683903B2 JP2683903B2 JP62316110A JP31611087A JP2683903B2 JP 2683903 B2 JP2683903 B2 JP 2683903B2 JP 62316110 A JP62316110 A JP 62316110A JP 31611087 A JP31611087 A JP 31611087A JP 2683903 B2 JP2683903 B2 JP 2683903B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- alloy
- copper alloy
- heat resistance
- solder heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Conductive Materials (AREA)
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明はトランジスタや集積回路などの半導体機器の
リード材、コネクター、端子、リレー、スイッチなどの
導電性ばね材に適する銅合金に関し、特徴に半田耐熱剥
離性に優れた銅合金に関するものである。
[従来の技術]
従来、半導体機器のリード材としては、熱膨張係数が
低く、素子及びセラミックとの接着及び封着性の良好な
コバール(Fe−29Ni−16Co)、42合金(Fe−42Ni)など
の高ニッケル合金が好んで使われてきた。しかし、近
年、半導体回路の集積度の向上に伴い消費電力の高いIC
が多くなってきたことと、封止材料として樹脂が多く使
用され、かつ素子とリードフレームの接着も改良が加え
られたことにより、使用されるリード材も放熱性のよい
銅基合金が使われるようになってきた。
一般に半導体機器のリード材としては以下のような特
性が要求されている。
(1)リードが電気信号伝達部であるとともに、パッケ
ージング工程中及び回路使用中に発生する熱を外部に放
出する機能を併せ持つことを要求される為、優れた熱及
び電気伝導性を示すもの。
(2)リードとモールドとの密着性が半導体素子保護の
観点から重要であるため、リード材とモールド材の熱膨
張係数が近いこと。
(3)パッケージング時に種々の加熱工程が加わる為、
耐熱性が良好であること。
(4)リードはリード材を抜き打ち加工し、又曲げ加工
して作製されるものがほとんどである為、これらの加工
性が良好なこと。
(5)リードは表面に貴金属のメッキを行う為、これら
貴金属とのメッキ密着性が良好であること。
(6)パッケージング後に封止材の外に露出している、
いわゆるアウター・リード部に半田付けするものが多い
ので良好な半田付け性を示すこと。
(7)機器の信頼性及び寿命の観点から耐食性が良好な
こと。
(8)価格が低廉であること。
又、従来電気機器用ばね、計測器用ばね、スイッチ、
コネクター等に用いられるばね用材料としては安価な黄
銅、優れたばね特性及び耐食性を有する洋白あるいは優
れたばね特性を有するりん青銅が使用されていた。
[発明が解決しようとする問題点]
上述の半導体機器に対する各種の要求特性に対し、従
来より使用されている無酸素銅、錫入り銅、りん青銅、
コバルト、42合金はいずれも一長一短があり、これらの
特性をすべて満足するものではない。一方、Cu−Cr−Zr
合金は上記の要求特性をかなり満足するため、Cu−Cr−
Zr合金に若干の添加元素を加えた改良合金が開発されて
きた。しかし、近年半導体に対する信頼度の要求がより
激しくなるとともに、小型化に対応した面付実装タイプ
が多くなってきたため、従来問題とされていなかった半
田耐熱剥離性が非常に重要な特性項目となってきた。
すなわち、リードフレームとプリント基板とが半田付
けをされるが、使用中外的温度及び通電による発熱によ
り最高120℃程度までリードフレーム、及び半田付け部
が温度上昇する。このような温度に長時間さらされると
半田とリードフレームとの剥離が生じ、半導体が動作し
ない事が起こり得るため、寿命という観点から高信頼度
が要求される場合、この半田耐熱剥離性は最も重要な特
性の1つとなるわけである。とりわけ、FPP(FLAT PLAS
TIC PACKAGE)やPLCC(PLASTIC LEADED CHIP CARRIER)
に代表される面付実装タイプはプリント基板に装入する
のではなく、面接触になるため、より半田耐熱剥離性が
重要になってくるわけである。
また、ばね材料としての黄銅は強度、ばね特性が劣っ
ており、又、強度、ばね特性の優れた洋白、りん青銅も
洋白は18重量%のNi、りん青銅は8重量%のSnを含むた
め、原料の面及び製造上、熱間加工性が悪い加工上の制
約も加わり高価な合金であった。さらには電気機器用等
に用いられる場合、電気伝導度が低いという欠点を有し
ていた。従って導電性が良好であり、強度、ばね特性に
優れた安価な合金の現出が待たれていた。
この導電性ばね材の分野でもCu−Cr−Zr合金がかなり
の要求を満足することから、Cu−Cr−Zr合金に若干の添
加元素を加えた改良合金が開発されてきた。しかし、半
導体機器のリード材と同様に、導電性ばね材でも接触抵
抗低減、耐食性の向上等の理由でSn又は半田めっきが施
され、又半田付けが実施される事が多いため、先に述べ
たような半田耐熱剥離性が、近年の信頼性向上の要求か
ら極めて重要となってきている。
このような半田耐熱剥離性の厳しい要求に対し現状ま
でに開発されたCu−Cr−Zr合金では、満足することがで
きず、半田耐熱剥離性を改善した高力高導電銅合金の現
出が待たれていた。
[問題点を解決するための手段]
本発明は、上記従来の銅基合金の欠点を改良し、半導
体機器のリード材および半導体ばね材として好適な諸特
性を有する銅合金を提供しようとするものである。
すなわち、本発明はCr0.1〜1.5重量%、Zr0.05〜1.0
重量%、Zn0.01〜3.0重量%を含み、あるいはさらにA
l、Be、Co、Fe、Hf、Mo、Mg、Ni、P、Pb、Si、Sn、T
e、Tiからなる群より選択された1種又は2種以上を総
量で0.01〜1.0重量%を含み、残部Cu及び不可避不純物
からなることを特徴とする半田耐熱剥離性に優れた高力
高導電銅合金である。
次に本発明合金を構成する合金成分の限定理由を説明
する。
Crの含有量を0.1重量%以上1.5重量%以下とするの
は、時効処理の際、微細なCr粒による析出硬化が期待で
き、さらに、それに伴う耐熱性の向上が得られるためで
ある。Crの含有量が0.1重量%未満では、前述の効果が
期待できる、逆に1.5重量%を超えるとめっき密着性、
はんだ付性、加工性の劣化及び著しい導電率の低下が起
こるためである。
Zrの含有量を0.05重量%以上1.0重量%以下とするの
は、析出硬化を促進させ、これに伴なう耐熱性を得るた
めである。Zrの含有量が0.05重量%未満では前述の硬化
が期待できず、1.0重量%を超えると、Crと同様にめっ
き密着性、はんだ付性、加工性の劣化及び著しい導電率
の低下が起こるためである。
Znの含有量を0.01重量%以上3.0重量%以下とするの
は、Zn添加により導電率を大きく低下させずに、半田耐
熱剥離性が非常に改善できるためで、Znの含有量が0.05
重量%未満では前述の効果が小さく、逆にZnの含有量が
3.0重量%を超えると著しい導電率の低下が起こるため
である。
さらに、Al、Be、Co、Fe、Hf、Mo、Mg、Ni、P、Pb、
Si、Sn、Te、Tiからなる群より選択された1種又は2種
以上を添加するのは、これらの添加によって導電率を大
きく低下させずに、強度、耐熱性を向上させる効果が期
待できるためで、含有量が総量で0.01重量%未満では、
前述の効果が期待できず、1.0重量%を超えると著しい
導電率の低下が起こるためである。
[実施例]
次に本発明の実施例を比較例とともに具体的に説明す
る。
第1表に示す本発明合金及び比較合金に係る各種成分
組成のインゴットを、大気、不活性または還元性雰囲気
中で鋳造法により得た。
次にこれらインゴットの面削を行った後、900℃で1
時間加熱し、熱間圧延で5mmの板とし、熱間圧延終了
後、直ちに加工材を1℃/sec以上の速度で冷却した。
この厚さ5mmの板を冷間圧延で0.25mmの板とし、400℃
で所定時間時効処理を行った。
リード材及びばね材としての評価項目として強度、伸
びを引張試験により曲げ性を90゜繰り返し曲げ試験によ
り一往復を1回として破断までの曲げ回数を測定し、耐
熱性を加熱時間5分における軟化温度により、電気伝導
性(放熱性)を導電率(%IACS)によって示した。半田
付け性は、垂直式浸漬法で230+5゜の半田浴(錫60
%、鉛40%)で5秒間浸漬し、半田のぬれの状態を目視
観察することにより評価した。メッキ密着性は試料に厚
さ3μのAgメッキを施し、450℃にて5分間加熱し、表
面に発生するフクレの有無を目視観察することにより評
価した。これらの結果を比較合金とともに第1表に示し
た。
本発明のポイントである半田耐熱剥離性については、
素材に5μmの半田めっき(60%Sn、40%Pb)を施し、
150℃の恒温槽に2000時間まで保持し、100時間毎に取り
出して90゜曲げ往復1回を施して、半田の剥離の有無を
調べた。これらの結果を第1表に示した。
第1表の記載から本発明合金は半田耐熱剥離性が著し
く改善されて、半田の安定性が向上し、高力高導電銅合
金として優れた特性を有することが明らかである。[発明の効果]
本発明は、半導体機器のリード用銅合金及び導電性ば
ね材として優れた電気及び熱伝導性、耐熱性、加工性、
メッキ密着性、半田付性、耐食性、ばね特性を有するば
かりでなく、半田耐熱剥離性をも著しく改善するもので
ある。Description: TECHNICAL FIELD The present invention relates to a copper alloy suitable as a lead material for semiconductor devices such as transistors and integrated circuits, and a conductive spring material such as connectors, terminals, relays and switches. The present invention relates to a copper alloy having excellent soldering heat peeling resistance. [Prior Art] Conventionally, as a lead material for semiconductor devices, Kovar (Fe-29Ni-16Co), 42 alloy (Fe-42Ni), which has a low coefficient of thermal expansion, and has good adhesion and sealing properties with elements and ceramics. High nickel alloys such as have been used favorably. However, in recent years, with the increase in the integration of semiconductor circuits, ICs with high power consumption
However, the amount of resin used has increased and the adhesion between the element and the lead frame has also been improved. As a result, the lead material used is a copper-based alloy with good heat dissipation. It's starting to happen. Generally, the following characteristics are required as a lead material for semiconductor devices. (1) Since the lead is required to have the function of discharging the heat generated during the packaging process and during the use of the circuit as well as being an electric signal transmission part, it exhibits excellent heat and electric conductivity. . (2) Since the adhesion between the lead and the mold is important from the viewpoint of protecting the semiconductor element, the thermal expansion coefficient of the lead material and that of the molding material are close to each other. (3) Since various heating processes are added during packaging,
Good heat resistance. (4) Most of the leads are manufactured by punching and bending the lead material, and therefore the workability of these is good. (5) Since the surface of the lead is plated with a noble metal, the adhesion of the lead to these noble metals must be good. (6) Exposed outside the encapsulant after packaging,
Since many are soldered to the so-called outer leads, good solderability is required. (7) Good corrosion resistance from the viewpoint of equipment reliability and life. (8) The price is low. Also, conventional electric equipment springs, measuring instrument springs, switches,
Inexpensive brass, nickel silver having excellent spring characteristics and corrosion resistance, or phosphor bronze having excellent spring characteristics has been used as a spring material used for connectors and the like. [Problems to be Solved by the Invention] Oxygen-free copper, tin-containing copper, phosphor bronze, which has been used conventionally, in response to various required characteristics of the semiconductor device described above,
Both cobalt and 42 alloy have merits and demerits, and not all of these characteristics are satisfied. On the other hand, Cu-Cr-Zr
Since the alloy considerably satisfies the above-mentioned required properties, Cu-Cr-
Improved alloys have been developed in which some additional elements are added to the Zr alloy. However, in recent years, the demand for reliability of semiconductors has become more intense, and the number of surface mounting types compatible with miniaturization has increased, so solder heat release, which has not been a problem in the past, is a very important characteristic item. Came. That is, the lead frame and the printed circuit board are soldered, but the temperature of the lead frame and the soldered portion rises up to about 120 ° C. due to external temperature during use and heat generated by energization. When exposed to such a temperature for a long time, the solder and the lead frame may be peeled off and the semiconductor may not operate. Therefore, when high reliability is required from the viewpoint of life, this solder heat resistant peeling property is the most It is one of the important characteristics. Above all, FPP (FLAT PLAS
TIC PACKAGE) and PLCC (PLASTIC LEADED CHIP CARRIER)
The surface-mounting type typified by No. 1 does not mount on the printed circuit board but makes surface contact, so that the heat resistant peeling property of solder becomes more important. In addition, brass as a spring material is inferior in strength and spring characteristics. In addition, nickel white of phosphorous bronze and nickel bronze with excellent strength and spring characteristics is 18% by weight of nickel and phosphor bronze is 8% by weight of Sn. Because of the inclusion, it was an expensive alloy in view of the raw material and manufacturing, and the hot workability was poor and processing restrictions were added. Further, when it is used for electric equipment, it has a drawback of low electric conductivity. Therefore, the emergence of an inexpensive alloy having excellent conductivity and excellent strength and spring characteristics has been awaited. Even in the field of this conductive spring material, since Cu-Cr-Zr alloy satisfies a considerable demand, an improved alloy in which a small amount of additional element is added to Cu-Cr-Zr alloy has been developed. However, similar to the lead material of semiconductor devices, conductive spring materials are often Sn or solder plated or soldered for reasons such as contact resistance reduction and corrosion resistance improvement. Such solder heat resistance peeling property has become extremely important due to the recent demand for improved reliability. The Cu-Cr-Zr alloys that have been developed up to the present with respect to such strict requirements for solder heat-resistant peelability cannot be satisfied, and the emergence of high-strength and high-conductivity copper alloys with improved solder heat-resistant peelability has emerged. I was waiting. [Means for Solving the Problems] The present invention aims to improve the above-mentioned drawbacks of conventional copper-based alloys and to provide a copper alloy having various properties suitable as lead materials and semiconductor spring materials for semiconductor devices. Is. That is, the present invention, Cr0.1 ~ 1.5 wt%, Zr0.05 ~ 1.0
%, Zn 0.01-3.0% by weight, or even A
l, Be, Co, Fe, Hf, Mo, Mg, Ni, P, Pb, Si, Sn, T
High strength and high conductivity with excellent solder heat resistance peeling, characterized by containing 0.01 to 1.0% by weight in total of one or more selected from the group consisting of e and Ti, and the balance Cu and unavoidable impurities. It is a copper alloy. Next, the reasons for limiting the alloy components constituting the alloy of the present invention will be described. The content of Cr is set to 0.1% by weight or more and 1.5% by weight or less because precipitation hardening due to fine Cr grains can be expected during the aging treatment, and further heat resistance can be improved accordingly. If the Cr content is less than 0.1% by weight, the above-mentioned effects can be expected. Conversely, if it exceeds 1.5% by weight, the plating adhesion,
This is because the solderability and workability are deteriorated and the conductivity is remarkably reduced. The content of Zr is set to 0.05% by weight or more and 1.0% by weight or less in order to promote precipitation hardening and obtain heat resistance accompanying it. If the Zr content is less than 0.05% by weight, the above-mentioned curing cannot be expected, and if it exceeds 1.0% by weight, the plating adhesion, solderability, workability deteriorates and the conductivity decreases remarkably like Cr. Is. The Zn content is set to 0.01 wt% or more and 3.0 wt% or less because the solder heat-resistant peeling property can be significantly improved without significantly decreasing the conductivity by adding Zn, and the Zn content is 0.05% or less.
If it is less than wt%, the above-mentioned effect is small, and conversely the Zn content is
This is because if the amount exceeds 3.0% by weight, the conductivity will remarkably decrease. In addition, Al, Be, Co, Fe, Hf, Mo, Mg, Ni, P, Pb,
The addition of one or more selected from the group consisting of Si, Sn, Te, and Ti can be expected to have the effect of improving strength and heat resistance without greatly reducing the conductivity due to the addition of these. Therefore, if the total content is less than 0.01% by weight,
This is because the above-mentioned effect cannot be expected, and if the content exceeds 1.0% by weight, the conductivity will remarkably decrease. [Examples] Next, examples of the present invention will be specifically described together with comparative examples. Ingots of various composition according to the alloy of the present invention and the comparative alloy shown in Table 1 were obtained by a casting method in the atmosphere, an inert or reducing atmosphere. Next, after surface-polishing these ingots,
It was heated for a period of time and hot-rolled into a 5 mm plate, and immediately after the hot-rolling was finished, the processed material was cooled at a rate of 1 ° C / sec or more. This 5mm thick plate is cold-rolled to a 0.25mm plate and 400 ℃
Then, aging treatment was performed for a predetermined time. As the evaluation items for the lead material and the spring material, strength and elongation are tested for bendability by a tensile test and bendability is repeated 90 °, and one reciprocation is performed once to measure the number of bends until breakage, and heat resistance is softened at a heating time of 5 minutes. Depending on the temperature, the electric conductivity (heat dissipation) was shown by the electric conductivity (% IACS). Solderability is 230 + 5 ° solder bath (tin 60
%, Lead 40%) for 5 seconds, and the state of solder wetness was visually observed and evaluated. The plating adhesion was evaluated by subjecting the sample to Ag plating having a thickness of 3 μm, heating the sample at 450 ° C. for 5 minutes, and visually observing the presence or absence of blisters on the surface. These results are shown in Table 1 together with the comparative alloy. Regarding the solder heat-resistant peeling property which is the point of the present invention,
Apply 5μm solder plating (60% Sn, 40% Pb) to the material,
It was kept in a constant temperature bath at 150 ° C for up to 2000 hours, taken out every 100 hours, bent 90 ° once and reciprocated once, and examined for the presence or absence of peeling of solder. The results are shown in Table 1. It is clear from the description in Table 1 that the alloy of the present invention has remarkably improved heat-resistant peeling property of solder, has improved stability of solder, and has excellent properties as a high-strength and high-conductivity copper alloy. [Advantages of the Invention] The present invention provides excellent electrical and thermal conductivity, heat resistance, and processability as a copper alloy and a conductive spring material for leads of semiconductor devices.
Not only does it have plating adhesion, solderability, corrosion resistance, and spring properties, but it also markedly improves solder heat release.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−13302(JP,A) 特開 昭62−13303(JP,A) 特開 昭61−272339(JP,A) 特開 昭59−193233(JP,A) ────────────────────────────────────────────────── ─── Continuation of front page (56) References Japanese Patent Laid-Open No. 62-13302 (JP, A) JP 62-13303 (JP, A) JP-A-61-272339 (JP, A) JP-A-59-193233 (JP, A)
Claims (1)
3.0重量%を含み残部Cu及び不可避不純物からなること
を特徴とする半田耐熱剥離性に優れた高力高導電銅合
金。 2.Cr0.1〜1.5重量%、Zr0.05〜1.0重量%、Zn0.01〜
3.0重量%及びAl、Be、Co、Fe、Hf、Mo、Mg、Ni、P、P
b、Si、Sn、Te、Tiからなる群より選択された1種又は
2種以上を総量で0.01〜1.0重量%を含み残部Cu及び不
可避不純物からなることを特徴とする半田耐熱剥離性に
優れた高力高導電銅合金。(57) [Claims] Cr0.1-1.5% by weight, Zr0.05-1.0% by weight, Zn0.01-
A high-strength and high-conductivity copper alloy with excellent solder heat-resistant peeling characteristics, which is characterized by containing 3.0% by weight and the balance Cu and unavoidable impurities. 2. Cr0.1-1.5% by weight, Zr0.05-1.0% by weight, Zn0.01-
3.0 wt% and Al, Be, Co, Fe, Hf, Mo, Mg, Ni, P, P
Excellent in solder heat-resistant peeling, characterized in that the total amount of one or more selected from the group consisting of b, Si, Sn, Te and Ti is 0.01 to 1.0 wt% and the balance is Cu and unavoidable impurities. High strength and high conductivity copper alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62316110A JP2683903B2 (en) | 1987-12-16 | 1987-12-16 | High strength and high conductivity copper alloy with excellent solder heat resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62316110A JP2683903B2 (en) | 1987-12-16 | 1987-12-16 | High strength and high conductivity copper alloy with excellent solder heat resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01159336A JPH01159336A (en) | 1989-06-22 |
JP2683903B2 true JP2683903B2 (en) | 1997-12-03 |
Family
ID=18073358
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62316110A Expired - Fee Related JP2683903B2 (en) | 1987-12-16 | 1987-12-16 | High strength and high conductivity copper alloy with excellent solder heat resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2683903B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007100136A (en) * | 2005-09-30 | 2007-04-19 | Nikko Kinzoku Kk | Copper alloy for lead frame excellent in uniform plating property |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59193233A (en) * | 1983-04-15 | 1984-11-01 | Toshiba Corp | Copper alloy |
JPS61272339A (en) * | 1985-05-27 | 1986-12-02 | Kobe Steel Ltd | Lead material for electronic parts excelled in repeated bendability and its production |
JPS62133033A (en) * | 1985-12-04 | 1987-06-16 | Mitsubishi Metal Corp | Cu alloy lead material for semiconductor device |
JPS62133032A (en) * | 1985-12-05 | 1987-06-16 | Nippon Mining Co Ltd | Copper alloy for lead of semiconductor device |
-
1987
- 1987-12-16 JP JP62316110A patent/JP2683903B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH01159336A (en) | 1989-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2670670B2 (en) | High strength and high conductivity copper alloy | |
JPH0372691B2 (en) | ||
JPS60245754A (en) | High strength copper alloy having high electric conductivity | |
JPS63130739A (en) | High strength and high conductivity copper alloy for semiconductor device lead material or conductive spring material | |
JPH04224645A (en) | Copper alloy for electronic parts | |
JPH08957B2 (en) | Method for producing copper alloy having excellent heat-resistant peeling property with tin or tin alloy | |
JPS63143230A (en) | Precipitation strengthening high tensile copper alloy having high electrical conductivity | |
JPS63149345A (en) | High strength copper alloy having high electrical conductivity and improved heat resistance | |
JPH0424417B2 (en) | ||
JPS61264144A (en) | High-strength and high conductivity copper alloy excelling in thermal peeling resistance of solder | |
JP2683903B2 (en) | High strength and high conductivity copper alloy with excellent solder heat resistance | |
JPH01159337A (en) | High tensile and high electric conductive copper alloy | |
JPH02122039A (en) | High strength and high conductivity copper alloy having excellent adhesion of oxidized film | |
JPS63125631A (en) | High-tensile high-conductivity copper alloy | |
JPS6283441A (en) | High strength alloy copper having high electric conductivity and superior resistance to stripping of solder by heat | |
JPH06172896A (en) | High-strength and high-conductivity copper alloy | |
JPH06184676A (en) | High strength and high electric conductivity copper alloy | |
JPH06235035A (en) | High tensile strength and high conductivity copper alloy | |
JPH06184666A (en) | High strength and high electric conductivity copper alloy | |
JPS6283443A (en) | High strength copper alloy having high electric conductivity for lead material for semiconductor appratus of electrically conductive spring material | |
JPS63125633A (en) | High-tensile high-conductivity copper alloy | |
JPS6283442A (en) | High strength copper alloy having high electric conductivity and superior resistance to stripping of solder by heat | |
JPH03188234A (en) | High strength and high conductivity copper alloy having excellent thermal peeling resistance of solder | |
JPS63192834A (en) | Copper alloy excellent in thermal peeling resistance of tin or tin-alloy coating layer | |
JPH03191035A (en) | High strength and high conductivity copper alloy for electronic equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |