JPS61272339A - Lead material for electronic parts excelled in repeated bendability and its production - Google Patents

Lead material for electronic parts excelled in repeated bendability and its production

Info

Publication number
JPS61272339A
JPS61272339A JP11380985A JP11380985A JPS61272339A JP S61272339 A JPS61272339 A JP S61272339A JP 11380985 A JP11380985 A JP 11380985A JP 11380985 A JP11380985 A JP 11380985A JP S61272339 A JPS61272339 A JP S61272339A
Authority
JP
Japan
Prior art keywords
lead material
temperature
excelled
electronic parts
bendability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11380985A
Other languages
Japanese (ja)
Inventor
Motohisa Miyato
宮藤 元久
Yasuhiro Nakajima
安啓 中島
Satoru Katayama
花多山 悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP11380985A priority Critical patent/JPS61272339A/en
Publication of JPS61272339A publication Critical patent/JPS61272339A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49579Lead-frames or other flat leads characterised by the materials of the lead frames or layers thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To manufacture lead material for electronic parts excelled in various characteristics required of lead material by subjecting a Cu alloy containing additive elements such as Ni, Sn, Zn, etc., to hot rolling, cold rolling, including annealing treatment and temper rolling under specific conditions. CONSTITUTION:An ingot of Cu alloy containing, by weight, 1.0-3.5% Ni, 0.2-0.9% Si, 2.0-4.5% Sn, 0.1-5.0% Zn, 0.02-1.0% Mn and 0.0005-0.02% of 1 or >=2 elements among Mg, Cr, Ti and Zr is prepared. After subjected to facing of its surface, the ingot is hot-rolled to form a plate of about 10mm thickness, which is water-cooled from >=600 deg.C at >=5 deg.C/sec cooling rate to undergo surface descaling, cold-rolled to 0.43mm thickness and annealed at 400-600 deg.C for 5sec-4hr. In this way, the lead material for electronic parts excelled in repeated bendability, spring characteristic, heat resistance, thermal peeling resistance of tinning film and solder, and stress corrosion resistance can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は蛍光管表示管、液晶表示板、ハイブリッドIC
等の電子部品に使用されるクリップ端子等のリード材と
その製造法に関し、さらに詳しくは、繰り返し曲げ性、
バネ性、耐熱性、めっきされた錫およびはんだの耐熱剥
離性および耐応力腐蝕割れ性に優れた電子部品用リード
材およびその製造法に関する。
[Detailed Description of the Invention] [Industrial Application Field 1] The present invention is applicable to fluorescent tube display tubes, liquid crystal display panels, hybrid IC
Regarding lead materials such as clip terminals used in electronic parts such as
This invention relates to a lead material for electronic components that has excellent spring properties, heat resistance, heat peeling properties of plated tin and solder, and stress corrosion cracking resistance, and a method for producing the same.

[従来技術1 電子部品に使用されるリード材としては、従来から繰り
返し曲げ性に優れている燐青銅が多く使用されてきてい
るが、燐青銅は一般に熱間圧延が困難なことから、冷間
圧延および焼鈍を何回も繰り返して製造されるため、工
程が煩雑であることと相俟ってコストが非常に高くなる
という問題がある、 しかし、リード材として最も重要な特性である繰り返し
曲げ性に優れ、がっ、バネ性、耐熱性、めっきされた錫
およびはんだの耐剥離性、および、耐応力腐蝕割れ性等
のリード材に必須の特性を総合的に満足する銅系の材料
は開発が充分なされておらず、従って、上記の特性を兼
ね備える銅系材料が望まれている。
[Prior art 1] Phosphor bronze, which has excellent repeated bendability, has traditionally been widely used as a lead material used in electronic components, but phosphor bronze is generally difficult to hot-roll, so cold rolling is Since it is manufactured by repeating rolling and annealing many times, there is a problem that the process is complicated and the cost is extremely high.However, the most important property for lead material is repeated bendability. We have developed a copper-based material that comprehensively satisfies the properties essential for lead materials, such as excellent strength, elasticity, heat resistance, peeling resistance of plated tin and solder, and resistance to stress corrosion and cracking. Therefore, a copper-based material that has both the above characteristics is desired.

[発明が解決しようとする問題点1 本発明は上記に説明した従来技術に鑑みなされたもので
あり、本発明者の鋭意研究の結果、繰り返し曲げ性に優
れ、がっ、バネ性、耐熱性、めっきされた錫およびはん
だの耐剥離性および耐応力腐蝕割れ性に優れ、さらに、
必要な熱間加工を可能とし、燐青銅に比し製造工程の煩
雑蚤がなく安価な繰り返し曲げ性に優れた電子部品用リ
ード材およびその製造法を開発したのである。
[Problem to be Solved by the Invention 1] The present invention has been made in view of the prior art described above, and as a result of the inventor's intensive research, it has been found that the present invention has excellent repeated bendability, stiffness, elasticity, and heat resistance. , excellent peeling resistance and stress corrosion cracking resistance of plated tin and solder;
We have developed a lead material for electronic components that allows the necessary hot working, has less complicated manufacturing processes than phosphor bronze, is inexpensive, and has excellent repeated bendability, and a method for manufacturing the lead material.

[問題点を解決するための手段1 本発明に係る繰り返し曲げ性に優れた電子部品用リード
材およびその製造法は、 (1)Ni1.O〜3.5wt%、Si0,2〜0,9
wt%、Sn 2.O〜4.5wt%、Zn 0.1−
5.0wt%、Mn 0.02〜1.0wt%を 含有し、さらに、 Mg5Cr、Ti%Zrのうちから選んだ1種または2
種以上0.0005〜0.02wt%を含有し、残部実
質的にCuからなることを特徴とする繰り返し曲げ性に
優れた電子部品用リード材を第1の発明とし、 (2)  Ni 1.O〜3.5wt%、S i 0.
2〜0.9wt%、Sn 2.O〜4゜5wt%、Zn
 0.1〜5.(but%、Mn 0.02〜1.0w
t% を含有し、さらに、 M8、Cr、Ti%Zrのうちから選んだ1種または2
種以上0.0005〜0,02wt%を含有し、残部実
質的にCuからなる銅合金の鋳塊を熱間圧延後、600
°C以上の温度から5°C/秒以上の速度で冷却し、冷
間加工後、400〜600℃の温度で5分〜4時間の焼
鈍を行なった後、調質仕上圧延を行なってから、300
〜600℃の温度で5秒〜4時間の焼鈍を行なうことを
特徴のする繰り返し曲げ性に優れた電子部品用リード材
の製造法を第2の発明とする2つの発明よりなるもので
ある。
[Means for Solving the Problems 1] The lead material for electronic components having excellent repeated bending properties and the manufacturing method thereof according to the present invention are as follows: (1) Ni1. O~3.5wt%, Si0.2~0.9
wt%, Sn2. O~4.5wt%, Zn 0.1-
5.0 wt%, Mn 0.02 to 1.0 wt%, and further contains one or two selected from Mg5Cr, Ti%Zr.
A first invention provides a lead material for electronic components having excellent repeated bending properties, characterized in that the lead material contains 0.0005 to 0.02 wt% of Ni or more, and the remainder substantially consists of Cu, (2) Ni 1. O~3.5wt%, S i 0.
2 to 0.9 wt%, Sn 2. O~4゜5wt%, Zn
0.1-5. (but%, Mn 0.02~1.0w
t%, and further contains one or two selected from M8, Cr, Ti%Zr.
After hot rolling a copper alloy ingot containing 0.0005 to 0.02 wt% of Cu and the remainder substantially Cu,
After cooling at a rate of 5°C/sec or more from a temperature of 10°C or higher, and after cold working, annealing at a temperature of 400 to 600°C for 5 minutes to 4 hours, followed by temper finish rolling. , 300
This invention consists of two inventions, the second invention being a method for manufacturing a lead material for electronic components with excellent repeated bending properties, characterized by performing annealing at a temperature of 600° C. for 5 seconds to 4 hours.

本発明に係る繰り返し曲げ性に優れた電子部品用リード
材およびその製造法について以下詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A lead material for electronic components having excellent repeated bending properties and a method for manufacturing the same according to the present invention will be described in detail below.

先ず、本発明に係る繰り返し曲げ性に優れた電子部品用
リード材の含有成分および成分割合について説明する。
First, the components and component ratios of the lead material for electronic components having excellent repeated bending properties according to the present invention will be explained.

Niは強度および耐熱性、さらに、繰り返し曲げ性に寄
与する元素であり、含有量が1.Out%未満ではSi
含有量が0.2〜0.ht%の範囲に含有されていても
強度、耐熱性および繰り返し曲げ性は向上せず、また、
3,5u+t%を越えて含有されると熱間加工性を低下
させ、がっ、不経済である。よりて、Ni含有量は1.
0〜3.5wt%とする。
Ni is an element that contributes to strength, heat resistance, and repeated bendability, and the content is 1. If less than Out%, Si
The content is 0.2-0. ht% range, strength, heat resistance, and repeated bendability do not improve, and
If the content exceeds 3.5 u+t%, hot workability will be reduced and it will be uneconomical. Therefore, the Ni content is 1.
The content is 0 to 3.5 wt%.

SiはNiと共に強度、耐熱性、さらに、繰り返し曲げ
性に寄与する元素であり、含有量が0.2wt%未満で
はNi含有量が1.0〜3.5wt%の範囲において含
有されていても強度、耐熱性および繰1)返し曲げ性は
向上せず、また、0,9wt%を越えて含有されると熱
間加工性を低下させる。よって、Si含有量は0.2〜
0,9u+t%とする。
Si is an element that contributes to strength, heat resistance, and repeated bendability together with Ni, and if the content is less than 0.2 wt%, even if the Ni content is in the range of 1.0 to 3.5 wt%. Strength, heat resistance, and 1) cyclic bendability are not improved, and if the content exceeds 0.9 wt%, hot workability is reduced. Therefore, the Si content is 0.2~
It is set to 0.9u+t%.

NiとSiの含有量はat%でNi:5i=2:1の比
率に近い割合で夫々含有されていることが望ましく、こ
の割合から大ぎく外れた場合、Ni、 Si化合物の析
出量が減少し、上記説明したような強度、耐熱性および
繰り返し曲げ性の向上効果は少なくなり、また、めっき
された錫およびはんだの耐剥離性が低下する。
It is desirable that the content of Ni and Si be in at% ratio close to the ratio of Ni:5i=2:1, and if the ratio deviates significantly from this ratio, the amount of precipitation of Ni and Si compounds will decrease. However, the effects of improving strength, heat resistance, and repeated bending properties as explained above are reduced, and the peeling resistance of plated tin and solder is reduced.

Snは繰り返し曲げ性の向上およびバネ性の向上に寄与
する元素であり、含有量が2.0wt%未満ではこれら
の効果が少なく、また、4,5wt%を越えて含有され
ると耐熱性、熱間加工性およびめっきされた錫およびは
んだの耐剥離性を低下させる。
Sn is an element that contributes to improving repeated bendability and springiness, and if the content is less than 2.0 wt%, these effects will be small, and if the content exceeds 4.5 wt%, the heat resistance, Reduces hot workability and peeling resistance of plated tin and solder.

よって、Sn含有量は2.0〜4,5u+L%とする。Therefore, the Sn content is set to 2.0 to 4.5u+L%.

Znはめっきされた錫およびはんだの耐剥離性を著しく
改善する元素であり、含有量が0.1wt%未満ではこ
の効果が少なく、また、5.0wt%を越えて含有され
るとはんだ付は性が悪下する。よって、Zn含有量1i
 0.1−5.0IIlt%トスル。
Zn is an element that significantly improves the peeling resistance of plated tin and solder. If the content is less than 0.1 wt%, this effect will be small, and if the content exceeds 5.0 wt%, soldering will be impaired. Sexuality deteriorates. Therefore, Zn content 1i
0.1-5.0 IIlt% tosle.

Mnは熱間加工性を向上させる元素であり、含有量が0
.02u+t%未満ではこの効果が少なく、また、1.
0wt%を越えて含有されると造塊時の湯流れ性が悪化
して造塊歩留りが低下する。よって、Mn含有量は0.
02〜l、0wt%とする。
Mn is an element that improves hot workability, and the content is 0.
.. If it is less than 0.02u+t%, this effect will be small, and 1.
If the content exceeds 0 wt%, the flowability during agglomeration will deteriorate and the agglomeration yield will decrease. Therefore, the Mn content is 0.
02-1, 0 wt%.

M8、Cr、Ti、Zrは何れの元素も熱間加工性を向
上させる元素であゆ、含有量が0.0005wt%未満
ではこの効果が少なく、また、0,02wt%を越える
含有量では造塊時の湯流れが悪化し、造塊歩留りが低下
する。よって、M8、Cr、Ti、Zr含有量は0.0
005〜0.02−t%にする。なお、M8、Cr、Z
rの2種以上を含有する場合も上記に説明したと同じ理
由から合計含有量は0.0005〜0.02wt%とす
る。
M8, Cr, Ti, and Zr are all elements that improve hot workability, and if the content is less than 0.0005 wt%, this effect will be small, and if the content exceeds 0.02 wt%, it will be difficult to form an agglomerate. The flow of the molten metal deteriorates and the yield of agglomerates decreases. Therefore, the M8, Cr, Ti, and Zr contents are 0.0
0.005 to 0.02-t%. In addition, M8, Cr, Z
Even when two or more types of r are contained, the total content is set to 0.0005 to 0.02 wt% for the same reason as explained above.

次に、本発明に係る繰り返し曲げ性に優れた電子部品用
リード材の製造法について説明する。
Next, a method for manufacturing a lead material for electronic components having excellent repeated bendability according to the present invention will be described.

上記に説明した含有成分、成分割合の銅合金鋳塊を熱間
圧延後、600℃以上の温度から5℃/秒以上の速度で
冷却するのは、溶体化処理を目的とするものであり、6
00℃未満の温度から冷却した場合、冷却速度が5゛C
/秒以上であっても冷却開始前に既に析出が起っており
、充分な溶体化処理効果が得られず、その後の冷間加工
性を悪化させ、また、600 ”C以上の温度から冷却
した場合でも、冷却速度が5°C/秒未満では冷却中に
析出が起り、充分な溶体化処理効果が得られず、その後
の冷間加工性を悪化させるからである。
After hot rolling a copper alloy ingot with the above-mentioned ingredients and proportions, the purpose is to cool it from a temperature of 600°C or more at a rate of 5°C/second or more for the purpose of solution treatment. 6
When cooling from a temperature below 00℃, the cooling rate is 5℃
/ seconds or more, precipitation has already occurred before cooling begins, making it impossible to obtain a sufficient solution treatment effect and worsening subsequent cold workability. Even in this case, if the cooling rate is less than 5°C/sec, precipitation will occur during cooling, a sufficient solution treatment effect will not be obtained, and subsequent cold workability will deteriorate.

次に、冷間加工後400〜600℃の温度で5分〜4時
間の焼鈍を行なうのは、Ni、Si化合物を析出させる
ためであり、400℃未満の温度では5分〜4時間の焼
鈍時間であってもNi、Si化合物の析出は不充分であ
り、また、600℃を越える温度では析出は起らず N
i、Siの大半は固溶したままであり、何れの場合にも
固溶しているNiおよびSiはめっきされた錫およびは
んだの耐熱剥離性を着しく低下させるので焼鈍温度は4
00〜600℃とする必要があり、焼鈍時間は5分未満
では析出が不充分であり、4時間を越えると不経済であ
るので5分〜4時間とするのが良い。
Next, after cold working, annealing is performed at a temperature of 400 to 600°C for 5 minutes to 4 hours to precipitate Ni and Si compounds, and at a temperature below 400°C, annealing is performed for 5 minutes to 4 hours. The precipitation of Ni and Si compounds is insufficient even if the temperature exceeds 600°C, and precipitation does not occur at temperatures exceeding 600°C.
Most of i, Si remains in solid solution, and in any case, the solid solution of Ni and Si seriously reduces the heat peeling properties of plated tin and solder, so the annealing temperature is 4.
It is necessary to set the annealing temperature to 00 to 600°C, and if the annealing time is less than 5 minutes, the precipitation is insufficient, and if it exceeds 4 hours, it is uneconomical, so it is preferable to set the annealing time to 5 minutes to 4 hours.

さらに、調質仕上圧延を行なってから、300〜600
℃の温度で5秒〜4時間の焼鈍を行なうのは、圧延によ
り低下した伸びを回復させ繰り返し曲げ性を向上させる
と共にバネ性を回復させるためであり、300°C未満
の温度では5秒〜4時間の焼鈍を行なってもこのような
効果は不充分であり、600°Cを越える温度では析出
してぃたNi、Si化合物が再固溶してしまい、要求さ
れる緒特性が劣化するので焼鈍温度は300〜600℃
としなければならず、また、焼鈍時間は5秒未満では上
記の効果は不充分であり、4時間を越えると不経済であ
るので、焼鈍時間は5秒〜4時間とするのが良い。
Furthermore, after performing temper finish rolling, 300 to 600
The reason why annealing is performed at a temperature of 5 seconds to 4 hours at a temperature of 300 °C is to recover the elongation decreased by rolling, improve repeat bendability, and restore springiness. Even after 4 hours of annealing, this effect is insufficient, and at temperatures exceeding 600°C, the precipitated Ni and Si compounds re-dissolve, resulting in the deterioration of the required mechanical properties. So the annealing temperature is 300~600℃
Furthermore, if the annealing time is less than 5 seconds, the above effect is insufficient, and if it exceeds 4 hours, it is uneconomical, so the annealing time is preferably 5 seconds to 4 hours.

[実 施 例1 本発明に係る繰り返し曲げ性に優れた電子部品用リード
材およびそのの製造法について実施例を説明する。
[Example 1] An example will be described regarding a lead material for electronic components having excellent repeated bendability and a method for manufacturing the same according to the present invention.

実施例 第1表No、1〜No、5に示す含有成分および成分割
合の銅合金をクリプトル溶解炉を使用し、木炭被覆下に
おいて大気中で溶解し、鋳鉄製ブックモールドを用いて
45m+n tX80 wX200mm lの鋳塊を鋳
造した後、この鋳塊の表裏両面を2.5n+mずつ面前
した後、850℃の温度で10關tまで熱間圧延を行な
い、600℃以上の温度から30℃/の速度で水冷後、
スケールを除去し、0.429mmtまで冷間圧延をし
た後、500 ’Cの温度で120分の焼鈍を行ない、
その後、冷間圧延して0.3n+ntの板材とし、さら
に、450゛Cの温度で120分の焼鈍を行なった。N
o、6、No、7の比較例は板厚0,3mmtの市販品
の燐青銅2種および3種を使用した。
Example Copper alloys having the components and component ratios shown in Table 1 No. 1 to No. 5 were melted in the atmosphere under charcoal coating using a Kryptor melting furnace, and then melted in a cast iron book mold to a size of 45 m + n t x 80 w x 200 mm. After casting an ingot of 1 lb, the front and back sides of the ingot were rolled 2.5n+m each, and then hot rolled at a temperature of 850°C to 10mm, and then rolled at a speed of 30°C/30°C from a temperature of 600°C or higher. After cooling with water,
After removing scale and cold rolling to 0.429 mmt, annealing was performed at a temperature of 500'C for 120 minutes,
Thereafter, it was cold rolled into a plate material of 0.3n+nt, and further annealed at a temperature of 450°C for 120 minutes. N
Comparative examples No. 0, 6, No. 7, and No. 7 used commercially available phosphor bronze types 2 and 3 with a plate thickness of 0.3 mmt.

このようにして製作された試料についての試験結果を第
2表に示す。
Table 2 shows the test results for the samples produced in this way.

試験方法は以下に説明する通りである。The test method is as explained below.

(1)引張試験は圧延方向に直角に切出したJIS13
号試験片全試験片また、硬度はマイクロビッカース硬度
計を用いた。
(1) Tensile test was conducted using JIS13 cut perpendicular to the rolling direction.
No. test piece All test pieces Hardness was measured using a micro Vickers hardness tester.

(2)繰り返し曲げ性は0.5m+n幅のリードをプレ
スで打抜いたものを試験片とし、250gの錘りを一端
に吊して一方向往復90度曲げを行ない、破断までの回
数を往復1回と数え、試験片5の平均値として求めた。
(2) Repeated bendability is determined by punching out a 0.5m+n width lead using a press as a test piece, bending it back and forth in one direction by 90 degrees with a 250g weight hanging from one end, and measuring the number of times it takes to break. It was counted as one time and was calculated as the average value of test piece 5.

曲げ軸は圧延方向に平行である。The bending axis is parallel to the rolling direction.

(3)耐熱性は硝石炉および塩浴炉を用い各温度で5分
間加熱した後の硬さを測定し、加熱前の硬さの80%に
なる温度として求めた。
(3) Heat resistance was determined by measuring the hardness after heating at each temperature for 5 minutes using a saltpetre furnace and a salt bath furnace, and determining the temperature at which the hardness reached 80% of the hardness before heating.

(4)耐応力腐蝕割れ性はD 、 H、T homps
on[Materials Res、&5tds、 1
 (1961)=108〜111]の応力腐蝕割れ試験
方法に準じて行ない、アンモニア雰囲気に8日間保持後
割れの有無を判定した。
(4) Stress corrosion cracking resistance is D, H, Thomps
on [Materials Res, &5tds, 1
(1961) = 108-111], and the presence or absence of cracking was determined after being held in an ammonia atmosphere for 8 days.

(5)はんだの耐熱剥離性は弱活性7ラツクスを用い、
230℃の温度の5n60−Pb40のはんだ浴で、は
んだ付けした試料を150℃の温度で500時間保持し
た後90’曲げを行ない、はんだの密着性を調べた。
(5) For heat-resistant peeling of solder, use weakly activated 7 lux.
The soldered sample was held at a temperature of 150°C for 500 hours in a 5n60-Pb40 solder bath at a temperature of 230°C, and then bent 90' to examine the adhesion of the solder.

(6)バネ限界値は圧延方向に直角に切出した試験片を
用いモーメント試験機により測定した。
(6) The spring limit value was measured using a moment tester using a test piece cut at right angles to the rolling direction.

第2表から明らかなように、本発明の1〜4は電子部品
用のリード材として総合的に優れた性能を有しているこ
とがわかる。
As is clear from Table 2, it can be seen that Examples 1 to 4 of the present invention have overall excellent performance as lead materials for electronic components.

比較例5〜7と比較して以下説明する通り改善されてい
る。
Compared with Comparative Examples 5 to 7, improvements were made as described below.

本発明1〜4は、Snを含有しているため比較例5より
繰り返し曲げ性が大幅に改善されており、また、比較例
6.7に比して、耐熱性および導電率が優れており、比
較例7に比してめっきされた錫およびはんだの耐剥離性
が優れており、燐青銅が一般に熱間加工性が困難である
のに対し、本発明の1〜4は熱間加工性が優れている。
Inventive Examples 1 to 4 have significantly improved repeat bendability than Comparative Example 5 because they contain Sn, and also have superior heat resistance and electrical conductivity compared to Comparative Example 6.7. , compared to Comparative Example 7, the peeling resistance of plated tin and solder is superior, and while phosphor bronze is generally difficult to hot work, 1 to 4 of the present invention have good hot workability. is excellent.

[発明の効果1 以上説明したように、本発明に係る繰り返し曲げ性に優
れた電子部品用リード材およびその製造法は上記の構成
を有しているものであるから、繰り返し曲げ性に優れ、
かつ、バネ性、耐熱性、めっとされた錫およびはんだの
耐剥離性および耐応力腐蝕割れ性等総合的に優れており
、さらに、熱間加工性にも優れているという効果を有す
るものである。
[Effect of the Invention 1] As explained above, the lead material for electronic components having excellent repeated bending properties and the method for manufacturing the same according to the present invention has the above-mentioned configuration, and therefore has excellent repeated bending properties.
Moreover, it has overall excellent spring properties, heat resistance, peeling resistance of plated tin and solder, stress corrosion cracking resistance, etc., and also has excellent hot workability. It is.

Claims (2)

【特許請求の範囲】[Claims] (1)Ni1.0〜3.5wt%、Si0.2〜0.9
wt%、Sn2.0〜4.5wt%、Zn0.1〜5.
0wt%、Mn0.02〜1.0wt% を含有し、さらに、 M_8、Cr、Ti、Zrのうちから選んだ1種または
2種以上0.0005〜0.02wt%を含有し、残部
実質的にCuからなることを特徴とする繰り返し曲げ性
に優れた電子部品用リード材。
(1) Ni1.0-3.5wt%, Si0.2-0.9
wt%, Sn2.0-4.5wt%, Zn0.1-5.
0wt%, Mn0.02-1.0wt%, and further contains 0.0005-0.02wt% of one or more selected from M_8, Cr, Ti, and Zr, and the remainder is substantially A lead material for electronic components that is characterized by being made of Cu and has excellent repeated bending properties.
(2)Ni1.0〜3.5wt%、5i0.2〜0.9
wt%、Sn2.0〜4.5wt%、Zn0.1〜5.
0wt%、Mn0.02〜1.0wt% を含有し、さらに、 M_8、Cr、、Ti、、Zrのうちから選んだ1種ま
たは2種以上0.0005〜0.02wt%を含有し、
残部実質的にCuからなる銅合金の鋳塊を熱間圧延後、
600℃以上の温度から5℃/秒以上の速度で冷却し、
冷間加工後、400〜600℃の温度で5分〜4時間の
焼鈍を行なった後、調質仕上圧延を行なってから、30
0〜600℃の温度で5秒〜4時間の焼鈍を行なうこと
を特徴のする繰り返し曲げ性に優れた電子部品用リード
材の製造法。
(2) Ni1.0-3.5wt%, 5i0.2-0.9
wt%, Sn2.0-4.5wt%, Zn0.1-5.
0 wt%, Mn 0.02 to 1.0 wt%, and further contains 0.0005 to 0.02 wt% of one or more selected from M_8, Cr, Ti, Zr,
After hot rolling a copper alloy ingot with the remainder substantially consisting of Cu,
Cooling from a temperature of 600°C or more at a rate of 5°C/second or more,
After cold working, annealing is performed at a temperature of 400 to 600°C for 5 minutes to 4 hours, followed by temper finishing rolling, and then
A method for producing a lead material for electronic components having excellent repeated bendability, characterized by annealing at a temperature of 0 to 600°C for 5 seconds to 4 hours.
JP11380985A 1985-05-27 1985-05-27 Lead material for electronic parts excelled in repeated bendability and its production Pending JPS61272339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11380985A JPS61272339A (en) 1985-05-27 1985-05-27 Lead material for electronic parts excelled in repeated bendability and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11380985A JPS61272339A (en) 1985-05-27 1985-05-27 Lead material for electronic parts excelled in repeated bendability and its production

Publications (1)

Publication Number Publication Date
JPS61272339A true JPS61272339A (en) 1986-12-02

Family

ID=14621600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11380985A Pending JPS61272339A (en) 1985-05-27 1985-05-27 Lead material for electronic parts excelled in repeated bendability and its production

Country Status (1)

Country Link
JP (1) JPS61272339A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62238343A (en) * 1986-04-10 1987-10-19 Furukawa Electric Co Ltd:The Copper alloy for electronic equipment
JPS63262448A (en) * 1987-04-21 1988-10-28 Nippon Mining Co Ltd Production of copper alloy having excellent peeling resistance of tin or tin alloy plating
JPS63266049A (en) * 1987-04-24 1988-11-02 Furukawa Electric Co Ltd:The Production of high tensile copper based alloy
JPS63266050A (en) * 1987-04-24 1988-11-02 Furukawa Electric Co Ltd:The Production of high tensile copper based alloy
JPS6421027A (en) * 1987-07-16 1989-01-24 Furukawa Electric Co Ltd Bending-resisting cable conductor
JPS6421025A (en) * 1987-07-16 1989-01-24 Furukawa Electric Co Ltd Bending-resisting cable conductor
JPH01159336A (en) * 1987-12-16 1989-06-22 Nippon Mining Co Ltd High tensile and high electric conductive copper alloy having excellent thermal peeling resistance of solder
JPH01198441A (en) * 1988-02-01 1989-08-10 Furukawa Electric Co Ltd:The Lead material for plastic-pin-grit-array
KR20030082705A (en) * 2002-04-18 2003-10-23 희성금속 주식회사 Phosphorus-copper solder manufacturing method
CN108453222A (en) * 2018-03-12 2018-08-28 东北大学 A kind of minimizing preparation method of Copper-Nickel-Aluminium Alloy strip

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62238343A (en) * 1986-04-10 1987-10-19 Furukawa Electric Co Ltd:The Copper alloy for electronic equipment
JPS63262448A (en) * 1987-04-21 1988-10-28 Nippon Mining Co Ltd Production of copper alloy having excellent peeling resistance of tin or tin alloy plating
JPS63266049A (en) * 1987-04-24 1988-11-02 Furukawa Electric Co Ltd:The Production of high tensile copper based alloy
JPS63266050A (en) * 1987-04-24 1988-11-02 Furukawa Electric Co Ltd:The Production of high tensile copper based alloy
JPS6421027A (en) * 1987-07-16 1989-01-24 Furukawa Electric Co Ltd Bending-resisting cable conductor
JPS6421025A (en) * 1987-07-16 1989-01-24 Furukawa Electric Co Ltd Bending-resisting cable conductor
JPH01159336A (en) * 1987-12-16 1989-06-22 Nippon Mining Co Ltd High tensile and high electric conductive copper alloy having excellent thermal peeling resistance of solder
JPH01198441A (en) * 1988-02-01 1989-08-10 Furukawa Electric Co Ltd:The Lead material for plastic-pin-grit-array
KR20030082705A (en) * 2002-04-18 2003-10-23 희성금속 주식회사 Phosphorus-copper solder manufacturing method
CN108453222A (en) * 2018-03-12 2018-08-28 东北大学 A kind of minimizing preparation method of Copper-Nickel-Aluminium Alloy strip

Similar Documents

Publication Publication Date Title
JP3550233B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
EP0116969B1 (en) Precipitation hardenable copper alloy, process for treating such alloy and use of such alloy
EP0189637B1 (en) Copper alloy and production of the same
JP2593107B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
JP3717321B2 (en) Copper alloy for semiconductor lead frames
JP2007126739A (en) Copper alloy for electronic material
US20030196736A1 (en) Copper alloy with excellent stress relaxation resistance property and production method therefor
JPS61272339A (en) Lead material for electronic parts excelled in repeated bendability and its production
JPS6231059B2 (en)
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
US4430298A (en) Copper alloys for electric and electronic devices and method for producing same
JPS61127842A (en) Copper alloy for terminal and connector and its manufacture
JPS62133050A (en) Manufacture of high strength and high conductivity copper-base alloy
JP3274175B2 (en) Copper base alloy for heat exchanger and method for producing the same
JPS6142772B2 (en)
JPH09316569A (en) Copper alloy for lead frame and its production
JP2597773B2 (en) Method for producing high-strength copper alloy with low anisotropy
JP2945208B2 (en) Method for producing copper alloy for electrical and electronic equipment
JPH03104845A (en) Manufacture of high strength phosphor bronze having good bendability
JP3274176B2 (en) Copper base alloy for heat exchanger and method for producing the same
JPH0832935B2 (en) High strength and high toughness Cu alloy with little characteristic anisotropy
JPH09143597A (en) Copper alloy for lead frame and its production
JP2539478B2 (en) Method for producing tellurium-containing copper alloy
JPS6335700B2 (en)
JPS61213359A (en) Manufacture of copper alloy having excellent property of proof stress relaxation