JPS62133050A - Manufacture of high strength and high conductivity copper-base alloy - Google Patents

Manufacture of high strength and high conductivity copper-base alloy

Info

Publication number
JPS62133050A
JPS62133050A JP27078585A JP27078585A JPS62133050A JP S62133050 A JPS62133050 A JP S62133050A JP 27078585 A JP27078585 A JP 27078585A JP 27078585 A JP27078585 A JP 27078585A JP S62133050 A JPS62133050 A JP S62133050A
Authority
JP
Japan
Prior art keywords
base alloy
strength
heat treatment
copper
seconds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27078585A
Other languages
Japanese (ja)
Inventor
Takashi Shimada
隆司 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP27078585A priority Critical patent/JPS62133050A/en
Publication of JPS62133050A publication Critical patent/JPS62133050A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a high strength and high conductivity copper-base alloy excellent in mechanical strength and electric conductivity, by subjecting a Cu-base alloy containing specific amounts of Ti and Sn or further small amounts of other specific elements to solution heat treatment, ageing treatment, cold rolling, and heat treatment. CONSTITUTION:The Cu-base alloy in which 0.1-5.0wt% Ti and 0.1-5.0wt% Sn are added to Cu or further 0.005-2wt%, in total, of 1 or >=2 kinds among specific amounts of P, Al, Zn, Ni, Si, Pb, Be, Fe, Mn, Mg, Cr, Co, and other elements are added is refined. An ingot of this Cu-base alloy is heated to 880 deg.C and hot-rolled into a plate, and the plate is subjected to facing and then heated at 880 deg.C for 30min and water-quenched to undergo solution heat treatment. Successively, the above plate is subjected to ageing treatment at 200-700 deg.C for 10sec-10hr and to cold rolling at >=10% draft and, finally, the cold-rolled sheet is subjected to heat treatment at 200-700 deg.C for 10sec-10hr.

Description

【発明の詳細な説明】 ([1的) 本発明は、優れた機械的強度と良好な導電性を有する高
力高導電性銅ノル合金の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION ([Object 1]) The present invention relates to a method for producing a high-strength, high-conductivity copper nor-alloy having excellent mechanical strength and good electrical conductivity.

(従来技術及び問題点) 高級精密ばね用制として現在使用されている高力銅合金
には、ベリリウム銅合金とチタン銅合金がある。ベリリ
ウム鋼合金は90〜140kg/mm2という高い引張
強さと20〜25%lAC3の良好な導電率を有するけ
れども、ベリリウムを約2%含有するため非常に高価と
なり、またベリリウ11は劇毒性物質である二とや、こ
のベリリウム銅合金は250℃以上の温度で脆性が現れ
て合金の劣化をもたらすなどの欠点を有している。また
チタン銅合金は、ばね性、血・j熱性、耐摩耗性ではい
ずれもベリワウ11銅合金に勝り、機械的強度もほぼ同
程度でかつ安価であるという利点を有しているけれども
、導電率が非常に劣るという大きな欠点を持っている。
(Prior Art and Problems) High-strength copper alloys currently used for high-grade precision springs include beryllium copper alloys and titanium copper alloys. Although beryllium steel alloy has a high tensile strength of 90-140 kg/mm2 and a good electrical conductivity of 20-25% lAC3, it is very expensive because it contains about 2% beryllium, and beryllium-11 is a highly toxic substance. Second, this beryllium-copper alloy has the disadvantage that it becomes brittle at temperatures above 250° C., resulting in deterioration of the alloy. Furthermore, titanium-copper alloy has the advantage of being superior to Veriwau 11 copper alloy in terms of spring properties, heat resistance, and abrasion resistance, and has approximately the same mechanical strength and is less expensive. It has the major drawback of being extremely inferior.

このようなことからチタン銅合金の機械的強度を維持し
つつ良好な導電性を得るために、このチタン銅合金にさ
らに第三元素として Snを添加することが提案された
。しかしながら、錫含有チタン銅合金を通常の溶体化処
理後、時効処理、あるいは冷間加工と時効処理を施して
も、引張強さはたかだか80〜05kg/mm”に留ま
っており、ベリリウム銅合金の代替合金とするためには
さらに機械的強度を向上させろ必要かあった。
For this reason, it has been proposed to further add Sn as a third element to the titanium-copper alloy in order to maintain its mechanical strength and obtain good electrical conductivity. However, even if tin-containing titanium-copper alloys are subjected to ordinary solution treatment, aging treatment, or cold working and aging treatment, the tensile strength remains at only 80 to 05 kg/mm. In order to use it as an alternative alloy, it was necessary to further improve its mechanical strength.

(発明の構成) 本発明はかかる点に鑑みなされたもので、錫含有チタン
銅合金の良好な導電率を維持しつつさらに機械的強度を
向上させ、ベリリウム銅合金の有する経済性、毒性問題
を回避した高級精密ばね用材として好適な諸条件を有す
るに6力高導電性銅基合金の製造方法を提供するもので
ある。
(Structure of the Invention) The present invention has been made in view of the above points, and it improves the mechanical strength while maintaining the good electrical conductivity of the tin-containing titanium-copper alloy, and solves the economic efficiency and toxicity problems of the beryllium-copper alloy. The object of the present invention is to provide a method for manufacturing a six-force highly conductive copper-based alloy having various conditions suitable as a material for high-grade precision springs.

本発明は、0,1〜5.0すt1%のT”i、 0.1
〜5,0誓t6%のSnを含有し、残部がCIJ及び不
可避不純物からなる銅基合金、及び0.1〜5.0誓t
0%のTi、0.1〜5゜Owt 、%のSnを含有し
、さらに0.005−1.kt、%のP 、 0.00
5〜0.1wt.%のAl、 0.005−1.owt
、%のZn。
The present invention has a T"i of 0.1 to 5.0 st1%, 0.1
Copper-based alloy containing ~5.0% Sn, with the remainder consisting of CIJ and unavoidable impurities, and 0.1~5.0% Sn
Contains 0% Ti, 0.1-5°Owt, % Sn, and further contains 0.005-1. kt, %P, 0.00
5-0.1wt. % Al, 0.005-1. owt
,% Zn.

0.005〜0.1wt.%のNi、 0.005−1
.0wt.%のSi。
0.005-0.1wt. %Ni, 0.005-1
.. 0wt. % Si.

0.005−0.5wし1%のPb、 0.005−1
.owt、%のBe。
0.005-0.5w and 1% Pb, 0.005-1
.. owt, %Be.

0.005−1.、0wt.%のFe、 0.005−
1.0tyt、%のMn。
0.005-1. , 0wt. % Fe, 0.005-
1.0tyt, %Mn.

0.005〜0.1wt.%のMg、、 0.005〜
0.1wt.%のCr。
0.005-0.1wt. % Mg,, 0.005~
0.1wt. %Cr.

0.005〜0.1wt.%のCo、 0.005−1
.’0wt.%のZr。
0.005-0.1wt. %Co, 0.005-1
.. '0wt. % Zr.

0.005−0.1tit、%のΔs、 0.005〜
0.1wt.%のA g ro、005〜0.1wt.
%のCd、 0.005〜0.1wt.%のIn。
0.005-0.1tit, %Δs, 0.005~
0.1wt. % of A gro, 005-0.1wt.
% Cd, 0.005-0.1 wt. % In.

0 、005−0 、1wt 、%のS b、 0.0
05−1.Owl:、%の1゛e。
0,005-0,1wt,%Sb,0.0
05-1. Owl:,% of 1゛e.

0.005〜0.1wt.%のGe、 0.005〜0
.1wt.%のHfのうちから1種または2種以上を総
量で0.005〜2.0誓t1%含有し、列部がCu及
び不可避不純物からなる銅基合金を溶体化処理後、材料
温度200〜700℃で10秒〜10時間の時効処理を
行ない、続いて10%以上の冷間圧延を行なった後、さ
らに材料温度200〜700℃で10秒〜10時間の熱
処理を施し、機械的強度及び導電性を向上させた高力高
導電性鋼基合金の製造方法に関するものである。
0.005-0.1wt. %Ge, 0.005~0
.. 1wt. After solution treatment of a copper-based alloy containing one or more of Hf in a total amount of 0.005 to 2.0 t1% and whose row portions are made of Cu and unavoidable impurities, the material temperature is 200 to 200%. After performing aging treatment at 700°C for 10 seconds to 10 hours, followed by cold rolling of 10% or more, heat treatment is performed at a material temperature of 200 to 700°C for 10 seconds to 10 hours to improve mechanical strength and The present invention relates to a method for manufacturing a high-strength, high-conductivity steel-based alloy with improved conductivity.

(効果) これにより、本発明の方法で製造すると、引張強さと導
電率を同時に著しく向上させることができた。
(Effect) As a result, when manufactured by the method of the present invention, tensile strength and electrical conductivity could be significantly improved at the same time.

(発明の詳細な説明) 次に、本発明の合金成分と製造方法の限定理由を説明す
る。
(Detailed Description of the Invention) Next, the reasons for limiting the alloy components and manufacturing method of the present invention will be explained.

Ti含有量を0.1〜5.(ht、%とする理由は、0
.1誓t0%未満では期待する強度が得られず、逆に5
.0wt.%を超えると導電率の向上が望めないためで
ある。
Ti content is 0.1 to 5. (The reason for using ht, % is 0
.. If 1 oath is less than 0%, the expected strength cannot be obtained, and on the other hand, if 5
.. 0wt. This is because if it exceeds %, no improvement in electrical conductivity can be expected.

Sn含有量を0.1〜5.(ht、%とする理由は、0
.1iit、3未満では期待する導電率が得られず、逆
に5.0すし0%を超えると、熱処理を施しても固溶し
きれない過剰のSnがTiと金属間化合物を生成、析出
し、粗太枦出粒子として合金の強度を著しく低下させる
ためである。
The Sn content is 0.1 to 5. (The reason for using ht, % is 0
.. If it is less than 1iit, 3, the expected electrical conductivity cannot be obtained, and on the other hand, if it exceeds 5.0% or 0%, the excess Sn that cannot be dissolved even after heat treatment will form intermetallic compounds with Ti and precipitate. This is because, as coarse extruded particles, they significantly reduce the strength of the alloy.

副成力として、前記所定量のP + A I + Z 
n + N J +Si、 Pb、 Be、 Fe、 
Cr、 Mg、 Zr、 Go、 Zr。
As a secondary force, the predetermined amount of P + A I + Z
n + N J + Si, Pb, Be, Fe,
Cr, Mg, Zr, Go, Zr.

Δs、 Af;、 Cd、  Te、  Sb、 ’I
’e、 Ge、■(fからなる群より選択された1種ま
たは2種以上の総量を0.005−2.0i、%とする
理fil 4!、0.005wt、%未i+]tFは副
成分の添加によって期待される高い強度が得られず、ま
た2、0wt.%を超えると導電率が著しく低下し、さ
らにはんだ付性及び熱間加工性が劣化するためである。
Δs, Af;, Cd, Te, Sb, 'I
'e, Ge, ■ (the total amount of one or more selected from the group consisting of f is 0.005-2.0i, % fil 4!, 0.005wt, % not i+]tF is This is because the expected high strength cannot be obtained by adding the subcomponent, and if it exceeds 2.0 wt.%, the electrical conductivity decreases significantly, and furthermore, the solderability and hot workability deteriorate.

溶体化処理した材料を、材料温度200〜700°Cて
10秒〜10時間時効処理を行ない、引続き加工度10
%以上の冷間圧延を加える。時効温度を2 (l 0〜
700°Cとする理由は、200°C未満あるいは70
0°Cを超える温度では期待される強度及び導電率が得
られなく、また時効温度を10秒〜10時間とする理由
は、10秒未満では時効処理の効果が認められず、 1
0時間を超えると過時効現象による強度の低下が著しい
ためである。さらに冷間加工度を10%以上としたのは
、10%未満では次工程の熱処理による強度及び導電率
の向」二が期待するほど望めないためである。
The solution-treated material is aged at a material temperature of 200 to 700°C for 10 seconds to 10 hours, and then the workability is 10.
Add more than % cold rolling. The aging temperature is set to 2 (l 0~
The reason for setting it to 700°C is that it is less than 200°C or 70°C.
The expected strength and conductivity cannot be obtained at temperatures exceeding 0°C, and the reason why the aging temperature is set to 10 seconds to 10 hours is that the effect of aging treatment is not observed at temperatures below 10 seconds.1
This is because if the time exceeds 0 hours, the strength decreases significantly due to the over-aging phenomenon. Furthermore, the reason why the degree of cold working is set to 10% or more is that if the degree of cold working is less than 10%, the strength and conductivity obtained by the heat treatment in the next step cannot be improved as expected.

上記のように時効処理及び冷間圧延した材料を、再び材
料温度200〜700°Cで10秒〜10時間熱処理す
ると、この熱処理によって材料の引張強さは著しく上昇
する。この場合200℃未満あるいは700℃を超える
温度では期待される強度及び心電率が得られない。また
熱処理時間10秒未満では熱処理の効果が1認められず
、10時間を超えると過時効現象によって強度の低下が
著しいため避けなければならない。通常:30秒〜1時
間程度で十分な効果が得られる。
When the material that has been aged and cold-rolled as described above is heat-treated again at a material temperature of 200 to 700°C for 10 seconds to 10 hours, the tensile strength of the material is significantly increased by this heat treatment. In this case, at temperatures below 200°C or above 700°C, the expected strength and electrocardiographic rate cannot be obtained. Furthermore, if the heat treatment time is less than 10 seconds, no effect of the heat treatment will be observed, and if it exceeds 10 hours, the strength will be significantly reduced due to over-aging phenomenon, so it must be avoided. Normally: Sufficient effect can be obtained in about 30 seconds to 1 hour.

(実施例) 次に実施例について説明する。(Example) Next, an example will be described.

第1表に示される本発明に係る各種成分組成のインボッ
1〜を、電気銅あるいは無酸素銅を原料として高周波溶
R’+:炉で溶f’g′、鋳造した。このインコツ1〜
を880℃で1時間加熱し、引続き熱間圧延して厚さ5
n++nの板とした。面削後880”Cで30分間加熱
し、水焼入れした溶体化処理材料に450 ’Cで1.
5時間の時効処理を施した。さらに冷間圧延でJ(fさ
0.5mm’の板とし、450℃で3分間の熱処理を加
えた。
Ingots 1 to 1 with various component compositions according to the present invention shown in Table 1 were melted and cast in a high-frequency melting R'+: furnace using electrolytic copper or oxygen-free copper as raw materials. This inkotsu 1~
was heated at 880℃ for 1 hour and then hot rolled to a thickness of 5.
It was made into a board of n++n. After facing, heat at 880'C for 30 minutes and water quench the solution-treated material at 450'C for 1.
Aging treatment was performed for 5 hours. Further, it was cold rolled into a J (f 0.5 mm' plate) and heat treated at 450° C. for 3 minutes.

このようにして調整された試料の評価として、強度は引
張試験、ffi気伝導伝導度、電率(%IAC5)によ
って評価した。また、はんだ付性を垂直式浸漬法テ23
0+5℃のはんだ浴(Sn60%−Pb40%)に5秒
間浸漬してはんだのぬれの状jSをLI視観祭すること
により3段階で評価した。これらすへての結果と熱間加
工性を比較合金とともに第1表に示した。
As for the evaluation of the sample prepared in this way, the strength was evaluated by a tensile test, ffi gas conductivity, and electrical conductivity (%IAC5). In addition, the solderability was determined using the vertical dipping method.
They were immersed in a solder bath (Sn60%-Pb40%) at 0+5°C for 5 seconds, and the state of solder wetting was evaluated on a three-grade scale by LI visual inspection. These results and hot workability are shown in Table 1 along with comparative alloys.

なお第1表において比較例16.17は溶体化処理後、
冷間圧延を行い、その後に時効処理した材料である。
In Table 1, Comparative Examples 16 and 17 were treated after solution treatment.
This is a material that has been cold rolled and then aged.

第1表に示すごとく本発明に係る合金の製造方法によっ
て5ベリリウム銅合金にほぼ匹敵する強度と導電率を兼
ね備え、さらに良好な加工性とはんだ付性を示す高級精
密ばね用材として好適な合金となる。
As shown in Table 1, the manufacturing method of the alloy according to the present invention has resulted in an alloy suitable as a material for high-grade precision springs, which has strength and conductivity comparable to that of 5-beryllium copper alloy, and also exhibits good workability and solderability. Become.

以下余白 第1表 ○:良 Δ:」)T延×:悪Margin below Table 1 ○: Good Δ: ”)T extension ×: Bad

Claims (2)

【特許請求の範囲】[Claims] (1)0.1〜5.0wt.%のTi、0.1〜5.0
wt.%のSnを含有し、残部がCu及び不可避不純物
からなる銅基合金を溶体化処理後、材料温度200〜7
00℃で10秒〜10時間の時効処理を行ない、続いて
10%以上の冷間圧延を行なった後、さらに材料温度2
00〜700℃で10秒〜10時間の熱処理を施し、機
械的強度及び導電性を向上させた高力高導電性銅基合金
の製造方法。
(1) 0.1-5.0wt. % Ti, 0.1-5.0
wt. After solution treatment of a copper-based alloy containing % Sn and the balance consisting of Cu and unavoidable impurities, the material temperature was 200-7.
After performing aging treatment at 00°C for 10 seconds to 10 hours, followed by cold rolling of 10% or more, the material temperature was further increased to 2.
A method for producing a high-strength, high-conductivity copper-based alloy that is heat-treated at 00 to 700°C for 10 seconds to 10 hours to improve mechanical strength and conductivity.
(2)0.1〜5.0wt.%のTi、0.1〜5.0
wt.%のSnを含有し、さらに0.005〜1.0w
t.%のP、0.005〜1.0wt.%のAl、0.
005〜1.0wt.%のZn、0.005〜1.0w
t%のNi、0.005〜1.0wt.%のSi、0.
005〜0.5wt.%のPb、0.005〜1.0w
t.%のBe、0.005〜1.0wt.%の0.00
5〜1.0wt.%のCr、0.005〜1.0wt.
%のCo、0.005〜1.0wt.%のZr、0.0
05〜0.1wt.%のAs、0.005〜1.0wt
.%のAg、0.005〜1.0wt.%のCd、0.
005〜1.0wt.%のIn、0.005〜0.1w
t.%のSb、0.005〜1.0wt.%のTe、0
.005〜1.0wt.%のGe、0.005〜1.0
wt.%のHfのうちから1種または2種以上を総量で
0.005〜2.0wt.%含有し、残部がCu及び不
可避不純物からなる銅基合金を溶体化処理後、材料温度
200〜700℃で10秒〜10時間の時効処理を行な
い、続いて10%以上の冷間圧延を行なった後、さらに
材料温度200〜700℃で10秒〜10時間の熱処理
を施し、機械的強度及び導電性を向上させたに高力高導
電性銅基合金の製造方法。
(2) 0.1-5.0wt. % Ti, 0.1-5.0
wt. % of Sn, and further contains 0.005 to 1.0 w
t. % P, 0.005-1.0wt. % Al, 0.
005~1.0wt. % Zn, 0.005~1.0w
t% Ni, 0.005-1.0wt. % Si, 0.
005~0.5wt. % Pb, 0.005-1.0w
t. % Be, 0.005-1.0wt. 0.00 of %
5-1.0wt. % Cr, 0.005-1.0wt.
% Co, 0.005-1.0 wt. % Zr, 0.0
05-0.1wt. % As, 0.005-1.0wt
.. % Ag, 0.005-1.0 wt. % Cd, 0.
005~1.0wt. %In, 0.005~0.1w
t. % Sb, 0.005-1.0wt. %Te, 0
.. 005~1.0wt. %Ge, 0.005-1.0
wt. % of Hf in a total amount of 0.005 to 2.0 wt. %, with the balance consisting of Cu and unavoidable impurities. After solution treatment, an aging treatment is performed at a material temperature of 200 to 700°C for 10 seconds to 10 hours, followed by cold rolling of 10% or more. After that, a heat treatment is performed at a material temperature of 200 to 700° C. for 10 seconds to 10 hours to improve mechanical strength and conductivity.
JP27078585A 1985-12-03 1985-12-03 Manufacture of high strength and high conductivity copper-base alloy Pending JPS62133050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27078585A JPS62133050A (en) 1985-12-03 1985-12-03 Manufacture of high strength and high conductivity copper-base alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27078585A JPS62133050A (en) 1985-12-03 1985-12-03 Manufacture of high strength and high conductivity copper-base alloy

Publications (1)

Publication Number Publication Date
JPS62133050A true JPS62133050A (en) 1987-06-16

Family

ID=17490962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27078585A Pending JPS62133050A (en) 1985-12-03 1985-12-03 Manufacture of high strength and high conductivity copper-base alloy

Country Status (1)

Country Link
JP (1) JPS62133050A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5217158A (en) * 1992-07-14 1993-06-08 Brush Wellman, Inc. Process for thermodynamically treating a region joining two members
WO2002012583A1 (en) * 2000-08-09 2002-02-14 Olin Corporation, A Corporation Of The Commonwealth Of Virginia Silver containing copper alloy
US6441492B1 (en) 1999-09-10 2002-08-27 James A. Cunningham Diffusion barriers for copper interconnect systems
US6455937B1 (en) 1998-03-20 2002-09-24 James A. Cunningham Arrangement and method for improved downward scaling of higher conductivity metal-based interconnects
US6521532B1 (en) 1999-07-22 2003-02-18 James A. Cunningham Method for making integrated circuit including interconnects with enhanced electromigration resistance
US6551872B1 (en) 1999-07-22 2003-04-22 James A. Cunningham Method for making integrated circuit including interconnects with enhanced electromigration resistance using doped seed layer and integrated circuits produced thereby
US6797082B1 (en) * 1999-02-08 2004-09-28 La Farga Lacambra, S.A. Manufacture of copper microalloys
KR100732553B1 (en) 2005-06-28 2007-06-27 인하대학교 산학협력단 Fabrication method for two-phases brass having excellent superplastic formability

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5217158A (en) * 1992-07-14 1993-06-08 Brush Wellman, Inc. Process for thermodynamically treating a region joining two members
US6455937B1 (en) 1998-03-20 2002-09-24 James A. Cunningham Arrangement and method for improved downward scaling of higher conductivity metal-based interconnects
US6797082B1 (en) * 1999-02-08 2004-09-28 La Farga Lacambra, S.A. Manufacture of copper microalloys
US6521532B1 (en) 1999-07-22 2003-02-18 James A. Cunningham Method for making integrated circuit including interconnects with enhanced electromigration resistance
US6551872B1 (en) 1999-07-22 2003-04-22 James A. Cunningham Method for making integrated circuit including interconnects with enhanced electromigration resistance using doped seed layer and integrated circuits produced thereby
USRE41538E1 (en) 1999-07-22 2010-08-17 Cunningham James A Method for making integrated circuit including interconnects with enhanced electromigration resistance using doped seed layer and integrated circuits produced thereby
US6441492B1 (en) 1999-09-10 2002-08-27 James A. Cunningham Diffusion barriers for copper interconnect systems
WO2002012583A1 (en) * 2000-08-09 2002-02-14 Olin Corporation, A Corporation Of The Commonwealth Of Virginia Silver containing copper alloy
US6749699B2 (en) 2000-08-09 2004-06-15 Olin Corporation Silver containing copper alloy
CN1302145C (en) * 2000-08-09 2007-02-28 奥林公司 Silver containing copper alloy
KR100842726B1 (en) * 2000-08-09 2008-07-01 지비씨 메탈즈, 엘엘씨 A silver containing copper alloy and a process for forming the same
KR100732553B1 (en) 2005-06-28 2007-06-27 인하대학교 산학협력단 Fabrication method for two-phases brass having excellent superplastic formability

Similar Documents

Publication Publication Date Title
JP3550233B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
US4191601A (en) Copper-nickel-silicon-chromium alloy having improved electrical conductivity
JP2593107B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
JP2007126739A (en) Copper alloy for electronic material
CA1083020A (en) Process for producing spectacle frames using an age- hardenable nickel bronze alloy
JP2000073130A (en) Copper alloy sheet excellent in press punchability
CA1119920A (en) Copper based spinodal alloys
JP2001181759A (en) Copper alloy for electronic material excellent in surface characteristic and producing method therefor
JPS62133050A (en) Manufacture of high strength and high conductivity copper-base alloy
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JPS61272339A (en) Lead material for electronic parts excelled in repeated bendability and its production
US3366477A (en) Copper base alloys
JPH0987814A (en) Production of copper alloy for electronic equipment
JP2000144284A (en) High-strength and high-conductivity copper-iron alloy sheet excellent in heat resistance
JPS59145745A (en) Copper alloy for lead material of semiconductor apparatus
JPS61127842A (en) Copper alloy for terminal and connector and its manufacture
JPS628491B2 (en)
JP2945208B2 (en) Method for producing copper alloy for electrical and electronic equipment
JPS63230837A (en) Copper alloy for fuse
JPS62243750A (en) Manufacture of copper alloy excellent in property of proof stress relaxation
JPH09143597A (en) Copper alloy for lead frame and its production
JPH03253528A (en) High strength copper alloy having high workability
JPS6141751A (en) Manufacture of copper alloy material for lead frame
JP2539478B2 (en) Method for producing tellurium-containing copper alloy
JPS6260850A (en) Manufacture of copper alloy having superior stress relaxation resistance