JP2012097327A - Copper alloy improved in hot and cold workability, method for production thereof, and copper alloy strip or alloy foil obtained from copper alloy - Google Patents

Copper alloy improved in hot and cold workability, method for production thereof, and copper alloy strip or alloy foil obtained from copper alloy Download PDF

Info

Publication number
JP2012097327A
JP2012097327A JP2010246283A JP2010246283A JP2012097327A JP 2012097327 A JP2012097327 A JP 2012097327A JP 2010246283 A JP2010246283 A JP 2010246283A JP 2010246283 A JP2010246283 A JP 2010246283A JP 2012097327 A JP2012097327 A JP 2012097327A
Authority
JP
Japan
Prior art keywords
copper alloy
hot
mass
ingot
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010246283A
Other languages
Japanese (ja)
Other versions
JP5555135B2 (en
Inventor
Takuya Nakata
卓哉 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2010246283A priority Critical patent/JP5555135B2/en
Publication of JP2012097327A publication Critical patent/JP2012097327A/en
Application granted granted Critical
Publication of JP5555135B2 publication Critical patent/JP5555135B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a Cu-Zr base copper ailloy having high strength, high electroconductivity, high elongation and excellent in hot workability and cold workability, and to provide a method for manufacturing the same and a copper alloy strip or a copper alloy foil for electronic/electric parts applying the Cu-Zr based on copper alloy.SOLUTION: The copper alloy in which the hot workability and the cold workability is improved contains, by mass, 0.01 to 0.28% of Zr and 0.0001 to 0.0012% of P as indispensable components, further contains three or more elements of 0.03 to 4% of Cr, 0.07 to 3% of Sn, 0.02 to 0.15% of Mg, 0.03 to 0.14% of Mn, 0.02 to 0.12% of Co, and 0.04 to 0.1% of Zn as additive components and the balance containg Cu with inevitable impurities.

Description

本発明は、電気・電子部品用として適用され、高強度、高い伸び及び高導電率を有すると共に、熱間及び冷間加工性に優れる銅合金とその製造方法及び該銅合金から得られる銅合金条又は銅合金箔に関する。   The present invention is applied to electrical and electronic parts, has a high strength, a high elongation, a high electrical conductivity, and is excellent in hot and cold workability, a manufacturing method thereof, and a copper alloy obtained from the copper alloy It relates to strips or copper alloy foils.

電気・電子機器の小型化に伴い、積載される回路はさらなるファインピッチ化が要求されており、その中に組み込まれる銅合金条及び銅合金箔も薄肉化が求められている。しかしながら、薄肉化に伴う強度の低下は避けなければならず、また、積層時の熱処理時でも強度を維持していることが望まれている。さらに、リチウムイオン二次電池の電池用集電体に使用される銅箔等は、上記の強度と耐熱性の他に、繰り返し充放電時の電極の収縮に耐えうる伸びが必要になる。以上のような要求特性を満足する銅合金材料として、Cu−Cr系、Cu−Cr−Zr系又はCu−Zr系等の析出強化型の銅合金がある(例えば、特許文献1〜10を参照)。これらの析出強化型の銅合金は、強度が向上するだけではなく、導電性の低下が小さいため、両者の特性が良好にバランスした銅合金である。その中でも前記の特許文献3及び特許文献6〜10に開示されているCu−Zr系銅合金は、Zrの微量添加で銅合金の耐熱性を大きく向上できる銅合金のひとつとして挙げられる。   Along with the miniaturization of electric / electronic devices, the circuit to be loaded is required to have a finer pitch, and the copper alloy strip and the copper alloy foil incorporated therein are also required to be thin. However, a decrease in strength due to thinning must be avoided, and it is desired that strength be maintained even during heat treatment during lamination. Furthermore, in addition to the above strength and heat resistance, the copper foil or the like used for the battery current collector of the lithium ion secondary battery needs to be stretchable to withstand the contraction of the electrode during repeated charge and discharge. Examples of copper alloy materials that satisfy the above required characteristics include precipitation-strengthened copper alloys such as Cu—Cr, Cu—Cr—Zr, and Cu—Zr (see, for example, Patent Documents 1 to 10). ). These precipitation-strengthened copper alloys are copper alloys that not only improve strength but also have a small decrease in conductivity, so that the characteristics of both are well balanced. Among them, the Cu—Zr-based copper alloys disclosed in Patent Document 3 and Patent Documents 6 to 10 are listed as one of copper alloys that can greatly improve the heat resistance of the copper alloy by adding a small amount of Zr.

また、前記の特許文献1及び特許文献10には、析出強化型の銅合金において、鋳塊時の鋳塊割れや健全性低下の防止又は鋳塊中のピンホール発生や粒界濃化の抑制のために、硫黄、酸素及び水素の含有量を少なくする方向で規定しなければならないことが記載されている。さらに、特許文献11には、Cu−Cr−Zr系銅合金において、金属Crと溶銅との接触を確実にするために、Cr中の炭素の含有量を小さくすることが記載されている。   Further, in Patent Document 1 and Patent Document 10 described above, in precipitation-strengthened copper alloys, ingot cracking and soundness deterioration during ingots are prevented, or pinhole generation and grain boundary concentration in ingots are suppressed. Therefore, it is described that the content of sulfur, oxygen and hydrogen must be reduced. Furthermore, Patent Document 11 describes that, in a Cu—Cr—Zr-based copper alloy, the content of carbon in Cr is reduced in order to ensure contact between metal Cr and molten copper.

特開平9−302427号公報JP-A-9-302427 特開2008−88558号公報JP 2008-88558 A 特開2003−89832号公報JP 2003-89832 A 特開2006−283106号公報JP 2006-283106 A 特開平10−330867号公報Japanese Patent Laid-Open No. 10-330867 特開2009−1850号公報JP 2009-1850 A 特開平6−33171号公報JP-A-6-33171 特開平3−243736号公報JP-A-3-243736 特開平7−188810号公報Japanese Patent Laid-Open No. 7-188810 特開2008−255381号公報JP 2008-255531 A 特開2010−189678号公報JP 2010-189678 A

前記のCu−Zr系の析出強化型銅合金は、熱処理により銅母中に過剰に固溶させた溶質元素を金属間化合物として微細に高密度に析出させるという強化機構によって強度の向上を図るものである。そのため、銅合金の溶解鋳造時には室温での固溶限以上に溶質元素を添加することが多い。その場合は、凝固に際して固相と液相の界面から液相中に排出される溶質量が多くなり、部分的に溶質元素が濃化した相が形成され、凝固後には粗大なミクロ偏析を形成することがある。ミクロ偏析は金属間化合物又は構成元素としてリンを含有する場合にはリンと溶質元素(金属)によって形成される晶出物等であるため、周りの銅母相と強度、伸び、熱伝導率、熱膨張率等の諸物性が大きく異なる。また、これらのミクロ偏析は、銅母相より融点の低いものが多く、結晶粒界に形成されやすい。そのことで、粗大なミクロ偏析が存在する結晶粒界の強度及び加工性は大きく低下し、粒界割れなどの鋳造欠陥が生じる。加えて、鋳造欠陥を内在した鋳塊を熱間圧延、冷間圧延などで加工した場合、鋳造欠陥が加工により進展し、加工後の銅合金条及び箔の表面及び内部の欠陥として変化することが多く、これらの欠陥は銅合金条及び箔の特性、品質を大きく低下させる。   The Cu-Zr-based precipitation-strengthened copper alloy is intended to improve strength by a strengthening mechanism in which a solute element excessively dissolved in a copper matrix by heat treatment is precipitated as an intermetallic compound in a high density. It is. Therefore, a solute element is often added beyond the solid solubility limit at room temperature during the melting and casting of a copper alloy. In that case, the amount of dissolved mass discharged into the liquid phase from the interface between the solid phase and the liquid phase increases during solidification, forming a partially concentrated phase of solute elements, and forming coarse microsegregation after solidification. There are things to do. When microsegregation contains phosphorus as an intermetallic compound or a constituent element, it is a crystallized product formed by phosphorus and a solute element (metal), so the surrounding copper matrix and strength, elongation, thermal conductivity, Various physical properties such as coefficient of thermal expansion differ greatly. Moreover, many of these microsegregations have a melting point lower than that of the copper matrix, and are easily formed at the grain boundaries. As a result, the strength and workability of the grain boundaries where coarse microsegregation exists are greatly reduced, and casting defects such as grain boundary cracks occur. In addition, when an ingot containing a casting defect is processed by hot rolling, cold rolling, etc., the casting defect develops by processing and changes as a defect on the surface and inside of the copper alloy strip and foil after processing. However, these defects greatly reduce the properties and quality of copper alloy strips and foils.

以上の点から、前記の析出強化型銅合金において構成元素としてリンを含む場合には、金属の含有量だけではなく、リンの含有量を所定の範囲に規定する必要がある。前記の特許文献1〜10に記載されているように、リンの含有量が少ないと固溶強化による強度向上が見られないだけでなく、せん断加工性が低下し、銅溶湯中の脱酸効果が得られない。逆に、リンの含有量の多くなると、含有金属とリンとの晶出物の粗大化、導電率低下、耐熱性低下、又は熱間及び冷間加工性の阻害が起こりやすくなる。前記の特許文献1〜10にはリンの含有量の範囲が規定されているが、その下限値として具体的に実施例に記載されているのは0.001質量%である。例えば、前記の特許文献1には、Pが0.01wt%未満と規定されているものの、実施例及び比較例に記載されているリンの含有量は0.001wt%以上である。このように、従来の析出強化型銅合金の元素構成では、固溶強化による強度向上等の効果を得るためにリン含有量を0.001質量%以上に設定することが一般的に行われている。   From the above points, when phosphorus is included as a constituent element in the precipitation strengthened copper alloy, it is necessary to regulate not only the metal content but also the phosphorus content within a predetermined range. As described in Patent Documents 1 to 10, not only the strength improvement due to solid solution strengthening is not seen when the phosphorus content is small, but also the shear processability is lowered, and the deoxidation effect in the molten copper Cannot be obtained. On the other hand, when the phosphorus content is increased, the crystallized product of the contained metal and phosphorus is likely to be coarsened, the conductivity is decreased, the heat resistance is decreased, or the hot and cold workability is easily inhibited. Although the range of content of phosphorus is prescribed | regulated in the said patent documents 1-10, what is specifically described in the Example as the lower limit is 0.001 mass%. For example, although the above-mentioned Patent Document 1 defines that P is less than 0.01 wt%, the phosphorus content described in the examples and comparative examples is 0.001 wt% or more. As described above, in the elemental configuration of the conventional precipitation-strengthened copper alloy, it is generally performed to set the phosphorus content to 0.001% by mass or more in order to obtain effects such as strength improvement by solid solution strengthening. Yes.

しかしながら、Cu−Zr系の析出強化型銅合金は、粗大なミクロ偏析の発生を抑制するだけではなく、高導電率と耐熱性の維持、及び熱間及び冷間加工性の向上のために、リン含有量をできるだけ少なくする方が好ましい。その場合、仮にリン含有量が0.001質量%未満となっても、せん断加工性の向上や銅溶湯中の脱酸の効果はある程度維持できるが、固溶強化による強度向上という効果を得ることは困難になる。そのため、Cu−Zr系の析出強化型銅合金において、リンの含有量を従来より少なくしても、強度の向上を図ることができる構成は非常に有用である。また、析出強化型銅合金を電気・電子部品用部材として適用する場合には、強度と同時に伸びの特性も向上させることが強く求められている。   However, the Cu-Zr-based precipitation strengthened copper alloy not only suppresses the occurrence of coarse microsegregation, but also maintains high conductivity and heat resistance, and improves hot and cold workability. It is preferable to reduce the phosphorus content as much as possible. In that case, even if the phosphorus content is less than 0.001% by mass, the improvement of shear workability and the effect of deoxidation in the molten copper can be maintained to some extent, but the effect of improving the strength by solid solution strengthening can be obtained. Becomes difficult. Therefore, in a Cu—Zr-based precipitation-strengthened copper alloy, a configuration capable of improving the strength is very useful even if the phosphorus content is less than that of the conventional one. In addition, when applying precipitation-strengthening-type copper alloys as members for electric / electronic parts, it is strongly required to improve the elongation characteristics as well as the strength.

さらに、Cu−Zr系の析出強化型銅合金は、次のような理由により、もともと熱間及び冷間加工性が良好であるとは言えない。鋳造時に生成されるミクロ偏析の大きさは、溶湯の溶質濃度と初晶中での溶質の濃度勾配、凝固速度等の製造工程に大きく依存する。銅合金の特性を向上させるために溶質である添加金属元素の濃度を大きくすれば、凝固時のミクロ偏析が大きくなり、鋳造性が悪化する。特に、Cu−Zr系合金では、Zrの添加量を増やしていくと液相中に排出されたZrが濃化することでCu−CuZr共晶組織が生成する。この組成は、CuとCuZrが共晶凝固することで形成されるが、融点が972℃であり、図1に示すように粗大な粒界に形成されることが多い。こうして形成される大きなミクロ偏析が、熱間及び冷間の加工性に対して悪影響を与える。そのため、Cu−Zr系の析出強化型銅合金では、熱間及び冷間の加工性を低下させる要因となるリンの影響を全く無視することはできず、仮にリンの含有量を少なくしても、製造歩留まりの低下が避けられず、熱間及び冷間加工性が低下して生産性を上げることができない。 Furthermore, it cannot be said that a Cu—Zr-based precipitation-strengthened copper alloy originally has good hot and cold workability for the following reasons. The size of micro-segregation generated during casting greatly depends on the manufacturing process such as the solute concentration of the molten metal, the concentration gradient of the solute in the primary crystal, and the solidification rate. If the concentration of the additive metal element as a solute is increased in order to improve the properties of the copper alloy, microsegregation during solidification increases and castability deteriorates. In particular, in a Cu—Zr-based alloy, as the amount of Zr added is increased, Zr discharged into the liquid phase is concentrated to form a Cu—Cu 9 Zr 2 eutectic structure. This composition is formed by eutectic solidification of Cu and Cu 9 Zr 2, but has a melting point of 972 ° C. and is often formed at coarse grain boundaries as shown in FIG. The large microsegregation thus formed adversely affects hot and cold workability. Therefore, in the Cu-Zr-based precipitation-strengthened copper alloy, the influence of phosphorus that causes a decrease in hot and cold workability cannot be ignored at all, and even if the phosphorus content is reduced. A decrease in production yield is inevitable, and hot workability and cold workability are lowered, so that productivity cannot be increased.

この問題は鋳造中に生じるミクロ偏析を撲滅することで解決できるため、従来は、析出強化型銅合金中の構成元素の含有量を最適化するだけではなく、一次冷却である鋳型内冷却(間接冷却)及び二次冷却等の製造方法について適正化が図られてきた。その適正化方法を、図2を用いて説明する。図2は、析出強化型銅合金の一般的な連続鋳造の製造方法を示したものである。図2に示すように、一般的な連続鋳造では一次冷却の鋳型冷却で凝固シェルを形成させ、その後の直接冷却水を噴き付ける二次冷却で鋳型を完全に凝固させ、室温付近まで冷却することで鋳塊を製造する。ミクロ偏析は、凝固速度が大きいとその大きさも大きくなるので、一次冷却および二次冷却のバランスを調整し、ミクロ偏析を生じさせないように凝固速度を遅くすることで対策を講じてきた。また、溶質元素が濃化した液相を強制的に拡散する方法も採られてきた。   This problem can be solved by eradicating microsegregation that occurs during casting. Therefore, in the past, not only optimizing the content of constituent elements in precipitation-strengthened copper alloys but also in-mold cooling (indirect) (Cooling) and secondary cooling have been optimized for manufacturing methods. The optimization method will be described with reference to FIG. FIG. 2 shows a general continuous casting manufacturing method for precipitation strengthened copper alloys. As shown in FIG. 2, in general continuous casting, a solidified shell is formed by mold cooling of the primary cooling, and then the mold is completely solidified by secondary cooling in which direct cooling water is sprayed and cooled to near room temperature. The ingot is manufactured with. Since the size of micro-segregation increases as the solidification rate increases, countermeasures have been taken by adjusting the balance between primary cooling and secondary cooling and slowing the solidification rate so as not to cause micro-segregation. In addition, a method of forcibly diffusing a liquid phase enriched in solute elements has been adopted.

このような連続鋳造の一次冷却や二次冷却を調整する方法は、溶質元素が低濃度の場合は有効かつ迅速な方法であるが、凝固速度を遅らせることが基本原理であるために、冷却速度を上げて、生産性を上げることができない。また、合金条、合金箔の特性を向上させるために溶質濃度を上げた場合には、固相から液相中への溶質の排出速度が大きくなりすぎ、冷却速度の調整だけではミクロ偏析は撲滅されない。溶湯の攪拌を行う方法もコストがかかるだけではなく、ミクロ偏析を確実に撲滅できるとは限らず、費用対効果が十分に得られない。さらに、機械攪拌やガス攪拌等の方法は、物質を介して強制的に溶湯を攪拌する方法であるので、逆に、溶湯を汚染してしまう可能性がある。これらの方法は全てミクロ偏析を撲滅する方向に製造条件を変更する時に、条件の変更幅を見誤るとブレークアウトの危険性が高く、安全操業を行うためのコントロールが非常に難しい。   The method of adjusting the primary cooling and secondary cooling of such continuous casting is an effective and quick method when the concentration of the solute element is low, but since the basic principle is to delay the solidification rate, the cooling rate is low. To increase productivity. In addition, when the solute concentration is increased to improve the properties of the alloy strip and alloy foil, the solute discharge rate from the solid phase to the liquid phase becomes too high, and microsegregation is eradicated only by adjusting the cooling rate. Not. The method of stirring the molten metal is not only costly, but it does not necessarily eliminate microsegregation reliably, and is not sufficiently cost-effective. Furthermore, methods such as mechanical agitation and gas agitation are methods for forcibly agitating the molten metal through substances, and conversely, there is a possibility that the molten metal will be contaminated. All of these methods have a high risk of breakout if the manufacturing conditions are changed in a direction to eradicate microsegregation. If the range of change in the conditions is mistaken, there is a high risk of breakout, and control for safe operation is very difficult.

以上の点から、Cu−Zr系の析出強化型銅合金の製造では、リン含有量が従来よりも少ない場合でも、従来と同様に生産性を低下させることなく高い歩留りを維持するための製造条件の最適化が不可欠である。   From the above points, in the production of Cu—Zr-based precipitation-strengthened copper alloys, even when the phosphorus content is smaller than the conventional, production conditions for maintaining a high yield without reducing the productivity as in the conventional case Optimization of is essential.

そこで、本発明は、上記の問題を解決するために、高強度、高導電率及び高い伸びを有し、しかも熱間及び冷間加工性に優れるCu−Zr系銅合金及びその製造方法、並びに該Cu−Zr系銅合金を適用した電気・電子部品用の銅合金条又は銅合金箔を提供することを目的とする。   Therefore, in order to solve the above problems, the present invention provides a Cu-Zr-based copper alloy having high strength, high electrical conductivity, and high elongation, and excellent in hot and cold workability, a method for producing the same, and An object of the present invention is to provide a copper alloy strip or a copper alloy foil for electric and electronic parts to which the Cu-Zr copper alloy is applied.

前記目的を達成するために、本発明者等は、耐熱性に優れるCu−Zr系銅合金において、構成元素として含まれるリンの含有率を従来より少なくしても、所望の物性や特性を達成できるようなリン以外の構成元素についてその種類と含有率の最適化を行うと共に、該Cu−Zr系銅合金の製造条件について鋭意検討を行った結果、本発明に到った。すなわち、本発明は次の構成を有するものである。   In order to achieve the above object, the present inventors have achieved the desired physical properties and characteristics even when the content of phosphorus contained as a constituent element is less than that in the conventional Cu-Zr copper alloy having excellent heat resistance. As a result of optimizing the type and content of the constituent elements other than phosphorus that can be used, the present invention was accomplished as a result of intensive studies on the production conditions of the Cu-Zr copper alloy. That is, the present invention has the following configuration.

(1)本発明は、質量組成で必須成分としてZr:0.01〜0.28%及びP:0.0001〜0.0012%を含有し、さらに添加成分としてCr:0.03〜4%、Sn:0.07〜3%、Mg:0.02〜0.15%、Mn:0.03〜0.14%、Co:0.02〜0.12%、Zn:0.04〜0.1%の中から少なくとも3種類以上の元素を有し、残部がCuと不可避不純物からなることを特徴とする熱間及び冷間加工性を向上させた銅合金を提供する。
(2)本発明は、前記銅合金が連続鋳造工程で製造され、製造された銅合金鋳塊の酸素、水素、硫黄及び炭素の濃度が、それぞれ酸素:0.0005%質量以下、水素:0.0001質量%以下、硫黄:0.0015質量%以下、炭素:0.0005質量%以下であることを特徴とする前記(1)に記載の熱間及び冷間加工性を向上させた銅合金を提供する。
(3)本発明は、前記銅合金が、鋳造直後の段階で結晶粒界に存在するCu−Zr系介在物(Cu−CuZr共晶組織及びCuZr単体)の長さ及び幅の平均値がそれぞれ5〜20μm及び1〜5μmであり、結晶粒内に存在するCu−Zr系介在物(Cu−CuZr共晶組織及びCuZr単体)の直径の平均値が2〜10μmであることを特徴とする前記(2)に記載の熱間及び冷間加工性を向上させた銅合金を提供する。
(4)本発明は、前記(1)〜(3)の何れかに記載の銅合金であって、前記銅合金を構成する各元素成分からなる溶銅を溶製し、凝固される段階の1100〜960℃の温度範囲において、鋳造方向に対して垂直な断面で鋳塊の端部から中心方向に凝固が進行する際の一次冷却速度が20〜46℃/分であり、凝固が終了してから冷却される段階の960〜500℃において、鋳造方向に対して垂直な断面で鋳塊の端部から中心方向に冷却が進行する際の二次冷却速度が60〜87℃/分であることを特徴とする熱間及び冷間加工性を向上させた銅合金を提供する。
(5)本発明は、引張り強さが550N/mm以上、伸びが3%以上、及び導電率が60%IACS以上であることを特徴とする前記(1)〜(4)の何れかに記載の熱間及び冷間加工性を向上させた銅合金を提供する。
(6)本発明は、前記(1)〜(5)の何れかに記載の銅合金を、熱間圧延→冷間圧延→焼鈍→冷間圧延→時効熱処理の工程を経て製造される銅合金条又は銅合金箔であって、前記銅合金条又は銅合金箔の厚さ0.02mmにおいて、幅が0.005mm以上及び長さが0.1mm以上である表面欠陥が前記銅合金条又は銅合金箔の圧延方向に対して0.01〜0.0001個/mであり、且つ、幅が0.001mm以上及び長さが0.01mm以上である内部欠陥が0.1〜0.005個/mであることを特徴とする銅合金条又は銅合金箔を提供する。
(1) The present invention contains Zr: 0.01 to 0.28% and P: 0.0001 to 0.0012% as essential components in mass composition, and Cr: 0.03 to 4% as additional components Sn: 0.07-3%, Mg: 0.02-0.15%, Mn: 0.03-0.14%, Co: 0.02-0.12%, Zn: 0.04-0 Provided is a copper alloy having improved hot and cold workability, characterized in that it contains at least three kinds of elements out of 1% and the balance is made of Cu and inevitable impurities.
(2) In the present invention, the copper alloy is produced in a continuous casting process, and the produced copper alloy ingot has oxygen, hydrogen, sulfur and carbon concentrations of oxygen: 0.0005% by mass or less, hydrogen: 0 The copper alloy with improved hot and cold workability according to (1), characterized in that the content is 0.0001% by mass or less, sulfur: 0.0015% by mass or less, and carbon: 0.0005% by mass or less. I will provide a.
(3) The present invention relates to the length of the Cu—Zr-based inclusions (Cu—Cu 9 Zr 2 eutectic structure and Cu 9 Zr 2 alone) in which the copper alloy is present at the grain boundary immediately after casting. The average value of the width is 5 to 20 μm and 1 to 5 μm, respectively, and the average value of the diameters of the Cu—Zr-based inclusions (Cu—Cu 9 Zr 2 eutectic structure and Cu 9 Zr 2 alone) present in the crystal grains The copper alloy having improved hot workability and cold workability as described in (2) above is provided.
(4) The present invention is the copper alloy according to any one of (1) to (3), wherein the molten copper composed of each element component constituting the copper alloy is melted and solidified. In the temperature range of 1100 to 960 ° C., the primary cooling rate when solidification proceeds from the end of the ingot to the center direction in a cross section perpendicular to the casting direction is 20 to 46 ° C./min, and solidification is completed. The secondary cooling rate when the cooling proceeds from the end of the ingot to the central direction in a cross section perpendicular to the casting direction at a temperature of 960 to 500 ° C. is 60 to 87 ° C./min. A copper alloy having improved hot and cold workability is provided.
(5) The present invention is any one of the above (1) to (4), wherein the tensile strength is 550 N / mm 2 or more, the elongation is 3% or more, and the conductivity is 60% IACS or more. A copper alloy having improved hot and cold workability is provided.
(6) The present invention is a copper alloy produced by subjecting the copper alloy according to any one of (1) to (5) above to a process of hot rolling → cold rolling → annealing → cold rolling → aging heat treatment. A surface defect having a width of 0.005 mm or more and a length of 0.1 mm or more in a thickness of 0.02 mm of the copper alloy strip or copper alloy foil. was from 0.01 to 0.0001 cells / m 2 to the rolling direction of the alloy foil, and, internal defects is wide is 0.01mm or more and length 0.001 mm .1-.005 Provided is a copper alloy strip or a copper alloy foil characterized by the number of pieces / m 3 .

本発明によれば、リン含有量をできるだけ減らす方向で最適化することによって、せん断加工性の向上や銅溶湯中の脱酸の効果を維持しながら、高導電率、高耐熱性、及び熱間及び冷間加工性に優れる銅合金の構成とすることができる。また、リン以外の構成金属元素の組合せとその含有量の適正化によって、Cu−CuZr共晶組織のミクロ偏析を大幅に抑制できるため、固溶強化による銅合金の強度向上を図ることができる。それによって、電気・電子部品用として適用され、高強度、高導電率及び高い伸びを有するだけでなく、熱間及び冷間加工性に優れるCu−Zr系銅合金を得ることができる。 According to the present invention, by optimizing in the direction to reduce the phosphorus content as much as possible, while maintaining the effect of deoxidation in the molten metal and improvement of shear workability, high conductivity, high heat resistance, and hot And it can be set as the structure of the copper alloy which is excellent in cold workability. Moreover, since the microsegregation of the Cu—Cu 9 Zr 2 eutectic structure can be significantly suppressed by the combination of constituent metal elements other than phosphorus and the appropriate content thereof, the strength of the copper alloy should be improved by solid solution strengthening. Can do. Thereby, a Cu—Zr-based copper alloy that is applied for electric / electronic parts and has not only high strength, high conductivity, and high elongation but also excellent hot and cold workability can be obtained.

本発明によれば、Cu−Zr系銅合金の構成元素だけではなく、その製造条件を最適化することによって、熱間及び冷間加工性を向上させて従来と同等以上に高い歩留りを確保するとともに、生産性を高めることができる。   According to the present invention, by optimizing not only the constituent elements of the Cu—Zr-based copper alloy but also the production conditions thereof, the hot and cold workability can be improved and the yield equal to or higher than that of the prior art can be ensured. At the same time, productivity can be increased.

また、本発明による銅合金を用いて、熱間及び冷間加工を経て製造される銅合金条又は銅合金箔は、前記の銅合金が熱間及び冷間加工性にすぐれるため、表面欠陥及び内部欠陥を非常に少なくできるという効果を有する。   In addition, the copper alloy strip or copper alloy foil produced by hot and cold working using the copper alloy according to the present invention has a surface defect because the copper alloy is excellent in hot and cold workability. And it has the effect that the internal defects can be reduced very much.

電子顕微鏡で観察した従来のCu−Zr系銅合金が有する鋳塊断面のミクロ組織図である。It is the microstructure of the ingot cross section which the conventional Cu-Zr type | system | group copper alloy observed with the electron microscope has. 本発明の連続鋳造工程の一部で使用する溶解炉と鋳塊冷却装置の図である。It is a figure of the melting furnace and ingot cooling device which are used in a part of continuous casting process of the present invention. Cu−Zr2元系平衡状態図である。It is a Cu-Zr binary system equilibrium state figure. 本初明の銅合金を用いて製造される銅合金条又は銅合金箔の製造工程を示す図である。It is a figure which shows the manufacturing process of the copper alloy strip or copper alloy foil manufactured using this first clear copper alloy.

本発明は、Cu−Zr系合金において、せん断加工性の向上や銅溶湯中の脱酸の効果を維持させるために、Zrと共に、リンが必須の構成成分である。その際、高導電率及び高耐熱性で、熱間及び冷間加工性を向上させるため、Cu−Zr系合金中のリン含有量をできるだけ少なくする方向で最適化する必要がある。   In the present invention, phosphorus is an essential constituent component together with Zr in order to maintain the improvement of shear workability and the effect of deoxidation in the molten copper in the Cu—Zr alloy. At that time, in order to improve hot and cold workability with high conductivity and high heat resistance, it is necessary to optimize in a direction to reduce the phosphorus content in the Cu-Zr alloy.

また、本発明は、固溶強化による銅合金の強度向上を図ると共に、ミクロ偏析を抑制するために、副成分としてリン以外の金属元素の添加によってそれらの機能を持たせる。添加する金属は、具体的にCr、Sn、Mg、Mn、Co、Znの何れかである。これらの金属元素を添加することによって、Cu−Zr系合金鋳造時に結晶粒界中にCu−CuZr共晶組織が晶出しなくなるという効果が得られる。また、これらの添加金属元素は、Cu−Zr系合金を条及び箔として加工したときに、強度だけではなく、伸び等の特性の一層の向上を図ることができる。さらに、これらの添加金属元素は、種類に応じて異なる機能と効果を有するために、1種類の金属元素だけを使用したときよりも複数で使用する方が少ない含有量で銅合金の強度と伸びを同時に向上させることができる。1種類の金属元素だけでは、下記に述べるように、その金属の添加によってCu−Zr合金の共晶点のずれを起こしてCu母相中に取り込まれるZrの濃度を増加させるという機能、又はCu−Zr系介在物の融点を上げることによってCu−Zr系介在物(Cu−CuZr共晶組織及びCuZr単体)を小さくしてミクロ偏析の発生を抑制するという機能の発現が限定されるため、強度と伸びを同時に向上させるという効果が十分に得られない。すなわち、Cu−Zr合金を鋳造後に順次冷却する際に、それらの機能は温度の低下に伴って1種類の金属元素の添加による物性変化に対応した時にだけ現れるものであり、多段では現れず、結果的に限定的な効果しか得ることができない。それに対して、複数の添加金属元素を使用する場合は、それぞれの金属の物性変化に対応して共晶点のずれとミクロ偏析の抑制が多段で起きることによって相乗的な効果が得られる。この相乗的な効果によって、本発明では添加金属元素による強度と伸びの向上を効率良く図ることができる。加えて、この相乗的な効果は、2種類の金属元素の添加では不十分であるため、本発明では少なくとも3種類以上の金属元素を添加することによって、多段若しくは連続的に得られるようにすることが好ましい。 In addition, the present invention aims to improve the strength of the copper alloy by solid solution strengthening, and to impart these functions by adding metal elements other than phosphorus as subcomponents in order to suppress microsegregation. Specifically, the metal to be added is any one of Cr, Sn, Mg, Mn, Co, and Zn. By adding these metal elements, it is possible to obtain an effect that the Cu—Cu 9 Zr 2 eutectic structure does not crystallize in the crystal grain boundary during the casting of the Cu—Zr alloy. These additive metal elements can further improve not only strength but also properties such as elongation when a Cu-Zr alloy is processed into strips and foils. In addition, since these additive metal elements have different functions and effects depending on the type, the strength and elongation of the copper alloy can be reduced with a smaller content than when only one type of metal element is used. Can be improved at the same time. With only one type of metal element, as described below, the addition of the metal causes a shift in the eutectic point of the Cu—Zr alloy and increases the concentration of Zr incorporated into the Cu matrix, or Cu expression of function of reducing Cu-Zr-based inclusions (Cu-Cu 9 Zr 2 eutectic structure and Cu 9 Zr 2 alone) by raising the melting point of -Zr-based inclusions suppressing the occurrence of micro segregation Therefore, the effect of simultaneously improving the strength and elongation cannot be obtained. That is, when the Cu-Zr alloy is sequentially cooled after casting, these functions appear only when the physical properties change due to the addition of one kind of metal element as the temperature decreases, and do not appear in multiple stages. As a result, only limited effects can be obtained. On the other hand, when a plurality of additive metal elements are used, a synergistic effect can be obtained by suppressing the eutectic point shift and the microsegregation in multiple stages corresponding to the change in physical properties of each metal. Due to this synergistic effect, the present invention can efficiently improve the strength and elongation of the additive metal element. In addition, since this synergistic effect is insufficient with the addition of two kinds of metal elements, in the present invention, by adding at least three kinds of metal elements, it can be obtained in multiple stages or continuously. It is preferable.

次に、本発明の必須成分であるZrとリン、及び添加成分であるCr、Sn、Mg、Mn、Co、Znについて、本発明の効果を奏する上での各構成元素の機能と役割を説明する。   Next, with respect to Zr and phosphorus, which are essential components of the present invention, and Cr, Sn, Mg, Mn, Co, and Zn that are additive components, the function and role of each constituent element in achieving the effects of the present invention will be described. To do.

<Zr>
Zrは本発明の銅合金において、Zrの析出物を形成して、引張強さを向上させたり、強度を向上させたりするための成分であり、その配合量は0.01〜0.28質量%が好ましい。Zrはリンや他の金属と比べて、その含有量を多くしても銅合金の導電率の低下を抑制できる。そのため、リン含有量が従来よりも少ない方向で規定した本発明の銅合金は、Zrの含有量を多くしても導電率の低下が顕著に見られず、銅合金の強度を高くするという効果を従来以上に得ることができる。このように、本発明のCu−Zr系合金は、従来よりも高濃度のZrを含有させることができる点に大きな特徴を有する。しかし、そうであってもZrの含有量が0.28質量%を超える場合は、強度が高くなりすぎて伸びが低下してしまい、押出性及び加工性に悪影響を及ぼすと共に、導電率低下の影響を無視できなくなる。一方、Zr含有量が0.01質量%未満であると、強度の向上という効果が十分に得られない。
<Zr>
Zr is a component for forming a precipitate of Zr in the copper alloy of the present invention to improve the tensile strength or the strength, and its blending amount is 0.01 to 0.28 mass. % Is preferred. As compared with phosphorus and other metals, Zr can suppress a decrease in conductivity of the copper alloy even if its content is increased. Therefore, the copper alloy of the present invention defined in a direction in which the phosphorus content is less than that of the prior art does not show a significant decrease in conductivity even when the Zr content is increased, and the effect of increasing the strength of the copper alloy Can be obtained more than ever. Thus, the Cu—Zr-based alloy of the present invention has a great feature in that it can contain a higher concentration of Zr than in the prior art. However, even if the Zr content exceeds 0.28% by mass, the strength becomes too high and the elongation decreases, adversely affecting the extrudability and workability, and the decrease in conductivity. The influence cannot be ignored. On the other hand, if the Zr content is less than 0.01% by mass, the effect of improving the strength cannot be obtained sufficiently.

<リン(P)>
リン(P)は、本発明の銅合金中において、Zrとの化合物により析出物を形成して引張強さや強度を向上させることができる成分である。また、Zrを添加する際の溶湯の酸素濃度を下げる効果があり、脱酸のために添加する。すなわち、リンは溶湯中の酸素と反応し、Pを生成して、1200℃付近の温度において昇華しやすく溶湯中に残存しにくいので、脱酸剤としてよく使用される。しかし、リンの含有量が多い場合には、導電率、耐熱性、熱間加工性及び冷間加工性が低下する傾向にあるため、本発明ではリン含有量を従来よりも少ない0.0012質量%以下、より好ましくは0.001質量%以下にする必要がある。リンと酸素との反応を完全に制御することは難しいものの、本発明において酸素と反応しないリンの含有量を0.0012質量%以下に調整することは容易である。また、リンの脱酸剤としての効果は、その含有量が0.0012質量%以下であれば、十分に得られる。しかし、リンの含有量が非常に少ない0.0001質量%未満になると、脱酸効果が不十分となるため酸化物が鋳塊に巻き込まれ、鋳塊の健全性が低下して加工性が悪化する。また、リンを添加することによって得られる銅合金の強度の向上という効果も全く期待できない。従って、本発明ではリンの含有量を0.0001〜0.0012質量%、好ましくは0.0001〜0.0010質量%の範囲に設定する。
<Phosphorus (P)>
Phosphorus (P) is a component capable of improving the tensile strength and strength by forming a precipitate from the compound with Zr in the copper alloy of the present invention. Moreover, it has the effect of reducing the oxygen concentration of the molten metal when adding Zr, and is added for deoxidation. That is, phosphorus reacts with oxygen in the molten metal to form P 2 O 5 and is easily sublimated at a temperature around 1200 ° C. and hardly remains in the molten metal. Therefore, phosphorus is often used as a deoxidizer. However, when the phosphorus content is large, the electrical conductivity, heat resistance, hot workability and cold workability tend to decrease. Therefore, in the present invention, the phosphorus content is less than 0.0012 mass compared to the conventional case. % Or less, more preferably 0.001% by mass or less. Although it is difficult to completely control the reaction between phosphorus and oxygen, in the present invention, it is easy to adjust the content of phosphorus that does not react with oxygen to 0.0012% by mass or less. The effect of phosphorus as a deoxidizer is sufficiently obtained when the content is 0.0012% by mass or less. However, if the phosphorus content is very low and less than 0.0001% by mass, the deoxidation effect becomes insufficient, so that the oxide is caught in the ingot, and the soundness of the ingot is lowered and the workability is deteriorated. To do. Moreover, the effect of improving the strength of the copper alloy obtained by adding phosphorus cannot be expected at all. Therefore, in the present invention, the phosphorus content is set in the range of 0.0001 to 0.0012% by mass, preferably 0.0001 to 0.0010% by mass.

<Co、Zn>
Cu−Zr系合金鋳造で問題となるCu−CuZr共晶組織が生成する共晶点は、図3に示すCu−Zr状態図においてAの点である。溶質濃度が局所的に濃化し、濃化相のCuとZrの組成比がこの部分の組成比になることで、Cu−CuZr共晶組織が形成される。
<Co, Zn>
The eutectic point generated by the Cu—Cu 9 Zr 2 eutectic structure, which is a problem in Cu—Zr alloy casting, is point A in the Cu—Zr phase diagram shown in FIG. Solute concentration is locally thickened, the composition ratio of the concentrated phase Cu and Zr is that to obtain the composition ratio of this portion, Cu-Cu 9 Zr 2 eutectic structure is formed.

本発明において、Cu−Zr合金にCo又はZnの金属元素を添加することにより、図3に示す共晶点が右側にずれることを見出した。このように、Co及びZnはいずれもCu母相中へ固溶し、固溶強化により強度を向上させる機能を有する金属元素である。Co又はZnをCu−Zr系合金に添加した場合、Cu母相中でのZrの濃度勾配を下げる働きがあると考えられる。濃度勾配が下がると、室温でのCu母相中へのZuの固溶限が増加し、Cu母相中への取り込まれるZrの濃度が増加する。それによって、ミクロ偏析であるCu−CuZr共晶組織の晶出量が減少する。 In the present invention, it was found that the eutectic point shown in FIG. 3 is shifted to the right by adding a metal element of Co or Zn to the Cu—Zr alloy. Thus, both Co and Zn are metal elements having a function of improving the strength by solid solution strengthening and solid solution strengthening in the Cu matrix. When Co or Zn is added to the Cu—Zr alloy, it is considered that there is a function of lowering the concentration gradient of Zr in the Cu matrix. When the concentration gradient is lowered, the solid solubility limit of Zu into the Cu matrix at room temperature increases, and the concentration of Zr incorporated into the Cu matrix increases. Thereby, the crystallization amount of the Cu—Cu 9 Zr 2 eutectic structure which is microsegregation is reduced.

本発明において、Coの含有量が0.02質量%以下では上記の効果が十分に得られない。また、0.12質量%を超えて添加すると合金の導電率を下げてしまい、必要とされる合金特性が得られない。同様に、Znの含有量が0.04質量%未満では上記の効果が得られず、0.1質量%を超える場合は銅合金の導電率を下げてしまい、必要とされる合金特性を得ることができない。   In the present invention, when the Co content is 0.02% by mass or less, the above effects cannot be obtained sufficiently. Moreover, if it exceeds 0.12 mass%, the electrical conductivity of an alloy will be reduced and the required alloy characteristic will not be obtained. Similarly, when the Zn content is less than 0.04% by mass, the above effect cannot be obtained. When the Zn content exceeds 0.1% by mass, the conductivity of the copper alloy is lowered, and the required alloy characteristics are obtained. I can't.

<Cr、Sn、Mg、Mn>
Cr、Sn、Mg又はMnは、Cu−Zr系合金に副成分として添加されることによって、晶出するCu−Zr系介在物(Cu−CuZr共晶組織及びCuZr単体)を小さくし、かつ結晶粒界での生成を抑制する機能を有する。これらの元素は、凝固時にZrが液相中に濃化する際に、同時に液相中に排出され、Cu−Zr系介在物の融点を上げる。融点が上がることで、これらの介在物は、結晶粒界では無く粒内に多く分散されるようになり、鋳塊の粒界割れの起点が減少する。また、粒内で晶出される金属間化合物は、Cu−Zr系金属間化合物にCr、Sn、Mg,Mnが濃化したものであると考えられる。
<Cr, Sn, Mg, Mn>
Cr, Sn, Mg, or Mn is added to the Cu—Zr alloy as a subsidiary component, and thus Cu—Zr inclusions that crystallize (Cu—Cu 9 Zr 2 eutectic structure and Cu 9 Zr 2 alone) And has a function of suppressing generation at a crystal grain boundary. These elements are simultaneously discharged into the liquid phase when Zr is concentrated in the liquid phase during solidification, and raise the melting point of the Cu-Zr inclusions. By increasing the melting point, these inclusions are dispersed in the grains rather than in the grain boundaries, and the starting point of intergranular cracking in the ingot is reduced. In addition, it is considered that the intermetallic compound crystallized in the grains is obtained by concentrating Cr, Sn, Mg, and Mn on the Cu—Zr intermetallic compound.

Crは、微量添加領域では単体で晶出しやすく、0.03質量%未満の含有量では上記の効果が得られない。また、0.4質量%を超えると、リンと化合物を形成しやすく、CrP又はCrP等が晶出する。これらの晶出物は、熱間圧延でも、その後の溶体化処理においてもCu母相中に再固溶することなく、粒界及び粒内に残存し、合金条及び合金箔の加工性を低下させる。従って、本発明ではCrの含有量を0.03〜0.4質量%とすることが必要である。 Cr is easily crystallized by itself in a small amount addition region, and the above effect cannot be obtained when the content is less than 0.03% by mass. When it exceeds 0.4 mass%, it tends to form a phosphorus and compounds, Cr 3 P or Cr 2 P such crystallizes out. These crystallized materials remain in the grain boundaries and grains without being re-dissolved in the Cu matrix even in hot rolling or in the subsequent solution treatment, thereby reducing the workability of alloy strips and alloy foils. Let Therefore, in this invention, it is necessary to make content of Cr 0.03-0.4 mass%.

Sn、Mg又はMnは、Cu中への固溶限が大きく、微量添加領域ではCu母相中に固溶し、Cu−Zr系金属間化合物の融点を上昇させる働きは得られない。その含有量の下限はSnの場合が0.07質量%、Mgの場合が0.02質量%、Mnの場合が0.03質量%である。また、高濃度に添加した場合は、凝固時に凝固界面へ排出される量も増加し、Cu−Zr系金属間化合物の融点を上昇させる働きも増加するものの、Cu母相中への固溶量が増加するため、合金条及び合金箔の導電率を低下させるだけではなく、Cu母相の強度が高くなるために熱間加工時や冷間加工時に応力が粒界に集中して、粒界割れを引き起こす。また、Mg及びMnは、Crと同様にMgP及びMnP等の金属間化合物を晶出させ、材料の加工性を低下させる、このような観点から、これらの金属の含有量は、上限がSnの場合で0.3質量%、Mgの場合で0.15質量%、Mnの場合で0.14質量%にすることが必要である。 Sn, Mg, or Mn has a large solid solubility limit in Cu. In a small amount addition region, Sn, Mg, or Mn is solid-solved in the Cu matrix, and the function of increasing the melting point of the Cu—Zr-based intermetallic compound cannot be obtained. The lower limit of the content is 0.07% by mass for Sn, 0.02% by mass for Mg, and 0.03% by mass for Mn. In addition, when added at a high concentration, the amount discharged to the solidification interface at the time of solidification increases, and the function of increasing the melting point of the Cu-Zr intermetallic compound also increases, but the amount of solid solution in the Cu matrix is increased. Therefore, not only does the conductivity of the alloy strip and the alloy foil decrease, but the strength of the Cu matrix increases, so stress concentrates at the grain boundary during hot working or cold working, and the grain boundary Causes cracking. In addition, Mg and Mn crystallize intermetallic compounds such as Mg 3 P and Mn 3 P in the same manner as Cr and lower the workability of the material. From such a viewpoint, the content of these metals is The upper limit is 0.3% by mass for Sn, 0.15% by mass for Mg, and 0.14% by mass for Mn.

<酸素(O)、水素(H)、硫黄(S)、炭素(C)>
本発明は、銅合金の特性向上のために、構成元素として上記の金属及びリン以外にも、酸素、水素、硫黄及び炭素の含有量を所定量以下に規定する必要がある。以下に、水素、酸素、硫黄及び炭素について、本発明の銅合金の特性に及ぼす影響を説明する。
<Oxygen (O 2 ), Hydrogen (H 2 ), Sulfur (S), Carbon (C)>
In the present invention, in order to improve the properties of the copper alloy, it is necessary to regulate the contents of oxygen, hydrogen, sulfur and carbon below a predetermined amount in addition to the above metals and phosphorus as constituent elements. Below, the influence which it has on the characteristic of the copper alloy of this invention about hydrogen, oxygen, sulfur, and carbon is demonstrated.

本発明のCu−Zr系合金において、鋳塊中の酸素濃度が高い場合は、鋳塊を加工する際の熱処理の工程において、鋳塊中のZr及びMg等の活性元素と酸化合物を形成する内部酸化という現象を引き起こすことがあり、これらの酸化物は、銅合金条及び銅合金箔の表面品質を低下させるだけではなく、圧延時に材料表面に巻き込まれ、欠陥となることがある。そのため、本発明において鋳塊中の酸素濃度は0.00005質量%以下が必要である。鋳塊中の水素も、濃度が高い場合は鋳塊中の酸素と結合しHOとなって焼鈍等の熱処理時に膨張し、内部に存在する微小な欠陥を大きくすることがある。そのため、本発明において水素の濃度は0.0001質量%以下であることが必要である。硫黄は融点が112℃と低融点の金属であり、鋳造時にはもっとも遅く凝固が終了する元素であり、結晶粒界に偏析する形で凝固する。そのため、鋳塊中に硫黄が多く含まれていると、熱間圧延前の加熱時に粒界の硫黄が積に溶解し、粒界を脆化させる。したがって、本発明では、鋳造段階で硫黄成分の濃度を0.0015質量%以下に低減する必要がある。また、Zrは炭化しやすい元素であり、鋳塊中の炭素濃度が高い場合、Zr炭化物が形成され、この炭化物が酸化物同様に銅合金条及び銅抗菌箔の表面欠陥となることがあるので、本発明は炭素濃度を0.0005質量%以下とする必要がある。 In the Cu-Zr alloy of the present invention, when the oxygen concentration in the ingot is high, an active compound and an acid compound such as Zr and Mg in the ingot are formed in the heat treatment step when the ingot is processed. A phenomenon called internal oxidation may be caused, and these oxides not only deteriorate the surface quality of the copper alloy strip and the copper alloy foil, but may be entangled on the surface of the material during rolling and become defects. Therefore, in the present invention, the oxygen concentration in the ingot needs to be 0.00005% by mass or less. When the concentration of hydrogen in the ingot is high, it may combine with oxygen in the ingot to form H 2 O and expand during heat treatment such as annealing, thereby enlarging minute defects existing inside. Therefore, in the present invention, the hydrogen concentration needs to be 0.0001% by mass or less. Sulfur is a metal with a melting point as low as 112 ° C., and is the element that solidifies most slowly during casting, and solidifies in the form of segregating at the grain boundaries. Therefore, if a large amount of sulfur is contained in the ingot, sulfur at the grain boundary dissolves into the product during heating before hot rolling, and the grain boundary becomes brittle. Therefore, in the present invention, it is necessary to reduce the concentration of the sulfur component to 0.0015% by mass or less at the casting stage. In addition, Zr is an element that is easily carbonized, and when the carbon concentration in the ingot is high, Zr carbide is formed, and this carbide may become a surface defect of the copper alloy strip and the copper antibacterial foil as well as the oxide. In the present invention, the carbon concentration needs to be 0.0005 mass% or less.

Cu−Zr系合金は、一般的に図2に示すような連続鋳造方法によって製造する。すなわち、溶解炉3、移送桶4、鋳造桶5及び下降管6を経由してきた鋳塊を鋳型7内に移送した後、鋳塊を鋳型シャワー8によって一次冷却の鋳型冷却を行う。この時に、鋳塊は凝固線12を示しながら冷却される。引き続いて凝固シェルを形成させた後、シャワー冷却水10が噴霧される二次シャワー9によって直接冷却水を噴き付ける二次冷却で鋳塊を完全に凝固させ、室温付近まで冷却することで鋳塊11を製造する。   A Cu-Zr alloy is generally manufactured by a continuous casting method as shown in FIG. That is, the ingot that has passed through the melting furnace 3, the transfer rod 4, the casting rod 5, and the downcomer 6 is transferred into the mold 7, and then the ingot is subjected to primary cooling by the mold shower 8. At this time, the ingot is cooled while showing the solidification line 12. Subsequently, after the solidified shell is formed, the ingot is completely solidified by secondary cooling in which cooling water is directly sprayed by the secondary shower 9 sprayed with the shower cooling water 10, and the ingot is cooled to near room temperature. 11 is manufactured.

本発明の銅合金の製造方法は図2に示す連続鋳造方法によって製造するが、リン含有量が従来よりも少ないために、鋳造中に生じるミクロ偏析の機構が従来の場合と異なっており、従来と同等以上の熱間及び冷間の加工性を確保するためには、連続鋳造時の一次冷却及び二次冷却の両者について各冷却条件を新たに適正化する必要がある。なお、図2には冷却方法としてシャワーを用いる方法が示されているが、本発明はこの方法に限定されるものではない。温度を調整した冷気を用いる方法、又は冷気とシャワーの両者を利用した冷却方法を利用しても良い。   The copper alloy production method of the present invention is produced by the continuous casting method shown in FIG. 2. However, since the phosphorus content is smaller than the conventional one, the microsegregation mechanism generated during casting is different from the conventional case. In order to ensure hot and cold workability equivalent to or better than the above, it is necessary to newly optimize each cooling condition for both primary cooling and secondary cooling during continuous casting. Although FIG. 2 shows a method using a shower as a cooling method, the present invention is not limited to this method. A method using cold air whose temperature is adjusted or a cooling method using both cold air and a shower may be used.

本発明では、一次冷却(凝固時の冷却)及び二次冷却(凝固後の冷却)の温度範囲において適正化を図った各冷却速度の範囲は、次に述べる理由又は根拠に基づいている。   In the present invention, the ranges of the respective cooling rates that are optimized in the temperature ranges of primary cooling (cooling during solidification) and secondary cooling (cooling after solidification) are based on the following reasons or grounds.

<一次冷却(凝固時の冷却)の冷却速度>
一次冷却(凝固時の冷却)時の温度範囲は一律に決めることはできないが、本発明では一次冷却は1100〜960℃の範囲内で行うものとする。この温度範囲で冷却する時に、冷却速度が46℃/分を超えると、Cu−Zr合金を鋳造する時に粗大なCu−CuZr共晶組織が粒界に晶出しやすくなり、熱間及び冷間加工性が低下して製造歩留りが悪くなる。また、20℃/分未満では、鋳型内で十分な厚さの凝固シェルが形成されず、ブレークアウトの危険性が高まると共に、鋳塊の表面に割れが形成されやすくなる。以上の点から、本発明は1100〜960℃の温度範囲における冷却速度を20〜46℃/分にする必要がある。ここで、本発明で規定する冷却速度は、銅合金の鋳造方向に対して垂直な断面で鋳塊の端部から中心方向に凝固が進行する際に、鋳造中に前記端部と中心部分との間で観測される温度の時間変化を測定することによって求めることができる。
<Cooling rate of primary cooling (cooling during solidification)>
Although the temperature range during primary cooling (cooling during solidification) cannot be determined uniformly, in the present invention, primary cooling is performed within a range of 1100 to 960 ° C. When cooling in this temperature range, if the cooling rate exceeds 46 ° C./min, a coarse Cu—Cu 9 Zr 2 eutectic structure is likely to be crystallized at the grain boundaries when casting a Cu—Zr alloy. Cold workability deteriorates and manufacturing yield deteriorates. Moreover, if it is less than 20 degreeC / min, the solidified shell of sufficient thickness will not be formed in a casting_mold | template, but the risk of a breakout will increase and it will become easy to form a crack on the surface of an ingot. From the above points, the present invention needs to set the cooling rate in the temperature range of 1100 to 960 ° C. to 20 to 46 ° C./min. Here, the cooling rate defined in the present invention is such that when solidification proceeds from the end of the ingot to the center in a cross section perpendicular to the casting direction of the copper alloy, It can be obtained by measuring the time change of the temperature observed between.

<二次冷却(凝固後の冷却)の冷却速度>
同様に、二次冷却(凝固後の冷却)時の温度範囲も一律に決めることはできないが、本発明では二次冷却を960〜500℃の範囲内で行うものとする。凝固後の鋳塊をこの温度範囲で冷却する時に冷却速度が87℃/分を超えると、鋳塊中心部と鋳塊端部の温度差が大きくなり、大きな鋳造ひずみが生じる。その場合は、粒界の脆化よりも粒界に働く応力により鋳塊が割れた状態で鋳造されている。また、冷却速度が60℃/分未満では、鋳塊が十分に冷えず、鋳型下で再溶融してしまい、その部分で溶質(Zr)が高濃度化することがあり、最終的には粗大なCu−CuZr共晶組織が粒界に晶出し、粒界割れが発生する。以上の点から、本発明は960〜500℃の温度範囲における冷却速度を60〜87℃/分にする必要がある。二次冷却の冷却速度は、上記で述べたように、一次冷却の場合と同じ方法で求めることができる。
<Cooling rate of secondary cooling (cooling after solidification)>
Similarly, the temperature range during secondary cooling (cooling after solidification) cannot be determined uniformly, but in the present invention, secondary cooling is performed within a range of 960 to 500 ° C. If the cooling rate exceeds 87 ° C./min when the ingot after solidification is cooled in this temperature range, the temperature difference between the center portion of the ingot and the end portion of the ingot becomes large, resulting in large casting distortion. In that case, the ingot is cracked by the stress acting on the grain boundary rather than the embrittlement of the grain boundary. In addition, when the cooling rate is less than 60 ° C./min, the ingot may not be sufficiently cooled and may be remelted under the mold, and the solute (Zr) may be highly concentrated at that portion, and eventually coarse. A Cu—Cu 9 Zr 2 eutectic structure crystallizes at the grain boundary, and grain boundary cracking occurs. From the above points, the present invention needs to set the cooling rate in the temperature range of 960 to 500 ° C. to 60 to 87 ° C./min. As described above, the cooling rate of the secondary cooling can be obtained by the same method as in the case of the primary cooling.

本発明の銅合金は、図2に示す連続鋳造工程を経て製造された鋳造直後の段階で、結晶粒界に存在するミクロ偏析であるCu−Zr系介在物(Cu−CuZr共晶組織及びCuZr単体を意味する)が小さくなるだけではなく、結晶粒界での生成も抑制される。それによって、Cu−Zr系介在物は、小さい形状のままで結晶粒内に存在することとなる。結晶粒径及び結晶粒内に存在するCu−Zr系介在物は、走査電子顕微鏡を用いてエネルギー分散X線分光法(SEM−EDX)によってCu−Zr系介在物を同定した後、その大きさを測定することができる。Cu−Zr系介在物の大きさは、銅合金試料のランダムに測定した5カ所について観測されたSEM−EDX写真に写った全てのCu−Zr系介在物について、その長さと幅又は直径を実測し、倍率をかけて平均化することで得る。 The copper alloy of the present invention is a Cu—Zr-based inclusion (Cu—Cu 9 Zr 2 eutectic) which is a microsegregation present in the grain boundary at the stage immediately after casting produced through the continuous casting process shown in FIG. This means not only the structure and Cu 9 Zr 2 alone, but also the generation at the grain boundaries is suppressed. Thereby, Cu—Zr-based inclusions are present in the crystal grains with a small shape. The crystal grain size and the Cu-Zr inclusions present in the crystal grains are identified after the Cu-Zr inclusions are identified by energy dispersive X-ray spectroscopy (SEM-EDX) using a scanning electron microscope. Can be measured. As for the size of the Cu-Zr inclusions, the length, width, or diameter of all the Cu-Zr inclusions in the SEM-EDX photographs observed at five randomly measured copper alloy samples were measured. And averaging by multiplying by magnification.

本願発明の効果を奏するためのCu−Zr系介在物の大きさとしては、結晶粒界において、長さの平均値が5〜20μmで、幅の平均値が1〜5μmの範囲にあることが好ましい。長さと幅の平均値がそれぞれ5μm未満と1μm未満である場合は、銅合金の強度を向上させるための析出効果が得られない。また、長さと幅の平均値がそれぞれ20μmと5μmを超えると、ミクロ偏析物が大きいことを意味し、銅合金の強度の向上が十分に得られないだけでなく、伸びの低下が顕著になる。また、結晶粒内に存在するCu−Zr系介在物は一般的に球状に近い形状で存在するため、その大きさは直径が2〜10μmの範囲であれば本願発明の効果を奏することができる。直径が2μm未満の場合は、Zrの析出によって銅合金の強度を向上させるという効果が十分に得られず、10μmを超えると、結晶粒界へのミクロ偏析を促進させることとなり、強度、伸び及び加工性等の特性のバランスをとることが困難になる。   The size of the Cu-Zr inclusions for achieving the effect of the present invention is that the average length is 5 to 20 μm and the average width is 1 to 5 μm at the grain boundaries. preferable. When the average values of length and width are less than 5 μm and less than 1 μm, respectively, the precipitation effect for improving the strength of the copper alloy cannot be obtained. On the other hand, if the average values of length and width exceed 20 μm and 5 μm, respectively, it means that the microsegregated material is large, and not only the strength of the copper alloy cannot be sufficiently improved, but also the decrease in elongation becomes remarkable. . Further, since the Cu-Zr inclusions present in the crystal grains are generally present in a shape close to a sphere, the effect of the present invention can be achieved if the size is in the range of 2 to 10 μm in diameter. . When the diameter is less than 2 μm, the effect of improving the strength of the copper alloy by precipitation of Zr is not sufficiently obtained, and when it exceeds 10 μm, microsegregation to the grain boundary is promoted, and the strength, elongation and It becomes difficult to balance characteristics such as workability.

本発明のCu−Zr合金は、強度、伸び及び導電率に優れる。すなわち、引張強さが520N/mm以上、好ましくは550N/mm以上、伸びが3%以上、及び導電率が60%IACS以上である銅合金である。従来のCu−Zr系合金は、引張強さが370〜440N/mm、伸びが1.6〜2.2、及び導電率が60%IACS未満の範囲である。従来のCu−Zr系合金を用いて特性向上を図る場合は、これら3つの特性をすべて向上させることは困難であるのに対して、本願発明の構成を有するCu−Zr系合金はこれらの特性のすべてをバランス良く向上できる点で大きな特徴を有する。銅合金を高性能の電気・電子部品用の銅合金条又は銅合金箔として適用する場合には、強度、伸び及び導電率のすべてについて上記の範囲を満たすことが不可欠である。 The Cu—Zr alloy of the present invention is excellent in strength, elongation and electrical conductivity. That is, a copper alloy having a tensile strength of 520 N / mm 2 or more, preferably 550 N / mm 2 or more, an elongation of 3% or more, and a conductivity of 60% IACS or more. Conventional Cu—Zr alloys have a tensile strength of 370 to 440 N / mm 2 , an elongation of 1.6 to 2.2, and a conductivity of less than 60% IACS. When improving the characteristics using a conventional Cu-Zr alloy, it is difficult to improve all three characteristics, whereas the Cu-Zr alloy having the structure of the present invention has these characteristics. It has a great feature in that it can improve all in good balance. When a copper alloy is applied as a copper alloy strip or copper alloy foil for high-performance electric / electronic parts, it is essential to satisfy the above ranges for all of strength, elongation and conductivity.

本初明の銅合金を用いて製造される銅合金条又は銅合金箔の製造工程を図4に示す。銅合金を構成する各元素は所定の配合量で配合されて均一な組成物とした後、真空溶解炉にて溶製し、図2に示すように、Arガス等の不活性ガスを充填したい移送桶を介して鋳型まで溶湯を移送し、連続鋳造によって所定の形状サイズの鋳塊を作製する。その後、高温で鋳塊を加熱し、その状態で熱間圧延を施す。次に、冷間圧延工程に進め、引き続いて低温焼鈍、仕上げ圧延及び時効熱処理を施して、所定の厚さを有する銅合金箔を製造する。こうして得られた箔をそのまま、若しくは再加工処理を施して所定の厚さと形状を有する電気・電子部品用の銅合金条又は銅合金箔として得ることができる。   FIG. 4 shows a manufacturing process of a copper alloy strip or copper alloy foil that is manufactured using the present copper alloy. Each element constituting the copper alloy is blended in a predetermined blending amount to obtain a uniform composition, and then melted in a vacuum melting furnace and filled with an inert gas such as Ar gas as shown in FIG. The molten metal is transferred to a mold through a transfer rod, and an ingot of a predetermined shape size is produced by continuous casting. Thereafter, the ingot is heated at a high temperature, and hot rolling is performed in that state. Next, the process proceeds to a cold rolling process, followed by low temperature annealing, finish rolling and aging heat treatment to produce a copper alloy foil having a predetermined thickness. The foil thus obtained can be obtained as it is or after being subjected to a rework process as a copper alloy strip or copper alloy foil for electric / electronic parts having a predetermined thickness and shape.

図4に示す工程を経て製造される本発明の銅合金条又は銅合金箔は、半導体や電池等の高品質な電気・電子部品用として適用する際に、特性、形状及び厚さ等の均一性や均質性を高めるために、表面及び内部の欠陥を極力少なくする必要がある。本発明において、表面欠陥は、所定の長さ、幅及び厚さの銅合金を用いて、その表面を50〜400倍の顕微鏡を用いて観察して測定することができる。また、内部欠陥は、同じ形状の銅合金について超音波探傷装置を用いて測定することができる。本発明の銅合金条又は銅合金箔は、厚さ0.02mmにおいて、幅が0.005mm以上及び長さが0.1mm以上である表面欠陥が圧延方向に対して0.01〜0.0001個/mの範囲であり、且つ、幅が0.001mm以上及び長さが0.01mm以上である内部欠陥が0.1〜0.005個/mの範囲であることが好ましい。幅と長さが上記の範囲にある表面欠陥及び内部欠陥の個数が、それぞれ0.01個/m及び0.1個/mを超えて存在すると、銅合金の特性のバラツキが見られるため、高性能の電気・電子用部品用として使用するには厳重な検査が必要となり、電気・電子製品によっては部品の製造が安定しない場合がある。また、面欠陥及び内部欠陥の個数がそれぞれ0.0001個/m未満及び0.005個/m未満の場合は、表面欠陥及び内部欠陥がほとんど見られず特性に対する影響は全く無いが、銅合金条又は銅合金箔の製造コストが大幅に増大する。 The copper alloy strip or copper alloy foil of the present invention produced through the process shown in FIG. 4 is uniform in characteristics, shape, thickness, etc. when applied for high-quality electrical / electronic parts such as semiconductors and batteries. In order to improve the property and homogeneity, it is necessary to reduce the surface and internal defects as much as possible. In the present invention, surface defects can be measured by observing the surface of a copper alloy having a predetermined length, width and thickness using a 50 to 400 magnification microscope. Moreover, an internal defect can be measured about the copper alloy of the same shape using an ultrasonic flaw detector. The copper alloy strip or copper alloy foil of the present invention has a surface defect having a thickness of 0.02 mm, a width of 0.005 mm or more and a length of 0.1 mm or more with respect to the rolling direction of 0.01 to 0.0001. It is preferable that the number of internal defects is in the range of 0.1 to 0.005 pieces / m 3 in a range of pieces / m 2 and a width of 0.001 mm or more and a length of 0.01 mm or more. If the number of surface defects and internal defects whose width and length are in the above ranges exceeds 0.01 / m 2 and 0.1 / m 3 , respectively, variation in characteristics of the copper alloy is observed. Therefore, strict inspection is required for use as a high-performance electrical / electronic component, and the manufacture of the component may not be stable depending on the electrical / electronic product. Further, when the number of surface defects and internal defects is less than 0.0001 / m 2 and less than 0.005 / m 3, respectively, surface defects and internal defects are hardly seen, and there is no influence on the characteristics, The manufacturing cost of the copper alloy strip or copper alloy foil is greatly increased.

以下、本発明を実施例及び比較例によって具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to a following example.

[実施例1〜12、比較例1〜11]
表1に示す各成分の配合割合を有する合金を真空溶解炉にて溶製し、図2に示すように、Arガスを充填したい移送桶を介して鋳型まで溶湯を移送し、連続鋳造によって180×480×6000(mm)のサイズの鋳塊を作製した。連続鋳造時において1100〜960℃の範囲における一次冷却(凝固時の冷却)速度と960〜500℃の範囲における二次冷却(凝固後の冷却)速度は、表1に示すような条件に設定した。一次冷却速度と二次冷却速度は、鋳造を始めてから40分経過後に熱電対を鋳型中の溶湯の中心部と端部に鋳込み、鋳造中の温度の時間変化を測定して求めた。また、表1に示す各合金について、鋳造直後の段階での、酸素(O)、水素(H)、硫黄(S)及び炭素(C)の濃度を表2に示す。その後、連続鋳造によって作製された鋳塊を900℃まで加熱し、その状態で熱間圧延を施した。熱間圧延時の割れは、圧延後の合金板の表面を目視で確認し、割れの判定を行った。この時点で、次の冷間圧延工程に進められない材料は、この時点で加工を終了し、その後の評価は行わなかった。熱間圧延で割れが無いか、微小な割れに留まったもののみ次の冷間圧延工程に進め、冷間圧延後の合金板の表面の割れを熱間圧延時と同様に目視で判定した。さらに、焼鈍、仕上げ圧延、時効熱処理を施し、最終材(板厚0.02mm)を作製した。
[Examples 1 to 12, Comparative Examples 1 to 11]
An alloy having a blending ratio of each component shown in Table 1 is melted in a vacuum melting furnace, and as shown in FIG. 2, the molten metal is transferred to a mold through a transfer rod to be filled with Ar gas. An ingot having a size of × 480 × 6000 (mm) was produced. The primary cooling (cooling during solidification) rate in the range of 1100-960 ° C. and the secondary cooling (cooling after solidification) rate in the range of 960-500 ° C. were set to the conditions shown in Table 1 during continuous casting. . The primary cooling rate and the secondary cooling rate were obtained by casting thermocouples at the center and end of the molten metal in the mold after 40 minutes from the start of casting, and measuring changes in temperature during casting. Table 2 shows the concentrations of oxygen (O 2 ), hydrogen (H 2 ), sulfur (S), and carbon (C) at the stage immediately after casting for each alloy shown in Table 1. Then, the ingot produced by continuous casting was heated to 900 degreeC, and it hot-rolled in the state. The crack at the time of hot rolling checked the surface of the alloy plate after rolling visually, and determined the crack. At this point, the material that could not proceed to the next cold rolling process was finished at this point and no further evaluation was performed. Only those that were not cracked by hot rolling or remained small cracks were advanced to the next cold rolling step, and cracks on the surface of the alloy sheet after cold rolling were visually determined in the same manner as during hot rolling. Furthermore, annealing, finish rolling, and aging heat treatment were performed to produce a final material (plate thickness 0.02 mm).

このようにして得られた各合金板材について、引張強度、伸び及び導電率を次に示す方法によって評価した。また、連続鋳造工程後に得られた各銅合金において、結晶粒界及び結晶粒内に存在するCu−Zr系介在物(Cu−CuZr共晶組織及びCuZr単体)の大きさ、及び加工後の最終材の表面と内面の欠陥についても次に示す方法によって求めた。
(1)引張強度と伸び:JIS−Z 2241に準じて測定した。
(2)導電率:JIS−H 0505に準じて測定した。
(3)表面欠陥:前記の最終材から長さ10cm及び幅10cmに切りだして、その表面を200倍の顕微鏡を用いて観察した。
(4)Cu−Zr系介在物の大きさ:銅合金試料のランダムな5カ所について走査電子顕微鏡を用いてエネルギー分散X線分光法(SEM−EDX)によってCu−Zr系介在物を同定した後、SEM−EDX写真に写った全てのCu−Zr系介在物の長さと幅又は直径を実測した後、倍率をかけて平均化することで得た。
(5)内部欠陥:前記の最終材から長さ10cm及び幅10cmに切りだして、超音波探傷測定装置を用いて内部欠陥を観察した。
Each alloy plate thus obtained was evaluated for tensile strength, elongation and electrical conductivity by the following methods. Moreover, in each copper alloy obtained after the continuous casting step, the size of the Cu—Zr-based inclusions (Cu—Cu 9 Zr 2 eutectic structure and Cu 9 Zr 2 simple substance) existing in the grain boundaries and in the crystal grains Further, defects on the surface and the inner surface of the final material after processing were also determined by the following method.
(1) Tensile strength and elongation: Measured according to JIS-Z 2241.
(2) Conductivity: measured according to JIS-H 0505.
(3) Surface defect: The above-mentioned final material was cut into a length of 10 cm and a width of 10 cm, and the surface was observed using a 200 × microscope.
(4) Size of Cu-Zr inclusions: After identifying Cu-Zr inclusions by energy dispersive X-ray spectroscopy (SEM-EDX) using a scanning electron microscope at five random locations of a copper alloy sample The lengths, widths, and diameters of all Cu-Zr inclusions in the SEM-EDX photographs were measured and then averaged by multiplying them.
(5) Internal defect: The above-mentioned final material was cut into a length of 10 cm and a width of 10 cm, and the internal defect was observed using an ultrasonic flaw detector.

表1に示す各元素の配合割合と製造条件を用いて作製された銅合金の物性と特性の評価結果を表3及び表4に示す。   Tables 3 and 4 show the evaluation results of the physical properties and characteristics of the copper alloys prepared using the blending ratios and manufacturing conditions of the respective elements shown in Table 1.

Figure 2012097327
Figure 2012097327

Figure 2012097327
Figure 2012097327

Figure 2012097327
Figure 2012097327

Figure 2012097327
Figure 2012097327

表1に示すように、実施例1〜8はZr濃度を増加させていき、Cr、Sn、Mg、Mn、Co、Znの中から3種類若しくは4種類の元素を添加した。また、実施例1〜8は、一次冷却(凝固時の冷却)速度と二次冷却(凝固後の冷却)速度が、それぞれ20〜46℃/分及び60〜87℃/分の範囲に含まれる条件で製造した。実施例9は、二次冷却速度が前記の範囲に含まれるものの、一次冷却速度を52℃/分と大きく設定して鋳造した。実施例10は、一次冷却速度が前記の範囲に含まれるものの、二次冷却速度を116分/分と大きく設定して鋳造した。また、実施例11は、一時冷却及び二次冷却のどちらも前記の範囲より大きくして鋳造した。   As shown in Table 1, in Examples 1 to 8, the Zr concentration was increased, and three or four elements were added from Cr, Sn, Mg, Mn, Co, and Zn. In Examples 1 to 8, the primary cooling (cooling during solidification) rate and the secondary cooling (cooling after solidification) rate are included in the ranges of 20 to 46 ° C / min and 60 to 87 ° C / min, respectively. Manufactured under conditions. In Example 9, although the secondary cooling rate was included in the above range, casting was performed with the primary cooling rate set as large as 52 ° C./min. In Example 10, although the primary cooling rate was included in the above range, casting was performed with the secondary cooling rate set large as 116 minutes / minute. In Example 11, casting was performed with both the temporary cooling and the secondary cooling being larger than the above ranges.

表3及び表4から分かるように、実施例1〜8の合金は、すべての鋳塊で鋳造割れ及び熱間圧延での割れは発生しなかった。また、冷間圧延においても、鋳塊の中心部及び割れは全く確認されず、良好な加工性を示した。Cu−Zr介在物は結晶粒界及び結晶粒内において適正な値を有しており、最終材の表面及び内面の欠陥もなかった。実施例9は、ZrとP、さらに添加成分であるCr、Sn、Mg、Mn、Co又はZnの含有量は本発明の範囲内であるが、一次冷却速度を大きくしたことで、鋳塊に微小割れが観測された。そのため、微小割れが観測された部分を極力除くような形状で各種特性評価用サンプルを作製して、特性評価を行った。引張強度、伸び及び導電率は従来よりも良好な特性を示したが、Cu−Zr介在物の大きさが結晶粒界及び結晶粒内において大きくなっており、最終品における表面及び内部の欠陥数は多くなる傾向にあるが、実用上問題となるレベルではない。また、実施例10及び実施例11においても同じ傾向が見られており、特に、実施例11は一次冷却及び二次冷却速度がどちらも大きく設定して鋳造したため、本願発明の効果をやっと達成できる状態であった。なお、実施例9〜11の鋳塊に見られる微小割れは、冷却時の発生するひずみに起因するものと考えられる。このように、実施例9〜11の銅合金は、製造時に微小割れが発生しやすく、製造歩留りを低下させて生産性を十分に向上させることができない場合がある。   As can be seen from Tables 3 and 4, in the alloys of Examples 1 to 8, no casting cracks or hot rolling cracks occurred in all the ingots. Also in the cold rolling, the center part and cracks of the ingot were not confirmed at all, and good workability was shown. The Cu—Zr inclusions had appropriate values in the crystal grain boundaries and in the crystal grains, and there were no defects on the surface and the inner surface of the final material. In Example 9, the contents of Zr and P, and additional components Cr, Sn, Mg, Mn, Co, or Zn are within the scope of the present invention. Small cracks were observed. Therefore, various samples for characteristic evaluation were prepared in such a shape that a portion where a micro crack was observed was excluded as much as possible, and the characteristics were evaluated. Tensile strength, elongation, and conductivity showed better characteristics than before, but the size of Cu-Zr inclusions was larger at the grain boundaries and within the grains, and the number of surface and internal defects in the final product. Tends to increase, but is not at a practically problematic level. In addition, the same tendency is observed in Example 10 and Example 11, and in particular, Example 11 was cast with both the primary cooling and the secondary cooling rate set large, so that the effect of the present invention can be finally achieved. It was in a state. In addition, it is thought that the micro crack seen in the ingot of Examples 9-11 originates in the distortion which generate | occur | produces at the time of cooling. As described above, in the copper alloys of Examples 9 to 11, microcracks are likely to occur during production, and the production yield may not be lowered and the productivity may not be sufficiently improved.

実施例12は、Zr、P及び微量の金属成分の添加量を適正化しているため、表3に示す引張強さ、伸び及び導電率は目標値を上回った。一方で、表2に示すようにO、H、S及びCの含有量がやや多い銅合金であったため、表4に示すように、最終材の表面及び内部の欠陥が多くなった。そのため、実施例12の銅合金を高性能の電気・電子製品用として使用するには、実施例1〜11の銅合金より表面及び内部の欠陥の有無について厳重な検査工程が必要となる場合がある。なお、実施例12において、O、H、S及びCの含有量がやや多くなった理由はCu以外の金属元素の総添加量が多いためであると考えられるが、詳細は不明である。このように、本発明では、銅合金条又は銅合金箔の表面及び内部の欠陥を低減するために、Cu−Zr介在物の大きさを制御するだけではなく、該銅合金中のO、H、S及びCの含有量を低減することが好ましい。 In Example 12, since the addition amounts of Zr, P, and a small amount of metal components were optimized, the tensile strength, elongation, and conductivity shown in Table 3 exceeded the target values. On the other hand, as shown in Table 2, since it was a copper alloy with slightly higher contents of O 2 , H 2 , S and C, as shown in Table 4, the surface and internal defects of the final material increased. Therefore, in order to use the copper alloy of Example 12 for high-performance electric and electronic products, a stricter inspection process may be required for the presence or absence of surface and internal defects than the copper alloy of Examples 1-11. is there. In Example 12, the reason why the contents of O 2 , H 2 , S, and C are slightly increased is considered to be because the total amount of metal elements other than Cu is large, but details are unknown. . Thus, in the present invention, in order to reduce defects on the surface and the interior of the copper alloy strip or copper alloy foil, not only the size of the Cu-Zr inclusions but also the O 2 in the copper alloy, It is preferable to reduce the contents of H 2 , S and C.

比較例1〜4は、Zr及びP以外の成分の添加量が小さい鋳塊を鋳造し、冷却条件は適正な範囲内で鋳造を行って、実施例と同様の評価を行った。表3に示すように、この条件では鋳造直後に段階で鋳塊横断面に割れが発生した。比較例1は、実施例9〜11と同様に鋳塊の割れが微小であったため熱間圧延を実施したが、その工程で大きな割れが発生してしまい、その後の加工を断念した。比較例1は合金組成が適正化されていなかったために、加工時に割れが進展したものと考えられる。このように、比較例1〜4は、微量成分の添加によるZrの偏析抑制の効果が十分に得られていない。   In Comparative Examples 1 to 4, cast ingots with small amounts of components other than Zr and P were cast, and cooling was performed within an appropriate range, and the same evaluation as in Examples was performed. As shown in Table 3, under these conditions, cracks occurred in the ingot cross section immediately after casting. In Comparative Example 1, hot rolling was performed because cracks in the ingot were minute as in Examples 9 to 11, but large cracks were generated in the process, and subsequent processing was abandoned. In Comparative Example 1, since the alloy composition was not optimized, it is considered that cracks developed during processing. Thus, in Comparative Examples 1 to 4, the effect of suppressing the segregation of Zr due to the addition of a trace component is not sufficiently obtained.

比較例5〜7は、Zr及びP以外の成分の添加量が多い鋳塊を鋳造し、冷却条件は適正な範囲内で鋳造を行って、実施例と同様の評価を行った。表3に示すように、この条件では鋳塊の割れは発生しなかったが、熱間圧延及び冷間圧延で割れが発生した。これらの鋳塊は添加した微量金属元素とPが化合物を形成し、熱間圧延及び冷間圧延での割れが起点となったか、又はMg、Sn、Mn等の元素の固溶量が大きくなりすぎ、圧延時のひずみによる応力が粒界に集中したためであると考えられる。   In Comparative Examples 5 to 7, cast ingots with a large amount of components other than Zr and P were cast, and casting was performed within an appropriate range of cooling conditions, and the same evaluation as in Examples was performed. As shown in Table 3, ingot cracking did not occur under these conditions, but cracking occurred during hot rolling and cold rolling. In these ingots, the added trace metal element and P form a compound, and cracking in hot rolling and cold rolling is the starting point, or the amount of solid solution of elements such as Mg, Sn, and Mn increases. This is considered to be because stress due to strain during rolling was concentrated at the grain boundaries.

比較例8〜9もZr及びP以外の金属元素の添加量は多いが、鋳塊の割れ、熱間圧延及び冷間圧延において割れは発生せず、良好な加工性を示した。また、Cu−Zr介在物は結晶粒界及び結晶粒内において適正な値を有しており、最終材の表面及び内面の欠陥もなかった。しかし、Cu−Zr介在物は大きくないものの、Mg、Sn、Mn等の元素の固溶量が多く、導電率が目標値を下回り、伸びも大きく低下した。   In Comparative Examples 8 to 9, although the amount of addition of metal elements other than Zr and P was large, cracks did not occur in ingot cracking, hot rolling and cold rolling, and good workability was exhibited. Further, the Cu—Zr inclusions had appropriate values in the crystal grain boundaries and in the crystal grains, and there were no defects on the surface and the inner surface of the final material. However, although Cu—Zr inclusions are not large, the amount of solid solution of elements such as Mg, Sn, and Mn is large, the conductivity is lower than the target value, and the elongation is also greatly reduced.

比較例10は、Zr及びP以外に副成分として添加した金属元素が2種類である。表3に示すように、2種類の金属元素の添加ではZrの偏析抑制の効果が十分に得られておらず、鋳塊に微小割れが発生しており、銅合金の導電率及び伸びも期待したほどには向上していない。Zrの偏析抑制の効果が不十分なことは、表4に示すように、結晶粒界及び結晶粒内でCu−Zr介在物が大きくなっていることからも分かる。そのため、最終材の表面及び内面の欠陥が多くなっている。   In Comparative Example 10, there are two types of metal elements added as subcomponents in addition to Zr and P. As shown in Table 3, the effect of suppressing the segregation of Zr is not sufficiently obtained by adding two kinds of metal elements, microcracks are generated in the ingot, and the conductivity and elongation of the copper alloy are also expected. It has not improved as much as I did. The fact that the effect of suppressing the segregation of Zr is insufficient can also be seen from the fact that Cu-Zr inclusions are large in the crystal grain boundaries and crystal grains as shown in Table 4. Therefore, there are many defects on the surface and inner surface of the final material.

比較例11は、Pの含有量を多くして鋳造した銅合金であり、表2に示すように硫黄(S)の含有量がわずかではあるが高くなった。これは、P中の不純物に起因するとも考えられるが、詳細は不明である。表3に示すように、Pの含有量が多い銅合金は、本発明の銅合金ほどには伸びと導電率の向上することができず、特性のバランスをとることが難しい。また、表4に示すように、結晶粒界及び結晶粒内のCu−Zr介在物が大きくなり、加えて、最終材の表面及び内部の欠陥を低減することが困難である。   Comparative Example 11 was a copper alloy cast with an increased P content. As shown in Table 2, the content of sulfur (S) was slightly higher. This is thought to be due to impurities in P, but details are unknown. As shown in Table 3, a copper alloy having a high P content cannot improve elongation and conductivity as much as the copper alloy of the present invention, and it is difficult to balance the characteristics. Moreover, as shown in Table 4, the crystal grain boundaries and Cu—Zr inclusions in the crystal grains become large, and in addition, it is difficult to reduce defects on the surface and inside of the final material.

表5に、本発明の銅合金と従来のCu−Zr系合金との特性を比較した結果を示す。本発明により、従来よりも高濃度のZrを添加した銅合金が得られるだけではなく、Cr、Sn、Mg、Mn、Co、Znから少なくとも3種類以上の金属元素を添加することにより、従来製品よりも引張強さ、伸びおよび導電率が向上する。   Table 5 shows the result of comparing the characteristics of the copper alloy of the present invention and the conventional Cu-Zr alloy. According to the present invention, not only a copper alloy added with a higher concentration of Zr than conventional ones can be obtained, but also by adding at least three kinds of metal elements from Cr, Sn, Mg, Mn, Co, and Zn, More improved tensile strength, elongation and electrical conductivity.

Figure 2012097327
Figure 2012097327

さらに、Pの含有量を従来よりも少なくした本発明の銅合金の元素組成において、銅合金の製造条件を最適化することによって、その熱間及び冷間の加工性を向上させて製造歩留りの低減を防止して高い生産性を確保できる。そのため、本発明の銅合金によって製造される銅合金条及び箔は、電気・電子部品用として有用性が極めて高い。   Furthermore, in the elemental composition of the copper alloy of the present invention in which the P content is less than that of the prior art, by optimizing the production conditions of the copper alloy, the hot and cold workability is improved and the production yield is improved. High productivity can be secured by preventing reduction. Therefore, the copper alloy strip and foil produced by the copper alloy of the present invention are extremely useful for electric / electronic parts.

1・・・Cu−CuZr共晶組織、2・・・Cu母相、3・・・溶解炉、4・・・移送桶、5・・・鋳造桶、6・・・下降管、7・・・鋳型、8・・・鋳型シャワー、9・・・2次シャワー、10・・・シャワー冷却水、11・・・鋳塊、12・・・凝固線(モルテンプール)、13・・・溶湯。 1 ··· Cu-Cu 9 Zr 2 eutectic structure, 2 ... Cu matrix phase, 3 ... melting furnace, 4 ... transporting tubs, 5 ... casting trough, 6 ... downcomer, 7 ... mold, 8 ... mold shower, 9 ... secondary shower, 10 ... shower cooling water, 11 ... ingot, 12 ... solidification line (molten pool), 13 ... -Molten metal.

Claims (6)

質量組成で必須成分としてZr:0.01〜0.28%及びP:0.0001〜0.0012%を含有し、さらに添加成分としてCr:0.03〜4%、Sn:0.07〜3%、Mg:0.02〜0.15%、Mn:0.03〜0.14%、Co:0.02〜0.12%、Zn:0.04〜0.1%の中から少なくとも3種類以上の元素を有し、残部がCuと不可避不純物からなることを特徴とする熱間及び冷間加工性を向上させた銅合金。   It contains Zr: 0.01-0.28% and P: 0.0001-0.0012% as essential components in the mass composition, and Cr: 0.03-4%, Sn: 0.07- as additional components 3%, Mg: 0.02-0.15%, Mn: 0.03-0.14%, Co: 0.02-0.12%, Zn: 0.04-0.1% A copper alloy having improved hot and cold workability, comprising three or more elements, the balance being Cu and inevitable impurities. 前記銅合金は、連続鋳造工程で製造され、製造された銅合金鋳塊の酸素、水素、硫黄及び炭素の濃度が、それぞれ酸素:0.0005%質量以下、水素:0.0001質量%以下、硫黄:0.0015質量%以下、炭素:0.0005質量%以下であることを特徴とする請求項1に記載の熱間及び冷間加工性を向上させた銅合金。   The copper alloy is produced by a continuous casting process, and the concentrations of oxygen, hydrogen, sulfur and carbon in the produced copper alloy ingot are oxygen: 0.0005% by mass or less, hydrogen: 0.0001% by mass or less, The copper alloy with improved hot and cold workability according to claim 1, wherein sulfur: 0.0015 mass% or less, carbon: 0.0005 mass% or less. 前記銅合金は、鋳造直後の段階で結晶粒界に存在するCu−Zr系介在物(Cu−CuZr共晶組織及びCuZr単体)の長さ及び幅の平均値がそれぞれ5〜20μm及び1〜5μmであり、結晶粒内に存在するCu−Zr系介在物(Cu−CuZr共晶組織及びCuZr単体)の直径の平均値が2〜10μmであることを特徴とする請求項2に記載の熱間及び冷間加工性を向上させた銅合金。 In the copper alloy, the average values of the length and width of Cu—Zr-based inclusions (Cu—Cu 9 Zr 2 eutectic structure and Cu 9 Zr 2 alone) existing at the grain boundaries immediately after casting are 5 respectively. The average value of the diameters of Cu-Zr inclusions (Cu-Cu 9 Zr 2 eutectic structure and Cu 9 Zr 2 alone) existing in the crystal grains is 2 to 10 µm. The copper alloy having improved hot and cold workability according to claim 2. 請求項1〜3の何れかに記載の銅合金であって、前記銅合金を構成する各元素成分からなる溶銅を溶製し、凝固される段階の1100〜960℃の温度範囲において、鋳造方向に対して垂直な断面で鋳塊の端部から中心方向に凝固が進行する際の一次冷却速度が20〜46℃/分であり、凝固が終了してから冷却される段階の960〜500℃において、鋳造方向に対して垂直な断面で鋳塊の端部から中心方向に冷却が進行する際の二次冷却速度が60〜87℃/分であることを特徴とする熱間及び冷間加工性を向上させた銅合金。   It is a copper alloy in any one of Claims 1-3, Comprising: In the temperature range of 1100-960 degreeC of the stage which melts the molten copper which consists of each element component which comprises the said copper alloy, and is solidified, casting The primary cooling rate when solidification proceeds from the end of the ingot to the center direction in a cross section perpendicular to the direction is 20 to 46 ° C./min, and is 960 to 500 in the stage of cooling after solidification is completed. At ℃, the secondary cooling rate when cooling proceeds from the end of the ingot to the center in a cross section perpendicular to the casting direction is 60 to 87 ° C / min. Copper alloy with improved workability. 引張り強さが550N/mm以上、伸びが3%以上、及び導電率が60%IACS以上であることを特徴とする請求項1〜4の何れかに記載の熱間及び冷間加工性を向上させた銅合金。 The hot and cold workability according to claim 1, wherein the tensile strength is 550 N / mm 2 or more, the elongation is 3% or more, and the conductivity is 60% IACS or more. Improved copper alloy. 請求項1〜5の何れかに記載の銅合金を、熱間圧延→冷間圧延→焼鈍→冷間圧延→時効熱処理の工程を経て製造される銅合金条又は銅合金箔であって、前記銅合金条又は銅合金箔の厚さ0.02mmにおいて、幅が0.005mm以上及び長さが0.1mm以上である表面欠陥が前記銅合金条又は銅合金箔の圧延方向に対して0.01〜0.0001個/mであり、且つ、幅が0.001mm以上及び長さが0.01mm以上である内部欠陥が0.1〜0.005個/mであることを特徴とする銅合金条又は銅合金箔。 The copper alloy according to any one of claims 1 to 5, wherein the copper alloy strip or the copper alloy foil is manufactured through a process of hot rolling → cold rolling → annealing → cold rolling → aging heat treatment, When the thickness of the copper alloy strip or copper alloy foil is 0.02 mm, a surface defect having a width of 0.005 mm or more and a length of 0.1 mm or more is 0. 0 mm relative to the rolling direction of the copper alloy strip or copper alloy foil. The number of internal defects is 01 to 0.0001 pieces / m 2 , the width is 0.001 mm or more, and the length is 0.01 mm or more, and is characterized by 0.1 to 0.005 pieces / m 3. Copper alloy strip or copper alloy foil.
JP2010246283A 2010-11-02 2010-11-02 Copper alloy with improved hot and cold workability, method for producing the same, and copper alloy strip or alloy foil obtained from the copper alloy Active JP5555135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010246283A JP5555135B2 (en) 2010-11-02 2010-11-02 Copper alloy with improved hot and cold workability, method for producing the same, and copper alloy strip or alloy foil obtained from the copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010246283A JP5555135B2 (en) 2010-11-02 2010-11-02 Copper alloy with improved hot and cold workability, method for producing the same, and copper alloy strip or alloy foil obtained from the copper alloy

Publications (2)

Publication Number Publication Date
JP2012097327A true JP2012097327A (en) 2012-05-24
JP5555135B2 JP5555135B2 (en) 2014-07-23

Family

ID=46389569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010246283A Active JP5555135B2 (en) 2010-11-02 2010-11-02 Copper alloy with improved hot and cold workability, method for producing the same, and copper alloy strip or alloy foil obtained from the copper alloy

Country Status (1)

Country Link
JP (1) JP5555135B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5739044B1 (en) * 2014-06-16 2015-06-24 株式会社Shカッパープロダクツ Copper alloy foil for negative electrode current collector of secondary battery, method for producing copper alloy foil for negative electrode current collector of secondary battery, negative electrode for secondary battery, and secondary battery
JP2015132008A (en) * 2014-01-15 2015-07-23 株式会社神戸製鋼所 Copper alloy for electric-electronic component
JP2016056414A (en) * 2014-09-10 2016-04-21 三菱マテリアル株式会社 Copper rolled sheet and component for electronic and electrical device
JP2018197397A (en) * 2018-08-15 2018-12-13 三菱マテリアル株式会社 Copper rolled sheet and component for electronic and electrical device
JP6465229B1 (en) * 2018-02-28 2019-02-06 Tdk株式会社 Negative electrode current collector, negative electrode and lithium secondary battery
CN110385352A (en) * 2019-07-17 2019-10-29 绍兴市力博科技有限公司 A kind of production method of the special-shaped copper alloy belt of connector
CN110385351A (en) * 2019-07-17 2019-10-29 绍兴市力博科技有限公司 A kind of production method of section copper strip
CN110541132A (en) * 2019-09-30 2019-12-06 珠海大华新材料有限公司 online solution heat treatment process for high-performance copper alloy strip
JP2020128598A (en) * 2020-05-26 2020-08-27 三菱マテリアル株式会社 Rolled copper sheet, and component for electronic and electric apparatus
CN111621657A (en) * 2020-05-18 2020-09-04 昆明理工大学 Method for simultaneously improving strength plasticity and wear resistance of copper-tin alloy
CN113439128A (en) * 2019-02-20 2021-09-24 三菱综合材料株式会社 Copper alloy material, commutator segment, and electrode material
CN113444900A (en) * 2021-06-25 2021-09-28 中铜华中铜业有限公司 Copper-based iron-rich alloy plate strip foil and preparation process thereof
CN115852279A (en) * 2022-11-28 2023-03-28 重庆川仪自动化股份有限公司 Method for processing manganese-copper alloy ultrathin strip

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194031A (en) * 1984-03-15 1985-10-02 Mitsubishi Metal Corp Copper alloy for lead material for semiconductor device
JPS6338543A (en) * 1986-08-05 1988-02-19 Furukawa Electric Co Ltd:The Copper alloy for electronic appliance and its manufacture
JPH0551671A (en) * 1991-08-21 1993-03-02 Nikko Kyodo Co Ltd High-strength and high-conductivity copper alloy for electronic equipment excellent in bendability and stress relaxation property
JPH0625777A (en) * 1988-06-13 1994-02-01 Yazaki Corp Manufacture of high strength and high conductivity copper alloy
JP2003306732A (en) * 2002-04-17 2003-10-31 Kobe Steel Ltd Copper alloy for electric and electronic parts
JP2009001850A (en) * 2007-06-20 2009-01-08 Hitachi Cable Ltd Copper alloy material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194031A (en) * 1984-03-15 1985-10-02 Mitsubishi Metal Corp Copper alloy for lead material for semiconductor device
JPS6338543A (en) * 1986-08-05 1988-02-19 Furukawa Electric Co Ltd:The Copper alloy for electronic appliance and its manufacture
JPH0625777A (en) * 1988-06-13 1994-02-01 Yazaki Corp Manufacture of high strength and high conductivity copper alloy
JPH0551671A (en) * 1991-08-21 1993-03-02 Nikko Kyodo Co Ltd High-strength and high-conductivity copper alloy for electronic equipment excellent in bendability and stress relaxation property
JP2003306732A (en) * 2002-04-17 2003-10-31 Kobe Steel Ltd Copper alloy for electric and electronic parts
JP2009001850A (en) * 2007-06-20 2009-01-08 Hitachi Cable Ltd Copper alloy material

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015132008A (en) * 2014-01-15 2015-07-23 株式会社神戸製鋼所 Copper alloy for electric-electronic component
JP5739044B1 (en) * 2014-06-16 2015-06-24 株式会社Shカッパープロダクツ Copper alloy foil for negative electrode current collector of secondary battery, method for producing copper alloy foil for negative electrode current collector of secondary battery, negative electrode for secondary battery, and secondary battery
JP2016056414A (en) * 2014-09-10 2016-04-21 三菱マテリアル株式会社 Copper rolled sheet and component for electronic and electrical device
JP6465229B1 (en) * 2018-02-28 2019-02-06 Tdk株式会社 Negative electrode current collector, negative electrode and lithium secondary battery
JP2019149334A (en) * 2018-02-28 2019-09-05 Tdk株式会社 Negative electrode current collector, negative electrode, and lithium secondary battery
JP2018197397A (en) * 2018-08-15 2018-12-13 三菱マテリアル株式会社 Copper rolled sheet and component for electronic and electrical device
CN113439128A (en) * 2019-02-20 2021-09-24 三菱综合材料株式会社 Copper alloy material, commutator segment, and electrode material
CN110385352B (en) * 2019-07-17 2021-01-19 浙江力博实业股份有限公司 Production method of special-shaped copper alloy strip for connector
CN110385351A (en) * 2019-07-17 2019-10-29 绍兴市力博科技有限公司 A kind of production method of section copper strip
CN110385351B (en) * 2019-07-17 2021-01-19 浙江力博实业股份有限公司 Production method of special-shaped copper strip
CN110385352A (en) * 2019-07-17 2019-10-29 绍兴市力博科技有限公司 A kind of production method of the special-shaped copper alloy belt of connector
CN110541132A (en) * 2019-09-30 2019-12-06 珠海大华新材料有限公司 online solution heat treatment process for high-performance copper alloy strip
CN110541132B (en) * 2019-09-30 2020-09-15 珠海大华新材料有限公司 Online solution heat treatment process for high-performance copper alloy strip
CN111621657A (en) * 2020-05-18 2020-09-04 昆明理工大学 Method for simultaneously improving strength plasticity and wear resistance of copper-tin alloy
JP2020128598A (en) * 2020-05-26 2020-08-27 三菱マテリアル株式会社 Rolled copper sheet, and component for electronic and electric apparatus
CN113444900A (en) * 2021-06-25 2021-09-28 中铜华中铜业有限公司 Copper-based iron-rich alloy plate strip foil and preparation process thereof
CN115852279A (en) * 2022-11-28 2023-03-28 重庆川仪自动化股份有限公司 Method for processing manganese-copper alloy ultrathin strip

Also Published As

Publication number Publication date
JP5555135B2 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
JP5555135B2 (en) Copper alloy with improved hot and cold workability, method for producing the same, and copper alloy strip or alloy foil obtained from the copper alloy
JP4951343B2 (en) Sn-containing copper alloy and method for producing the same
JP4418028B2 (en) Cu-Ni-Si alloy for electronic materials
JP2004225093A (en) Copper-base alloy and manufacturing method therefor
JP5138170B2 (en) Copper alloy plastic working material and method for producing the same
JP2009242926A (en) Copper-nickel-silicon based alloy for electronic material
JP2008081762A (en) Cu-Cr-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP2010236071A (en) Cu-Co-Si COPPER ALLOY FOR ELECTRONIC MATERIAL, AND METHOD OF MANUFACTURING THE SAME
JP4025632B2 (en) Copper alloy
JP6693092B2 (en) Copper alloy material
JP4834781B1 (en) Cu-Co-Si alloy for electronic materials
JP5802150B2 (en) Copper alloy
JP2007039793A (en) Copper alloy with high strength and excellent processability in bending and process for producing copper alloy sheet
JP4754930B2 (en) Cu-Ni-Si based copper alloy for electronic materials
WO2017081969A1 (en) Copper alloy material
JP5555154B2 (en) Copper alloy for electrical and electronic parts and method for producing the same
JP2012001780A (en) Copper alloy material for electric/electronic component, and method of manufacturing the same
JP6730784B2 (en) Cu-Ni-Co-Si alloy for electronic parts
JP6034727B2 (en) High strength copper alloy tube
JP2008095125A (en) Copper-alloy sheet with excellent platability for electrical and electronic parts
JP2007031794A (en) High-strength copper alloy
JP2011012300A (en) Copper alloy and method for producing copper alloy
JP2011046970A (en) Copper alloy material and method for producing the same
JP5088385B2 (en) High strength and high conductivity copper alloy
JP2008081835A (en) Copper alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130125

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130628

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140530

R150 Certificate of patent or registration of utility model

Ref document number: 5555135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150