JP6342660B2 - Metal purification apparatus and metal purification method - Google Patents

Metal purification apparatus and metal purification method Download PDF

Info

Publication number
JP6342660B2
JP6342660B2 JP2014007577A JP2014007577A JP6342660B2 JP 6342660 B2 JP6342660 B2 JP 6342660B2 JP 2014007577 A JP2014007577 A JP 2014007577A JP 2014007577 A JP2014007577 A JP 2014007577A JP 6342660 B2 JP6342660 B2 JP 6342660B2
Authority
JP
Japan
Prior art keywords
molten metal
cooling body
holding container
metal
corner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014007577A
Other languages
Japanese (ja)
Other versions
JP2014159631A (en
Inventor
萩原 靖久
靖久 萩原
山口 聡
山口  聡
雄一郎 大関
雄一郎 大関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2014007577A priority Critical patent/JP6342660B2/en
Publication of JP2014159631A publication Critical patent/JP2014159631A/en
Application granted granted Critical
Publication of JP6342660B2 publication Critical patent/JP6342660B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、偏析凝固法の原理を利用した金属の精製装置およびその関連技術に関する。   The present invention relates to a metal refining apparatus using the principle of segregation solidification and related techniques.

従来、高純度金属の精製方法として、精製用溶湯保持容器に入れられた共晶不純物を含む溶融金属中に冷却体を浸漬し、冷却体内に冷却流体を供給しながら冷却体を回転させることで、その周囲に、溶融金属よりも高純度の精製金属を晶出させる、という方法が知られている(例えば特許文献1)。   Conventionally, as a purification method for high-purity metals, a cooling body is immersed in a molten metal containing eutectic impurities placed in a refined molten metal holding container, and the cooling body is rotated while supplying a cooling fluid to the cooling body. A method of crystallizing a purified metal having a purity higher than that of a molten metal around the periphery is known (for example, Patent Document 1).

前記特許文献1で述べられている方法は、精製すべき金属を溶解して金属溶湯とした後、この溶湯を常にその凝固温度を超えた温度に加熱保持しておいた上で、その溶湯に冷却体を浸漬させ、その際、冷却体の表面温度が溶湯の凝固温度以下になるように保持し、さらに、冷却体外周面と溶湯との相対速度を大きくすることによって冷却体外周面に溶湯より高純度の金属塊を晶出させ付着させる、というものである。   In the method described in Patent Document 1, after the metal to be purified is dissolved into a molten metal, the molten metal is always heated and maintained at a temperature exceeding its solidification temperature. The cooling body is immersed, and at that time, the surface temperature of the cooling body is maintained to be equal to or lower than the solidification temperature of the molten metal. This means that a higher-purity metal lump is crystallized and adhered.

この方法は、液相線と固相線の間の領域の温度に金属溶湯を保持すると、より高純度の固相と不純物の多い液相とに分離する、という偏析の原理を利用している。   This method uses the principle of segregation in which, when the molten metal is held at a temperature in the region between the liquidus and solidus, it is separated into a higher purity solid phase and a liquid phase with more impurities. .

冷却体の表面には最初に不純物が少ない固相が生成され、その固相と溶湯との間の凝固界面に不純物の多い液相が排出され、いわゆる不純物濃化層が形成される。冷却体外周面に付着、成長する金属塊は、凝固界面の進行速度を不純物濃化層の外側への拡散速度よりも遅くすることで不純物を外側に拡散させることによって、および/または、不純物濃化層を液相の流速によって分散させて層の厚さを薄くすることによって、より不純物の少ないものとして得られている。   First, a solid phase with few impurities is generated on the surface of the cooling body, and a liquid phase with many impurities is discharged to a solidification interface between the solid phase and the molten metal to form a so-called impurity concentrated layer. The metal lump that adheres and grows on the outer peripheral surface of the cooling body diffuses impurities outward by making the progress rate of the solidification interface slower than the diffusion rate to the outside of the impurity concentrated layer, and / or the impurity concentration. By forming the layer into a thin layer by dispersing the formation layer according to the flow rate of the liquid phase, the layer is obtained with less impurities.

近年、用途によってはさらに高純度の金属が必要とされている。   In recent years, higher purity metals are required for some applications.

例えば、アルミニウムの場合、電解アルミニウムコンデンサの電極箔に使われている原料のアルミニウムは、純度99.9%という高い純度が求められている。さらに近年、高圧用の電解アルミニウムコンデンサの需要が高まっており、それに必要なアルミニウム箔として、純度99.99%というさらに高純度のものが必要とされる。   For example, in the case of aluminum, the raw material aluminum used for the electrode foil of the electrolytic aluminum capacitor is required to have a high purity of 99.9%. Further, in recent years, the demand for high-voltage electrolytic aluminum capacitors has increased, and as the aluminum foil necessary for such high-capacity aluminum capacitors, a higher purity of 99.99% is required.

従来の精製方法によってさらに高純度な金属塊を得るためには、精製を複数回行えばよい。具体的には、一度精製したものを集めて再溶解し、その再溶解された溶湯に対して精製を行い、それを繰り返せばその繰り返した回数分だけ高純度金属塊を得ることができる。ただし、この方法は、工程が非常に多くなり、その間に製造ラインから不純物が混入する可能性が多くなってしまう。また、何度も再溶解することで必要なコスト、必要なエネルギーが増大し、生産効率が低くなってしまう。   In order to obtain a higher-purity metal mass by a conventional purification method, the purification may be performed a plurality of times. Specifically, once purified products are collected and re-dissolved, the re-dissolved molten metal is purified, and if this is repeated, a high-purity metal mass can be obtained by the number of repetitions. However, this method has a great number of steps, and there is a high possibility that impurities are mixed from the production line during that time. In addition, by re-dissolving many times, the necessary cost and necessary energy increase, and the production efficiency is lowered.

したがって、精製回数を増やすよりも、精製工程自体の中で、さらに精製効率を向上させる方が望ましい。   Therefore, it is desirable to further improve the purification efficiency in the purification process itself, rather than increasing the number of purifications.

従来の方法では、冷却体が溶湯中に浸漬して回転している際、周囲の溶湯は止まっておらず、冷却体の回転する方向と同じ方向に回転している。冷却体の回転速度よりも遅い周速度で回っているものの、溶湯自体が冷却体と同じ方向に回っているということは、溶湯と冷却体との速度差が小さくなるので、相対速度は冷却体の回転速度より小さくなってしまう。   In the conventional method, when the cooling body is immersed and rotating in the molten metal, the surrounding molten metal is not stopped, and is rotating in the same direction as the direction of rotation of the cooling body. Although the rotating speed is lower than the rotational speed of the cooling body, the fact that the molten metal is rotating in the same direction as the cooling body reduces the speed difference between the molten metal and the cooling body. It will be smaller than the rotation speed.

精製効率を向上させるには、実際にはあまり大きくなっていない相対速度を如何に大きくするかが重要となってくる。   In order to improve the purification efficiency, it is important how to increase the relative speed which is not actually increased.

冷却体と溶湯との相対速度をさらに大きくする手段として、以下のような方法が挙げられる。
(A)冷却体の周速度を大きくすることによって、溶湯との相対速度を大きくする。
(B)溶湯の流速を遅くするために、特許文献2に記載されているように坩堝内周面に邪魔板を設置する。
As a means for further increasing the relative speed between the cooling body and the molten metal, the following method may be mentioned.
(A) The relative speed with the molten metal is increased by increasing the peripheral speed of the cooling body.
(B) In order to slow down the flow rate of the molten metal, a baffle plate is installed on the inner peripheral surface of the crucible as described in Patent Document 2.

また、特許文献3には、溶湯中にガス気泡を導入して溶湯に働く遠心力の反作用の力を利用してガス気泡を効率的に凝固界面に到達させることにより、凝固界面に生じる不純物濃化層を効率良く除去して精製効率を高める方法が開示されている。   Further, Patent Document 3 discloses that the concentration of impurities generated at the solidification interface by introducing gas bubbles into the molten metal and efficiently causing the gas bubbles to reach the solidification interface by utilizing the reaction force of centrifugal force acting on the melt. A method for improving the purification efficiency by efficiently removing the chemical layer is disclosed.

また、本出願人は、冷却体の浸漬位置を坩堝内周面に接近させて溶湯の流動幅が拡大する箇所を形成し、溶湯流れの向きを変えることによって冷却体と溶湯との相対速度を大きくする方法を発明した(特許文献4)。   In addition, the applicant forms a portion where the flow width of the molten metal is increased by bringing the immersion position of the cooling body closer to the inner peripheral surface of the crucible, and the relative speed between the cooling body and the molten metal is changed by changing the direction of the molten metal flow. Invented a method to enlarge (Patent Document 4).

これらの特許文献に記載された精製装置では、断面円形の溶湯保持容器(坩堝等)を用いている。   In the purification apparatuses described in these patent documents, a molten metal holding container (such as a crucible) having a circular cross section is used.

特公昭61−3385号公報Japanese Patent Publication No.61-3385 特開昭61−170527号公報Japanese Patent Laid-Open No. 61-170527 特許第3674322号公報Japanese Patent No. 3673322 特開2008−163420号公報JP 2008-163420 A

しかしながら、前記(A)の冷却体の周速度を大きくすることによって、溶湯との相対速度を大きくする方法では、やはり溶湯が冷却体につられて同じ方向に回転してしまう点が解消されず、相対速度を上げることが難しいという問題がある。設備の面でも、冷却体を回転させる装置は、回転速度をさらに大きくせねばならないことから従来の装置よりも大掛かりなものとなってしまい、現実的でない。また、冷却体の周速度が速くなると、溶湯の周速度も速くなり、それによって液面の高低差が大きくなると共に、液面変動も激しくなることで、溶湯飛散が頻発するので、安全面でも問題がある。さらに、冷却体外周面に生じる遠心力が大きくなり、冷却体外周面に付着した金属塊が外れやすくなるため、得られる金属塊が少なくなってしまい、生産効率の面でも好ましくない。   However, in the method of increasing the relative speed with the molten metal by increasing the peripheral speed of the cooling body in (A) above, the point that the molten metal is rotated by the cooling body in the same direction is not solved, There is a problem that it is difficult to increase the relative speed. Also in terms of equipment, the device for rotating the cooling body is larger than the conventional device because the rotation speed has to be further increased, which is not practical. In addition, when the peripheral speed of the cooling body increases, the peripheral speed of the molten metal also increases, thereby increasing the level difference of the liquid level and increasing the fluctuation of the liquid level. There's a problem. Furthermore, since the centrifugal force generated on the outer peripheral surface of the cooling body increases and the metal lump attached to the outer peripheral surface of the cooling body is easily detached, the resulting metal lump is reduced, which is not preferable in terms of production efficiency.

また、前記(B)の坩堝内周面に邪魔板を設置する方法では、邪魔板により溶湯全体の流速を抑制、または、乱流を生じさせる効果があるものの、その効果の範囲を大きくしようとすると邪魔板の長さを大きくする必要があるが、邪魔板の長さを大きくすると、冷却体外周面に付着、成長した金属塊が邪魔板に接触し、邪魔板が破損してしまう危険がある。また、坩堝内周面に邪魔板がある坩堝を得るためには、坩堝内周面に邪魔板を別部品として接着する、あるいは、最初から邪魔板が存在するような坩堝を製作する方法などがあるが、いずれも製作、メンテナンスの面で手間がかかってしまう。   Further, in the method of installing the baffle plate on the inner peripheral surface of the crucible (B), although the baffle plate has an effect of suppressing the flow rate of the entire molten metal or causing a turbulent flow, an attempt is made to increase the range of the effect. Then, it is necessary to increase the length of the baffle plate, but if the length of the baffle plate is increased, there is a risk that the metal block that adheres and grows on the outer peripheral surface of the cooling body contacts the baffle plate, and the baffle plate is damaged. is there. In addition, in order to obtain a crucible having a baffle plate on the inner peripheral surface of the crucible, there is a method of adhering the baffle plate as a separate part to the inner peripheral surface of the crucible, or a method of manufacturing a crucible having a baffle plate from the beginning. However, it takes time and effort for both production and maintenance.

特許文献3の溶湯にガス気泡を導入する方法もまた設備の追加を伴う方法であり、設備の製作およびメンテナンスに手間がかかることになる。   The method of introducing gas bubbles into the molten metal of Patent Document 3 is also a method that involves the addition of equipment, and it takes time to manufacture and maintain the equipment.

特許文献4の冷却体の浸漬位置を変更する方法は設備の追加やメンテナンスの手間を必要としない。   The method of changing the immersion position of the cooling body of Patent Document 4 does not require the addition of equipment or the trouble of maintenance.

本発明は、上述した背景技術に鑑み、特許文献4に記載された技術のように、設備の追加やメンテナンスの手間を伴わずに金属の精製効率を向上しうる金属精製装置およびその関連技術の提供を目的とする。   In view of the background art described above, the present invention provides a metal refining apparatus that can improve the metal refining efficiency and the related arts without the need for additional facilities or maintenance, as in the technique described in Patent Document 4. For the purpose of provision.

即ち、本発明は下記[1]〜[11]に記載の構成を有する。   That is, this invention has the structure as described in following [1]-[11].

[1]精製すべき溶融金属を収容し、横断面において少なくとも1つの入隅部を有する形状の溶湯保持容器と、
前記溶湯保持容器内の溶融金属中に浸漬されて、前記溶湯保持容器に対して相対的に回転する冷却体とを備えることを特徴とする金属精製装置。
[1] A molten metal holding container containing a molten metal to be refined and having at least one corner in a cross section;
A metal refining apparatus, comprising: a cooling body which is immersed in a molten metal in the molten metal holding container and rotates relative to the molten metal holding container.

[2]前記入隅部の入隅角度が120°以下である前項1に記載の金属精製装置。   [2] The metal refining device according to the above item 1, wherein the corner angle of the corner portion is 120 ° or less.

[3]前記溶湯保持容器の横断面形状が三角形または四角形である前項1または2に記載の金属精製装置。   [3] The metal refining device according to item 1 or 2, wherein the molten metal holding container has a triangular or quadrangular cross-sectional shape.

[4]前記入隅部の先端部が交差する2つの面で形成されている前項1〜3のいずれか1項に記載の金属精製装置
[5]前記入隅部の先端部が曲面で形成されている前項1〜3のいずれか1項に記載の金属精製装置。
[4] The metal refining device according to any one of items 1 to 3, which is formed by two surfaces intersecting the tip of the corner. [5] The tip of the corner is a curved surface. 4. The metal refining device according to any one of the preceding items 1 to 3.

[6]前項1〜5のいずれか1項に記載の金属精製装置を用い、
溶湯保持容器に収容した精製すべき溶融金属中に冷却体を浸漬し、この冷却体を前記溶湯保持容器に対して相対的に回転させながら冷却体表面に高純度金属を晶出させることを特徴とする金属精製方法。
[6] Using the metal purifier according to any one of items 1 to 5,
A cooling body is immersed in a molten metal to be purified contained in a molten metal holding container, and a high purity metal is crystallized on the surface of the cooling body while rotating the cooling body relative to the molten metal holding container. Metal purification method.

[7]前記溶融金属がアルミニウムである前項6に記載の金属精製方法。   [7] The metal refining method according to the above item 6, wherein the molten metal is aluminum.

[8]前項6または7に記載の方法で精製された精製金属。   [8] A purified metal purified by the method according to the above item 6 or 7.

[9]前項8に記載の精製金属から製造された鋳造品。   [9] A casting manufactured from the refined metal according to item 8 above.

[10]前項9に記載の鋳造品が圧延されてなる金属製品。   [10] A metal product obtained by rolling the casting according to item 9 above.

[11]前項10に記載の金属製品が電極材として用いられている電解コンデンサ。   [11] An electrolytic capacitor in which the metal product according to item 10 is used as an electrode material.

[1]に記載の発明によれば、冷却体の回転によって生じる溶湯流が溶湯保持容器の入隅部に衝突することによって抑止されるので、冷却体と溶湯との相対速度が大きくなる。その結果、凝固界面近傍に生じる不純物濃化層の分散が促進されて金属の精製効率が向上し、高純度の金属を得ることができる。また、かかる効果は溶湯保持容器の形状によって得られるので、邪魔板のような追加部材を必要とせず、メンテナンスの手間が増えることもない。   According to the invention described in [1], since the molten metal flow generated by the rotation of the cooling body is suppressed by colliding with the corner of the molten metal holding container, the relative speed between the cooling body and the molten metal is increased. As a result, the dispersion of the impurity concentrated layer generated in the vicinity of the solidification interface is promoted, the metal purification efficiency is improved, and a high-purity metal can be obtained. Moreover, since such an effect is obtained by the shape of the molten metal holding container, an additional member such as a baffle plate is not required, and the labor of maintenance does not increase.

[2]に記載の発明によれば、入隅部の入隅角度が120°以下であるから、特に溶湯流の抑止効果が大きい。   According to the invention described in [2], since the corner angle of the corner portion is 120 ° or less, the effect of suppressing the molten metal flow is particularly great.

[3]に記載の発明によれば、溶湯保持容器の横断面が四角形または三角形であるから入隅角度が小さくなり、入隅部による溶湯流の抑止効果が大きい。   According to the invention described in [3], since the cross section of the molten metal holding container is a quadrangle or a triangle, the corner angle is small, and the effect of suppressing the molten metal flow by the corner portion is great.

[4]に記載の発明によれば、入隅部の先端部が交差する2つの面で形成され、角張ったシャープな形状であるから、溶湯流の抑止効果が大きい。   According to the invention described in [4], since the tip end portion of the corner is formed by two intersecting surfaces and has an angular and sharp shape, the effect of suppressing the molten metal flow is great.

[5]に記載の発明によれば、入隅部の先端部が曲面で形成されているので、溶湯の流速が極端に遅くなりがちな入隅部における溶湯の流れが促され、気泡や酸化物の滞留を回避できる。   According to the invention described in [5], since the tip of the corner is formed with a curved surface, the flow rate of the molten metal at the corner where the flow velocity of the molten metal tends to become extremely slow is promoted, and bubbles and oxidation are caused. It is possible to avoid stagnation of objects.

[6]に記載の発明によれば、冷却体の回転によって生じる溶湯流が溶湯保持容器の入隅部に衝突することによって抑止されるので、冷却体と溶湯との相対速度が大きくなる。その結果、凝固界面近傍に生じる不純物濃化層の分散が促進されて金属の精製効率が向上し、高純度の金属を得ることができる。また、かかる効果は溶湯保持容器の形状によって得られるので、邪魔板のような追加部材を必要とせず、メンテナンスの手間が増えることもない。   According to the invention described in [6], since the molten metal flow generated by the rotation of the cooling body is suppressed by colliding with the corner of the molten metal holding container, the relative speed between the cooling body and the molten metal is increased. As a result, the dispersion of the impurity concentrated layer generated in the vicinity of the solidification interface is promoted, the metal purification efficiency is improved, and a high-purity metal can be obtained. Moreover, since such an effect is obtained by the shape of the molten metal holding container, an additional member such as a baffle plate is not required, and the labor of maintenance does not increase.

[7]に記載の発明によれば、純度の高いアルミニウムを精製することができる。   According to the invention described in [7], high-purity aluminum can be purified.

[8]に記載の発明によれば、純度の高い精製金属となしうる。   According to the invention described in [8], it can be a purified metal with high purity.

[9]に記載の発明によれば、純度の高い鋳造品となしうる。   According to the invention described in [9], a cast product with high purity can be obtained.

[10]に記載の発明によれば、純度の高い圧延金属製品となしうる。   According to the invention described in [10], a rolled metal product with high purity can be obtained.

[11]に記載の発明によれば、純度の高い圧延金属からなる電極材が用いられた電解コンデンサとなしうる。   According to the invention described in [11], an electrolytic capacitor using an electrode material made of high-purity rolled metal can be obtained.

本発明の一実施形態に係る金属精製装置の概略構成図である。It is a schematic block diagram of the metal purification apparatus which concerns on one Embodiment of this invention. 図1のII−II線断面図である。It is the II-II sectional view taken on the line of FIG. 本発明の金属精製装置に用いる溶湯保持容器の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the molten metal holding | maintenance container used for the metal refinement | purification apparatus of this invention. 本発明の金属精製装置に用いる溶湯保持容器のさらに他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the molten metal holding | maintenance container used for the metal refinement | purification apparatus of this invention. 本発明の金属精製装置に用いる溶湯保持容器のさらに他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the molten metal holding | maintenance container used for the metal refinement | purification apparatus of this invention. 本発明の金属精製装置に用いる溶湯保持容器のさらに他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the molten metal holding | maintenance container used for the metal refinement | purification apparatus of this invention. 本発明の金属精製装置に用いる溶湯保持容器のさらに他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the molten metal holding | maintenance container used for the metal refinement | purification apparatus of this invention. 本発明の金属精製装置に用いる溶湯保持容器のさらに他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the molten metal holding | maintenance container used for the metal refinement | purification apparatus of this invention. 従来の溶湯保持容器の断面図である。It is sectional drawing of the conventional molten metal holding | maintenance container.

図1および図2はこの発明の実施形態に係る金属精製装置の概略構成と、これを用いた金属精製方法を説明するための図である。   1 and 2 are diagrams for explaining a schematic configuration of a metal purification apparatus according to an embodiment of the present invention and a metal purification method using the same.

[金属精製装置の構成]
金属精製装置(1)は、溶融金属(M)(以下、「溶湯」と称する)を収容する溶湯保持容器(10)と、冷却体(20)と、精製金属掻き落とし装置(図示省略)とを備えている。
[Configuration of metal purification equipment]
The metal refining device (1) includes a molten metal holding container (10) for storing molten metal (M) (hereinafter referred to as “molten metal”), a cooling body (20), and a purified metal scraping device (not shown). It has.

前記溶湯保持容器(10)は有底筒状であり、その横断面形状については後述する。前記溶湯保持容器(10)は加熱炉内に配置されて外側から加熱され、溶湯(M)が一定の温度となるように制御されている。   The molten metal holding container (10) has a bottomed cylindrical shape, and the cross-sectional shape thereof will be described later. The molten metal holding container (10) is placed in a heating furnace and heated from the outside, and is controlled so that the molten metal (M) has a constant temperature.

前記溶湯保持容器(10)の材質は限定されないが、内面は溶湯(M)に接触し外面からは加熱されるので、高温で溶融せず極端な強度低下が生じない耐熱性を有していることが必要である。具体的には、グラファイト、セラミックス、これらの複合材等を推奨できる。   The material of the molten metal holding container (10) is not limited. However, since the inner surface is in contact with the molten metal (M) and is heated from the outer surface, the molten metal holding container (10) has heat resistance that does not melt at high temperatures and does not cause an extreme decrease in strength. It is necessary. Specifically, graphite, ceramics, a composite material thereof and the like can be recommended.

前記溶湯(M)の温度は、凝固温度を超えていればよいが、冷却体(20)が溶湯(M)に浸漬している間は、溶湯中に固相が存在しなくなる温度よりも低い方がより望ましい。   The temperature of the molten metal (M) only needs to exceed the solidification temperature, but is lower than the temperature at which no solid phase exists in the molten metal while the cooling body (20) is immersed in the molten metal (M). Is more desirable.

前記冷却体(20)は上端側が径大の円錐台形状に形成され、回転軸(21)の下端に設置されている。前記回転軸(21)はモーター等の回転駆動装置および移動装置が連結され、前記冷却体(20)に回転力を付与するとともに、上下左右に自在に移動できるものとなされている。   The cooling body (20) is formed in a truncated cone shape having a large diameter on the upper end side, and is installed at the lower end of the rotating shaft (21). The rotary shaft (21) is connected to a rotary drive device such as a motor and a moving device, applies a rotational force to the cooling body (20), and can move freely up and down and left and right.

前記冷却体(20)の形状は限定されることはなく、円柱状その他の形状であっても良い。前記回転軸(21)は管状になっており、また、冷却体(20)の内部にも空間が形成されている。前記回転軸(21)の内部には冷媒供給管(22)および冷媒排出管(23)が挿通され、冷媒供給管(22)から冷媒が供給されるものとなされている。供給された冷媒は、冷媒供給管(22)を通って冷却体(20)の内部空間に噴出し、その後、回転軸(21)の内部の冷媒排出管(23)を通って排出されるようになっており、冷却体(20)をその内側から冷やすことができるものとなされている。   The shape of the cooling body (20) is not limited, and may be a cylindrical shape or other shapes. The rotating shaft (21) has a tubular shape, and a space is also formed inside the cooling body (20). A refrigerant supply pipe (22) and a refrigerant discharge pipe (23) are inserted into the rotary shaft (21), and the refrigerant is supplied from the refrigerant supply pipe (22). The supplied refrigerant is jetted into the internal space of the cooling body (20) through the refrigerant supply pipe (22) and then discharged through the refrigerant discharge pipe (23) inside the rotating shaft (21). The cooling body (20) can be cooled from the inside.

前記冷却体(20)の材質は、高温の溶湯(M)と接触するので耐熱性が高く熱伝導率の高いものが望ましく、グラファイト、セラミックス、これらの複合材等を推奨できる。また、溶湯温度で溶融せず、極端な強度低下が生じないものであれば金属製の冷却体も使用できる。また、前記冷却体(20)の冷媒は気体あるいは液体のいずれでも使用でき、気体冷媒としては窒素ガス、二酸化炭素ガス、アルゴンガス、圧縮エアを使用できる。これらの気体冷媒のうち、コスト面で圧縮エアを推奨できる。   The material of the cooling body (20) is preferably a material having high heat resistance and high thermal conductivity because it contacts the high-temperature molten metal (M), and graphite, ceramics, a composite material thereof and the like can be recommended. A metal cooling body can also be used as long as it does not melt at the molten metal temperature and does not cause an extreme decrease in strength. Further, the refrigerant of the cooling body (20) can be either gas or liquid, and nitrogen gas, carbon dioxide gas, argon gas, and compressed air can be used as the gas refrigerant. Among these gaseous refrigerants, compressed air can be recommended in terms of cost.

また、図示が省略されている精製金属掻き落とし装置は溶湯保持容器(10)の側方近傍に設置され、溶湯(M)から引き上げられて移動してきた冷却体(20)の表面に晶出した精製金属を掻き落として回収する。   A refined metal scraping device (not shown) is installed near the side of the molten metal holding container (10), and is crystallized on the surface of the cooling body (20) that has been pulled up from the molten metal (M) and moved. Scrape and collect the purified metal.

[溶湯保持器の形状]
図2に示すように、前記溶湯保持容器(10)は横断面形状が正方形であり、4つの入隅部(11)を有している。前記入隅部(11)はその先端部が交差する2つの平面で形成されており、角張ったシャープな形状である。また、前記入隅部(11)の入隅角度(θ)は90°である。
[Shape of molten metal cage]
As shown in FIG. 2, the molten metal holding container (10) has a square cross-sectional shape and has four corners (11). The entrance corner (11) is formed by two planes whose front ends intersect, and has an angular and sharp shape. The corner angle (θ) of the corner portion (11) is 90 °.

[金属の精製方法]
図1および図2に示すように、前記回転軸(21)を移動させて前記冷却体(20)を溶湯保持容器(10)内の任意の位置において溶湯(M)に浸漬し、冷媒を供給しながら矢印Aの方向に回転させ、回転する冷却体(20)の周面に精製金属をゆっくり晶出させる。この晶出過程で共晶不純物は液相中に排出されて凝固界面近傍に共晶不純物が濃化された不純物濃化層が形成されるが、冷却体(20)と溶湯(M)の相対速度によって不純物濃化層中の不純物が液相全体に分散される。
[Metal purification method]
As shown in FIGS. 1 and 2, the rotating shaft (21) is moved to immerse the cooling body (20) in the molten metal (M) at an arbitrary position in the molten metal holding container (10), and supply the refrigerant. While rotating in the direction of arrow A, the refined metal is slowly crystallized on the peripheral surface of the rotating cooling body (20). During this crystallization process, the eutectic impurities are discharged into the liquid phase to form an impurity-enriched layer in the vicinity of the solidification interface, but the relative relationship between the cooling body (20) and the molten metal (M). Impurities in the impurity concentrated layer are dispersed throughout the liquid phase by the speed.

前記冷却体(20)の回転により、溶湯(M)には矢印Bで示される冷却体(20)の接線方向の流れが生じるが、この溶湯流Bが溶湯保持容器(10)の入隅部(11)に衝突すると流れが抑止される。その結果、冷却体(20)と溶湯(M)との相対速度が大きくなって上述した不純物濃化層中の不純物の分散が促進され、不純物の除去が効率良く行われて精製効率が向上し、冷却体(20)の周面に高純度の金属を晶出させることができる。   Due to the rotation of the cooling body (20), a tangential flow of the cooling body (20) indicated by an arrow B is generated in the molten metal (M). This molten metal flow B is the corner of the molten metal holding container (10). If it collides with (11), the flow will be suppressed. As a result, the relative speed between the cooling body (20) and the molten metal (M) is increased, the dispersion of impurities in the impurity concentrated layer described above is promoted, the impurities are efficiently removed, and the purification efficiency is improved. The high purity metal can be crystallized on the peripheral surface of the cooling body (20).

なお、晶出金属の純度に大きな影響を及ぼさない限り、冷却体(20)の底面にも金属が晶出してもかまわない。また、前記冷却体(20)は、溶湯(M)に浸漬してから回転を開始しても良いし、回転させながら溶湯(M)に浸漬しても良い。   The metal may be crystallized on the bottom surface of the cooling body (20) as long as the purity of the crystallized metal is not greatly affected. The cooling body (20) may start rotating after being immersed in the molten metal (M), or may be immersed in the molten metal (M) while being rotated.

前記溶湯保持容器(10)に対し、図9の溶湯保持容器(50)は横断面円形であり、入隅部を有さず曲面のみで形成されている。このような内面形状の溶湯保持容器(50)では溶湯(M)が曲面上を滑るように流動し、流れが滞ることのなく、冷却体(20)と同じ回転方向の滑らかな旋回流が形成される。このため、入隅部(11)を有する形状の溶湯保持容器(10)よりも冷却体(20)と溶湯(M)との相対速度が遅くなる。   In contrast to the molten metal holding container (10), the molten metal holding container (50) of FIG. 9 has a circular cross section and is formed of only a curved surface without a corner. In such a molten metal holding container (50), the molten metal (M) flows so as to slide on the curved surface, and a smooth swirling flow in the same rotational direction as the cooling body (20) is formed without stagnation of the flow. Is done. For this reason, the relative speed of the cooling body (20) and the molten metal (M) is slower than the molten metal holding container (10) having the shape having the corner (11).

本発明においては、冷却体(20)の回転によって生じる溶湯流Bを入隅部(11)に衝突させることによって旋回流を抑止し、滑らかな旋回流動を妨げることによって冷却体(20)と溶湯(M)との相対速度を大きくしている。また、かかる効果は邪魔板等の追加ではなく溶湯保持容器の形状によって得られるので、追加部材を必要とせず、メンテナンスの手間が増えることもない。   In the present invention, the melt flow B generated by the rotation of the cooling body (20) is collided with the corner (11) to suppress the swirling flow, and the smooth swirling flow is prevented to prevent the cooling body (20) and the molten metal. The relative speed with (M) is increased. In addition, since such an effect is obtained not by adding a baffle plate or the like but by the shape of the molten metal holding container, an additional member is not required, and maintenance work is not increased.

前記冷却体(20)を溶湯(M)中で所定時間回転させて冷却体(20)の周面に精製金属を晶出させた後、溶湯(M)から冷却体(20)を引き上げて溶湯保持容器(10)側方の精製金属掻き落とし装置まで移動させる。精製金属掻き落とし装置によって冷却体(20)から精製金属を掻き落として回収する。精製金属の回収方法は限定されず、掻き落としの他、再加熱によって冷却体から回収することもできる。   The cooling body (20) is rotated in the molten metal (M) for a predetermined time to crystallize the purified metal on the peripheral surface of the cooling body (20), and then the cooling body (20) is pulled up from the molten metal (M). Move to the purified metal scraping device on the side of the holding container (10). The purified metal is scraped off and recovered from the cooling body (20) by the purified metal scraping device. The method for recovering the purified metal is not limited, and it can be recovered from the cooling body by reheating in addition to scraping off.

精製金属を回収した冷却体(20)は、要すれば、再び溶湯保持容器(10)に移動させて溶湯(M)中に浸漬して回転させて精製を行い、精製と回収を繰り返す。   If necessary, the cooling body (20) from which the purified metal has been collected is moved again to the molten metal holding container (10), immersed in the molten metal (M), rotated, and purified, and purification and collection are repeated.

[溶湯保持器の他の形状]
上述した溶湯保持容器(10)の入隅部(11)による溶湯流Bの抑止効果は、入隅角度(θ)が小さい方が大きく、好ましい入隅角度(θ)は120°以下である、さらに好まし入隅角度(θ)は90°以下である。従って、溶湯保持容器が多角形である場合は、六角形よりも角数が少ないものが好ましい。図3は正六角形の溶湯保持容器(30)であり、入隅部(31)の入隅角度(θ)は120°である。図4は正三角形の溶湯保持容器(32)であり、入隅部(33)の入隅角度(θ)は60°である。また、特に好ましい入隅角度(θ)が90°以下であることから、特に好ましい溶湯保持容器の横断面形状は四角形または三角形である。
[Other shapes of molten metal cage]
The effect of suppressing the molten metal flow B by the corner (11) of the molten metal holding container (10) described above is larger when the corner angle (θ) is smaller, and the preferable corner angle (θ) is 120 ° or less. Further, the preferred corner angle (θ) is 90 ° or less. Therefore, when the molten metal holding container is polygonal, it is preferable that the number of corners is smaller than that of the hexagon. FIG. 3 shows a regular hexagonal molten metal holding container (30), and the corner angle (θ) of the corner corner (31) is 120 °. FIG. 4 shows an equilateral triangular molten metal holding container (32), and the corner angle (θ) of the corner portion (33) is 60 °. Moreover, since a particularly preferable corner angle (θ) is 90 ° or less, a particularly preferable cross-sectional shape of the molten metal holding container is a quadrangle or a triangle.

また、溶湯保持容器の横断面形状は正多角形であることに限定されず、図5に示す、長辺と短辺を有する長方形の溶湯保持容器(34)も本発明に含まれる。さらには、入隅角度の異なる入隅部を有する横断面形状、例えば、四角形であれば台形、平行四辺形、三角形であれば二等辺三角形、直角三角形、不等辺三角形の溶湯保持容器も本発明に含まれる。   Further, the cross-sectional shape of the molten metal holding container is not limited to a regular polygon, and a rectangular molten metal holding container (34) having a long side and a short side shown in FIG. 5 is also included in the present invention. Furthermore, a cross-sectional shape having corners with different corner angles, for example, a trapezoidal shape for a quadrangle, a parallelogram, an isosceles triangle for a triangle, a right triangle, and an unequal triangle for a molten metal holding container of the present invention. include.

また、前記溶湯流Bの抑止効果は溶湯保持容器が少なくとも1つの入隅部を有していれば得ることができるので多角形であることにも限定されず、角形と円形を組み合わせた方円形や扇形の横断面を有する溶湯保持容器も本発明に含まれる。ただし、1箇所で溶湯流を抑止させるとその入隅部において湯面変動が大きくなるので、溶湯流の抑止は複数箇所で分散して行うことが好ましい。溶湯流の抑止箇所を分散させるという観点からも、上述した四角形または三角形は好ましい形状である。   Moreover, since the inhibitory effect of the molten metal flow B can be obtained if the molten metal holding container has at least one corner, it is not limited to a polygonal shape, but a square shape combining a square shape and a circular shape. A molten metal holding container having a fan-shaped cross section is also included in the present invention. However, if the molten metal flow is suppressed at one place, the molten metal surface fluctuation is increased at the corner of the inlet. Therefore, it is preferable to suppress the molten metal flow at a plurality of places. Also from the viewpoint of dispersing the molten metal flow suppression points, the above-described quadrangular or triangular shape is a preferable shape.

また、溶湯保持容器の横断面形状は各辺または一部の辺が曲線で形成された膨多角形であっても良い。図6の溶湯保持容器(35)は横断面形状において全ての辺が曲線で形成された膨四角形であり、入隅部(36)は2つの曲面の交差によって形成されている。前記入隅部(36)の先端部は角張ったシャープな形状である。図7の溶湯保持容器(37)は横断面形状において曲線と直線とを組み合わせた膨四角形であり、入隅部(38)は平面と曲面とが交差することによって形成されている。前記入隅部(38)の先端部は角張ったシャープな形状である。   Moreover, the cross-sectional shape of the molten metal holding container may be an expanded polygon in which each side or a part of sides is formed by a curve. The molten metal holding container (35) of FIG. 6 is a bulging quadrilateral in which all sides are curved in the cross-sectional shape, and the corner (36) is formed by the intersection of two curved surfaces. The tip of the entrance corner (36) has an angular and sharp shape. The molten metal holding container (37) in FIG. 7 is an expanded quadrangle that combines a curve and a straight line in the cross-sectional shape, and the corner (38) is formed by intersecting a plane and a curved surface. The front end of the corner (38) has an angular and sharp shape.

従って、角張ったシャープな形状の入隅部は2つの面の交差によって形成される。具体的には、角張ったシャープな形状の入隅部は、平面同士の交差(図2〜4参照)、曲面同士の交差(図6参照)、平面と曲面の交差(図7参照)のうちのいずれによっても形成される。溶湯保持容器は上記3種のうちのいずれか1種の入隅部を有しているものであっても良いし、2種または3種の入隅部を有しているものであっても良い。また、図7および図8の溶湯保持容器(35)(37)は四角形であるが、三角形、六角形等の多角形においても平面と曲面の組み合わせにより3種の入隅部を形成することができる。   Therefore, the corner having a sharp and sharp shape is formed by the intersection of two surfaces. Specifically, the corners with a sharp and sharp shape are the intersection of planes (see FIGS. 2 to 4), the intersection of curved surfaces (see FIG. 6), and the intersection of planes and curved surfaces (see FIG. 7). It is formed by either. The molten metal holding container may have any one of the above three types of corners, or may have two or three types of corners. good. Moreover, although the molten metal holding containers (35) and (37) in FIGS. 7 and 8 are quadrangular, even in a polygon such as a triangle and a hexagon, three types of corners can be formed by combining a plane and a curved surface. it can.

なお、上述の横断面が扇形の溶湯保持容器は、2つの直線と1つの曲線とで形成された三角形でもあるから、平面同士の交差による1つの入隅部と、平面と曲面の交差による2つの入隅部とを有している。   In addition, since the above-mentioned molten metal holding container having a fan-shaped cross section is also a triangle formed by two straight lines and one curved line, two corners by intersecting planes and two by intersecting planes and curved surfaces. With two corners.

[入隅部の形状]
前記溶湯保持容器内の溶湯は冷却体の回転により攪拌され、この攪拌によって溶湯中に空気が取り込まれて気泡や酸化物が生じる。本発明では入隅部を有する溶湯保持容器を使用して入隅部で溶湯流を抑止するので、生成する気泡や酸化物も入隅部で抑止される。入隅部は溶湯の流速が極めて遅いので、入隅部で抑止された気泡や酸化物は浮上して溶湯の表面近傍に残留することがある。気泡や酸化物を多く含む溶湯はこれらを含まない溶湯よりも熱伝導性が悪く、また溶湯表面が大気により冷却されるため、気泡や酸化物を流動させずに入隅部に滞留させておくと溶湯の表面が凝固し易くなる。図2〜4、6、7に示した入隅部(11)(31)(33)(36)(38)は先端部が角張ったシャープな形状である。このような形状の入隅部(11)(31)(33)(36)(38)は溶湯流の抑止効果が大きいが、生成する気泡や酸化物の抑止効果も大きくこれらが滞留しやすくなる傾向がある。
[Inner corner shape]
The molten metal in the molten metal holding container is stirred by the rotation of the cooling body, and air is taken into the molten metal by this stirring to generate bubbles and oxides. In the present invention, since the molten metal flow is suppressed at the entrance corner using the melt holding container having the entrance corner, the generated bubbles and oxides are also suppressed at the entrance corner. Since the melt flow velocity is extremely slow in the corner, bubbles and oxides suppressed in the corner may float and remain near the surface of the melt. The molten metal containing a large amount of bubbles and oxides has poorer thermal conductivity than the molten metal not containing them, and the molten metal surface is cooled by the atmosphere, so that the bubbles and oxides remain in the corners without flowing. And the surface of the molten metal is easily solidified. The corners (11), (31), (33), (36), and (38) shown in FIGS. 2 to 4, 6, and 7 have a sharp shape with an angular tip. The corners (11), (31), (33), (36), and (38) having such a shape have a large effect of suppressing molten metal flow, but also have a large effect of suppressing generated bubbles and oxides, and these are liable to stay. Tend.

このような入隅部における気泡や酸化物の滞留に対しては、図8に示す溶湯保持容器(40)ように、入隅部(12)の先端部を曲面で形成し、溶湯の流速が入隅部(12)で極端に遅くならないようにすることで対処することができる。即ち、溶湯(M)の流速が極端に遅くなりがちな入隅部(12)において、先端部を曲面で形成して溶湯の流れを促すことによって気泡や酸化物の滞留を回避する。前記入隅部(12)の先端部の曲率半径(R)は10〜100mmの範囲が好ましい。前記曲率半径(R)が10mm未満の小さい曲率では気泡や酸化物を流動させる効果が小さい。また、曲率半径(R)が100mmであれば気泡や酸化物を流動させる効果が十分に得られるので、それを超える大きい曲率半径(R)は意味がないし、過大な曲率半径(R)は溶湯流の抑止効果を低下させるので不純物濃化層中の不純物の分散促進効果も低下する。   With respect to the stay of bubbles and oxides in such a corner, the tip of the corner (12) is formed with a curved surface as in the molten metal holding container (40) shown in FIG. This can be dealt with by preventing it from becoming extremely slow at the corner (12). That is, at the corner (12) where the flow rate of the molten metal (M) tends to become extremely slow, the tip portion is formed with a curved surface to promote the flow of the molten metal, thereby avoiding the retention of bubbles and oxides. The radius of curvature (R) at the tip of the corner (12) is preferably in the range of 10 to 100 mm. When the curvature radius (R) is a small curvature of less than 10 mm, the effect of causing bubbles and oxides to flow is small. In addition, if the radius of curvature (R) is 100 mm, the effect of allowing bubbles and oxides to flow is sufficiently obtained. Therefore, a larger radius of curvature (R) exceeding that is meaningless, and an excessively large radius of curvature (R) is not a molten metal. Since the effect of suppressing flow is reduced, the effect of promoting the dispersion of impurities in the impurity concentrated layer is also reduced.

図8の入隅部(12)は、平面同士の交差による角張ったシャープな形状の入隅部(11)(図2参照)の先端部を曲面で形成したものであるが、曲面同士の交差による入隅部(36)(図6参照)や平面と曲面の交差による入隅部(38)(図7参照)に対しても先端部を曲面で形成することができる。ただし、多角形の角数が同じであれば、曲面同士の交差による入隅部(36)や平面と曲面の交差による入隅部(38)は平面同士の交差による入隅部(11)よりも入隅角度が大きくなるので、もとより、先端部における溶湯速度の低下の度合いが小さく気泡や酸化物の滞留量も少ない。このため、入隅部の先端部の曲面形成は平面同士の交差によって形成された入隅部への適用意義が大きい。   The corner (12) in FIG. 8 is formed by forming the tip of the corner corner (11) (see FIG. 2) having a sharp and sharp shape by intersecting planes with a curved surface. The tip portion can be formed with a curved surface also with respect to the entering corner portion (36) (see FIG. 6) due to or the entering corner portion (38) (see FIG. 7) due to the intersection of the plane and the curved surface. However, if the polygons have the same number of corners, the corner (36) due to the intersection between the curved surfaces and the corner (38) due to the intersection between the plane and the curved surface are more than the corner (11) due to the intersection between the planes. In addition, since the corner angle becomes large, the degree of decrease in the melt speed at the tip is small and the amount of bubbles and oxides is small. For this reason, the formation of the curved surface at the tip of the entrance corner has great significance in application to the entrance corner formed by the intersection of planes.

また、前記曲率半径(R)は、溶湯保持用器の断面寸法、入隅部の入隅角度、気泡や酸化物の滞留の程度等に応じて任意に設定することができる。   The radius of curvature (R) can be arbitrarily set according to the cross-sectional dimension of the molten metal holding device, the corner angle of the corner, the degree of retention of bubbles and oxides, and the like.

[金属精製装置の他の構成]
本発明の金属精製装置において、溶湯保持容器と冷却体は単独組であっても良いし、複数組を並べて配置し、隣接する溶湯保持容器を上端部において連結樋により連通状に接続しても良い。
[Other configurations of metal purification equipment]
In the metal refining device of the present invention, the molten metal holding container and the cooling body may be a single set, or a plurality of sets may be arranged side by side, and adjacent molten metal holding containers may be connected in a continuous manner by a connecting rod at the upper end. good.

単独組の場合は、精製を繰り返すと溶湯保持容器内の溶湯の不純物濃度が増すので、精製した金属の純度が低下するおそれがある。このため、溶湯中の不純物濃度が一定値に達したら溶湯を入れ替えることが好ましい。   In the case of a single set, since the impurity concentration of the molten metal in the molten metal holding container increases when refining is repeated, the purity of the purified metal may be reduced. For this reason, it is preferable to replace the molten metal when the impurity concentration in the molten metal reaches a certain value.

複数組の場合は、複数個の溶湯保持容器が連通しているので、一端の溶湯保持装置に溶湯を注ぎ込めば隣接する溶湯保持容器に順次流出していき、高濃度の不純物を含む溶湯が1つの溶湯保持容器に滞留することはない。このような装置構成では溶湯保持容器毎にバッチ操作で溶湯の入れ替えを行う必要がないので、作業効率が向上する。また、最下流の溶湯保持容器から流出した溶湯は不純物濃度が高くなっているので、排出等により処理する。また、上流側の溶湯保持容器内で浮滓が生成したとしても、浮滓を除去してから溶湯を下流側の溶湯保持容器に供給するようにすれば、浮滓が下流側の溶湯保持容器に持ち越されることもない。   In the case of a plurality of sets, a plurality of molten metal holding containers communicate with each other, so if the molten metal is poured into the molten metal holding device at one end, the molten metal containing the high-concentration impurities flows out to the adjacent molten metal holding container. It does not stay in one molten metal holding container. In such an apparatus configuration, it is not necessary to replace the molten metal by batch operation for each molten metal holding container, so that work efficiency is improved. Moreover, since the molten metal which flowed out from the most downstream molten metal holding | maintenance container has high impurity concentration, it processes by discharge | emission etc. Further, even if buoys are generated in the molten metal holding container on the upstream side, if the molten metal is supplied to the molten metal holding container on the downstream side after the buoyant is removed, the buoyant is on the molten metal holding container on the downstream side. It is not carried over to.

本発明において冷却体は溶湯保持容器に対して相対的に回転すれば良いので、冷却体を固定して溶湯保持容器を回転させる構成、冷却体と溶湯保持容器を逆方向に回転させる構成も本発明に含まれる。   In the present invention, since the cooling body only needs to rotate relative to the molten metal holding container, a configuration in which the cooling body is fixed and the molten metal holding container is rotated, and a configuration in which the cooling body and the molten metal holding container are rotated in the reverse direction are also described. Included in the invention.

[精製する金属]
本発明によって精製する金属は、共晶不純物を含むアルミニウム、ケイ素、マグネシウム、鉛、亜鉛等を挙げうる。
[Metal to be refined]
The metal refine | purified by this invention can mention aluminum, a silicon, magnesium, lead, zinc, etc. which contain a eutectic impurity.

アルミニウムの精製において、精製すべきアルミニウムにアルミニウムと包晶を形成する不純物元素、例えばTi、Zr、V等の包晶元素が含まれている場合は、溶湯保持容器に収容される溶湯にホウ素を添加して攪拌した上で本発明の精製方法を適用することが好ましい。ホウ素添加および攪拌を行うことで、ホウ素が溶湯中に含まれている包晶不純物と反応して、TiB、VB、ZrB等の不溶性ホウ化物が生成される。生成された不溶性ホウ化物は冷却体の回転により生じる遠心力によって冷却体から遠ざけられるので、冷却体の周面に晶出するアルミニウムに含まれることはない。また、余剰のホウ素は共晶不純物として除去されるので、これも冷却体の周面に晶出するアルミニウムに含まれることはない。 In the purification of aluminum, if the aluminum to be purified contains impurity elements that form peritectic crystals with aluminum, such as peritectic elements such as Ti, Zr, and V, boron is added to the molten metal stored in the molten metal holding container. It is preferable to apply the purification method of the present invention after adding and stirring. By adding boron and stirring, boron reacts with peritectic impurities contained in the molten metal, and insoluble borides such as TiB 2 , VB 2 , and ZrB 2 are generated. Since the produced insoluble boride is moved away from the cooling body by the centrifugal force generated by the rotation of the cooling body, it is not contained in the aluminum crystallized on the peripheral surface of the cooling body. Moreover, since excess boron is removed as a eutectic impurity, it is not included in the aluminum crystallized on the peripheral surface of the cooling body.

なお、ホウ素は、例えば、精製すべきアルミニウムにAl−B母合金を添加して共に溶解したり、溶湯中にBFガスを吹き込む等の方法により添加することができる。 Boron can be added by, for example, a method of adding an Al—B master alloy to aluminum to be purified and dissolving it together, or blowing BF 3 gas into the molten metal.

また、複数の溶湯保持容器を連通状に接続して溶湯を順次下流側の溶湯保持容器に供給する場合は、最上流の溶湯保持容器にホウ素を添加して不溶性ホウ化物を除去するのが良い。また、最上流の溶湯保持容器をホウ素反応専用とし、一段目の溶湯保持容器で不溶性ホウ化物を除去した後、二段目以降の溶湯保持容器で偏析凝固による精製を行うようにしても良い。   Further, when a plurality of molten metal holding containers are connected in a continuous manner and the molten metal is sequentially supplied to the molten metal holding container on the downstream side, it is preferable to add boron to the uppermost molten metal holding container to remove insoluble borides. . Alternatively, the uppermost molten metal holding container may be dedicated to the boron reaction, and after removing insoluble borides in the first stage molten metal holding container, purification may be performed by segregation solidification in the second and subsequent molten metal holding containers.

上記により精製された金属は高純度であるから、各種の加工や用途に用いることで優れた特性や機能を発揮させることができる。一例を挙げると、精製金属を鋳造に用いて鋳造品を製作しても良いし、この鋳造品を圧延して各種の金属板や金属箔として用いても良い。また、この金属箔を例えばアルミニウム電解コンデンサの電極材として用いてもよい。   Since the metal refine | purified by the above is high purity, the outstanding characteristic and function can be exhibited by using for various processes and uses. For example, a refined metal may be used for casting to produce a cast product, or the cast product may be rolled and used as various metal plates or metal foils. Moreover, you may use this metal foil as an electrode material of an aluminum electrolytic capacitor, for example.

図1に参照される金属精製装置(1)において、横断面形状の異なる溶湯保持容器を用いてアルミニウムの精製試験を行った。   In the metal refining apparatus (1) referred to FIG. 1, a refining test of aluminum was performed using molten metal holding containers having different cross-sectional shapes.

[各例における溶湯保持容器]
(実施例1)
内直径が310mmの円形のグラファイト製るつぼの中に、4枚のグラファイト板を配置して横断面が正方形の溶湯保持空間を形成した。この溶湯保持空間は金属精製装置(1)における溶湯保持容器(10)に対応するものであり、本例の溶湯保持容器(10)の横断面内面形状は一辺(S1)が220mmの正方形である(図2参照)。前記溶湯保持容器(10)の4つの入隅部(11)は先端部が交差する2つの平面で形成され、角張ったシャープな形状である。
[Mold holding container in each example]
Example 1
Four graphite plates were placed in a circular graphite crucible having an inner diameter of 310 mm to form a molten metal holding space having a square cross section. This molten metal holding space corresponds to the molten metal holding container (10) in the metal refining device (1), and the inner surface shape of the molten metal holding container (10) of this example is a square having a side (S1) of 220 mm. (See FIG. 2). The four corners (11) of the molten metal holding container (10) are formed by two planes intersecting the tip, and have an angular and sharp shape.

(実施例2)
実施例1で形成した横断面正方形の溶湯保持空間の4つの入隅部の先端部に耐熱モルタルを用いて曲面を形成し、これを溶湯保持空間とした。この溶湯保持空間は金属精製装置(1)における溶湯保持容器(40)に対応するものであり、本例の溶湯保持容器(40)の横断面内面形状は一辺(S1)が220mmの正方形であり、入隅部(12)の先端部は曲率半径(R)=10mmの曲面である(図8参照)。
(Example 2)
A curved surface was formed by using heat-resistant mortar at the tip of the four corners of the molten metal holding space having a square cross section formed in Example 1, and this was used as the molten metal holding space. This molten metal holding space corresponds to the molten metal holding container (40) in the metal refining device (1), and the inner surface shape of the molten metal holding container (40) of this example is a square whose one side (S1) is 220 mm. The leading end of the corner (12) is a curved surface with a radius of curvature (R) = 10 mm (see FIG. 8).

(実施例3)
入隅部(12)は曲率半径(R)=20mmの曲面としたことを以外は実施例2と同じようにして溶湯保持容器(40)を形成した(図8参照)。
(Example 3)
A molten metal holding container (40) was formed in the same manner as in Example 2 except that the corner (12) had a curved surface with a radius of curvature (R) = 20 mm (see FIG. 8).

(実施例4)
横断面が正六角形のグラファイト製の溶湯保持容器(30)を用いた(図3参照)。この溶湯保持容器(30)の横断面における内面の一辺(S1)は160mmであり、入隅部(31)は先端部が交差する2つの平面で形成され、角張ったシャープな形状である。
Example 4
A graphite holding vessel (30) made of graphite having a regular hexagonal cross section was used (see FIG. 3). One side (S1) of the inner surface in the cross section of the molten metal holding container (30) is 160 mm, and the corner (31) is formed by two flat surfaces intersecting the tip, and has an angular and sharp shape.

(実施例5)
横断面が正三角形のグラファイト製の溶湯保持容器(32)を用いた(図4参照)。この溶湯保持容器(32)の横断面における内面の一辺(S1)は420mmであり、入隅部(33)は先端部が交差する2つの平面で形成され、角張ったシャープな形状である。
(Example 5)
A graphite holding vessel (32) made of graphite having a regular cross section is used (see FIG. 4). One side (S1) of the inner surface in the cross section of the molten metal holding container (32) is 420 mm, and the corner (33) is formed by two planes intersecting the tip, and has an angular and sharp shape.

(比較例)
横断面が円形のグラファイト製の溶湯保持容器(50)を用いた(図9参照)。この溶湯保持容器(50)の横断面における内直径(S2)は310mmである。
(Comparative example)
A graphite holding vessel (50) made of graphite having a circular cross section was used (see FIG. 9). The inner diameter (S2) in the cross section of the molten metal holding container (50) is 310 mm.

[アルミニウムの精製]
図1の金属精製装置(1)に、それぞれの溶湯保持容器(10)(40)(30)(32)(50)を組み込んでアルミニウムの精製試験を行った。形状の異なる溶湯保持容器を用いたことを除いて各例の精製条件は共通であり、詳細は以下のとおりである。
[Purification of aluminum]
Each metal refining device (10) (40) (30) (32) (50) was incorporated into the metal refining device (1) of FIG. The purification conditions of each example are the same except that molten metal holding containers having different shapes are used, and details are as follows.

精製すべきアルミニウムには主な不純物としてFe:520ppm、Si:220ppmが含まれている。前記アルミニウムはそれぞれの溶湯保持容器内で電気加熱により溶解して溶湯(M)とし、精製中は665℃に保持した。   Aluminum to be purified contains Fe: 520 ppm and Si: 220 ppm as main impurities. The aluminum was melted by electric heating in each molten metal holding container to form a molten metal (M), and maintained at 665 ° C. during the purification.

冷却体(20)はグラファイト製であり、最大外径が150mmの中空の逆円錐体である。前記冷却体(20)を溶湯(M)に浸漬する際には、予め表面温度が550℃となるように加熱した。また、前記溶湯(M)中に浸漬した冷却体(20)を4.7m/秒の周速度で回転させ、かつ冷媒として圧縮エアを1100リットル/分の流量で供給した。   The cooling body (20) is made of graphite and is a hollow inverted cone having a maximum outer diameter of 150 mm. When the cooling body (20) was immersed in the molten metal (M), it was heated in advance so that the surface temperature was 550 ° C. Further, the cooling body (20) immersed in the molten metal (M) was rotated at a peripheral speed of 4.7 m / sec, and compressed air was supplied as a refrigerant at a flow rate of 1100 liters / min.

精製処理時間、即ち溶湯(M)中で前記冷却体(10)を回転させる時間は5分とした。   The purification treatment time, that is, the time for rotating the cooling body (10) in the molten metal (M) was 5 minutes.

5分の精製を行った後、溶湯(M)から冷却体(20)を引き上げ、冷却体(20)の周面に付着している精製されたアルミニウムを掻き落として回収し、不純物であるFe濃度およびSi濃度を調べた。さらに、FeおよびSiの精製効率を下記式により計算した。回収した精製アルミニウムの重量、精製アルミニウム中のFe濃度およびSi濃度、精製効率を表1に示す。
Feの精製効率=精製アルミニウム中のFe濃度/溶湯中のFe濃度(=520ppm)
Siの精製効率=精製アルミニウム中のSi濃度/溶湯中のSi濃度(=220ppm)
After refining for 5 minutes, the cooling body (20) is pulled up from the molten metal (M), and the purified aluminum adhering to the peripheral surface of the cooling body (20) is scraped off and recovered, and Fe, which is an impurity, is recovered. The concentration and Si concentration were examined. Furthermore, the purification efficiency of Fe and Si was calculated by the following formula. Table 1 shows the weight of the recovered purified aluminum, the Fe concentration and Si concentration in the purified aluminum, and the purification efficiency.
Purification efficiency of Fe = Fe concentration in purified aluminum / Fe concentration in molten metal (= 520 ppm)
Si purification efficiency = Si concentration in purified aluminum / Si concentration in molten metal (= 220 ppm)

また、実施例1〜4について、精製中の入隅部およびその近傍における流速を目視観察したところ、実施例3(正方形、R=20mm)が最も速く、次いで実施例2(正方形、R=10mm)が速く、その次は実施例3(正六角形、R=0mm)、最も遅いのは実施例1(正方形、R=0mm)であった。なお、最も遅い実施例1においても、溶湯(M)の流れが完全に停止することはなく、極めて遅いながらも流れていた。表1に流速の速い順を1(最も速い)から4(最も遅い)の番号で示す。   In addition, in Examples 1 to 4, when the flow velocity in the corners and the vicinity thereof during the purification was visually observed, Example 3 (square, R = 20 mm) was the fastest, followed by Example 2 (square, R = 10 mm). ) Was fast, followed by Example 3 (regular hexagon, R = 0 mm), and slowest was Example 1 (square, R = 0 mm). In addition, also in Example 1 which is the slowest, the flow of the molten metal (M) did not stop completely, but was flowing though it was extremely slow. Table 1 shows the order of fast flow rate with numbers from 1 (fastest) to 4 (slowest).

Figure 0006342660
Figure 0006342660

表1に記載したとおり、従来の断面円形の溶湯保持容器に代えて入隅部を有する断面角形の溶湯保持容器を用いることで精製効率が高める得ることを確認することができた。また、入隅部を円弧状に形成することで入隅部における溶湯の滞留を防ぎ得ることも確認することができた。   As shown in Table 1, it was confirmed that the purification efficiency could be increased by using a molten metal holding container having a square corner instead of a conventional molten metal holding container having a circular cross section. In addition, it was confirmed that the stay of the molten metal in the corner can be prevented by forming the corner in an arc shape.

本発明によれば、金属を効率良く精製して高純度の金属が得られるので、電解コンデンサの電極材のような高純度金属の製造に利用できる。   According to the present invention, a high-purity metal can be obtained by efficiently refining the metal, so that it can be used for the production of a high-purity metal such as an electrode material for electrolytic capacitors.

1…金属精製装置
10、30、32、34、35、37、40、50…溶湯保持容器
11、12、31、33、36、38…入隅部
20…冷却体
21…回転軸
M…溶湯(溶融金属)
θ…入隅角度
R…曲率半径
1… Metal refining equipment
10, 30, 32, 34, 35, 37, 40, 50 ... molten metal holding container
11, 12, 31, 33, 36, 38 ... corner
20 ... cooling body
21 ... Rotating shaft M ... Molten metal (molten metal)
θ ... corner angle R ... radius of curvature

Claims (3)

精製すべき溶融金属を収容し、横断面において少なくとも1つの、2つの平面、2つの曲面、平面と曲面のいずれかが出会うことによって形成された入隅部を有し、前記入隅部の先端部が曲面で形成されている形状の溶湯保持容器と、
前記溶湯保持容器内の溶融金属中に浸漬されて、前記溶湯保持容器に対して相対的に回転する冷却体とを備えることを特徴とする金属精製装置。
The molten metal to be refined is accommodated, and has at least one, two planes, two curved surfaces, and a corner formed by encountering one of the plane and the curved surface in the cross section, and the tip of the corner A molten metal holding container having a shape formed by a curved surface,
A metal refining apparatus, comprising: a cooling body which is immersed in a molten metal in the molten metal holding container and rotates relative to the molten metal holding container.
請求項に記載の金属精製装置を用い、
溶湯保持容器に収容した精製すべき溶融金属中に冷却体を浸漬し、この冷却体を前記溶湯保持容器に対して相対的に回転させながら冷却体表面に高純度金属を晶出させることを特徴とする金属精製方法。
Using the metal purification apparatus according to claim 1 ,
A cooling body is immersed in a molten metal to be purified contained in a molten metal holding container, and a high purity metal is crystallized on the surface of the cooling body while rotating the cooling body relative to the molten metal holding container. Metal purification method.
前記溶融金属がアルミニウムである請求項に記載の金属精製方法。 The metal refining method according to claim 2 , wherein the molten metal is aluminum.
JP2014007577A 2013-01-22 2014-01-20 Metal purification apparatus and metal purification method Active JP6342660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014007577A JP6342660B2 (en) 2013-01-22 2014-01-20 Metal purification apparatus and metal purification method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013009443 2013-01-22
JP2013009443 2013-01-22
JP2014007577A JP6342660B2 (en) 2013-01-22 2014-01-20 Metal purification apparatus and metal purification method

Publications (2)

Publication Number Publication Date
JP2014159631A JP2014159631A (en) 2014-09-04
JP6342660B2 true JP6342660B2 (en) 2018-06-13

Family

ID=51611502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014007577A Active JP6342660B2 (en) 2013-01-22 2014-01-20 Metal purification apparatus and metal purification method

Country Status (1)

Country Link
JP (1) JP6342660B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7386635B2 (en) * 2019-07-10 2023-11-27 堺アルミ株式会社 High purity metal manufacturing method and manufacturing equipment
JP7223717B2 (en) * 2020-01-10 2023-02-16 堺アルミ株式会社 High-purity metal manufacturing method and manufacturing apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950738B2 (en) * 1982-07-06 1984-12-10 昭和アルミニウム株式会社 Continuous production equipment for high-purity aluminum
JP5074762B2 (en) * 2006-12-28 2012-11-14 昭和電工株式会社 Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor

Also Published As

Publication number Publication date
JP2014159631A (en) 2014-09-04

Similar Documents

Publication Publication Date Title
JP5074762B2 (en) Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor
JP4115432B2 (en) Metal purification method
JP6342660B2 (en) Metal purification apparatus and metal purification method
JP2015508743A (en) Method for purifying silicon
WO2017209034A1 (en) Material purification method and device, molten metal heating and retaining device, and continuous purification system for material with high purity
JP5134817B2 (en) Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor
JP6118579B2 (en) Metal purification method and metal purification apparatus
JP5634704B2 (en) Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor
JP4397714B2 (en) Raw material for aluminum purification
JP5479729B2 (en) Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor
JP5069728B2 (en) Aluminum purification method, high-purity aluminum material, method for producing aluminum material for electrolytic capacitor electrode, and aluminum material for electrolytic capacitor electrode
JP5415066B2 (en) Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor
JP6751604B2 (en) Material purification method and equipment, continuous purification system for high-purity substances
JP3763254B2 (en) Aluminum purification method and use thereof
JP2009024234A (en) Continuous refining system for high purity aluminum
JP2015145017A (en) Coolant
JP3674322B2 (en) Aluminum purification method and its use
JP5594953B2 (en) Cooling body, metal refining apparatus and method
JP5594952B2 (en) Cooling body, metal refining apparatus and method
JP7223717B2 (en) High-purity metal manufacturing method and manufacturing apparatus
JP5128167B2 (en) Metal refining method, metal refining device, refined metal, casting, metal product and electrolytic capacitor
JP2009013448A (en) Continuous refining system for high-purity aluminum
JP2023018756A (en) Metal refining method and metal refining apparatus
JP6746383B2 (en) Material purification method and apparatus, continuous purification system for high-purity substances
JP3721793B2 (en) Aluminum purification method and use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180517

R150 Certificate of patent or registration of utility model

Ref document number: 6342660

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250