JP3211622B2 - Purification method of aluminum scrap - Google Patents

Purification method of aluminum scrap

Info

Publication number
JP3211622B2
JP3211622B2 JP12424795A JP12424795A JP3211622B2 JP 3211622 B2 JP3211622 B2 JP 3211622B2 JP 12424795 A JP12424795 A JP 12424795A JP 12424795 A JP12424795 A JP 12424795A JP 3211622 B2 JP3211622 B2 JP 3211622B2
Authority
JP
Japan
Prior art keywords
cooling body
cooling
crystallized
aluminum
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12424795A
Other languages
Japanese (ja)
Other versions
JPH08295964A (en
Inventor
三朗 牧野
倫男 土橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP12424795A priority Critical patent/JP3211622B2/en
Publication of JPH08295964A publication Critical patent/JPH08295964A/en
Application granted granted Critical
Publication of JP3211622B2 publication Critical patent/JP3211622B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、溶解原料に含まれてい
る不純物を晶出分離し、純度の高いα−Al晶を選択的
に晶出成長させることによりアルミニウムスクラップを
精製する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying aluminum scrap by crystallizing and separating impurities contained in a raw material for melting, and selectively crystallizing and growing high-purity α-Al crystals.

【0002】[0002]

【従来の技術】溶湯中に浸漬した冷却体表面に晶出物を
成長させる偏析法でアルミニウムスクラップを精製する
際、精製純度は、冷却体の表面で凝固する晶出物の形状
に影響される。そのため、精製純度を高めるため、晶出
物の形状コントロールが種々検討されている。たとえ
ば、冷却体として管状体(以下、冷却管という)を用い
たものでは、特公昭59−45739号公報にみられる
ように冷却管のメタル界面深さの上下の外周に断熱材を
取り付け、或いは特公平2−27423号公報にみられ
るように冷却管内部のメタル界面深さ上下にヒータを取
り付けることにより晶出凝固体の形状をコントロールす
る方法が提案されている。
2. Description of the Related Art When purifying aluminum scrap by a segregation method in which a crystal is grown on the surface of a cooling body immersed in a molten metal, the purification purity is affected by the shape of the crystal solid that solidifies on the surface of the cooling body. . Therefore, in order to increase the purification purity, various control of the shape of the crystallized product has been studied. For example, in a case where a tubular body (hereinafter, referred to as a cooling pipe) is used as a cooling body, as shown in Japanese Patent Publication No. 59-45739, heat insulating materials are attached to the outer periphery of the cooling pipe at the upper and lower metal interface depths, or As disclosed in Japanese Patent Publication No. 27423/1990, a method of controlling the shape of a crystallized solidified body by mounting heaters above and below a metal interface depth inside a cooling pipe has been proposed.

【0003】しかし、冷却管外周に断熱材を取り付ける
方法では、アルミ溶湯に耐える適当な断熱材が少ないこ
と,断熱材が冷却管から剥離し易いこと,操業条件によ
っては断熱材の表面にアルミニウムが凝固し、このアル
ミニウムを取り除くとき断熱材に破損が生じ易いこと等
の問題があり、操業上の問題が多い。また、冷却管内部
にヒータを取り付ける方法では、冷却管を回転させる場
合に電源の取入れ機構が複雑になるだけでなく、高温に
さらされることから絶縁が難しく、且つ断線等のトラブ
ルが多発する等の問題がある。また、冷却管底部に精製
アルミニウムを凝固させない方法としては、特公昭60
−17008号公報にみられるように冷却管底部外面に
断熱材を取り付けたり、特公平5−65415号公報に
みられるように冷却管底部の肉厚を厚くしたり、底面方
向の冷媒の吹出し口を中止したりする方法が提案されて
いる。しかし、底面外部に断熱材を取り付けるとき、断
熱材の剥離等、種々の問題が生じる。しかも、何れの方
法でも底面が完全にアルミ溶湯に常時接触しているケー
スが多く、冷却管が侵食される欠点がある。
[0003] However, in the method of attaching the heat insulating material to the outer periphery of the cooling pipe, there are few suitable heat insulating materials that can withstand the molten aluminum, the heat insulating material is easily peeled off from the cooling pipe, and depending on the operating conditions, aluminum may be present on the heat insulating material surface. There is a problem that the heat insulating material is liable to break when solidifying and removing this aluminum, and there are many operational problems. In addition, the method of mounting a heater inside the cooling pipe not only complicates the power supply mechanism when rotating the cooling pipe, but also causes difficulties such as disconnection and the like due to exposure to high temperatures, which makes insulation difficult. There is a problem. As a method for preventing the solidification of purified aluminum at the bottom of the cooling pipe, Japanese Patent Publication No.
A heat insulating material is attached to the outer surface of the bottom of the cooling pipe as shown in JP-A-17008, the thickness of the bottom of the cooling pipe is increased as shown in JP-B-5-65415, and the outlet of the refrigerant in the bottom direction. There has been proposed a method of canceling. However, when the heat insulating material is attached to the outside of the bottom surface, various problems such as peeling of the heat insulating material occur. In addition, there are many cases where the bottom surface is always in constant contact with the molten aluminum in any of the methods, and there is a disadvantage that the cooling pipe is eroded.

【0004】本発明者等も、偏析法によるアルミニウム
スクラップの精製を調査・研究し、その過程で、冷却体
の表面にα−Al晶を晶出させることによりアルミニウ
ム溶湯を生成する方法を開発し、その一部を特願平7−
30109号として出願した。この方法では、図1に示
すような管状の回転冷却体10や図2に示すような円板
状の回転冷却体20を使用する。精製されるアルミニウ
ムスクラップは、精製容器30に収容され、外周からヒ
ータ31で加熱される。また、精製容器30に装着した
蓋体32に設けた温度制御用のバーナ33で加熱するこ
ともできる。これにより、α−Alの凝固点より僅かに
高い温度に保持されたアルミニウム溶湯Mが調製され
る。溶融状態に保持された溶湯Mに、回転冷却体10,
20が浸漬される。管状の回転冷却体10は、軸方向に
ガス通路をもつ内管11の先端部近傍に外管12を嵌め
合せている。内管11は、蓋体32を貫通して上方に延
び、カップリング13を介しモータ14の出力軸に接続
されている。モータ14から延びたアーム15は、モー
タ16で回転される送りネジ17に嵌挿されている。こ
れにより、回転冷却体10は、精製容器30の内部で昇
降自在に回転する。円板状の回転冷却体20も、同様な
機構によって昇降自在に回転する。
The present inventors also investigated and studied the purification of aluminum scrap by the segregation method, and in the process, developed a method for producing molten aluminum by crystallizing α-Al crystals on the surface of the cooling body. , A part of which is Japanese Patent Application No. 7-
No. 30109 was filed. In this method, a tubular rotary cooling body 10 as shown in FIG. 1 and a disk-shaped rotary cooling body 20 as shown in FIG. 2 are used. The aluminum scrap to be refined is contained in a refining vessel 30 and is heated by a heater 31 from the outer periphery. Further, heating can be performed by a burner 33 for temperature control provided on a lid 32 attached to the purification container 30. Thereby, the molten aluminum M maintained at a temperature slightly higher than the freezing point of α-Al is prepared. The molten metal M held in the molten state is added to the rotary cooling body 10,
20 is dipped. The tubular rotary cooling body 10 has an outer pipe 12 fitted near the distal end of an inner pipe 11 having a gas passage in the axial direction. The inner tube 11 extends upward through the lid 32 and is connected to the output shaft of the motor 14 via the coupling 13. An arm 15 extending from the motor 14 is inserted into a feed screw 17 rotated by the motor 16. Thereby, the rotary cooling body 10 is rotatable up and down inside the purification vessel 30. The disk-shaped rotary cooling body 20 also rotates freely by a similar mechanism.

【0005】管状の回転冷却体10(図1)は、内管1
1から送り込まれた冷却媒体gがギャップ18を経て外
管12から放出されることにより冷却される。冷却媒体
gには、空気,非酸化性ガス,霧状の水分を含む空気等
が使用される。冷却媒体gの流動により、外管12の管
壁を介して溶湯Mが冷却される。円板状の回転冷却体2
0(図2)は、内管21に外管22を嵌め合わせた二重
管構造をもっており、内管21及び外管22の下端部に
共に半径方向に広がった円形状のフランジ23,24が
取り付けられており、フランジ23には複数のオリフィ
ス25が形成されている。フランジ23から一定の間隔
を保った底壁27が取り付けられている。冷却媒体g
は、外管22に送り込まれ、内管21と外管22との間
を経て、フランジ44と43との間に形成された分配室
28に導入される。次いで、冷却媒体gは、オリフィス
25,25・・を経て冷却室29に流入する。
[0005] The tubular rotary cooling body 10 (Fig. 1)
The cooling medium g fed from 1 is cooled by being discharged from the outer tube 12 through the gap 18. As the cooling medium g, air, non-oxidizing gas, air containing mist-like water, or the like is used. Due to the flow of the cooling medium g, the molten metal M is cooled through the tube wall of the outer tube 12. Disk-shaped rotary cooling body 2
0 (FIG. 2) has a double pipe structure in which the outer pipe 22 is fitted to the inner pipe 21, and circular flanges 23 and 24, which are radially widened at both lower ends of the inner pipe 21 and the outer pipe 22, are provided. The flange 23 has a plurality of orifices 25 formed therein. A bottom wall 27 having a fixed distance from the flange 23 is attached. Cooling medium g
Is fed into the outer tube 22, passes between the inner tube 21 and the outer tube 22, and is introduced into the distribution chamber 28 formed between the flanges 44 and 43. Next, the cooling medium g flows into the cooling chamber 29 through the orifices 25.

【0006】冷却室29内の冷却媒体gは、底壁27を
介して溶湯Mを冷却する。冷却媒体gの抜熱能が底壁2
7の面内で均一化されているので、冷却された溶湯Mか
ら底壁27の下面に万遍なくα−Alが晶出する。溶湯
Mとの熱交換によって昇温した冷却媒体gは、冷却室2
9から内管21を経て系外に排出される。溶湯Mの温度
が下がるとき、初晶が金属間化合物の系では、先ず回転
冷却体10,20を冷却する前に溶湯の温度を下げ、た
とえばAl−Si−Fe−Mn系金属間化合物を炉底に
沈降させる。金属間化合物の晶出に伴って、残りの溶湯
Mが純化され、温度が更に下がる。そして、回転冷却体
10,20を冷却すると、α−Al晶の晶出が始まる。
このとき、α−Al晶と溶湯Mとの界面に排出されるS
i,Fe,Cu等の不純物は、回転冷却体10,20の
回転によってα−Al晶から分離され、一部は溶湯Mに
比較して比重が大きな金属間化合物Iとして溶湯M中を
落下し、残りは母液中に拡散する。沈降分離した金属間
化合物Iは、回転冷却体10,20の回転で生じる溶湯
Mの撹拌流により、精製容器30の底部中央に溜る。
The cooling medium g in the cooling chamber 29 cools the molten metal M via the bottom wall 27. The heat removal ability of the cooling medium g is the bottom wall 2
7, α-Al is uniformly crystallized on the lower surface of the bottom wall 27 from the cooled molten metal M. The cooling medium g heated by the heat exchange with the molten metal M is supplied to the cooling chamber 2
From 9, it is discharged out of the system through the inner pipe 21. When the temperature of the molten metal M is lowered, if the primary crystal is an intermetallic compound, the temperature of the molten metal is first lowered before cooling the rotary cooling bodies 10 and 20, and for example, the Al-Si-Fe-Mn-based intermetallic compound is Settle to the bottom. With the crystallization of the intermetallic compound, the remaining molten metal M is purified, and the temperature further decreases. Then, when the rotary cooling bodies 10 and 20 are cooled, crystallization of α-Al crystals starts.
At this time, S discharged to the interface between the α-Al crystal and the molten metal M
Impurities such as i, Fe, and Cu are separated from the α-Al crystal by the rotation of the rotary cooling bodies 10 and 20, and a part of the impurities falls into the molten metal M as an intermetallic compound I having a higher specific gravity than the molten metal M. And the rest diffuses into the mother liquor. The precipitated and separated intermetallic compound I accumulates in the center of the bottom of the purification vessel 30 due to the stirring flow of the molten metal M generated by the rotation of the rotary cooling bodies 10 and 20.

【0007】[0007]

【発明が解決しようとする課題】管状回転冷却体10の
側面や円板状回転冷却体20の底面にα−Al晶を晶出
凝固させる際、晶出物の形状を制御することが凝固速度
のコントロールにつながり、ひいては晶出物の純度を向
上させることにもなる。管状の回転冷却体10には、図
3の(a)〜(f)に示すような形状でα−Al晶が晶
出する。円板状の回転冷却体20には、図3の(g)〜
(i)に示すような形状でα−Al晶が晶出する。本発
明者等の調査・研究によるとき、これら晶出物の形状の
うちで(e),(f)及び(i)が凝固速度が均一にコ
ントロールされ、得られた晶出物の純度も高くなってい
ることが判った。しかし、晶出物の形状制御は、従来で
は冷却体10,20そのものの材質や断熱構造等の改良
で対応している。このような対応であると、結果として
設備の複雑化や制作コストの上昇等の問題を派生させ
る。本発明は、晶出物の形状が図3の(e),(f)又
は(i)になるように冷却条件を制御することにより、
設備構成自体に影響を及ぼすことなく、従来の精製装置
を使用して純度の高い精製アルミニウムを高生産性で得
ることを目的とする。
When the .alpha.-Al crystal is crystallized and solidified on the side surface of the tubular rotary cooling body 10 and the bottom surface of the disk-shaped rotary cooling body 20, the shape of the crystallized material is controlled by the solidification speed. Control, which in turn improves the purity of the crystallized material. In the tubular rotary cooling body 10, α-Al crystals are crystallized in a shape as shown in FIGS. 3 (g) to 3 (g) in FIG.
Α-Al crystals are crystallized in a shape as shown in (i). According to the investigations and researches of the present inventors, (e), (f) and (i) of these crystallized materials have a uniform solidification rate and a high purity of the obtained crystallized materials. It turned out to be. However, conventionally, the control of the shape of the crystallized material is achieved by improving the materials of the cooling bodies 10 and 20 themselves and the heat insulating structure. Such a response results in problems such as complicated equipment and increased production costs. The present invention controls the cooling conditions so that the shape of the crystallized substance becomes (e), (f) or (i) in FIG.
An object of the present invention is to obtain highly purified aluminum with high productivity using a conventional purification apparatus without affecting the equipment configuration itself.

【0008】[0008]

【課題を解決するための手段】本発明の精製方法は、そ
の目的を達成するため、アルミニウムスクラップを溶解
した溶湯に冷却体を浸漬し、冷却体の表面にα−Al晶
を晶出成長させる際、α−Al晶出温度T0(℃)に対
してアルミニウム溶湯の湯面上方にある雰囲気の温度T
1(℃)をT1=T0−(0〜24)の範囲に維持するこ
とを特徴とする。不純物の一部が金属間化合物の初晶と
して晶出する組成をもつアルミニウム合金を精製する場
合には、初晶として晶出する金属間化合物を炉底に沈降
分離させた後、アルミニウム溶湯に浸漬した冷却体の表
面にα−Al晶を晶出成長させる。湯面の上方約10c
mにおける雰囲気温度がT1=T0−(0〜24)の条件
を満足するとき、好適な冷却条件が得られ、晶出物の形
状が図3の(e),(f)又は(i)になる。操業的に
は、α−Alの晶出温度より雰囲気温度を下げた方が晶
出物の形状制御が容易になる。これは、雰囲気温度を低
くすることにより、晶出物が凝固する際に発生する凝固
潜熱の抜熱が容易になることに由来するものと推察され
る。冷却体としては、図1の管状冷却体10,図2の円
板状冷却体20等を使用することができる。これら冷却
体は、回転式、或いは回転させることなく固定式の何れ
であってもよい。また、図4に示されるような管状冷却
体を使用する場合、内管11の底面にも通気口42を形
成し、底面における冷却媒体の吹出し率を全吹出し量の
0.1〜5%に調整することが好ましい。
In order to achieve the object, the refining method of the present invention immerses a cooling body in a molten metal in which aluminum scrap is dissolved, and crystallizes and grows α-Al crystals on the surface of the cooling body. At this time, the temperature T of the atmosphere above the surface of the molten aluminum with respect to the α-Al crystallization temperature T 0 (° C.)
1 (° C.) is maintained in a range of T 1 = T 0 − ( 0 to 24). When purifying an aluminum alloy having a composition in which some of the impurities are crystallized as primary crystals of intermetallic compounds, the intermetallic compounds crystallized as primary crystals are settled and separated at the furnace bottom, and then immersed in molten aluminum. The α-Al crystal is crystallized and grown on the surface of the cooled body. About 10c above the surface
When the ambient temperature at m satisfies the condition of T 1 = T 0 − ( 0 to 24), suitable cooling conditions are obtained, and the shape of the crystallized product is (e), (f) or (i) in FIG. )become. In terms of operation, it is easier to control the shape of the crystallized product by lowering the ambient temperature than the crystallization temperature of α-Al. This is presumed to be due to the fact that lowering the ambient temperature facilitates the removal of latent heat of solidification generated when the crystallized material solidifies. As the cooling body, the tubular cooling body 10 of FIG. 1, the disk-shaped cooling body 20 of FIG. 2, and the like can be used. These cooling bodies may be of a rotary type or a fixed type without rotating. When a tubular cooling body as shown in FIG. 4 is used, a vent 42 is also formed on the bottom surface of the inner tube 11, and the blowing rate of the cooling medium at the bottom surface is set to 0.1 to 5% of the total blowing amount. Adjustment is preferred.

【0009】[0009]

【作用】α−Al晶は、図3に示すように種々の形状と
なって冷却体10,20に晶出する。晶出物の形状がこ
のように異なることは、次の理由によるものと考えら
れ、純度の高い精製品を得る上では図3(e),(f)
及び(i)の形状が好ましい。管状の冷却体10の側面
にα−Al晶を晶出させるとき、雰囲気温度が低過ぎる
場合、アルミニウム溶湯Mから雰囲気に放散される熱量
が多く、湯面での凝固が促進される。他方、湯面から深
い部分では、凝固潜熱が放散されず、凝固が遅延する。
その結果、α−Al晶出物は、湯面で浴内部に向けて小
径化された形状(a)になる。しかも、湯面における凝
固速度が大きすぎることから、α−Al晶の晶出に際し
て不純物或いは純度の低いAlが晶出物に取り込まれ、
得られた精製品の純度が低下する。底面の吹出し率を大
きくして底面からの冷却を高めた冷却体10では、冷却
体10の下端側にα−Al晶出物が大きく成長する
(b)。このとき、底面における凝固速度が早すぎる
と、底面に成長した晶出物に不純物或いは純度の低いA
lが取り込まれ、側面に成長した晶出物に比較して純度
が低下する。また、(b)の形状をもつ晶出物は、精製
中に冷却体10から脱落し易く、精製効率を低下させる
ことになる。
The α-Al crystal has various shapes as shown in FIG. 3 and crystallizes on the cooling bodies 10 and 20. It is considered that such a difference in the shape of the crystallized product is due to the following reason. In order to obtain a purified product having a high purity, FIGS.
And the shapes of (i) are preferred. When the α-Al crystal is crystallized on the side surface of the tubular cooling body 10, if the ambient temperature is too low, a large amount of heat is dissipated from the molten aluminum M to the atmosphere, and solidification on the molten metal surface is promoted. On the other hand, in portions deep from the surface of the molten metal, latent heat of solidification is not dissipated, and solidification is delayed.
As a result, the α-Al crystallized product has a shape (a) whose diameter is reduced toward the inside of the bath on the surface of the bath. Moreover, since the solidification rate on the molten metal surface is too high, impurities or low-purity Al are taken into the crystallized material during the crystallization of α-Al crystals,
The purity of the resulting purified product is reduced. In the cooling body 10 in which the cooling rate from the bottom surface is increased by increasing the blowing rate of the bottom surface, α-Al crystallites grow largely on the lower end side of the cooling body 10 (b). At this time, if the solidification rate at the bottom surface is too fast, the crystals grown on the bottom surface may have impurities or low purity A
1 is taken in, and the purity is lower than that of a crystal grown on the side surface. Further, the crystallized substance having the shape of (b) easily falls off from the cooling body 10 during the purification, which lowers the purification efficiency.

【0010】雰囲気温度が高すぎる場合には、アルミニ
ウム溶湯から雰囲気に放散される熱量がなく、湯面にお
ける凝固の進行が期待できない。その結果、凝固速度が
遅く、α−Al晶出物は専ら冷却体10の下部に厚く成
長する(c)。また、冷却体10の上部に晶出したα−
Alが剥離し易くなる。アルミニウム溶湯Mに浸漬した
冷却体10の回転速度が高過ぎると、冷却体10の表面
に付着した晶出物が遠心力によって剥離脱落する
(d)。晶出物がこのような形状になる場合には、冷却
体10の回転数を調整することにより、適正形状をもつ
晶出物を成長させることが要求される。雰囲気温度が適
正に維持され、且つ冷却条件が冷却体10の表面に関し
て均一であると、α−Al晶出物は、冷却体10の側面
に均一な厚みで成長する(e)。更に、冷却体10の底
面における抜熱機能を向上させると、底面にもα−Al
晶出物が成長する(f)。このような均一な厚みで成長
した晶出物からは、純度の高い精製品が得られる。ま
た、形状(f)の晶出物は、精製効率を上げる上で有効
である。
If the ambient temperature is too high, there is no heat dissipated from the molten aluminum into the atmosphere, and the progress of solidification on the surface of the molten metal cannot be expected. As a result, the solidification rate is low, and the α-Al crystals grow thickly exclusively at the lower part of the cooling body 10 (c). Further, α-crystallized on the upper part of the cooling body 10
Al is easily peeled off. If the rotation speed of the cooling body 10 immersed in the molten aluminum M is too high, the crystallized substances attached to the surface of the cooling body 10 are separated and dropped by the centrifugal force (d). When the crystallized material has such a shape, it is required to grow a crystallized material having an appropriate shape by adjusting the rotation speed of the cooling body 10. When the ambient temperature is appropriately maintained and the cooling conditions are uniform with respect to the surface of the cooling body 10, the α-Al crystallized substance grows on the side surface of the cooling body 10 with a uniform thickness (e). Further, when the heat removal function on the bottom surface of the cooling body 10 is improved, the α-Al
Crystals grow (f). From the crystallized material grown with such a uniform thickness, a purified product with high purity can be obtained. Further, the crystallized product of the shape (f) is effective in increasing the purification efficiency.

【0011】円板状の冷却体20を使用した場合でも、
雰囲気温度が低過ぎると、湯面近傍でα−Al晶出物が
優先的に成長し、冷却体20の下面に成長するα−Al
晶が比較的に減少する(g)。逆に雰囲気温度が高すぎ
ると、凝固速度が遅く、α−Al晶出物が冷却体20の
下面中央部から下向きに成長する(h)。これに対し、
雰囲気温度が適正に維持された条件下では、冷却体20
の下面及び側面にα−Al晶出物が万遍なく成長し
(i)、冷却体20の表面が精製反応に効果的に利用さ
れ、純度のよい精製品が得られる。本発明者等による種
々の実験結果から、図3(e),(f),(i)の形状
をもつ晶出物が形成されるとき、適正な速度で凝固反応
が進行し、晶出物の形状も良好で、純度のよい精製品が
得られることが判った。なかでも、底面の抜熱能を向上
させた冷却体10を使用して得られる晶出物(f)は、
底面の抜熱能を期待していない冷却体10を使用した場
合に得られる晶出物(e)に比較して1バッチ当りの精
製量も多くなり、しかも冷却体10の底面がアルミ溶湯
によって侵食されることも防止される。
Even when the disk-shaped cooling body 20 is used,
When the ambient temperature is too low, α-Al crystallized matter grows preferentially in the vicinity of the molten metal surface, and α-Al crystal grows on the lower surface of the cooling body 20.
The crystals are relatively reduced (g). Conversely, if the ambient temperature is too high, the solidification rate will be low, and the α-Al crystal will grow downward from the center of the lower surface of the cooling body 20 (h). In contrast,
Under conditions where the ambient temperature is properly maintained, the cooling body 20
(I), the surface of the cooling body 20 is effectively used for the purification reaction, and a purified product with high purity can be obtained. From the results of various experiments conducted by the present inventors, when a crystal having the shapes shown in FIGS. 3 (e), (f) and (i) is formed, the solidification reaction proceeds at an appropriate rate, and It was also found that the product had good shape and that a purified product with good purity could be obtained. Above all, the crystallized substance (f) obtained by using the cooling body 10 having the improved heat removal ability at the bottom is:
The amount of purification per batch is larger than that of the crystallized material (e) obtained when the cooling body 10 which does not expect the heat removal ability of the bottom is used, and the bottom of the cooling body 10 is eroded by the molten aluminum. Is also prevented.

【0012】底面の抜熱能を高めた冷却体10として
は、図4に示す断面構造をもつものが使用される。湯面
Lより下方に位置する内管11の側面に複数の通気孔4
1を形成すると共に、底面にも通気孔42を形成する。
そして、通気孔41,42の開口面積を調整することに
より、吹出し率を調整する。たとえば、直径60.5m
mの内管11を使用し、湯面Lから50mmしたの位置
から内管11の先端近傍までの側面に直径8mmの通気
孔41を54個形成する。他方、内管11の底部中央
に、直径5mmの通気孔41を1個形成する。このと
き、内管11の底部における冷却媒体gの吹出し率は、
(π×2.52 ×1/π×42 ×54)×100=0.
7%となる。
As the cooling body 10 having an improved bottom surface heat removal ability, a cooling body having a sectional structure shown in FIG. 4 is used. A plurality of ventilation holes 4 are formed on the side of the inner pipe 11 located below the molten metal surface L.
1 as well as a vent 42 on the bottom surface.
Then, the blowing rate is adjusted by adjusting the opening areas of the ventilation holes 41 and 42. For example, 60.5m in diameter
m inner pipes 11 are used, and 54 ventilation holes 41 having a diameter of 8 mm are formed on the side surface from the position 50 mm from the molten metal surface L to the vicinity of the tip of the inner pipe 11. On the other hand, one vent hole 41 having a diameter of 5 mm is formed at the center of the bottom of the inner tube 11. At this time, the blowing rate of the cooling medium g at the bottom of the inner pipe 11 is
(Π × 2.5 2 × 1 / π × 4 2 × 54) × 100 = 0.
7%.

【0013】この内管11の底部における吹出し率が0
%の場合、すなわち内管11の底部から冷却媒体gを吹
出さない場合には、冷却管10の外周面の下面が冷却さ
れないため、図3(a),(c),(d),(e)に示
すように冷却体10の下面にα−Al晶が晶出又は成長
せず、冷却体10の表面を晶出物の成長に利用する効率
が低下する。また、冷却体10の下面がアルミニウム溶
湯Mに露出した状態になるので、冷却体10の素材によ
ってはアルミニウム溶湯Mにより冷却体10が侵食され
る。しかし、吹出し率が5%を超えるようになると、冷
却体10の下面における冷却効果が大きくなりすぎ、図
3(b)に示すような晶出物が形成される。この場合、
冷却体10の下面における凝固速度が目標値より早いた
め、下面に成長した晶出物は、冷却体10の側面に成長
した晶出物に比較して純度が悪くなる。他方、吹出し率
を0.1〜5%の範囲に調整した冷却体10では、図3
(f)に示すように冷却体10の側面及び底面が高い効
率で晶出物の成長に利用され、均一な厚みをもち形状が
良好な晶出物が得られる。また、冷却体10の表面が晶
出物で覆われ、アルミニウム溶湯Mによる冷却体10の
侵食も防止される。
The blowing rate at the bottom of the inner tube 11 is zero.
%, That is, when the cooling medium g is not blown out from the bottom of the inner tube 11, the lower surface of the outer peripheral surface of the cooling tube 10 is not cooled, so that FIGS. 3 (a), (c), (d), ( As shown in e), the α-Al crystal does not crystallize or grow on the lower surface of the cooling body 10, and the efficiency of using the surface of the cooling body 10 for growing the crystallized material is reduced. Further, since the lower surface of the cooling body 10 is exposed to the molten aluminum M, the cooling body 10 is eroded by the molten aluminum M depending on the material of the cooling body 10. However, when the blowing rate exceeds 5%, the cooling effect on the lower surface of the cooling body 10 becomes too large, and a crystallized substance as shown in FIG. 3B is formed. in this case,
Since the solidification rate at the lower surface of the cooling body 10 is higher than the target value, the crystal grown on the lower surface has a lower purity than the crystal grown on the side surface of the cooling body 10. On the other hand, in the cooling body 10 in which the blowing rate is adjusted in the range of 0.1 to 5%, FIG.
As shown in (f), the side surface and the bottom surface of the cooling body 10 are utilized for the growth of the crystallized matter with high efficiency, and a crystallized material having a uniform thickness and a good shape is obtained. Further, the surface of the cooling body 10 is covered with the crystallized substance, and the erosion of the cooling body 10 by the molten aluminum M is also prevented.

【0014】[0014]

【実施例】【Example】

実施例1:Si:0.64重量%及びFe:0.45重
量%を含むアルミニウムサッシスクラップを溶解したア
ルミニウム溶湯Mに、直径110mmの管状冷却体10
を湯面から300mmの深さまで浸漬し、冷却空気を1
000リットル/分の流量で供給しながら管状冷却体1
0を100r.p.mで回転させた。管状冷却体10と
しては、直径60mmの内管11の底部に通気孔42を
形成し、底部の吹出し率を0.7%に設定したものを使
用した。晶出温度T0 は654〜652℃の範囲である
ので、T1 =T0 −(2〜14)℃となるように炉内の
雰囲気温度T1 を640〜650℃に保持した。この条
件下で、冷却体10の側面及び底面にα−Al晶出物を
15分間成長させた。得られた晶出物は、冷却体10の
底面から上方290mmの位置にある側面に直径340
mmの厚みまで成長していた。また、冷却体10の底面
から下方に20mmの厚みで成長していた。この晶出物
から得られた精製品の純度は、Si:0.22重量%及
びFe:0.13重量%であった。
Example 1 A tubular cooling body 10 having a diameter of 110 mm was melted in an aluminum melt M in which aluminum sapphire scrap containing 0.64% by weight of Si and 0.45% by weight of Fe was melted.
Is immersed to a depth of 300 mm from the hot water surface,
Tubular cooling body 1 while supplying at a flow rate of 2,000 liters / minute
0 to 100 r. p. m. As the tubular cooling body 10, one having a vent 42 formed in the bottom of the inner tube 11 having a diameter of 60 mm and the blowing rate at the bottom set to 0.7% was used. Since the crystallization temperature T 0 is in the range of 654 to 652 ° C., the atmosphere temperature T 1 in the furnace was maintained at 640 to 650 ° C. so that T 1 = T 0 − (2 to 14) ° C. Under these conditions, α-Al crystals were grown on the side and bottom surfaces of the cooling body 10 for 15 minutes. The obtained crystallized material has a diameter of 340 mm on the side surface located 290 mm above the bottom surface of the cooling body 10.
mm. Further, the cooling body 10 was grown with a thickness of 20 mm downward from the bottom surface. The purity of the purified product obtained from the crystallized product was 0.22% by weight of Si and 0.13% by weight of Fe.

【0015】実施例2: 実施例1と同じアルミニウム溶湯Mに、直径280mm
の円板状回転冷却体20を浸漬し、冷却空気を3000
リットル/分の流量で供給しながら円板状冷却体20を
50r.p.mで回転させた。晶出温度T0は654〜
652℃の範囲であるので、T1=T0−(0〜8)℃と
なるように炉内の雰囲気温度T1を646〜654℃に
保持した。この条件下で、冷却体20の下面及び側面に
α−Al晶出物を15分間成長させた。得られた晶出物
は、冷却体20の底面から35mmの厚みで直径310
mmまで成長していた。この晶出物から得られた精製品
の純度は、Si:0.20重量%及びFe:0.14重
量%であった。
Example 2: The same aluminum melt M as in Example 1 was used, with a diameter of 280 mm.
Of the rotary cooling body 20 of
While supplying at a flow rate of 1 liter / min, the disc-shaped cooling body 20 is supplied at 50 r. p. m. The crystallization temperature T 0 is 654-
Since the temperature range is 652 ° C., the atmosphere temperature T 1 in the furnace was maintained at 646 to 654 ° C. so that T 1 = T 0 − (0 to 8) ° C. Under these conditions, α-Al crystallized substances were grown on the lower surface and the side surfaces of the cooling body 20 for 15 minutes. The obtained crystallized product has a thickness of 35 mm and a diameter of 310 mm from the bottom of the cooling body 20.
mm. The purity of the purified product obtained from the crystallized product was 0.20% by weight of Si and 0.14% by weight of Fe.

【0016】実施例3: Si:8.02重量%及びFe:0.68重量%を含む
自動車用アルミニウムスクラップを溶解したアルミニウ
ム溶湯Mに、実施例1と同じ管状冷却体10を湯面から
300mmの深さまで浸漬し、冷却空気を3000リッ
トル/分の流量で供給しながら管状冷却体10を200
r.p.mで回転させた。晶出温度T0は594〜59
2℃の範囲であるので、T1=T0−(0〜24)℃とな
るように炉内の雰囲気温度T1を570〜594℃に保
持した。この条件下で、冷却体10の側面及び底面にα
−Al晶出物を15分間成長させた。得られた晶出物
は、冷却体10の軸方向に関して320mmの長さで直
径240mmの厚みまで成長していた。この晶出物から
得られた精製品の純度は、Si:3.31重量%及びF
e:0.20重量%であった。
Example 3 The same tubular cooling body 10 as in Example 1 was placed 300 mm from the surface of molten aluminum M in which aluminum scrap for automobiles containing 8.02% by weight of Si and 0.68% by weight of Fe was melted. Of the tubular cooling body 10 while supplying cooling air at a flow rate of 3000 liters / min.
r. p. m. The crystallization temperature T 0 is 594-59
Since it is in the range of 2 ° C., the atmosphere temperature T 1 in the furnace was maintained at 570 to 594 ° C. so that T 1 = T 0 − ( 0 to 24) ° C. Under these conditions, α and α
-The Al crystallization was allowed to grow for 15 minutes. The obtained crystallized material had grown to a thickness of 240 mm in a length of 320 mm in the axial direction of the cooling body 10. The purity of the purified product obtained from this crystallized product was 3.31% by weight of Si and F
e: 0.20% by weight.

【0017】実施例4: 実施例3と同じアルミニウム溶湯Mに、実施例2と同じ
円板状回転冷却体20を浸漬し、冷却空気を3000リ
ットル/分の流量で供給しながら円板状冷却体20を1
50r.p.mで回転させた。晶出温度T0は594〜
592℃の範囲であるので、T1=T0−(4〜24)℃
となるように炉内の雰囲気温度T1を570〜590℃
に保持した。この条件下で、冷却体20の下面及び側面
にα−Al晶出物を15分間成長させた。得られた晶出
物は、冷却体20の底面から25mmの厚みで直径30
0mmまで成長していた。この晶出物から得られた精製
品の純度は、Si:3.20重量%及びFe:0.18
重量%であった。実施例1〜4に示すような実験を種々
のアルミニウムスクラップに対して繰り返した結果、α
−Alの晶出温度に対して雰囲気温度を適正に調節する
とき、形状が良好で純度の高い精製品が得られることを
確認した。すなわち、アルミニウムサッシスクラップの
精製にあたっては、α−Alの晶出温度T0が650℃
付近にあるので、晶出温度T0より0〜10℃低い64
0〜650℃の範囲に雰囲気温度T1を保持することが
有効である。他方、自動車用Alスクラップの精製にあ
たっては、α−Alの晶出温度T0が590℃付近にあ
るので、晶出温度T0より0〜20℃低い570〜59
0℃の範囲に雰囲気温度T1を保持することが有効であ
る。
Embodiment 4: The same disk-shaped rotary cooling body 20 as in Embodiment 2 is immersed in the same molten aluminum M as in Embodiment 3, and while cooling air is supplied at a flow rate of 3000 liters / minute, disk-shaped cooling is performed. One body 20
50r. p. m. Crystallization temperature T 0 is 594~
Since it is in the range of 592 ° C., T 1 = T 0 − (4 to 24) ° C.
And so as to the ambient temperature T 1 of the furnace five hundred seventy to five hundred and ninety ° C.
Held. Under these conditions, α-Al crystallized substances were grown on the lower surface and the side surfaces of the cooling body 20 for 15 minutes. The obtained crystallized product has a thickness of 25 mm from the bottom of the cooling body 20 and a diameter of 30 mm.
It had grown to 0 mm. The purity of the purified product obtained from this crystallized product was 3.20% by weight of Si and 0.18% of Fe.
% By weight. As a result of repeating experiments as shown in Examples 1 to 4 for various aluminum scraps, α
It was confirmed that when the ambient temperature was appropriately adjusted with respect to the crystallization temperature of -Al, a purified product having a good shape and a high purity was obtained. That is, in refining aluminum sapphire scrap, the crystallization temperature T 0 of α-Al is 650 ° C.
64, which is lower by 0 to 10 ° C. than the crystallization temperature T 0.
It is effective to hold the ambient temperature T 1 of in the range of from 0 to 650 ° C.. On the other hand, in refining Al scrap for automobiles, the crystallization temperature T 0 of α-Al is around 590 ° C., so it is 570 to 59 ° C. lower than the crystallization temperature T 0 by 0 to 20 ° C.
It is effective to hold the ambient temperature T 1 of in the range of 0 ° C..

【0018】比較例:管状回転冷却体10を使用し、本
発明で規定した範囲を外れる条件下で実施例1と同じア
ルミニウムサッシスクラップの溶湯を精製した場合を、
実施例1及び3と対比して図5に示す。雰囲気温度が低
過ぎる比較例1では、湯面近傍の凝固速度が大きく、精
製品の純度が悪かった。雰囲気温度が高すぎる比較例2
では、全体的に凝固速度が遅く、純度が高い精製品が得
られたものの、生産性に問題があった。また、内管底部
からの吹出し率を大きくした比較例3では、形状が不良
な晶出物が成長し、精製品の純度も悪かった。また、円
板状の回転冷却体20を使用してアルミニウムサッシス
クラップの溶湯を精製した場合、雰囲気温度を500〜
530℃に設定すると、図3(g)に示すように、湯面
近傍での凝固速度が大きく、純度の低い精製品が得られ
た。逆に雰囲気温度を720〜750℃と高く設定する
と、図3(h)に示す形状をもつ晶出物が成長し、純度
が高い精製品が得られたものの、低い精製効率であっ
た。
Comparative Example: A case where the same molten aluminum sapphire scrap as in Example 1 was purified using a tubular rotary cooling body 10 under conditions outside the range specified in the present invention,
FIG. 5 shows a comparison with Examples 1 and 3. In Comparative Example 1 in which the ambient temperature was too low, the solidification rate near the molten metal surface was large, and the purity of the purified product was poor. Comparative Example 2 with too high ambient temperature
Thus, although a solidified product having a low solidification rate and high purity was obtained, there was a problem in productivity. Further, in Comparative Example 3 in which the blowing rate from the bottom of the inner tube was increased, a crystallized substance having a poor shape grew and the purity of the purified product was poor. When the molten metal of aluminum sapphire scrap is purified using the disk-shaped rotary cooling body 20, the ambient temperature is set to 500 to
When the temperature was set to 530 ° C., as shown in FIG. 3 (g), a solidified product having a high solidification rate near the molten metal surface and a low purity was obtained. Conversely, when the ambient temperature was set to a high value of 720 to 750 ° C., a crystal having the shape shown in FIG. 3 (h) grew and a purified product with high purity was obtained, but the purification efficiency was low.

【0019】[0019]

【発明の効果】以上に説明したように、本発明において
は、初晶が金属間化合物である組成をもつアルミニウム
スクラップの溶湯に冷却体を浸漬して、冷却体の側面や
下面にα−Al晶を晶出させることによりアルミニウム
を精製するとき、α−Alの晶出温度との関連で雰囲気
温度を制御している。この温度制御により、α−Al晶
の凝固速度を冷却体の表面全体に均一化することがで
き、純度のよい精製品が得られる。また、管状冷却体の
内管底部に通気孔を形成し、底面冷却能を向上させると
き、管状冷却体の底面にも純度のよい晶出物が成長し、
精製効率が向上すると共に、アルミニウム溶湯による冷
却体の侵食も抑制される。
As described above, in the present invention, a cooling body is immersed in a molten aluminum scrap having a composition in which primary crystals are intermetallic compounds, and α-Al When purifying aluminum by crystallizing the crystals, the ambient temperature is controlled in relation to the crystallization temperature of α-Al. By this temperature control, the solidification rate of the α-Al crystal can be made uniform over the entire surface of the cooling body, and a purified product with high purity can be obtained. In addition, when a vent hole is formed at the bottom of the inner tube of the tubular cooling body to improve the bottom cooling capacity, crystallized matter of high purity also grows on the bottom of the tubular cooling body,
The purification efficiency is improved, and the erosion of the cooling body by the molten aluminum is suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に従った精製方法を実施する精製装置
の一例
FIG. 1 shows an example of a purifying apparatus for performing a purifying method according to the present invention.

【図2】 本発明に従った精製方法を実施する精製装置
の他の例
FIG. 2 shows another example of a purifying apparatus for performing the purifying method according to the present invention.

【図3】 雰囲気温度等に影響によって異なった形状に
成長したα−Al晶出物の数例
FIG. 3 shows several examples of α-Al crystals grown in different shapes due to the influence of the ambient temperature and the like.

【図4】 底面の抜熱能を向上させた管状冷却体FIG. 4 is a tubular cooling body having an improved bottom surface heat removal capability.

【図5】 管状冷却体を使用してアルミニウム溶湯を精
製した場合の操業条件が精製結果に与える影響を対比し
た図表
FIG. 5 is a chart comparing the effect of operating conditions on the refining results when refining aluminum melt using a tubular cooling body.

【符号の説明】[Explanation of symbols]

M:溶湯 α−Al:精製された晶出物 I:金属
間化合物 g:冷却媒体 10:管状回転冷却体 11:内管 12:外管
13:カップリング 14,16:モータ 15:アーム 17:送りネ
ジ 18:ギャップ 20:円板状回転冷却体 21:内管 22:外管
23,24:フランジ 25:オリフィス 2
7:底壁 28:分配室 29:冷却室 30:精製容器 31:ヒータ 32:蓋体 3
3:バーナ 41:内管の下部側面に形成した通気孔
42:内管の底面に形成した通気孔
M: molten metal α-Al: purified crystallized substance I: intermetallic compound g: cooling medium 10: tubular rotary cooling body 11: inner tube 12: outer tube
13: Coupling 14, 16: Motor 15: Arm 17: Feed screw 18: Gap 20: Disc-shaped rotary cooling body 21: Inner tube 22: Outer tube 23, 24: Flange 25: Orifice 2
7: Bottom wall 28: Distribution chamber 29: Cooling chamber 30: Purification container 31: Heater 32: Lid 3
3: burner 41: vent formed on the lower side of the inner tube 42: vent formed on the bottom of the inner tube

フロントページの続き (56)参考文献 特開 昭60−190535(JP,A) 特開 昭63−162823(JP,A) 特開 平5−295465(JP,A) 特公 平2−27423(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C22B 1/00 - 61/00 Continuation of the front page (56) References JP-A-60-190535 (JP, A) JP-A-63-162823 (JP, A) JP-A-5-295465 (JP, A) JP 2-27423 (JP) , B2) (58) Field surveyed (Int. Cl. 7 , DB name) C22B 1/00-61/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 アルミニウムスクラップを溶解した溶湯
に冷却体を浸漬し、冷却体の表面にα−Al晶を晶出成
長させる際、α−Al晶出温度T0 (℃)に対してアル
ミニウム溶湯の湯面上方にある雰囲気の温度T1(℃)
をT1 0 −(0〜24)の範囲に維持することを特徴
とするアルミニウムスクラップの精製方法。
When a cooling body is immersed in a molten metal in which aluminum scrap is melted to crystallize and grow α-Al crystals on the surface of the cooling body, the aluminum molten metal is melted at an α-Al crystallization temperature T 0 (° C.) . Temperature T 1 (° C) of the atmosphere above the surface of the bath
The T 1 = T 0 - (0~24 ) method for purifying aluminum scrap, characterized in that maintained in the range of.
【請求項2】 請求項1記載の冷却体として、底が閉じ
た管内に同じく底が閉じた管を挿入した形状の二重管か
らなり、湯面より下方に位置する内管の側面及び底面に
通気孔を有する断面構造のものであって、内管から冷却
媒体を送給して二重管の外管内を通して前期冷却媒体を
外に排出する際、内管の底面における冷却媒体の吹出し
率が全吹出し量の0.1〜5%である管状冷却体を使用
するアルミニウムスクラップの精製方法。
2. The cooling body according to claim 1, wherein the bottom is closed.
Double tube with a closed-bottomed tube inserted into a closed tube
On the side and bottom of the inner pipe located below the
It has a cross-sectional structure with ventilation holes, and is cooled from the inner tube
The medium is fed and the cooling medium is passed through the outer pipe of the double pipe.
A method for purifying aluminum scrap using a tubular cooling body in which a discharge rate of a cooling medium at a bottom surface of an inner tube is 0.1 to 5% of a total blowout amount when the water is discharged outside .
【請求項3】 不純物の一部が金属間化合物の初晶とし
て晶出する組成をもつアルミニウム合金を溶解し、初晶
として晶出する金属間化合物を炉底に沈降分離させた
後、アルミニウム溶湯に浸漬した冷却体の表面にα−A
l晶を晶出成長させる請求項1又は2記載のアルミニウ
ムスクラップの精製方法。
3. An aluminum alloy having a composition in which some of the impurities are crystallized as primary crystals of an intermetallic compound is melted, and an intermetallic compound crystallized as a primary crystal is settled and separated at a furnace bottom, and then the molten aluminum is melted. Α-A on the surface of the cooling body immersed in
3. The aluminum alloy according to claim 1, wherein the 1 crystal is crystallized and grown.
Purification method of beam scrap.
JP12424795A 1995-04-25 1995-04-25 Purification method of aluminum scrap Expired - Fee Related JP3211622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12424795A JP3211622B2 (en) 1995-04-25 1995-04-25 Purification method of aluminum scrap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12424795A JP3211622B2 (en) 1995-04-25 1995-04-25 Purification method of aluminum scrap

Publications (2)

Publication Number Publication Date
JPH08295964A JPH08295964A (en) 1996-11-12
JP3211622B2 true JP3211622B2 (en) 2001-09-25

Family

ID=14880615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12424795A Expired - Fee Related JP3211622B2 (en) 1995-04-25 1995-04-25 Purification method of aluminum scrap

Country Status (1)

Country Link
JP (1) JP3211622B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO326797B1 (en) * 2005-06-10 2009-02-16 Elkem As Process and apparatus for refining molten material
JP5134817B2 (en) * 2006-12-28 2013-01-30 昭和電工株式会社 Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor

Also Published As

Publication number Publication date
JPH08295964A (en) 1996-11-12

Similar Documents

Publication Publication Date Title
US4373950A (en) Process of preparing aluminum of high purity
US4747906A (en) Process and apparatus for purifying silicon
JP3329013B2 (en) Continuous refining method and apparatus for Al-Si aluminum scrap
EP0375308A1 (en) Process and apparatus for producing high purity aluminum
US4948102A (en) Method of preparing high-purity metal and rotary cooling member for use in apparatus therefor
JP3237330B2 (en) Purification method of aluminum alloy scrap
JP3211622B2 (en) Purification method of aluminum scrap
JP4378820B2 (en) Aluminum purification method and its use
JPH0137458B2 (en)
JP2916645B2 (en) Metal purification method
JP4144060B2 (en) Method for growing silicon single crystal
JPH0873959A (en) Method for refining aluminum and device therefor
JP3237438B2 (en) Purification method of aluminum scrap
JPH06299265A (en) Method for refining aluminum scrap
JPH05295462A (en) Method and apparatus for purifying aluminum
JPH0754063A (en) Apparatus for refining aluminum scrap
KR900007075B1 (en) Color display tube process and apparatus for purifying silicon
JP2000351616A (en) Production of high-purity silicon
JPH0754073A (en) Refining method for aluminum scrap
JP2000351616A5 (en)
JPH09188512A (en) Metal purifier
JPH05295461A (en) Method and apparatus for purifying aluminum
JPH0754074A (en) Refining method for aluminum scrap
JPH09194964A (en) Method for refining aluminum
JP3151327B2 (en) Single crystal production equipment

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees