JPH08295964A - Refining method of aluminium or aluminium scrap - Google Patents
Refining method of aluminium or aluminium scrapInfo
- Publication number
- JPH08295964A JPH08295964A JP12424795A JP12424795A JPH08295964A JP H08295964 A JPH08295964 A JP H08295964A JP 12424795 A JP12424795 A JP 12424795A JP 12424795 A JP12424795 A JP 12424795A JP H08295964 A JPH08295964 A JP H08295964A
- Authority
- JP
- Japan
- Prior art keywords
- cooling body
- crystallized
- cooling
- aluminum
- molten metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、溶解原料に含まれてい
る不純物を晶出分離し、純度の高いα−Al晶を選択的
に晶出成長させることによりアルミニウムスクラップを
精製する方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying an aluminum scrap by crystallizing and separating impurities contained in a melting raw material and selectively crystallizing and growing a highly pure α-Al crystal.
【0002】[0002]
【従来の技術】溶湯中に浸漬した冷却体表面に晶出物を
成長させる偏析法でアルミニウム又はアルミニウムスク
ラップを精製する際、精製純度は、冷却体の表面で凝固
する晶出物の形状に影響される。そのため、精製純度を
高めるため、晶出物の形状コントロールが種々検討され
ている。たとえば、冷却体として管状体(以下、冷却管
という)を用いたものでは、特公昭59−45739号
公報にみられるように冷却管のメタル界面深さの上下の
外周に断熱材を取り付け、或いは特公平2−27423
号公報にみられるように冷却管内部のメタル界面深さ上
下にヒータを取り付けることにより晶出凝固体の形状を
コントロールする方法が提案されている。2. Description of the Related Art When purifying aluminum or aluminum scrap by the segregation method of growing crystallized substances on the surface of a cooling body immersed in a molten metal, the refining purity affects the shape of the crystallized substances solidified on the surface of the cooling body. To be done. Therefore, in order to improve the purification purity, various control of the shape of the crystallized product has been studied. For example, in the case where a tubular body (hereinafter referred to as a cooling pipe) is used as the cooling body, a heat insulating material is attached to the upper and lower outer peripheries of the metal interface depth of the cooling pipe, as seen in Japanese Patent Publication No. 59-45739. Japanese Patent Fair 2-27423
As disclosed in the publication, a method has been proposed in which heaters are attached above and below the metal interface depth inside the cooling tube to control the shape of the crystallized solidified body.
【0003】しかし、冷却管外周に断熱材を取り付ける
方法では、アルミ溶湯に耐える適当な断熱材が少ないこ
と,断熱材が冷却管から剥離し易いこと,操業条件によ
っては断熱材の表面にアルミニウムが凝固し、このアル
ミニウムを取り除くとき断熱材に破損が生じ易いこと等
の問題があり、操業上の問題が多い。また、冷却管内部
にヒータを取り付ける方法では、冷却管を回転させる場
合に電源の取入れ機構が複雑になるだけでなく、高温に
さらされることから絶縁が難しく、且つ断線等のトラブ
ルが多発する等の問題がある。また、冷却管底部に精製
アルミニウムを凝固させない方法としては、特公昭60
−17008号公報にみられるように冷却管底部外面に
断熱材を取り付けたり、特公平5−65415号公報に
みられるように冷却管底部の肉厚を厚くしたり、底面方
向の冷媒の吹出し口を中止したりする方法が提案されて
いる。しかし、底面外部に断熱材を取り付けるとき、断
熱材の剥離等、種々の問題が生じる。しかも、何れの方
法でも底面が完全にアルミ溶湯に常時接触しているケー
スが多く、冷却管が侵食される欠点がある。However, in the method of attaching the heat insulating material to the outer circumference of the cooling pipe, there are few suitable heat insulating materials that can withstand the molten aluminum, the heat insulating material is easily peeled off from the cooling pipe, and aluminum is attached to the surface of the heat insulating material depending on operating conditions. There are many problems in operation, such as the fact that the heat insulating material is likely to be damaged when it solidifies and removes this aluminum. In addition, the method of mounting the heater inside the cooling pipe not only complicates the mechanism for taking in the power source when rotating the cooling pipe, but also makes it difficult to insulate because it is exposed to high temperatures, and often causes troubles such as disconnection. I have a problem. Further, as a method for preventing purified aluminum from being solidified at the bottom of the cooling pipe, Japanese Patent Publication Sho 60
No. 17008, a heat insulating material is attached to the outer surface of the bottom of the cooling pipe, the thickness of the bottom of the cooling pipe is thickened, as seen in Japanese Patent Publication No. 5-65415, and the outlet of the refrigerant in the bottom direction. The method of stopping or is proposed. However, when the heat insulating material is attached to the outside of the bottom surface, various problems such as peeling of the heat insulating material occur. Moreover, in any of the methods, there are many cases where the bottom surface is always in full contact with the molten aluminum, and there is a drawback that the cooling pipe is eroded.
【0004】本発明者等も、偏析法によるアルミニウム
又はアルミニウムスクラップの精製を調査・研究し、そ
の過程で、冷却体の表面にα−Al晶を晶出させること
によりアルミニウム溶湯を生成する方法を開発し、その
一部を特願平7−30109号として出願した。この方
法では、図1に示すような管状の回転冷却体10や図2
に示すような円板状の回転冷却体20を使用する。精製
されるアルミニウムスクラップは、精製容器30に収容
され、外周からヒータ31で加熱される。また、精製容
器30に装着した蓋体32に設けた温度制御用のバーナ
33で加熱することもできる。これにより、α−Alの
凝固点より僅かに高い温度に保持されたアルミニウム溶
湯Mが調製される。溶融状態に保持された溶湯Mに、回
転冷却体10,20が浸漬される。管状の回転冷却体1
0は、軸方向にガス通路をもつ内管11の先端部近傍に
外管12を嵌め合せている。内管11は、蓋体32を貫
通して上方に延び、カップリング13を介しモータ14
の出力軸に接続されている。モータ14から延びたアー
ム15は、モータ16で回転される送りネジ17に嵌挿
されている。これにより、回転冷却体10は、精製容器
30の内部で昇降自在に回転する。円板状の回転冷却体
20も、同様な機構によって昇降自在に回転する。The present inventors also investigated and studied the purification of aluminum or aluminum scrap by the segregation method, and in the process, a method of producing an aluminum melt by crystallizing α-Al crystals on the surface of the cooling body was proposed. It was developed and a part of it was filed as Japanese Patent Application No. 7-30109. In this method, a tubular rotary cooling body 10 as shown in FIG.
A disk-shaped rotary cooling body 20 as shown in is used. The aluminum scrap to be refined is accommodated in the refining container 30 and heated by the heater 31 from the outer circumference. It is also possible to heat with a burner 33 for temperature control provided on a lid 32 mounted on the purification container 30. As a result, the molten aluminum M kept at a temperature slightly higher than the freezing point of α-Al is prepared. The rotary cooling bodies 10 and 20 are immersed in the molten metal M held in a molten state. Tubular rotating cooling body 1
In No. 0, the outer pipe 12 is fitted near the tip of the inner pipe 11 having a gas passage in the axial direction. The inner pipe 11 penetrates through the lid 32 and extends upward, and a motor 14 is provided via a coupling 13.
Is connected to the output shaft of. The arm 15 extending from the motor 14 is fitted into a feed screw 17 rotated by the motor 16. As a result, the rotary cooling body 10 rotates in the refining container 30 so as to be movable up and down. The disc-shaped rotary cooling body 20 also rotates in a vertically movable manner by a similar mechanism.
【0005】管状の回転冷却体10(図1)は、内管1
1から送り込まれた冷却媒体gがギャップ18を経て外
管12から放出されることにより冷却される。冷却媒体
gには、空気,非酸化性ガス,霧状の水分を含む空気等
が使用される。冷却媒体gの流動により、外管12の管
壁を介して溶湯Mが冷却される。円板状の回転冷却体2
0(図2)は、内管21に外管22を嵌め合わせた二重
管構造をもっており、内管21及び外管22の下端部に
共に半径方向に広がった円形状のフランジ23,24が
取り付けられており、フランジ23には複数のオリフィ
ス25が形成されている。フランジ23から一定の間隔
を保った底壁27が取り付けられている。冷却媒体g
は、外管22に送り込まれ、内管21と外管22との間
を経て、フランジ44と43との間に形成された分配室
28に導入される。次いで、冷却媒体gは、オリフィス
25,25・・を経て冷却室29に流入する。The tubular rotary cooling body 10 (FIG. 1) is the inner tube 1
The cooling medium g sent from No. 1 is cooled by being discharged from the outer tube 12 through the gap 18. As the cooling medium g, air, non-oxidizing gas, air containing mist-like water, or the like is used. Due to the flow of the cooling medium g, the molten metal M is cooled via the pipe wall of the outer pipe 12. Disc-shaped rotating cooling body 2
0 (FIG. 2) has a double pipe structure in which an outer pipe 22 is fitted to an inner pipe 21, and circular flanges 23 and 24, which are spread in the radial direction, are provided at the lower ends of the inner pipe 21 and the outer pipe 22. The flange 23 has a plurality of orifices 25 formed therein. A bottom wall 27 is attached at a constant distance from the flange 23. Cooling medium g
Is introduced into the outer pipe 22, passes between the inner pipe 21 and the outer pipe 22, and is introduced into the distribution chamber 28 formed between the flanges 44 and 43. Then, the cooling medium g flows into the cooling chamber 29 via the orifices 25, 25, ...
【0006】冷却室29内の冷却媒体gは、底壁27を
介して溶湯Mを冷却する。冷却媒体gの抜熱能が底壁2
7の面内で均一化されているので、冷却された溶湯Mか
ら底壁27の下面に万遍なくα−Alが晶出する。溶湯
Mとの熱交換によって昇温した冷却媒体gは、冷却室2
9から内管21を経て系外に排出される。溶湯Mの温度
が下がるとき、初晶が金属間化合物の系では、先ず回転
冷却体10,20を冷却する前に溶湯の温度を下げ、た
とえばAl−Si−Fe−Mn系金属間化合物を炉底に
沈降させる。金属間化合物の晶出に伴って、残りの溶湯
Mが純化され、温度が更に下がる。そして、回転冷却体
10,20を冷却すると、α−Al晶の晶出が始まる。
このとき、α−Al晶と溶湯Mとの界面に排出されるS
i,Fe,Cu等の不純物は、回転冷却体10,20の
回転によってα−Al晶から分離され、一部は溶湯Mに
比較して比重が大きな金属間化合物Iとして溶湯M中を
落下し、残りは母液中に拡散する。沈降分離した金属間
化合物Iは、回転冷却体10,20の回転で生じる溶湯
Mの撹拌流により、精製容器30の底部中央に溜る。The cooling medium g in the cooling chamber 29 cools the molten metal M via the bottom wall 27. The heat removal capability of the cooling medium g is the bottom wall 2
Since it is made uniform within the surface of No. 7, α-Al crystallizes uniformly from the cooled molten metal M on the lower surface of the bottom wall 27. The cooling medium g heated by heat exchange with the molten metal M is cooled by the cooling chamber 2
It is discharged from the system 9 through the inner pipe 21. When the temperature of the molten metal M is lowered, in a system in which the primary crystal is an intermetallic compound, first, the temperature of the molten metal is lowered before cooling the rotary cooling bodies 10 and 20, and for example, an Al-Si-Fe-Mn-based intermetallic compound is used in a furnace. Allow to settle to bottom. With the crystallization of the intermetallic compound, the remaining molten metal M is purified and the temperature further decreases. Then, when the rotary cooling bodies 10 and 20 are cooled, crystallization of α-Al crystals starts.
At this time, S discharged at the interface between the α-Al crystal and the molten metal M
Impurities such as i, Fe, and Cu are separated from the α-Al crystal by the rotation of the rotary cooling bodies 10 and 20, and some of them fall in the molten metal M as an intermetallic compound I having a larger specific gravity than the molten metal M. , The rest diffuses in the mother liquor. The sedimented and separated intermetallic compound I accumulates in the center of the bottom portion of the refining vessel 30 due to the stirring flow of the molten metal M generated by the rotation of the rotary cooling bodies 10 and 20.
【0007】[0007]
【発明が解決しようとする課題】管状回転冷却体10の
側面や円板状回転冷却体20の底面にα−Al晶を晶出
凝固させる際、晶出物の形状を制御することが凝固速度
のコントロールにつながり、ひいては晶出物の純度を向
上させることにもなる。管状の回転冷却体10には、図
3の(a)〜(f)に示すような形状でα−Al晶が晶
出する。円板状の回転冷却体20には、図3の(g)〜
(i)に示すような形状でα−Al晶が晶出する。本発
明者等の調査・研究によるとき、これら晶出物の形状の
うちで(e),(f)及び(i)が凝固速度が均一にコ
ントロールされ、得られた晶出物の純度も高くなってい
ることが判った。しかし、晶出物の形状制御は、従来で
は冷却体10,20そのものの材質や断熱構造等の改良
で対応している。このような対応であると、結果として
設備の複雑化や制作コストの上昇等の問題を派生させ
る。本発明は、晶出物の形状が図3の(e),(f)又
は(i)になるように冷却条件を制御することにより、
設備構成自体に影響を及ぼすことなく、従来の精製装置
を使用して純度の高い精製アルミニウムを高生産性で得
ることを目的とする。When the α-Al crystal is crystallized and solidified on the side surface of the tubular rotary cooling body 10 or the bottom surface of the disc-shaped rotary cooling body 20, it is necessary to control the shape of the crystallized substance. It also leads to the control of the above and, in turn, improves the purity of the crystallized product. On the tubular rotary cooling body 10, α-Al crystals are crystallized in a shape as shown in FIGS. The disk-shaped rotary cooling body 20 has a structure shown in (g) of FIG.
The α-Al crystal is crystallized in the shape as shown in (i). According to the investigations and studies by the present inventors, among the shapes of these crystallized substances, (e), (f), and (i) have a uniform solidification rate, and the obtained crystallized substance has a high purity. It turns out that it has become. However, the shape control of crystallized substances has hitherto been dealt with by improving the materials of the cooling bodies 10 and 20 themselves, the heat insulating structure, and the like. Such measures result in problems such as complicated facilities and increased production costs. In the present invention, the cooling conditions are controlled so that the crystallized product has the shape of (e), (f) or (i) of FIG.
It is an object of the present invention to obtain highly purified purified aluminum with high productivity by using a conventional refining device without affecting the equipment structure itself.
【0008】[0008]
【課題を解決するための手段】本発明の精製方法は、そ
の目的を達成するため、アルミニウム又はアルミニウム
スクラップを溶解した溶湯に冷却体を浸漬し、冷却体の
表面にα−Al晶を晶出成長させる際、α−Al晶出温
度T0 に対してアルミニウム溶湯の湯面上方にある雰囲
気の温度T1 (℃)をT1 =T0 +(−100〜+5
0)の範囲に維持することを特徴とする。不純物の一部
が金属間化合物の初晶として晶出する組成をもつアルミ
ニウム合金を精製する場合には、初晶として晶出する金
属間化合物を炉底に沈降分離させた後、アルミニウム溶
湯に浸漬した冷却体の表面にα−Al晶を晶出成長させ
る。湯面の上方約10cmにおける雰囲気温度がT1 =
T0 +(−100〜+50)の条件を満足するとき、好
適な冷却条件が得られ、晶出物の形状が図3の(e),
(f)又は(i)になる。操業的には、α−Alの晶出
温度より雰囲気温度を下げた方が晶出物の形状制御が容
易になる。これは、雰囲気温度を低くすることにより、
晶出物が凝固する際に発生する凝固潜熱の抜熱が容易に
なることに由来するものと推察される。冷却体として
は、図1の管状冷却体10,図2の円板状冷却体20等
を使用することができる。これら冷却体は、回転式、或
いは回転させることなく固定式の何れであってもよい。
また、管状冷却体を使用する場合、内管11の底面にも
通気口42(図4参照)を形成し、底面における冷却媒
体の吹出し率を全吹出し量の0.1〜5%に調整するこ
とが好ましい。In order to achieve the object, the refining method of the present invention immerses a cooling body in a molten metal in which aluminum or aluminum scrap is melted, and crystallizes α-Al crystals on the surface of the cooling body. When growing, the temperature T 1 (° C.) of the atmosphere above the molten aluminum surface relative to the α-Al crystallization temperature T 0 is T 1 = T 0 + (− 100 to +5).
It is characterized in that it is maintained in the range of 0). When refining an aluminum alloy that has a composition in which some of the impurities crystallize as primary crystals of intermetallic compounds, the intermetallic compounds that crystallize as primary crystals are settled and separated on the furnace bottom and then immersed in molten aluminum. The α-Al crystal is crystallized on the surface of the cooled body. The atmospheric temperature about 10 cm above the surface of the molten metal is T 1 =
When the condition of T 0 + (− 100 to +50) is satisfied, suitable cooling conditions are obtained, and the shape of the crystallized substance is (e) in FIG.
It becomes (f) or (i). In operation, it is easier to control the shape of the crystallized substance by lowering the atmospheric temperature than the crystallization temperature of α-Al. This is because by lowering the ambient temperature,
It is presumed that this is because the solidification latent heat generated when the crystallized product solidifies is easily removed. As the cooling body, the tubular cooling body 10 of FIG. 1, the disc-shaped cooling body 20 of FIG. 2 or the like can be used. These cooling bodies may be either rotary type or fixed type without rotating.
When a tubular cooling body is used, a ventilation hole 42 (see FIG. 4) is also formed on the bottom surface of the inner tube 11 to adjust the blowing rate of the cooling medium on the bottom surface to 0.1 to 5% of the total blowing amount. It is preferable.
【0009】[0009]
【作用】α−Al晶は、図3に示すように種々の形状と
なって冷却体10,20に晶出する。晶出物の形状がこ
のように異なることは、次の理由によるものと考えら
れ、純度の高い精製品を得る上では図3(e),(f)
及び(i)の形状が好ましい。管状の冷却体10の側面
にα−Al晶を晶出させるとき、雰囲気温度が低過ぎる
場合、アルミニウム溶湯Mから雰囲気に放散される熱量
が多く、湯面での凝固が促進される。他方、湯面から深
い部分では、凝固潜熱が放散されず、凝固が遅延する。
その結果、α−Al晶出物は、湯面で浴内部に向けて小
径化された形状(a)になる。しかも、湯面における凝
固速度が大きすぎることから、α−Al晶の晶出に際し
て不純物或いは純度の低いAlが晶出物に取り込まれ、
得られた精製品の純度が低下する。底面の吹出し率を大
きくして底面からの冷却を高めた冷却体10では、冷却
体10の下端側にα−Al晶出物が大きく成長する
(b)。このとき、底面における凝固速度が早すぎる
と、底面に成長した晶出物に不純物或いは純度の低いA
lが取り込まれ、側面に成長した晶出物に比較して純度
が低下する。また、(b)の形状をもつ晶出物は、精製
中に冷却体10から脱落し易く、精製効率を低下させる
ことになる。FUNCTION The α-Al crystal is crystallized in the cooling bodies 10 and 20 in various shapes as shown in FIG. Such different shapes of crystallized substances are considered to be due to the following reasons, and in order to obtain a purified product with high purity, the results shown in FIGS.
The shapes of (i) and (i) are preferable. When the α-Al crystal is crystallized on the side surface of the tubular cooling body 10 and the ambient temperature is too low, the amount of heat radiated from the molten aluminum M to the atmosphere is large, and solidification on the molten metal surface is promoted. On the other hand, in the portion deep from the molten metal surface, latent heat of solidification is not dissipated and solidification is delayed.
As a result, the α-Al crystallized product has a shape (a) whose diameter is reduced toward the inside of the bath on the molten metal surface. Moreover, since the solidification rate on the molten metal surface is too high, impurities or low-purity Al are taken into the crystallized product during the crystallization of α-Al crystals,
The purity of the obtained purified product decreases. In the cooling body 10 in which the blowout rate of the bottom surface is increased to enhance the cooling from the bottom surface, the α-Al crystallized substances grow largely on the lower end side of the cooling body 10 (b). At this time, if the solidification rate at the bottom surface is too fast, the crystallized product grown on the bottom surface may contain impurities or A with low purity.
1 is taken in, and the purity is lower than that of the crystallized product grown on the side surface. Further, the crystallized product having the shape of (b) is likely to drop off from the cooling body 10 during the purification, which reduces the purification efficiency.
【0010】雰囲気温度が高すぎる場合には、アルミニ
ウム溶湯から雰囲気に放散される熱量がなく、湯面にお
ける凝固の進行が期待できない。その結果、凝固速度が
遅く、α−Al晶出物は専ら冷却体10の下部に厚く成
長する(c)。また、冷却体10の上部に晶出したα−
Alが剥離し易くなる。アルミニウム溶湯Mに浸漬した
冷却体10の回転速度が高過ぎると、冷却体10の表面
に付着した晶出物が遠心力によって剥離脱落する
(d)。晶出物がこのような形状になる場合には、冷却
体10の回転数を調整することにより、適正形状をもつ
晶出物を成長させることが要求される。雰囲気温度が適
正に維持され、且つ冷却条件が冷却体10の表面に関し
て均一であると、α−Al晶出物は、冷却体10の側面
に均一な厚みで成長する(e)。更に、冷却体10の底
面における抜熱機能を向上させると、底面にもα−Al
晶出物が成長する(f)。このような均一な厚みで成長
した晶出物からは、純度の高い精製品が得られる。ま
た、形状(f)の晶出物は、精製効率を上げる上で有効
である。When the atmospheric temperature is too high, there is no heat quantity dissipated from the molten aluminum into the atmosphere, and the progress of solidification on the molten metal surface cannot be expected. As a result, the solidification rate is slow, and the α-Al crystallized product grows thickly exclusively in the lower part of the cooling body 10 (c). In addition, α− crystallized on the upper part of the cooling body 10
Al easily peels off. When the rotation speed of the cooling body 10 immersed in the molten aluminum M is too high, the crystallized substances attached to the surface of the cooling body 10 are separated and dropped by the centrifugal force (d). When the crystallized product has such a shape, it is required to grow the crystallized product having an appropriate shape by adjusting the rotation speed of the cooling body 10. When the atmospheric temperature is properly maintained and the cooling conditions are uniform with respect to the surface of the cooling body 10, the α-Al crystallized substances grow on the side surfaces of the cooling body 10 with a uniform thickness (e). Furthermore, if the heat removal function on the bottom surface of the cooling body 10 is improved, α-Al also forms on the bottom surface.
Crystallized substances grow (f). A purified product with high purity can be obtained from the crystallized product grown with such a uniform thickness. Further, the crystallized product of the form (f) is effective in increasing the purification efficiency.
【0011】円板状の冷却体20を使用した場合でも、
雰囲気温度が低過ぎると、湯面近傍でα−Al晶出物が
優先的に成長し、冷却体20の下面に成長するα−Al
晶が比較的に減少する(g)。逆に雰囲気温度が高すぎ
ると、凝固速度が遅く、α−Al晶出物が冷却体20の
下面中央部から下向きに成長する(h)。これに対し、
雰囲気温度が適正に維持された条件下では、冷却体20
の下面及び側面にα−Al晶出物が万遍なく成長し
(i)、冷却体20の表面が精製反応に効果的に利用さ
れ、純度のよい精製品が得られる。本発明者等による種
々の実験結果から、図3(e),(f),(i)の形状
をもつ晶出物が形成されるとき、適正な速度で凝固反応
が進行し、晶出物の形状も良好で、純度のよい精製品が
得られることが判った。なかでも、底面の抜熱能を向上
させた冷却体10を使用して得られる晶出物(f)は、
底面の抜熱能を期待していない冷却体10を使用した場
合に得られる晶出物(e)に比較して1バッチ当りの精
製量も多くなり、しかも冷却体10の底面がアルミ溶湯
によって侵食されることも防止される。Even when the disc-shaped cooling body 20 is used,
If the ambient temperature is too low, α-Al crystallized substances preferentially grow near the surface of the molten metal, and α-Al that grows on the lower surface of the cooling body 20.
Crystals are relatively reduced (g). On the other hand, when the atmospheric temperature is too high, the solidification rate is slow and the α-Al crystallized product grows downward from the central portion of the lower surface of the cooling body 20 (h). In contrast,
Under the condition that the ambient temperature is properly maintained, the cooling body 20
The α-Al crystallized product uniformly grows on the lower surface and the side surface of (i), and the surface of the cooling body 20 is effectively used for the refining reaction to obtain a purified product with high purity. From the results of various experiments by the present inventors, when a crystallized product having the shapes of FIGS. 3 (e), (f), and (i) is formed, the solidification reaction proceeds at an appropriate rate, and the crystallized product It was found that the purified product had a good shape and a purified product with good purity was obtained. Among them, the crystallized product (f) obtained by using the cooling body 10 having improved bottom surface heat removal ability is:
The amount of refinement per batch is larger than that of the crystallized product (e) obtained when using the cooling body 10 that does not expect heat removal ability of the bottom surface, and the bottom surface of the cooling body 10 is eroded by the molten aluminum. It is also prevented.
【0012】底面の抜熱能を高めた冷却体10として
は、図4に示す断面構造をもつものが使用される。湯面
Lより下方に位置する内管11の側面に複数の通気孔4
1を形成すると共に、底面にも通気孔42を形成する。
そして、通気孔41,42の開口面積を調整することに
より、吹出し率を調整する。たとえば、直径60.5m
mの内管11を使用し、湯面Lから50mmしたの位置
から内管11の先端近傍までの側面に直径8mmの通気
孔41を54個形成する。他方、内管11の底部中央
に、直径5mmの通気孔41を1個形成する。このと
き、内管11の底部における冷却媒体gの吹出し率は、
(π×2.52 ×1/π×42 ×54)×100=0.
7%となる。As the cooling body 10 having an improved bottom surface heat removal capability, a cooling body having a sectional structure shown in FIG. 4 is used. A plurality of ventilation holes 4 are formed on the side surface of the inner pipe 11 located below the molten metal surface L.
1 is formed, and the vent hole 42 is also formed on the bottom surface.
Then, the blowing rate is adjusted by adjusting the opening areas of the ventilation holes 41, 42. For example, diameter 60.5m
Using the m inner tube 11, 54 vent holes 41 having a diameter of 8 mm are formed on the side surface from the position 50 mm from the molten metal surface L to the vicinity of the tip of the inner tube 11. On the other hand, one vent hole 41 having a diameter of 5 mm is formed at the center of the bottom of the inner pipe 11. At this time, the blowout rate of the cooling medium g at the bottom of the inner pipe 11 is
(Π × 2.5 2 × 1 / π × 4 2 × 54) × 100 = 0.
It will be 7%.
【0013】この内管11の底部における吹出し率が0
%の場合、すなわち内管11の底部から冷却媒体gを吹
出さない場合には、冷却管10の外周面の下面が冷却さ
れないため、図3(a),(c),(d),(e)に示
すように冷却体10の下面にα−Al晶が晶出又は成長
せず、冷却体10の表面を晶出物の成長に利用する効率
が低下する。また、冷却体10の下面がアルミニウム溶
湯Mに露出した状態になるので、冷却体10の素材によ
ってはアルミニウム溶湯Mにより冷却体10が侵食され
る。しかし、吹出し率が5%を超えるようになると、冷
却体10の下面における冷却効果が大きくなりすぎ、図
3(b)に示すような晶出物が形成される。この場合、
冷却体10の下面における凝固速度が目標値より早いた
め、下面に成長した晶出物は、冷却体10の側面に成長
した晶出物に比較して純度が悪くなる。他方、吹出し率
を0.1〜5%の範囲に調整した冷却体10では、図3
(f)に示すように冷却体10の側面及び底面が高い効
率で晶出物の成長に利用され、均一な厚みをもち形状が
良好な晶出物が得られる。また、冷却体10の表面が晶
出物で覆われ、アルミニウム溶湯Mによる冷却体10の
侵食も防止される。The blowout rate at the bottom of the inner pipe 11 is 0.
%, That is, when the cooling medium g is not blown out from the bottom portion of the inner pipe 11, the lower surface of the outer peripheral surface of the cooling pipe 10 is not cooled, and therefore the cooling pipes shown in FIGS. 3 (a), (c), (d), ( As shown in e), the α-Al crystal does not crystallize or grow on the lower surface of the cooling body 10, and the efficiency of utilizing the surface of the cooling body 10 for growing crystallized substances decreases. Further, since the lower surface of the cooling body 10 is exposed to the molten aluminum M, the cooling body 10 is eroded by the molten aluminum M depending on the material of the cooling body 10. However, when the blowout rate exceeds 5%, the cooling effect on the lower surface of the cooling body 10 becomes too large, and crystallized substances as shown in FIG. 3B are formed. in this case,
Since the solidification rate on the lower surface of the cooling body 10 is higher than the target value, the crystallized substances grown on the lower surface have poorer purity than the crystallized substances grown on the side surfaces of the cooling body 10. On the other hand, in the cooling body 10 whose blowout rate is adjusted in the range of 0.1 to 5%,
As shown in (f), the side surface and the bottom surface of the cooling body 10 are used for growing the crystallized substance with high efficiency, and the crystallized substance having a uniform thickness and a good shape can be obtained. Further, the surface of the cooling body 10 is covered with crystallized substances, and the corrosion of the cooling body 10 by the molten aluminum M is prevented.
【0014】[0014]
実施例1:Si:0.64重量%及びFe:0.45重
量%を含むアルミニウムサッシスクラップを溶解したア
ルミニウム溶湯Mに、直径110mmの管状冷却体10
を湯面から300mmの深さまで浸漬し、冷却空気を1
000リットル/分の流量で供給しながら管状冷却体1
0を100r.p.mで回転させた。管状冷却体10と
しては、直径60mmの内管11の底部に通気孔42を
形成し、底部の吹出し率を0.7%に設定したものを使
用した。晶出温度T0 は654〜652℃の範囲である
ので、T1 =T0 −(2〜14)℃となるように炉内の
雰囲気温度T1 を640〜650℃に保持した。この条
件下で、冷却体10の側面及び底面にα−Al晶出物を
15分間成長させた。得られた晶出物は、冷却体10の
底面から上方290mmの位置にある側面に直径340
mmの厚みまで成長していた。また、冷却体10の底面
から下方に20mmの厚みで成長していた。この晶出物
から得られた精製品の純度は、Si:0.22重量%及
びFe:0.13重量%であった。Example 1: A tubular cooling body 10 having a diameter of 110 mm was added to an aluminum melt M in which an aluminum sash scrap containing Si: 0.64 wt% and Fe: 0.45 wt% was melted.
Immerse the water to a depth of 300 mm from the surface of the bath, and cool it with 1
Tubular cooling body 1 while supplying at a flow rate of 000 l / min
0 to 100 r. p. It was rotated at m. As the tubular cooling body 10, one having a vent hole 42 formed at the bottom of the inner tube 11 having a diameter of 60 mm and having a blowout rate of 0.7% at the bottom was used. Since the crystallization temperature T 0 is in the range of 654 to 652 ° C., the atmospheric temperature T 1 in the furnace was kept at 640 to 650 ° C. so that T 1 = T 0 − (2 to 14) ° C. Under this condition, α-Al crystallized substances were grown on the side surface and the bottom surface of the cooling body 10 for 15 minutes. The obtained crystallized product has a diameter of 340 on the side surface located 290 mm above the bottom surface of the cooling body 10.
It had grown to a thickness of mm. Further, the cooling body 10 was grown downward from the bottom surface with a thickness of 20 mm. The purity of the purified product obtained from this crystallized product was Si: 0.22% by weight and Fe: 0.13% by weight.
【0015】実施例2:実施例1と同じアルミニウム溶
湯Mに、直径280mmの円板状回転冷却体20を浸漬
し、冷却空気を3000リットル/分の流量で供給しな
がら円板状冷却体20を50r.p.mで回転させた。
晶出温度T0 は654〜652℃の範囲であるので、T
1 =T0 +(−8〜+4)℃となるように炉内の雰囲気
温度T1 を646〜656℃に保持した。この条件下
で、冷却体20の下面及び側面にα−Al晶出物を15
分間成長させた。得られた晶出物は、冷却体20の底面
から35mmの厚みで直径310mmまで成長してい
た。この晶出物から得られた精製品の純度は、Si:
0.20重量%及びFe:0.14重量%であった。Example 2: A disk-shaped rotary cooling body 20 having a diameter of 280 mm was immersed in the same molten aluminum M as in Example 1 and the cooling air was supplied at a flow rate of 3000 liters / minute. To 50 r. p. It was rotated at m.
Since the crystallization temperature T 0 is in the range of 654 to 652 ° C., T
The atmospheric temperature T 1 in the furnace was maintained at 646 to 656 ° C. so that 1 = T 0 + (− 8 to +4) ° C. Under this condition, the α-Al crystallized substance is deposited on the lower surface and the side surface of the cooling body 20 by 15 times.
Grow for minutes. The obtained crystallized product had grown from the bottom surface of the cooling body 20 to a diameter of 310 mm with a thickness of 35 mm. The purity of the purified product obtained from this crystallized substance is Si:
It was 0.20% by weight and Fe: 0.14% by weight.
【0016】実施例3:Si:8.02重量%及びF
e:0.68重量%を含む自動車用アルミニウムスクラ
ップを溶解したアルミニウム溶湯Mに、実施例1と同じ
管状冷却体10を湯面から300mmの深さまで浸漬
し、冷却空気を3000リットル/分の流量で供給しな
がら管状冷却体10を200r.p.mで回転させた。
晶出温度T0 は594〜592℃の範囲であるので、T
1 =T0 +(−24〜+8)℃となるように炉内の雰囲
気温度T1 を570〜600℃に保持した。この条件下
で、冷却体10の側面及び底面にα−Al晶出物を15
分間成長させた。得られた晶出物は、冷却体10の軸方
向に関して320mmの長さで直径240mmの厚みま
で成長していた。この晶出物から得られた精製品の純度
は、Si:3.31重量%及びFe:0.20重量%で
あった。Example 3: Si: 8.02 wt% and F
e: The same tubular cooling body 10 as in Example 1 was immersed in an aluminum melt M in which aluminum scrap for automobiles containing 0.68% by weight was melted to a depth of 300 mm from the molten metal surface, and a cooling air flow rate was 3000 liters / minute. While supplying the tubular cooling body 10 with 200 r. p. It was rotated at m.
Since the crystallization temperature T 0 is in the range of 594 to 592 ° C., T
The atmospheric temperature T 1 in the furnace was maintained at 570 to 600 ° C. so that 1 = T 0 + (− 24 to +8) ° C. Under this condition, the α-Al crystallized substance is formed on the side surface and the bottom surface of the cooling body 10 by 15 times.
Grow for minutes. The obtained crystallized product had a length of 320 mm in the axial direction of the cooling body 10 and had grown to a thickness of 240 mm. The purity of the purified product obtained from this crystallized product was Si: 3.31% by weight and Fe: 0.20% by weight.
【0017】実施例4:実施例3と同じアルミニウム溶
湯Mに、実施例2と同じ円板状回転冷却体20を浸漬
し、冷却空気を3000リットル/分の流量で供給しな
がら円板状冷却体20を150r.p.mで回転させ
た。晶出温度T0 は594〜592℃の範囲であるの
で、T1 =T0 +(−24〜+4)℃となるように炉内
の雰囲気温度T1 を570〜590℃に保持した。この
条件下で、冷却体20の下面及び側面にα−Al晶出物
を15分間成長させた。得られた晶出物は、冷却体20
の底面から25mmの厚みで直径300mmまで成長し
ていた。この晶出物から得られた精製品の純度は、S
i:3.20重量%及びFe:0.18重量%であっ
た。実施例1〜4に示すような実験を種々のアルミニウ
ムスクラップに対して繰り返した結果、α−Alの晶出
温度に対して雰囲気温度を適正に調節するとき、形状が
良好で純度の高い精製品が得られることを確認した。す
なわち、アルミニウムサッシスクラップの精製にあたっ
ては、α−Alの晶出温度T0 が650℃付近にあるの
で、晶出温度T0 より0〜50℃高い650〜700℃
の範囲に雰囲気温度T1 を保持することが有効である。
他方、自動車用Alスクラップの精製にあたっては、α
−Alの晶出温度T0 が590℃付近にあるので、晶出
温度T0 より0〜20℃低い570〜590℃の範囲に
雰囲気温度T1 を保持することが有効である。Example 4: The same disk-shaped rotary cooling body 20 as in Example 2 was immersed in the same molten aluminum M as in Example 3, and the disk-shaped cooling was performed while supplying cooling air at a flow rate of 3000 liters / minute. Body 20 at 150 r. p. It was rotated at m. Since the crystallization temperature T 0 is in the range of 594 to 592 ° C., the atmospheric temperature T 1 in the furnace was kept at 570 to 590 ° C. so that T 1 = T 0 + (− 24 to +4) ° C. Under this condition, α-Al crystallized substances were grown on the lower surface and the side surface of the cooling body 20 for 15 minutes. The obtained crystallized product is the cooling body 20.
Had grown to a diameter of 300 mm with a thickness of 25 mm from the bottom surface. The purity of the purified product obtained from this crystallized substance is S
i: 3.20% by weight and Fe: 0.18% by weight. As a result of repeating the experiments as shown in Examples 1 to 4 on various aluminum scraps, a refined product having a good shape and high purity when the atmospheric temperature is appropriately adjusted with respect to the crystallization temperature of α-Al. It was confirmed that That is, when refining aluminum sash scrap, since the crystallization temperature T 0 of α-Al is around 650 ° C., 650 to 700 ° C. which is 0 to 50 ° C. higher than the crystallization temperature T 0.
It is effective to keep the ambient temperature T 1 within the range.
On the other hand, when refining Al scrap for automobiles,
Since the crystallization temperature T 0 of —Al is around 590 ° C., it is effective to maintain the ambient temperature T 1 in the range of 570 to 590 ° C., which is 0 to 20 ° C. lower than the crystallization temperature T 0 .
【0018】比較例:管状回転冷却体10を使用し、本
発明で規定した範囲を外れる条件下で実施例1と同じア
ルミニウムサッシスクラップの溶湯を精製した場合を、
実施例1及び3と対比して図5に示す。雰囲気温度が低
過ぎる比較例1では、湯面近傍の凝固速度が大きく、精
製品の純度が悪かった。雰囲気温度が高すぎる比較例2
では、全体的に凝固速度が遅く、純度が高い精製品が得
られたものの、生産性に問題があった。また、内管底部
からの吹出し率を大きくした比較例3では、形状が不良
な晶出物が成長し、精製品の純度も悪かった。また、円
板状の回転冷却体20を使用してアルミニウムサッシス
クラップの溶湯を精製した場合、雰囲気温度を500〜
530℃に設定すると、図3(g)に示すように、湯面
近傍での凝固速度が大きく、純度の低い精製品が得られ
た。逆に雰囲気温度を720〜750℃と高く設定する
と、図3(h)に示す形状をもつ晶出物が成長し、純度
が高い精製品が得られたものの、低い精製効率であっ
た。Comparative Example: A case where the same molten aluminum sash scrap as in Example 1 was refined using the tubular rotary cooling body 10 under the conditions outside the range specified in the present invention,
A comparison with Examples 1 and 3 is shown in FIG. In Comparative Example 1 in which the ambient temperature was too low, the solidification rate near the molten metal surface was high, and the purity of the purified product was poor. Comparative example 2 in which the ambient temperature is too high
Then, although a solidified product having a low solidification rate and high purity was obtained as a whole, there was a problem in productivity. Further, in Comparative Example 3 in which the blowout rate from the bottom of the inner tube was large, crystallized substances having a poor shape grew, and the purity of the purified product was poor. Further, when the molten aluminum sash scrap is refined using the disc-shaped rotary cooling body 20, the ambient temperature is 500 to
When the temperature was set to 530 ° C., as shown in FIG. 3 (g), a purified product having a high solidification rate near the molten metal surface and a low purity was obtained. Conversely, when the ambient temperature was set to a high value of 720 to 750 ° C., a crystallized product having the shape shown in FIG. 3 (h) grew and a purified product with high purity was obtained, but the purification efficiency was low.
【0019】[0019]
【発明の効果】以上に説明したように、本発明において
は、初晶が金属間化合物である組成をもつアルミニウム
スクラップの溶湯に冷却体を浸漬して、冷却体の側面や
下面にα−Al晶を晶出させることによりアルミニウム
を精製するとき、α−Alの晶出温度との関連で雰囲気
温度を制御している。この温度制御により、α−Al晶
の凝固速度を冷却体の表面全体に均一化することがで
き、純度のよい精製品が得られる。また、管状冷却体の
内管底部に通気孔を形成し、底面冷却能を向上させると
き、管状冷却体の底面にも純度のよい晶出物が成長し、
精製効率が向上すると共に、アルミニウム溶湯による冷
却体の侵食も抑制される。As described above, in the present invention, the cooling body is immersed in the molten aluminum scrap having the composition in which the primary crystal is an intermetallic compound, and the α-Al is formed on the side surface or the lower surface of the cooling body. When aluminum is purified by crystallizing crystals, the ambient temperature is controlled in relation to the crystallization temperature of α-Al. By this temperature control, the solidification rate of α-Al crystals can be made uniform over the entire surface of the cooling body, and a purified product with high purity can be obtained. Further, when forming a vent hole at the bottom of the inner tube of the tubular cooling body to improve the bottom surface cooling ability, a crystallized product of high purity also grows on the bottom surface of the tubular cooling body,
Refining efficiency is improved and corrosion of the cooling body by the molten aluminum is suppressed.
【図1】 本発明に従った精製方法を実施する精製装置
の一例FIG. 1 shows an example of a purification apparatus for carrying out a purification method according to the present invention.
【図2】 本発明に従った精製方法を実施する精製装置
の他の例FIG. 2 Another example of a purification apparatus for carrying out the purification method according to the present invention
【図3】 雰囲気温度等に影響によって異なった形状に
成長したα−Al晶出物の数例FIG. 3 shows some examples of α-Al crystallized substances that have grown into different shapes due to the influence of atmospheric temperature and the like.
【図4】 底面の抜熱能を向上させた管状冷却体FIG. 4 A tubular cooling body with improved heat removal performance on the bottom surface
【図5】 管状冷却体を使用してアルミニウム溶湯を精
製した場合の操業条件が精製結果に与える影響を対比し
た図表FIG. 5 is a chart comparing the effect of operating conditions on refining results when refining molten aluminum using a tubular cooling body.
M:溶湯 α−Al:精製された晶出物 I:金属
間化合物 g:冷却媒体 10:管状回転冷却体 11:内管 12:外管
13:カップリング 14,16:モータ 15:アーム 17:送りネ
ジ 18:ギャップ 20:円板状回転冷却体 21:内管 22:外管
23,24:フランジ 25:オリフィス 2
7:底壁 28:分配室 29:冷却室 30:精製容器 31:ヒータ 32:蓋体 3
3:バーナ 41:内管の下部側面に形成した通気孔
42:内管の底面に形成した通気孔M: molten metal α-Al: purified crystallized product I: intermetallic compound g: cooling medium 10: tubular rotary cooling body 11: inner tube 12: outer tube
13: Coupling 14, 16: Motor 15: Arm 17: Feed screw 18: Gap 20: Disc-shaped rotary cooling body 21: Inner tube 22: Outer tube 23, 24: Flange 25: Orifice 2
7: Bottom wall 28: Distribution chamber 29: Cooling chamber 30: Purification container 31: Heater 32: Lid 3
3: Burner 41: Ventilation hole formed on the lower side surface of the inner pipe 42: Ventilation hole formed on the bottom surface of the inner pipe
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成7年6月7日[Submission date] June 7, 1995
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0017[Correction target item name] 0017
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0017】実施例4:実施例3と同じアルミニウム溶
湯Mに、実施例2と同じ円板状回転冷却体20を浸漬
し、冷却空気を3000リットル/分の流量で供給しな
がら円板状冷却体20を150r.p.mで回転させ
た。晶出温度T0は594〜592℃の範囲であるの
で、T1=T0+(−24〜+4)℃となるように炉内
の雰囲気温度T1を570〜590℃に保持した。この
条件下で、冷却体20の下面及び側面にα−Al晶出物
を15分間成長させた。得られた晶出物は、冷却体20
の底面から25mmの厚みで直径300mmまで成長し
ていた。この晶出物から得られた精製品の純度は、S
i:3.20重量%及びFe:0.18重量%であっ
た。実施例1〜4に示すような実験を種々のアルミニウ
ムスクラップに対して繰り返した結果、α−Alの晶出
温度に対して雰囲気温度を適正に調節するとき、形状が
良好で純度の高い精製品が得られることを確認した。す
なわち、アルミニウムサッシスクラップの精製にあたっ
ては、α−Alの晶出温度T0が650℃付近にあるの
で、晶出温度T0より−30〜+30℃高い650〜7
00℃の範囲に雰囲気温度T1を保持することが有効で
ある。他方、自動車用Alスクラップの精製にあたって
は、α−Alの晶出温度T0が590℃付近にあるの
で、晶出温度T0より0〜20℃低い570〜590℃
の範囲に雰囲気温度T1を保持することが有効である。Example 4: The same disk-shaped rotary cooling body 20 as in Example 2 was immersed in the same molten aluminum M as in Example 3, and the disk-shaped cooling was performed while supplying cooling air at a flow rate of 3000 liters / minute. Body 20 at 150 r. p. It was rotated at m. Since the crystallization temperature T 0 is in the range of 594 to 592 ° C., the atmospheric temperature T 1 in the furnace was kept at 570 to 590 ° C. so that T 1 = T 0 + (− 24 to +4) ° C. Under this condition, α-Al crystallized substances were grown on the lower surface and the side surface of the cooling body 20 for 15 minutes. The obtained crystallized product is the cooling body 20.
Had grown to a diameter of 300 mm with a thickness of 25 mm from the bottom surface. The purity of the purified product obtained from this crystallized substance is S
i: 3.20% by weight and Fe: 0.18% by weight. As a result of repeating the experiments as shown in Examples 1 to 4 on various aluminum scraps, a refined product having a good shape and high purity when the atmospheric temperature is appropriately adjusted with respect to the crystallization temperature of α-Al. It was confirmed that That is, in refining aluminum sash scrap, since the crystallization temperature T 0 of α-Al is around 650 ° C., 650 to 7 which is −30 to + 30 ° C. higher than the crystallization temperature T 0.
It is effective to keep the ambient temperature T 1 in the range of 00 ° C. On the other hand, in refining Al scrap for automobiles, since the crystallization temperature T 0 of α-Al is around 590 ° C., it is 570 to 590 ° C. which is 0 to 20 ° C. lower than the crystallization temperature T 0.
It is effective to maintain the ambient temperature T 1 in the range.
Claims (3)
プを溶解した溶湯に冷却体を浸漬し、冷却体の表面にα
−Al晶を晶出成長させる際、α−Al晶出温度T0 に
対してアルミニウム溶湯の湯面上方にある雰囲気の温度
T1 (℃)をT1 =T0 +(−100〜+50)の範囲
に維持することを特徴とするアルミニウム又はアルミニ
ウムスクラップの精製方法。1. A cooling body is immersed in a molten metal in which aluminum or aluminum scrap is melted, and α is formed on the surface of the cooling body.
When crystallizing the -Al crystal, the temperature T 1 (° C.) of the atmosphere above the molten metal surface of the molten aluminum with respect to the α-Al crystallizing temperature T 0 is T 1 = T 0 + (− 100 to +50). A method for refining aluminum or aluminum scrap, characterized in that
面における冷却媒体の吹出し率が全吹出し量の0.1〜
5%である管状冷却体を使用するアルミニウム又はアル
ミニウムスクラップの精製方法。2. The cooling body according to claim 1, wherein the blowing rate of the cooling medium on the bottom surface of the inner pipe is 0.1 to 10% of the total blowing amount.
A method of refining aluminum or aluminum scrap using a tubular cooling body which is 5%.
て晶出する組成をもつアルミニウム合金を溶解し、初晶
として晶出する金属間化合物を炉底に沈降分離させた
後、アルミニウム溶湯に浸漬した冷却体の表面にα−A
l晶を晶出成長させる請求項1又は2記載のアルミニウ
ム又はアルミニウムスクラップの精製方法。3. An aluminum alloy having a composition in which a part of impurities are crystallized as a primary crystal of an intermetallic compound is melted, and the intermetallic compound crystallized as a primary crystal is precipitated and separated on a furnace bottom, and then the aluminum melt is melted. Α-A on the surface of the cooling body immersed in
The method for refining aluminum or aluminum scrap according to claim 1 or 2, wherein l-crystal is crystallized and grown.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12424795A JP3211622B2 (en) | 1995-04-25 | 1995-04-25 | Purification method of aluminum scrap |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12424795A JP3211622B2 (en) | 1995-04-25 | 1995-04-25 | Purification method of aluminum scrap |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08295964A true JPH08295964A (en) | 1996-11-12 |
JP3211622B2 JP3211622B2 (en) | 2001-09-25 |
Family
ID=14880615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12424795A Expired - Fee Related JP3211622B2 (en) | 1995-04-25 | 1995-04-25 | Purification method of aluminum scrap |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3211622B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1922437A1 (en) * | 2005-06-10 | 2008-05-21 | Elkem Solar AS | Method and apparatus for refining a molten material |
JP2008163419A (en) * | 2006-12-28 | 2008-07-17 | Showa Denko Kk | Metal-refining method and apparatus, refined metal, casting, metal product and electrolytic capacitor |
-
1995
- 1995-04-25 JP JP12424795A patent/JP3211622B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1922437A1 (en) * | 2005-06-10 | 2008-05-21 | Elkem Solar AS | Method and apparatus for refining a molten material |
NO326797B1 (en) * | 2005-06-10 | 2009-02-16 | Elkem As | Process and apparatus for refining molten material |
US8580036B2 (en) | 2005-06-10 | 2013-11-12 | Elkem Solar As | Method and apparatus for refining a molten material |
EP1922437A4 (en) * | 2005-06-10 | 2014-10-29 | Elkem Solar As | Method and apparatus for refining a molten material |
JP2008163419A (en) * | 2006-12-28 | 2008-07-17 | Showa Denko Kk | Metal-refining method and apparatus, refined metal, casting, metal product and electrolytic capacitor |
Also Published As
Publication number | Publication date |
---|---|
JP3211622B2 (en) | 2001-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4747906A (en) | Process and apparatus for purifying silicon | |
JPH02225633A (en) | Production of aluminum with high purity | |
US4948102A (en) | Method of preparing high-purity metal and rotary cooling member for use in apparatus therefor | |
JPH07206420A (en) | Production of high-purity silicon | |
JP3237330B2 (en) | Purification method of aluminum alloy scrap | |
JP3211622B2 (en) | Purification method of aluminum scrap | |
JPH107491A (en) | High-purity single crystal copper and its production and production unit therefor | |
JP4378820B2 (en) | Aluminum purification method and its use | |
JP2916645B2 (en) | Metal purification method | |
JPH0432526A (en) | Manufacture of aluminum material for electronic material | |
JP4365480B2 (en) | Manufacturing method of high purity silicon | |
JP3814697B2 (en) | Metal purification equipment | |
JP3237438B2 (en) | Purification method of aluminum scrap | |
JPH0873959A (en) | Method for refining aluminum and device therefor | |
JPH0754063A (en) | Apparatus for refining aluminum scrap | |
JP2000351616A5 (en) | ||
KR900007075B1 (en) | Color display tube process and apparatus for purifying silicon | |
JPH06299265A (en) | Method for refining aluminum scrap | |
JPH0754073A (en) | Refining method for aluminum scrap | |
JP3809544B2 (en) | Metal purification equipment | |
JPH10102158A (en) | Method for refining aluminum | |
JPH05295463A (en) | Method and apparatus for purifying aluminum | |
JPH05295461A (en) | Method and apparatus for purifying aluminum | |
JP3873177B2 (en) | Metal purification apparatus and metal purification method using the same | |
JPH11264029A (en) | Method for refining aluminum and refining apparatus thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090719 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090719 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100719 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100719 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100719 Year of fee payment: 9 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100719 Year of fee payment: 9 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100719 Year of fee payment: 9 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110719 Year of fee payment: 10 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110719 Year of fee payment: 10 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110719 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120719 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |